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1. Introduction

A common concern of evaluation studies is to leamn the distribution of outcomes when
a specified trearment policy, or assignment rule, determines the treatment received by each
member of a specified population. Recent studies have emphasized evaluation of policies
providing the same treatment to all members of the population. In particular, experiments with
randomized treatments have this objective. The classical experimental protocol calls for random
samples of the population to be drawn and formed into treatment groups, all of whose members
are assigned the same treatment. The empirical distribution of outcomes realized by a treatment
group is then ostensibly the same (up to random sampling error) as would be observed if the
treatment in question were applied to the entire population. For example, see Manski and
Garfinkel (1992), some of whose chapters describe recent experimental evaluations of welfare
and training programs.

Policies mandating homogeneous treatment of the population are of interest, but so are
ones that permit treatment to vary across the population, We often see policies calling on
persons to select their own treatments. Policies intended to mandate homogeneous treatment
sometimes turn out to be voluntary in practice, as compliance with the mandated treatment is
not enforced. Resource constraints sometimes prevent universal implementation of desirable
treatments.

Consider the following inferential questions:

* What do observations of cutcomes when treatments vary across the population reveal

about the outcomes that would occur if treatment were homogeneous?



2

#*  What do observations of oulcomes when treatment is homogeneous reveal about the

outcomes that would occur if treatment were to vary across the population?

The first question, usually called the selection or switching problem, has drawn considerable
attention and much has been learned; see Maddala (1983), Heckman and Robb {1985), and
Manski (1993). The second question, which has remained unexplored and unnamed, is the
subject of this paper. Formally, the question asks what inferences about mixtures of two random
variables can be made given knowledge of their marginal distributions. Hence I refer to it as

the mixing problem.

SELECTION AND MIXING PROBLEMS: To formalize these inferential questions, let each
member of the population be described by values for [(y,,¥¢),Zp,X}. Here x is a vector of
covariates, an element of some space X. There are two feasible treatments, labelled 1 and 0.!
The letter m denotes the treatment policy of interest. A treatment policy determines which
treatment each person receives. The indicator variable z, denotes the treatment that a given
person receives under policy m; z,, = 1 if the person receives treatment 1 and z,, = 0
otherwise. Associated with the treatments are outcomes (y;,Yo), a pair of elements of some

outcome space Y. The outcome a person realizes under policy m is

(1) Yo = ¥iZm + Yo(l-2,).
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The distribution of outcomes realized by those persons sharing the same value of x is

@) PYnix) P(Y1Zm+Yo(l-Zm) | X]

= P(y, | x,zn=DPzn=11%) + P(¥o | X,2,=0)P(zz=0 | x).

For example, a welfare recipient might be treated by job-specific training or by basic
education. The relevant outcome might be eamed income following treatment. One treatment
policy might mandate job training for all welfare recipients and enforce the mandate. A second
policy might attempt to mandate basic education but not be able to enforce compliance. A third
policy might permit a person’s case worker to select the treatment expected to yield the larger
net benefit, measured as earned income minus treatment costs.

The problem of interest is to learn about the distribution P(yg, | x) of outcomes that
would be realized by persons with covariates x if a specified treatment policy m were in effect.
Inference is straightforward if one can enact policy m and observe the outcomes. The interesting
inferential questions concern the feasibility of leamning P(yy, | x) when one observes outcomes
under policies other than m. The selection problem and the mixing problem both concern the
the feasibility of extrapolating from observed treatment policies to unobserved ones.

The selection problem arises when policy m mandates homogeneous treatment, but the
available data are realizations under some other policy that may yield heterogeneous treatments.
Suppose that m makes treatment 1 mandatory for all persons with covariates x, so P(z,=1]x)
= | and P(y,, | x) = P(y, | x). Suppose that the observable policy is some u # m.2 The

sampling process identifies the censored outcome distributions  P(y, | x,z,=1) and
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P(y, | x,2,=0), as well as the treatment distribution P(z, | x). So the formal statement of the

selection problem is:

* What does knowledge of [P(y; | x,zp=l),P(y°] x,2,=0),P(z, | ¥)} imply about

P(y, | x)?

The mixing problem arises when policy m may yield heterogenous treatments, but the
available data are realizations under policies imposing homogenous treatments. In particular,
the classical model of experimentation presumes that experimental evidence is available for both
treatments, so the experiments identify Py, | x) and P(yo | x). So the formal statement of the

mixing problem is:?

»»  What does knowledge of [P(y, | ),P(yo | x)] imply about Ply;z,+Yo(l-zy) | x1?

ORGANIZATION OF THE PAPER: Section 2 uses empirical evidence from a famous social
experiment, the Perry Preschool Project, to illustrate the mixing problem and the main findings
of this paper. Fifteen years after their participation in this early-childhood educational
intervention, sixty-seven percent of a treatment group were high school graduates. At the same
time, only forty-nine percent of a control group were graduates. Our interest is to determine
what the experimental evidence and various forms of prior information imply about the rate of
high school graduation that would prevail under treatment policies applying the intervention to

some children but not to others.
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Sections 3 through & present the analysis yielding the empirical results reported in Section
2. In my earlier study of the selection problem (Manski, 1989, 1993), I found it productive to
begin by determining what can be learned when the sampling process provides the only
information available to the researcher. I then examined the identifying power of various forms
of prior information that might plausibly be invoked in empirical studies. The present analysis
uses the same approach.

