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I. Introduction

Frictionless market models of asset pricing imply that asset prices can
be represented by a stochastic discount factor or pricing kerael. For
example, in the Capital Asset Pricing Model (CAPM) the discount factor is
given by a constant plus a scale multiple of the return on the market
portfolio. In the Consumption-Based CAPM (CCAPM) the discount factor is
given by the intertemporal marginal rate of substitution of an investor. If
r is the net return on an asset and m is the marginal rate of substitution,

then the CCAPM implies that:

(L.1) 1 = Em(1+n| %

where & is the information set of the investor today. More generally, if m
is the stochastic discount factor, today's price, n(p), of an asset payoff,

p, tomorrow is given by:

(1.2) np) = Empld) .

Thus a stochastic discount factor m “discounts” payoffs in ecach statc of the
world and, as a comsequence, adjusts the price according to the riskiness of
the payoff. From the vantage point of an empirical analysis, we cnvision the
stochastic discount factor as the vehicle linking a theoretical model to
observable implications.

Given a particular model for the stochastic discount factor, the
implications of (1.2) can be assessed by first taking unconditional

expectations, yielding



(1.3) Er(p) = E(mp).

When m is observable (at least up to a finite-dimensional parameter vector)
by the econometrician, a test of (1.2) can be performed using a time serics
of a vector of portfolio payoffs and prices by 'cxamining whether the sample
analogs of the left and right sides of (1.2) are significantly different from
cach other. Examples of this type of procedure can be found in Hansen and
Singleton (1982), Brown and Gibbons (1985), MacKinlay and Richardson (1991)
and Epstein and Zin (1991).

While tests such as these can be informative, it is often difficult to
interpret the resulting statistical rejections, Further, thesc tests are not
directly applicable when there are market frictions such as transactions
costs or short-sale constraints. For example, when an asset cannot be sold

short, (1.2) is replaced with the pricing ixicquality:
(14 ap) = Emp|9

Finally, these tests can not be used when the candidate discount factor
depends on variables unavailable to the econometrician.

As an alternative to testing directly pricing errors using (1.3), we
consider a  different set  of tests and diagnostics  using  the
specification-error  bounds of Hansen and Jagannathan (1993), and the
volatility bounds of Hansen and Jagannathan (1991). We also consider
extensions of these tests and diagnostics, developed by He and Modest (1992)
and Luttmer (1993), that handle transactions costs, short-sale restrictions

and other market frictions. We develop an econometric methodology to provide



consistent  estimators of the  specification-error  and  volatility  bounds.
Further, we develop asymptotic distribution theory that is easy to implement
and that can be used to make statistical inferences about asset pricing
models and asset market data using the bounds. The specification-error and
volatility bounds, along with the econometric methodology that we develop,
can be applied to address several related issues.

The specification-error bounds of Hansen and Jagannathan (1993) can be
used to cxamine a discount factor proxy that docs not necessarily correctly
price the assets under consideration (sec also Bansal, Hsich and Viswanathan
1992 for an application). This is important since formal statistical tests
of many particular models of asset pricing imply that the bhypothesis that
their pricing errors arc zero is 8 very low probability event, Since these
models are typically very simple, it is perbaps not surprising that they do
not completely capture the complexity of pricing in financial markets. The
specification-error bounds give measures of the maximum pricing error made by
the discount factor proxy. This provides a way to assess the usefuluess of a
mode]l even when it is technically misspecified. Further, this tool can
casily accommodate market frictions such as transactions costs and short-sale
constraints.

Given a vector of asset payoffs and prices, (1.3) typically does mot
uniquely determine m. Instead there is a whole family of m's that will
work. Any parametric mode! for m imposes additional restrictions on that
family, often sufficient to identify a unique stochastic discount factor.
Rather than imposing these extra restrictions, Hansen and Jagannathan (1991)
showed bow asset market data on payoffs and prices cam be used to construct
feasible sets for means and standard deviations of stochastic discount

factors. The boundary points of these regions provide lower bounds on the



volatility (standard deviation) indexed by the mean. He and Modest (1992)
and Luumer (1993) showed bow to extend this amalysis to the case where some
of the asscts are subject to tramsactions costs or short-sales constraints.

These feasible sets of means and standard deviations of the stochastic
discount factor can be used to isolatc thosc aspects of the asset market data
that are most informative about the stochastic discount factor. One way to
do this is to ask whether the volatility bound becomes significantly sharper
as morc asset market data is added to the analysis. This would help one
assess the incremental importance of additional security market data in an
cconometric  analysis  without having to limit @ priori the family of
stochastic discount factors. More generally, it is valuable to bave a
characterization of the sense in which an asset market data set is puzzling
without having to take a precise stand on tbe underlying valuation model.