Section 3 investigates the mixing problem when knowledge of the two marginal
distributions P(y, | x) and P(y, | x) is the only information availzble. The basic finding is a
proposition giving sharp bounds on conditional probabilities of the form P(yB | x}, B C Y.
When outcomes are real-valued, this finding is easily transformed into sharp bounds on the
quantiles of Py, | x).*

The bounds of Section 3 may be tightened if the researcher possesses prior information
on the distribution of [(¥,,Yo),Zm.X]- Section 4 examines the identifying power of information
restricting the joint distribution of outcomes P(y,,yo { x).5 Section 4.1 assumes that y, and y,
are statistically independent, conditional on the covariates x. In contrast, Section 4.2 supposes
that the outcomes are shifted versions of one another, with y; = y, + & for some constant 4.
Section 4.3 assumes that outcomes are ordered, with y; = y, for all persons with covariates x.

Section 5 examines restrictions on the distribution Pz, | (y;,Yo),X] describing treatment
policy m. Section 5.1 assumes that the treatment z,, received by each person is statistically
independent of that person’s outcomes (yy,Yq), conditional on x. Section 5.2 supposes that the
treatment policy minimizes or maximizes the probability that y,, falls in specified sets of events;

important applications include the Roy model and the competing risks model. Section 5.3
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assumes that one knows the size P(z, =1 | x) of the subpopulation receiving treatment 1, but
does not know the composition of this subpopulation. An interesting finding is that knowledge
of P(z,,=1 | x) makes it possible to learn something about P(y, | x) even if one of the two
distributions {P(y, | x),P(ye | X)] is not known.

Taken one at a time, each of the assumptions imposed in Section 4 and 5 on the
distribution of outcomes or on the treatment policy implies a distinctive bound on P(y, | x), but
none of the assumptions is strong enough 1o identify the distribution. Combinations of

assumptions do identify P(y,, | x). Two such are stated in Section 6.

IDENTIFICATION AND SAMPLE INFERENCE: The mixing problem, like the selection
problem, is a failure of identification rather than a difficulty in sample inference. To keep
attention focussed on identification, Sections 3 through 6 maintain the assumption that the
marginal distributions P(y, | x) and P(y, | x) are known almost everywhere on the covariate
space. The identification findings reported in these sections can be translated into consistent
sample estimates of identified quantities by replacing P(y, | x) and P(y, | x) with consistent
nonparametric estimates, as is done in Section 2. Moreover, sampling confidence bands can be
placed around these estimates, much as they were by Manski et al. (1992) in an empirical study
concermned with the selection problem.

For the sake of simplicity, 1 often refer to P(y, | x) and P(y, | x) simply as the
distributions of y, and y,, rather than as distributions conditional on x. One couid similarly
shorten the notation by denoting these distributions as P(y,) and P(yy). 1 do not take this step

because 1 want the reader to keep in mind that the analysis of this paper holds for any



specification of the covariates x.

CAVEATS ON CLASSICAL EXPERIMENTATION: Where it discusses experimentation with
randomized treatments, this paper maintains the classical assumption that experimental regimes
operate exactly as would mandatory treatment policies. I have elsewhere discussed some of the
many reasons why this central tenet of experimental analysis may fail to hold when applied to
welfare and training programs (see the introduction to Manski and Garfinkel, 1992).
Experiments may be administered differently from actual programs. Macro feedback effects
ranging from information diffusion to norm formation to market equilibration may make the full-
scale implementation of a treatment policy inherently different from the small-scale
implementation of an experiment. Strictures on forcing human subjects into experiments may
make it impossible to form random treatment groups. It may not be practical to execute
experiments covering more than a small subset of the treatments and environments that are
germane to policy formation. The present analysis assumes away all of these very real concerns

in order to focus on the mixing problem.



2. An lustration: The Perry Preschool Project

Beginning in 1962, the Perry Preschool Project provided intensive educational and social
services to a random sample of black children in Ypsilanti, Michigan. The project investigators
also drew a second random sample of such children, but provided them with no special services.
Subsequently, a variety of outcomes were ascertained for most members of the treatment and
control groups. Among other things, it was found that sixty-seven percent of the treatment
group and forty-nine percent of the control group were high school graduates by age 19 (see
Berrueta-Clement et al., 1984). This and similar findings for other outcomes have been widely
cited as evidence that intensive early childhood educational interventions improve the outcomes
of children at nisk (see Holden, 1990).

For purposes of discussion, let us accept the Perry Preschool Project as a classical
experiment, with

x = black children in Ypsilanti, Michigan

y; = 1 if high school graduate by age 19, = 0 otherwise; intervention received.

Yo = 1 if high school graduate by age 19, = 0 otherwise; intervention not received.

Moreover, ignoring attrition and sampling error in the estimation of outcome distributions, let
us accept the experimental evidence as showing that the high school graduation rate among
children with covariate value x would be .67 if all such children were to receive the
intervention, and would be .49 if none of them were to receive the intervention. That is, let us

accept the experimental evidence as showing that P(y,=1 | x) = .67 and P(yo=1 | x) = 49,8

What would be the rate P(y,, =1 } x) of high school graduation under a Lreatment policy
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m where some children with covariates x receive the intervention, but not others? Table |1
summarizes the inferences that can be made given the experimental evidence and varying forms
of prior information about the outcome distribution and the treatment policy. In each case, the
table cites a proposition implying the estimate shown. These propositions are developed in

Sections 3 through 6.

IDENTIFICATION USING ONLY THE EXPERIMENTAL EVIDENCE: It might be
conjectured that P(y,, =1 | x) must lie between the graduation rates of the control and treatment
groups, namely .49 and .67. This conjecture is correct for special outcome distributions and
treatment policies. It holds if

(@) the outcomes (y;,Yp) are ordered, with y; = y for all children

or if

(b) the treatment policy makes z,, statistically independent of the outcomes (y1.Y0):

The conjecture does not hold more generally. In fact, the experimental evidence only implies
that the graduation rate must lie between .16 and 1. That is, there exist outcome distributions
and treatment policies that are consistent with the known values of P(y, | x) and P(y, | x) and
that imply graduation rates as low as .16 and as high as 1.

This result is easily understood once one considers precisely what the experimental
evidence does and does not reveal. Observing the outcomes of the treatment group reveals
(ignoring sampling error) that y, = 1 for 67 percent of the population and y, = 0 for the
remaining 33 percent. Observing the outcomes of the control group reveals that y, = 1 for 49

percent of the population and y, = 0 for the remaining 51 percent.
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The experimental evidence does not reveal how y, and y, are related within the
population, nor how policy m assigns treatments. The impact of treatment policy on the
graduation rate is most pronounced when y, and y, are most negatively associated. Among all
distributions of (y,,yo) that are consistent with the experimental evidence, the one with the
greatest negative association between y, and yj is this:

P(y;=0,50=0}x) = .00 P(y;=0,yo=1]x) = .33

P(y,=1,¥0=01x) = .51 P(y;=lyp=1]x) = .16.

Given this distribution of outcomes, the graduation rate is maximized by adopting a treatment
policy that gives the intervention only to those children with y, = 1. The result is a 100 percent
graduation rate. At the other extreme, the graduation probability is minimized by adopting a
treatment policy that gives the intervention only to those children with y, = 0. The result isa

16 percent graduation rate.

PRIOR INFORMATION: The interval [.16,1] is a "worst-case” bound on the graduation rate,
computed in the absence of any prior information restricting the outcome distribution or the
treatment policy. A researcher who possesses such information may be able to narrow the range
of possible graduation rates.

Imagine that one has no information about the treatment policy but does have information
about the outcome distribution. One might think that being treated by the preschool intervention
can never harm a child’s schooling prospects; that is, outcomes are ordered with 'y, 2 Yo for
all children. If so, then the graduation rate must lie between those observed in the control and

treatment groups, namely .49 and .67. A more neutral assumption might be that y, and y, are
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statistically independent conditional on x. This assumption implies that the graduation rate must
lie between .33 and .83; where the rate falls within this range depends on the treatment policy.

Next imagine that one has no information about the outcome distribution but does have
information about the treatment policy. One might think that treatment decisions will be made
by omniscient parents who choose for each child the treatment yielding the better outcome. This
assumption implies that the graduation rate must lie between .67 and 1; where the rate falls
within this range depends on the outcome distribution. On the other hand, one might think that
assignments to treatmentis are statistically independent of outcomes, as they would be if an
explicit random assignment rule is used, Then the graduation rate must lie between the .49 and
.67 observed in the control and treatment groups.

Finally, imagine that resource constraints limit implementation of the intervention to part
of the population. Suppose that one knows the fraction of the population receiving the
intervention, but does not know the composition of the treated and untreated subpopulations.
As Table | shows, knowing that 1/10 or 5/10 or 9/10 of the population receives the intervention
implies that the graduation rate must lie in the interval [.39,.59] or [.17,.99] or [.57,77}
respectively. Observe that the first and third intervals are relatively narrow but the second is
rather wide, almost as wide as the interval found in the absence of prior information. This
pattern of results reflects the fact that the power of treatment policy to determine who receives
which treatment is much more constrained when P(z,=1| x) is fixed at a value near zero or
one than it is when P(z,,=1 | x) is fixed at 5/10.

The scenarios considered thus far bring to bear enough empirical evidence and prior

information to bound the high school graduation rate but not to identify it. If stronger
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restrictions are imposed, then the high school graduation rate may be identified. For example,
\f it is known that the outcomes (y,,yo) are statistically independent and that each child receives
the treatment yielding the better outcome, then the implied high school graduation rate is .83.
If it is known that 5/10 of the population receives the intervention and that treatment is
independent of outcomes, then the implied graduation rate is .58.

The general lesson is that experimental evidence alone permits only weak conclusions to
be drawn about the high school graduation rate when treatments vary. Experimental evidence
combined with prior information implies stronger conclusions. The nature of these stronger
conclusions depends critically on the prior information asserted. This lesson is analogous 1o the
one learned over the past twenty years about the conclusions that can be drawn about mandatory
programs from observations of outcomes when treatments vary. Mixing and selection are

distinct identification problems, but they are closely related.
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TABLE I: THE PERRY PRESCHOOL PROJECT

xperimen Vi

P(y,=1|x) = .67 P(y,=1 | x) = .49

rior_Information

no prior information (Proposition 1)

independent outcomes (Proposition 2)

ordered outcomes (Proposition 4)

treatment independent of outcomes (Proposition 5)
treatment maximizing graduation rate (Proposition 6B)
+ independent outcomes (Proposition 9B)
+ ordered outcomes (Proposition 9B)

treatment minimizing graduation rate (Proposition 6A)

1/10 population receives treatment 1 (Proposition 7)

+ treatment independent of outcomes (Proposition 9A)

5/10 population receives treatment 1 (Proposition 7)

+ treatment independent of outcomes (Proposition 9A)

9/10 population receives treatment 1 (Proposition 7)

+ treatment independent of outcomes (Proposition 9A)

Plyn=11x
[.16,1]

[.33,.83]

[.49,.67]

(.49,.67]
[.67,1]
.83
67

[.16,.49]

[.39,.59]
)

[.17,.99]
.58

[.57,.77]
.65
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: fication of Mi Using Onl wledze of The Marginal

This section characterizes the restrictions on P(y, | x) implied by knowledge of

(P(y, | x),P(yo | X)]. No other information is assumed available.