When tcsting a particular model of asset pricing in which the candidate
m is specified, it is often useful to examine whether the candidate 1;s in the
feasible region. Morcover, when diagnosing the failures of a specific model,
it is valuable to determine whether the candidate discount factor is not
sufficiently  volatile or whether it is other aspects  of the joint
distribution of asset payoffs and the candidatc discount factor that are
problematic.

As we remarked previously, sometimes it is not possible to construct
direct obscrvations of m, making pricing-error tests infeasible.  However,
it may still be possible to calculate the moments of a stochastic discount
factor impliecd by a model which can then be compared to the volatility
bounds, For example in Heaton (1993) a consumption-based CAPM model is
examined in which the consumption data is time averaged and preferences arc

such that a simple linearization of the utility function can not be done to



account for the time-averaging. Although it is possible to simulate the
entire model and compare the moments of asset prices predicted by the model
to those in the data, this is very difficult to do for a large cross-section
of asscts. However, it is a simple matter to calculate the implications of
the mean and standard-deviation of a model for m and compare them to the
bounds implied by a large number of assets.

Recently Burnside (1992) and Cecchetti, Lam and Mark (1992) showed bow
to test models of the discount factor using a different parameterization of
the volatility bound. OQur formulation and analysis can be applied to develop
tests that are simpler to implcmént and do mot require the calculation of
numerical derivatives for statistical inference. Also, our tests can
accommodate market frictions in a straightforward manner.

The rest of the paper is organized as follows. In Section II we review
the specification and volatility bounds of Hansen and Jagannathan (1991,
1993), He and Modest (1992) and Luttmer (1993). We show formally that the
volatility bound camn be viewed as a special case of the specification-error
bound. This permits us to developed the underlying econometric tools in a
unified way. We then exploit duality theory to obtain simple maximization
problems that can be used to compute the bounds and are amenable to
cconometric analysis. One of these maximization problems incorporates more
fully the implications of the absence of arbitrage opportunities,

In Section III we provide consistency and asymptotic distribution
results for estimators of the bounds.  Section IIILA presents the notation
that we use throughout the rest of the paper. Section IIILB presents our
consistency results. Sections III.C aend MLD present our results oo the
asymptotic distribution of the estimators of the bound and shows bow to

calculate standard errors for the estimators, Section II.E presents the



consistency result for estimators of the arbitrage bounds. Those
uninterested in the cobsistency results, but who are interested in the
calculations necessary for conducting statistical inference, need only read
Sections IILLA., III.C and III.D beforc moving to Section IV,

In Section IV we present several applications and cxtensions of our
results each of which can be read independently after reading Sections II,
IM.A, MI.C and II.D. In Section IV.A we discuss the sense in which the
catire feasible set of means and standard deviations for the stochastic
discount factor cam be estimated.  Section IV.B provides a discussion of
tests of whether the volatility bound becomes sharper with additional asset
market data. Section IV.C shows bow to use the volatility bounds to test
models of the discount factor. Finally in Section 1IV.D we e¢xtend the
specification-error  bound to a case where there are parameters of the
discount factor proxy that are unknown and must be estimated. Section V

contains some concluding remarks.
II. General Model and Bounds

Qur starting point is a model in which asset prices are represented by
a stochastic discount factor or pricing kernel. To accommodate sccurity
market pricing subject to transactions costs, we permit there to be
short-sale constraints for a subset of the securitics. Although a
short-sale constraint is an extreme version of a transactions cost, other
proportional transactions costs such as biansk spreads can also be handled
with this formalism. This is done as in Foley (1970), Jouni and Kallal
(1992) and Luumer (1993) by constructing two payoffs according to whether a

security is purchased or sold. A short-sale constraint is imposed on both



artificial securities to enforce the distinction between a buy and a sell,
and a bid-ask spread is modeled by making the purchase price bigher than the
sale price.

Suppose the vector of seccurity market payoffs used in an ecomometric
analysis is denoted x with a corresponding price vector q. The vector of
x is used to genecrate a collection of payoffs formed using portfolio weights

in a closed convex cone C of R":
2.1 P m» {p:p = a’'x for some a € C}).