PROBABILITIES OF EVENTS:  Consider the probability that the realized outcome yq falls
in some set B, conditional on x; that is, P(y,¢B | x). Given that y,, always equals either y, or
Yo, One might think that P(y,¢B | x) must lie between P(y,eB | x) and P(yoeB | x). This is not
the case. It tums out that when P(y,eB | x) + P(yoeB | x) < 1, then P(y,eB | x) must lie in
the interval [0,P(y,eB | x)+P(yqeB | x)). When P(y,eB | x) + P(ypeB | x) = 1, P(yneB | x)

must lie in the interval [P(y,eB | x}+P(yo¢B | x)-1,1]. Proposition 1 gives the result.

Proposition 1: Let P(y, | x) and P(y, | x) be known. Then

(3) max{O,P(y,eB | x)+P(yoeB | x)-1] < P(y,eB | x)

< min{P(y,eB | X)+P(yoeB | x),1].  ®
PROOF: We first determine the treatment policies that minimize and maximize P(y.¢B ] x).
Observe that if y, and y, both fall in the set B, then y,, must fall in B. Moreover, if neither y,

nor y, falls in B, then y,, cannot fall in B. That is,

(43) y,eB N y,eB = y_ ¢B
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and

(4b) y, éB N yoé¢B = y,¢B,

whatever treatment policy m may be.
The treatment policy is relevant only in those cases where one of the two outcomes falls

in B and the other does not. The treatment policy minimizes P(y,eB | x) if it always selects the

treatment yielding the outcome not in B; that is, if

(5) v1éB N yeB = z,

It
e

y;eB N y éB = 1,

Hence, the smallest possible value of P(y,¢B | x)is P(y,eB N ygeB | x). The treatment policy

maximizes P(y,eB | x) if it always selects the treatment yielding the outcome in B; that is, if

(6) Y/ éB N ygeB = 1z,

yieB N y ¢ B = z,

So the largest possible value of P(yn¢eB | x) is P(y,eB U yoeB | x).
The above shows that if P(y;eB N yoeB | x) and P(y;eB U yoeB | x) are known, then

(7) P(y;eB N ypeB | x) S PyneB[x) < Ply;eB U yoeB | x)
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is the sharp bound on P(y,,¢B | x). But the only available information is knowledge of P(y, | x)

and P(y, | x). Therefore, the best computable lower bound on P(y,eB | x) is the smallest value
of P(y;eB N yoeB | x) that is consistent with the known P(y, | x) and P(y, | x). Similarly, the
best computable upper bound is the largest feasible value of P(y,eB U yqeB | x).

The second step is to determine these best computable bounds. This is simple to do,
because Frechet (1951) proved this sharp bound on P(y;eB N ygeB | x), given knowledge of

P(y, | x) and P(yo | x):7

(8) max[0,P(y,eB | x)+P(ygeB | x)-1] =< P(yeB N yoeB | x)

< min[P(y,eB | x),P(yeB | x)].

It follows immediately from (8) that the best computable lower bound on P(y, | x) is

max[0,P(y,€B | x)+P(yeeB | x)-1]. To obtain the best computable upper bound, observe that

(9) P(y;eB U yueB | x) = P(y,eB | x) + P(ygeB | x) - P(y,eB N YoeB | x).

Applying the Frechet lower bound on P(y,eB N ygeB | x) to (9) shows that

(10) P(y,B U yueB | X} s min[P(y;eB | x)+P(ypeB | x),1].

Hence min[P(y,eB | x)+P(y¢B | x),1] is the best computable upper bound on P(y, | X).

Q.E.D.
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QUANTILES: Suppose that Y is the real line. Letue R!'and B = (-o=,u}]. By Proposition 1,

(11) max[0,P(y, <u | x)+P(yp=<u | x)-11 < P(ypsu|x)

< min[P(y,<u | x)+P(ypsu | x),1].

Let o € (0,1) and let q,(a | x) denote the e-quantile of y,,, conditional on x. Corollary 1.1

inverts the bound (L1) to obtain a sharp bound on g (x | x).

Corollary 1.1: Let P(y, | x) and P(yo | x) be known. Let Y be the real line. Let
o | x) = inf, st P@y;<u|x) + P(ypsu|x) = a
si{a | x) = inf,s.t. P(y;<u|x) + P(yp<u [x)-1 2 @

Then
T(12) e | x) S qulaix) £ sa|x). =
PROOF: By the upper bound on P(y,,<u | x) in (11),
u<rnlalx) = Ply;sulx)+Pysuix) <a
= P(y,sSulx) <«

= gula| x)} > u

Hence, ry(e | X) S qg(a | x). By the lower bound on P(y,<u | x)in (11),
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u>sa|x) = Py;su|x)+Pysul|x)-12a
= Py,Sulx) 2 «a

= g fa|x) s u

Hence, q,(a | X) S s;(a | x). These bounds on q(e | x) are sharp because the bounds in (11)
are sharp.

Q.E.D.

It is interesting that these bounds on guantiles of P(y,, | x) are always informative both above
and below. This is so even though the bound on P(y,, <u | x) used to derive Corollary 1.1 is

only informative above or below, the informative direction depending on the value of u.

4. Restricti he O Distributi

In the course of proving Proposition 1, we showed that if P(y;eB N yxeB | x) and P(y,¢B
U yeeB | x) are known and if no restrictions are imposed on the treatment policy m, then
inequality (7) provides the sharp bound on P(y,¢B | x). One may sometimes have prior
information that, when combined with empirical knowledge of [P(y, | x),P(yo | x)], makes the

bound (7) computable. This section presents three cases.
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4.1. INDEPENDENT OUTCOMES

Suppose it is known that the outcomes y, and yq are statistically independent, conditional

on x. Then

(13) P(y,eB N ypeB | x) = P(y,eB | x)P(yoeB | x).

Our second proposition follows immediately:

Proposition 2; Let P(y, | x) and P(y, | x) be known. Let it be known that y, and y, are

statistically independent, conditional on x. Then

(14) P(y;eB | X)P(¥geB | X) < P(ymeB | x)

< P(y,eB | x) + P(ygeB | x) - P(yeB | x)P(yoeB | ). ®

Whereas the bound obtained in Proposition 1 was generically one-sided, the present bound is
generically two-sided. The new lower bound on P(yy, | x) is informative whenever P(y;¢B | x)
> 0 and P(ypeB | x) > 0. The upper bound is informative whenever P(y¢B | x) < 1} and
P(ygeB | x) < 1.

Suppose that Y is the real line. By Proposition 2,



20
(15) P(y,su | x)P(yo=u|x} s Plynsu|x)

< P(y;su|x) + Pygsu | x) - Py su | x)P(yg=u | x)

for all u ¢ R}, Corollary 2.1 inverts (15) to obtain sharp bounds on quantiles of P(y, | x). The

proof uses the same argument as was applied 1o prove Corollary 1.1, and so is omitted.

Corollary 2.1: Let P(y; | x) and P(y | x) be known. Let it be known that y, and y, are
statistically independent, conditional on x. Let Y be the real line. Let

(e | x) = inf,s.t. P(y;<u|x) + P(ypsu | x) - Py, su | x)P(yo=u | x) 2 a

sy{a | x) = inf, 5.t P(y;Su | X)P(yo<u|x) 2 a

Then

(16) ry{a | x) S qula|x) < sy« | x). =

4.2. SHIFTED OUTCOMES

Evaluation studies often assume that y; and y, are not only statistically dependent but
functionally dependent. It is especially common to assume that real-valued outcomes are shifted

versions of one another; that is,ll

(17) Ply,=yo+8|x) =1,
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for some & ¢ R, Shifted outcomes is widely thought of as a convenient, relatively innocuous
assumption. However, recent analyses of the selection problem make clear that it is a quite
restrictive condition with strong identifying power. See Heckman and Robb (1985}, Bjorklund
and Moffitt (1987), Robinson (1989), Moftitt (1990), and Manski (1993).

Suppose that (17) holds. Knowledge of P(y, | x) and P(y, | x) implies knowledge of 4.

So the joint distribution P(y,,yo | x) is known and the bound (7) is computable. Thus we have

Proposition 3; Let P(y, | x) and P(y, | x) be known. Let Y be the real line. Let it be known

that P(y, =y, +6 | x) = 1, for some & ¢ R'. Then & is identified and

(18) P[(yo+8)eB N ygeB [ X] = P(yneB | x)

< P[(yo+8)eB | x] + P(yeeB | x) - P[(yo+8)eB N YoeB | x]. ®

When B = (-,u), this bound takes a very simple form. Assume, without loss of

generality, that § = 0. Then (18) becomes

(19) P(yo=<u-| %) < P(ypSu|x) < Pyp<u|x)

or, equivalently,

(19" P(y,su|x) < P(y,sSu|x) £ P(yosulx).



22

Corollary 3.1 inverts (19°) to obtain sharp bounds on quantiles of P(y, | x).

Corollary 3.1: Let P(y, | x) and P(y, | x) be known. Let Y be the real line. Let it be known
that P(y,=yo+5 | x) = 1, for some &= 0. Let

fyla ] x) = inf, s.t. P(ypSu|x) 2 a

s;( | X) = inf, s.t. P(y;Su | x) = o

Then

20) ry(a | x) < gulafx) = s)a | x). =

4.3. ORDERED OUTCOMES

Outcomes y, and y, are said to be ordered with respect to a given set B if yq almost

always falls in B when y, does; that is,?

(1) P(yyeB | x,y;eB) = 1.

For example, let the outcomes be binary, taking the value O or 1. If P(yo=0| x,y,=0) = |,

then the outcomes are ordered with respect to the set B = {0}. As another example, suppose

that the outcomes are real-valued and that
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(22) P(y,2y0 | x) = L.

Then y, and y, are ordered with respect to the sets B = (-o,u},as y; S u=y, s u.

The assumption of ordered outcomes has earlier been discussed in the context of the
Perry Preschool project. One may believe that receiving the intervention cannot possibly
diminish a child’s prospects for graduation. If so, then any child who receives the intervention
and does not graduate would not graduate in the absence of the intervention. That is,
P(yo=01] x,y,=0) = L.

If y, and y, are ordered with respect to B, then

(23) P(y,;eB N ygeB | x) = P(y;eB | x),

so the bound (7) is computable. In particular, we have

Proposition 4: Let P(y, | x) and P(y, | x) be known. Let it be known that P(y,eB | x,y,eB) =

. Then

(24) P(y;eB| x) < P(yneB|Xx) < P(ygB|[x). ®

An interesting result emerges when (24) is applied to real-valued outcomes satisfying

(22). Letting B = (-o0,u}, we find that (24) coincides with the bound (19") that holds when

outcomes are known to be shifted. Thus it turns out that assumptions (17) and (22) have the
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same identifying power in the context of the mixing problem. Manski (1993) shows that these

assumptions have different implications in the context of the selection problem.