The cone C is constructed to incorporate all of the short-sale constraints
imposed in the ecomometric investigation. If there are no price distortions
induced by market frictions, then C is R®. More generally, partition x into
two components: x’ = [x"’/x"] where x" contains the k components whose
prices are not distorted by market frictions and x' contains the ¢ components
subject to short-sale constraints. Then the cone C is formed by taking the
Cartesian product of R* and the nonnegative orthant of R(.

Let ¢ denote the random vector of prices corresponding to the vector x
of securities payoffs. These prices arc observed by investors at the time
assets are traded and are permitted to be random because the prices may
reflect  conditioning information available to the investors. Since it s
difficult to model empirically this conditioning information, we instead work
with the average or expected price vector Eg.

While information may be lost in our failure to model explicitly the
conditioning information of investors, some conditioning information can be

incorporated in the following familiar ad hoc manner, Supposc some of the

security payoffs used in an econometric analysis are one-period stock or



bond-market returns with prices equal to ome by construction, Additional
synthetic payoffs can be formed by an eccomometrician by taking onc of the
original returns, say x', and multiplying it by a random variable, say z, in
the conditioning information set of cconomic agents. The corresponding
constructed payoff is then x't with a price of z. Hence the price of the
synthetic payoff is random cven though the price of original security is
constant, If x' s subject to a short-sale constraint, themn 2z should be
nonnegative.

The vehicle linking payoffs to average prices is a stochastic discount
Jactor. To represent formally this link and provide a characterization of a
stochastic discount factor, we introduce the dual of C, which we denote C°.
This dual conmsists of all vectors in R" whose dot product with every element
of C is vonncgative. For instance, when C is all of R®, C" consists only of
the zero vector.  More generally, if x can be partitioned in the manner
described previously, the elements of C° are of the form (0,8°)’ where 8 is
nonnegative.

A stochastic discount factor m is a random variable that satisfies the

pricing relation:

(22) Eq-Emx € C .

To interpret this relation, first consider the case in which C is R". Then
there are no market frictions and we have linear pricing. In this case
relation (2.2) is the familiar pricing equality because C’ has only one
clement, namely the zero vector. Consider next the case in which x can be
partitioned into the two components described previously. Partition ¢

comparably, and relation (2.2) becomes:



2.3) Eq" - Emx® = 0
Eq' - Emx* = 0.

The inequality restriction emerges because pricing the vector of payoffs x*
subject to short-sale constraints must allow for the possibility that these

constraints bind and hence contribute positively to the market price vector,

I1.A: Maintained Assumptions

There are threc restrictions on the vector of payoffs and prices that
are central to our analysis. The first is a moment restriction, the second
is equivalent to the absence of arbitrage on the space of portfolio payoffs,
and the third eliminates redundancy in the securities,

For pricing relation (2.2) to have content, we maintain:

Assumption 2.1: EIxI2 < o, Elgl < .

Assumption 2.2: There exists an m > 0 satisfying (2.2) such that Em? < o™,

The positivity component of Assumption 2.2 can often be derived from
the Principle of No-Arbitrage (e.g., see Kreps 1981, Prisman 1986, Jouni and
Kallal 1992 and Luttmer 1993). The Principle of No-Arbitrage specifies that
the smallest cost associated with any payoff that is nonncgative and not
identically equal to zero must be strictly positive. Notice that from

(2.2), a stochastic discount factor m satisfies:

(2.4) a’E(mx) s «’Eq for any a € C,



which shows that Assumption 2.2 implies thec Principle of No-Arbitrage
(applied 10 expected prices).
Next we limit the coastruction of x by ruling out redundancies in the

securities:

Assumption 2.3: 1f a’x = a'’x and a’Eq = a'’'Eq for some « and & in C, then

.
a = .

[n the absence of transaction costs, Assumption 2.3 precludes the
possibility that the second moment matrix of x is singular, Otherwise,
there would exist a nontrivial lincar combination of the payoff vector x
that is zero with probability one. In light of (2.2), the (expected) price
of this nontrivial linear combination would have to be zero, violating
Assumption 2.3. To accommodate sccurities whose purchase price differs from
the sale price, we permit the second moment matrix of the composite vector x
to be singular. Assumption 2.3 then requires that distinct portfolio
weights used to construct the same payoff must have distinct expected

prices. !