Restrictions on the Tr nt Pol

Sections 5.1 and 5.2 examine the restrictions on P(yq | x) implied by a set of polar
treatment policies, in the absence of prior informalion about the outcome distribution. Section
5.1 supposes that treatment is statistically independent of outcomes, as in random assignment
policies. Section 5.2 supposes that treatment minimizes or maximizes the probability that the
realized outcome y,, falls in specified sets B, as in competing risks models and in the Roy
model. Section 5.3 examines the quite different problem of inference when the fraction of the
population receiving each treatment is known, but nothing is known about the composition of

the subpopulations receiving each treatment.

5.1. TREATMENT INDEPENDENT OF OUTCOMES

Suppose it is known that the treatment z,, received by each person with covariates x is

statistically independent of the person’s outcomes (¥y,Yo)- That is,

(25) Pl(y,.¥o) | x.zu] = Pl(y;yo) | x].
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Then equation (2) reduces 10

(26) P(yn | ) = Py, | X)P(z,=1 | x) + P(yp | x)P(zn=0] x).

If the fraction P(z,, | x) of the population receiving each treatment is known. then P(y,, | x) is
identified. Our present concemn, however, is with the situation in which (25) is the only prior
information available. In this case, the only restriction on the treatment distribution is that
P(z,,=1 | x) and P(z,,=0 | x) must lie in the unit interval and add up to one. Hence Proposition

5 follows immediately:

Proposition 5: Let P(y, | x) and P(y, | x) be known. Let it be known that z, is statistically

independent of (y,,¥o), conditional on x. Then

(27) min[P(yeB | x),P(yoeB | x)] < P(y,eB|x) < max[P(y,eB 1 x),P(yoeB | x)}. ®

The bound of Proposition 5 is a subset of each of the bounds reported in Propositions 2
through 4, which left the treatment policy unspecified and imposed restrictions on the outcome
distribution. This fact has a simple explanation. Equation (26) shows that, if z,,, is statistically
independent of (y,,Ye), then P(yq | x) depends on the distribution of (Y1,Yo) only through the two
marginal distributions P(y; | x) and P(y, | x). Hence, if one knows that z, is independent of
(Y1,¥o), then restrictions on the distribution of (y,,yo) have no identifying power.

Let Y be the real line and let B = (-o0,u]. Inverting the bound in Proposition 5 produces
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the following bound on quantiles of P(y, b x):

Corollary 5.1: Let P(y; | x) and P(yo | x) be known. Let it be known that z is statistically
independent of (y;,Yo)s conditional on x. Let Y be the real line. Let

rs(ex | x) = infy s.t. max[P(y, =u | X),P(yosu | x}] 2 a.

It

ssa | x) inf, s.t. min{P(y, <u | x),P(ypsu| x)] = a.

Then

(28) rs(a | x) < qulalx) < ssla I x). ®

5.2. OPTIMIZING TREATMENTS

To prove Proposition 1, we constructed two extreme treatment policies, one minimizing
P(y€B | x) and the other maximizing it. The former policy satisfies equation (5), while the
latter satisfies (6). Suppose that one of these optimizing policies is actually implemented. What
can be learned about P(yeB | x) in the absence of prior restrictions on the outcome distribution?

The proof to Proposition 1 showed that the treatment policy minimizing P(y,eB | x)
makes P(y¢B | x) = P(y;eB N yoeB | x), while the policy maximizing P(y,€B | x) makes

P(y,¢B | X) = P(y,;eB U yB | x). Applying the Frechet Bound (8) yields Proposition 6:
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Proposition 6: Let P(y; | x) and P(y, | x) be known.

A. Let it be known that the treatment policy satisfies (5). Then

(29) max(0,P(y,eB | X)+P(ygeB | x)-11 £ P(yneB{x) = min[P(yeB | x).P(yeB | x)].

B. Let it be known that the treatment policy satisfies (6). Then

(30) max{P(y,eB | x),P(ygeB | X)] = P(yneB|x) < min[P(y,eB | x)+P(yeeB | x),1). ®

It is interesting to compare these bounds with those under other assumptions. In Part A,
the lower bound coincides with the lower bound in the absence of prior information (see
Proposition 1), while the upper bound coincides with the lower bound under the assumption that
treatment is independent of the outcomes (see Proposition 5). In Part B, the lower bound
coincides with the upper bound under the assumption that treatment is independent of the
outcomes (see Proposition 5), while the upper bound coincides with the upper bound in the
absence of prior information (see Proposition 1), Thus the three treatment policies examined
in Propositions 5 and 6 imply that P(y.,¢B | x) lies in mutually exclusive intervals, and these

three intervals partition the range of values that is feasible in the absence of prior information.

SELECTION OF THE TREATMENT WITH THE LARGER OR SMALLER OUTCOME:
Proposition 6 has important applications in economics and in survival analysis. Economic

analyses of voluntary treatment policies often assume that Y is the real line and that the
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treatment yielding the larger outcome is selected, so

1) ¥ = max(y;.¥o)

In the labor-economics literature on occupation choice, this is often called the Roy model (see
Heckman and Honore, 1990). For any u € R!, treatment policy (31) makes P(y,<u | x) =
P(y,<u N yo<u | x). So this policy minimizes P(y,,<u | x). We may therefore apply part

A of Proposition 6 to show that

(32) max[0,P(y,<u | x)+P(yg<u | x)-1] = Ply,<u]x)

< min[P(y;<u | x),P(yp<u | x)].

The competing risks model of survival analysis (see Kalbfleisch and Prentice, 1980) assumes

that Y is the real line and that the treatment yielding the smaller outcome is selected, so

(33) ym = min(y;,¥o)-

For any u, this treatment policy maximizes P(y, <u | x). So Part B of Proposition 6 shows that

(34) max[P(y,<u | x),P(yo<u | X)] £ P(y,<u|x) < min[P(y,;Su | x)+P(yo<u| x),1].

Corollary 6.1 inverts the bounds (32) and (34) to produce bounds on quantiles of
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P(yn | %)

Corollary 6.1: Let P(y, | x) and P(yg | x) be known. Let'Y be the real line.

A. Let it be known that y,, = max(y,.ye). Then

(35) ssla | 1) = Gulo | x) = sfa|x).

B. Let it be known that y,, = min(y,,yo). Then

(36) n(a|x) S gupla|x) = rsla | x). =

TREATMENT A KNOWN FUNCTION OF THE QUTCOMES: The treatment policies

selecting the treatment with the larger or smaller outcome are members of a class of policies

making the treatment z,,, received by each person a function of the person’s outcomes (¥,Yo)-

Suppose that the function z,(.,.): YxY - {0,1} mapping outcomes into treatments is known.

Then the realized outcome y,, is a known function of (y,,Yo), namely

G Yo = YViZa1Y + Yoll-Zn(y1Yoll:

With y,, a known function of (y,,¥o), P(Ym | x) is identified if information identifying the

outcome distribution is available. In particular, the analysis of Section 4 implies that
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P(y,¢B } x) is identified if (y;.yo) are known to be statistically independent, shifted, or ordered

outcomes.

5.3, KNOWN TREATMENT DISTRIBUTION

The restrictions on treatment policy examined in Sections 5.1 and 5.2 specify the rule
used to make treatment assignments, but do not a priori constrain the fraction of the population
receiving each treatment. Tt is also of interest to consider the reverse situation, where one
knows the fraction receiving each treatment but does not know the rule used to make treatment
assignments. For example, we noted earlier that resource constraints could limit implementation
of the Perry Preschool treatment to pant of the eligible population. Knowledge of the budget
constraint and the cost of pre-schooling would suffice to determine the fraction of the population
receiving the treatment. It may be more difficult to learn how school officials, social workers,
and parents interact to determine which chiidren receive the treatment.

Thus suppose that under policy m, a known fraction p of the persons with covariates x

receive treatment y,, the remaining fraction (1-p) receiving treatment y,. So

(38) P(z,=0|x) = p,

where p is known. No information is available on the rule used to make treatment assignments

that satisfy (38).

Given (38), P(y,, | x) may be written
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(39) P(ym | x) = Py, | x,2o=1)(1-p) + Plyo | X,2,=0p.

The distributions [P{y, | x),P(yg | x)] may be written

(40a) P(y; | x) = P(y; | x,z,=1)(1-p) + P(y; | x,2,=0)p

and

(40b) P(yo | x) = P(yp | x,zu=1)(1-p) + Py, | x,2,,=0)p.

Knowledge of P(y,|x) and p restricts P(y, | x,z,=1) and P(y, | x,2,=0) to pairs of
distributions that satisfy (40a); similarly, knowledge of P(y, | x) and p restricts P(yq | x,z,=1)
and P(y, | x,z,=0) to pairs of distributions that satisfy (40b). Examination of the feasible pairs
shows that P(y, | x,z,=1) and P(yy | x,z,,=0) must lie in the following sets of distributions:

(413) Py, | x,z,=1) € ¥,,(p) ¥ N ({P(y, | x)-py}/(1-p): ¥ € ¥]

and

(410) P(yo | x,22=0) € ¥oolp) ¥ N [{Pyo | x) - (1-p)¥}/p: ¥ € ¥],

where ¥ denotes the set of all distributions on Y. It follows that P(y,, | x) is a (1-p,p) mixture
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of a distribution in ¥,(p) and one in ¥p4(p). That is,

(42) Ply, | x) € [(1-pW¥1 + PYoo: (¥11,¥00) € ¥11(P) X ¥oo(P))-

Relation (42) completely characterizes the restrictions on P(y, | x) implied by knowledge
of [P(y, | x),P(yp | x),P(z | x)], but the characterization is not transparent. Horowitz and
Manski (1992) have analyzed the sets ¥,,(p) and ¥oq(p) in a recent study of the contaminated
sampling probiem, whose formal structure is similar to the problem studied here. Their
Corollary 1.2 proves the following sharp bounds on P(y;eB | x,z,=1) and
P(yeeB | x,2,=0):"°
43a) max(0,{P(y,eB | x)-p}/(1-p)] < P(y\eB| x,z,=1) = min[1,P(y,eB | x)/(1-p)]
and
(43b) max[0,{P(yeeB | x)-(1-p)}/p} < P(ypeB | x,2,,=0) < min[1,P(ypeB | x)/pl.

This and (38) imply Proposition 7:

Proposition 7: Let P(y, | x) and P(y | x) be known. Let P(z,,=0| x) = p, for known p. Then

(44) max[0,P(y,eB | x)-p) + max[0,P(yoeB | x)-(1-p)] S P(y,eB | x)
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< min[l-p,P(y,eB | x)] + min[p,P(yoeB | x)]. =

Inverting this bound yields Corollary 7.1.

Corollary 7.1: Let P(y; | x) and P(y, | x) be known. Let P(z,,=0| x) = p, for known p. Let

Y be the real line. Let

inf, s.t. min[i-p,P(y, <u | x)} + min[p,P(yosu | x)] = «

r7p(a l X)

inf, s.t. max[0,P(y, <u | x)-p] + max[0,P(yg=u | x)-(1-p)] = «.

s7plee | X)

Then

(45) 1 lex | x}) < gula]x) = s7pla | x). =

EVIDENCE ON ONE TREATMENT: Throughout this paper, I have assumed that empirical
evidence is available for both treatments. Suppose now that such evidence is available for only
one lreatment, say treatment 1; so P(y; | x) is known and P(yg | x) is unrestricted. 1In the
absence of information on the fraction of the population receiving each treatment, nathing can
be learned about P(y,, | x). After all, P(z,,=0 | x) = 1 might hold, in which case P(y,, | X) =
P(yo | X). On the other hand, some inference on P(y, | x) is possible if P(zy, | x) is known.

Proposition 8 and Corollary 8.1 provide the results.
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Proposition 8: Let P(y, | x) be known. Let P(z,=0 | x) = p, for known p. Then

(46) max[0,P(yeB | x)-p} < P(y,eB|x} =< min[1,P(y,eB | x)+p]. ®

PROOF: With P(y, | x) and p known, (43a) continues to give the sharp bound on
P(y,eB | x,z,=1). With P(y, ! x) unknown, the bound (43b) on P(y«B | x,2,,=0) is no longer
available; all we know is that 0 < P(ygeB | x,z,,=0) < 1. This and (38) imply (46).

Q.E.D.

Corollary 8.1: Let P(y, | x) be known. Let P(z,,=0 | x) = p, for known p. Let Y be the real
line. Let

Tgple | x) = inf, s.t. min[l,P(y,<u | x)+p] = «

sgpla | ) = inf, s.t. max[0,P(y, <u | x)-p} = a.

Then

(A7) rgfa | x) S Qule|x) S sl | x). »

The lower bound on P(yeB | x) is informative if P(y,eB | x) > p; the upper if
P(y,eB | x) < 1 - p. When the bound is informative above and below, it restricts P(y,,eB | x)
to an interval of width 2p, centered at P(y,eB | x). In contrast to the case when empirical
evidence is available for both treatments, the present bounds on quantiles are not always

informative. The lower bound is informative if p < a; the upper ifp < 1 - a.
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. Identifyin mbination A

Propositions | through 8 assume enough empirical evidence and prior information to
bound event probabilities P(y,,¢B | x), but not enough to identify them. In Section 5, we noted
in passing some assumptions that do suffice to identify P(y,¢B | x). Proposition 9 presents these
simple findings formally.

Proposition 9: Let P(y, | x) and P(y, | x) be known.
A. Let it be known that z, is statistically independent of (y,,yo), conditionai on x. Let

P(z,,=0| x) = p, for known p. Then

(48) P(yneB | x) = P(y,eB | x)(1-p) + P(yqeB | x)p

1S identified.
B. Let z, = z,(y;,Yo) for some known function z(.,.): YxY - {0,1}. Let it be
known that y, and y, are either statistically independent, shifted, or ordered outcomes,

condinonal on x. Then

(49) P(YmEB l X) = P[YIZm(YI’yo)+yo{l'lm(YI’YO)}fB l X]

is identified. ®
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Notes

1. In practice there often are multiple feasible treatments, but this paper restricts attention to the
two-treatment case assumed in most of the literature. In the literature oa experimentation, it is

common to call one of these the frearment or intervention, and the other the control.

2. Of course one might observe realizations under more than one policy. Work on selection

problems has focussed on the case in which only one policy is observed.

3. The mixing problem should not be confused with the converse problem: What does
knowledge of P[y,z,,+Yo(1-zy) | X] imply about [P(y, | x),P(yo | X),P(zy, | x)1? The latter is

sometimes referred to as a mixture problem.

4. A more demanding technical challenge, not addressed here, is to determine the identifiability

of the conditional mean E(y,, | x).

5. Prior information restricting the marginal distributions P(y, | x) and P(yo | x) has no
identifying power as these distributions are identified by the empirical evidence. Such
restrictions may improve the precision of sample estimates of P(y, | x) and P(yg | x), but this

usage is distinct from the identification concerns of the present paper.

6. The estimates of P(y, =1 | x) and P(y,=1 | x) are based on the 58 treatment-group members

and 63 control-group members from whom the investigators obtained graduation data.
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7. See Ord (1972) for a brief exposition of the Erechet bounds, and Ruschendorf (1981) for a

rather general analysis.

8. Knowledge of the marginal distributions P(y, | x) and P(yg | x) makes the shifted-outcome
assumption a testable hypothesis. 1f (17} holds, P(y, | x) and P(y, | x) must be the same up to
a translation of location. In contrast, the statistical independence assumption of Section 4.1 is

not testable, as it implies no restrictions on P(y, | x) and P(yg | x)-

9. Knowledge of the marginal distributions P(y, | x) and P(y, | x) makes the ordered-outcomes

assumption a testable hypothesis. If (21) holds, then P(ygeB | x) = P(y,eB | x).

10. That (43a) and (43b) are bounds follows immediately from (41a) and (41b) respectively.

[t is a bit more work to show that these bounds are sharp.
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