ILB: Minimum Distance Problems

There are two problems that uanderlic most of our analysis. Let &
denote the set of all random variables with finite second moments that
satisfy (2.2), and let .« be the set of all nonnegative random variables in
“A. In light of Assumption 2.2, both sets are nonempty. Let y denote some
“proxy” variable for a stochastic discount factor that, strictly speaking,

docs not satisfy relations (2.2). Following Hansen and Jagannathan (1993),
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we comsider the following two ad hoc least squares mecasures of

misspecification:

@25 8 = min Ely-mi,
me

and

2.6 ¥2 = min Ely-m?
) ﬁejf vy - m)7)

When the proxy y is set to zero, the minimization problems collapse to
finding bounds on the second moment of stochastic discount factors as
constructed by Hansen and Jagannathan (1991), He and Modest (1992) and
Luttmer (1993). In particular, the bounds derived in Hansen and Jagannathan
(1991) are obtained by setting y to zero and solving (2.5) and (2.6) when
there are no short-sale constraints imposed (when C is set to R"); the bound
derived in He and Modest is obtained by solving (2.5) for y set to zero; and
the bound derived by Luttmer (1993) is obtained by solving (2.6) for y set to
zero.  These second moment bounds will subsequently be wused in deriving
feasible regions for means and standard deviations. Clearly, the second
moment bound implied by (2.6) is no smaller than that implied by (2.5) since
it is obtained using a smaller constraint set.

Next consider the case in which the proxy y is not degenerate. Hansen
and Jaganpathan (1993) showed that the least squares distance between a
proxy and the set & of (possibly nepative) stochastic discount factors bas
an alternative interpretation of being the maximum pricing error per unit

porm of payoffs in P, where the norm of a payoff is the square root of its



sccond moment. When the constraint set is shrunk to 4 as in problem (2.6),
the dual interpretation takes account of potential pricing errors for
bypothetical  derivative claims. While Hansen and Jagannathan (1993)
abstract  from  short-sale  constraints in  their  analysis, pricing-error

interpretations are applicable more gcncra!ly.2

I1.C: Conjugate Maximization Problems
In solving the least squares problems (2.5) and (2.6) and in our

development of ecconometric methods associated with those problems, it is

most convenicot to study the conjugate maximization problems. They are
given by
52 2 Ry ’
2.7 6" = max{Ey° - E{(y - x’a)] - 2a'Eq} ,
a€l
and

2.8 82 = max {Ey? - Ely - x'@)*?} - 2a’Eq)
acC

where the notation h* denotes max{h,0}). The conjugate problems are obtained
by introducing Lagrange multipliers on the pricing constraints (2.2) and
exploiting the familiar saddle point property of the Lagrangian. The a’s
then have interpretations as the multipliers on the pricing constraints.

The conjugate problems in (2.7) and (2.8) are convenient because the
choice variables are finite-dimensional vectors whereas the choice variables
in the original least squares problems are random variables that reside in

possibly infinite-dimensional constraint  sets. The specifications of the

12



conjugate problems arc justified formally in Hansen and Jagannathan (1993)
and Luttmer (1993).  Of particular interest to us is that the criteria for
the maximization problems arec concave in o« and that the first-order

conditions for the solutions are given by:
29) Eq-Elly - x'a)x] € C

in the case of problem (2.7) and

(2.10) Eq-Ely-x'%)*x) € C

along with the respective complementary slackness conditions

@.11) a’Eq - «’El(y - x'a)'x] = 0,
and
(2.12) a‘Eq- G'El(y -x"a)'x} = 0.

In fact, optimization problem (2.7) is a standard quadratic programming
problem.  laterpreting the first-order conditions for thesc problems, observe
that associated with a solution to problem (2.7) is a random variable m = (6%
- x‘;) in ¢ and associated with a solution to problem (2.8) is a nomncgative
random variable m = (y - x'@)* in . These random variables arc the umique
(up to the usual equivalence class of random variables that are cqual with
probability one) solutioas to th‘c original least squares problems.

Since Assumption 2.3 climinates redundant sccuritics and the random

13



variable (y - x';) is uniquely determined, the solution ; to conjugate
problem (2.7) is also unique. This follows because the value of the
criterion must be the same for all solutions, implying that they all must
bave the same expected price ;'Eq. The solution to conjugate problem (2.8)
may not be unique, however. In this case the truncated random variable (y -
x’@)* is uniquely determined, as is the expected price & ‘Eq. On the other
band, the random variable (y - x’&) is mot secessarily unique, so we can not
exploit Assumption 2.3 to verify that the solution a is wnique. As we will
now demonstrate, the set of solutions is convex and compact.

The convexity follows immediately from the concavity of the criterion
function and the convexity of the constraint set. Similarly, the set of
solutions must be closed because the constraint set is closed and the
criterion function is continuous.

Boundedness of the set of solutions can be demonstrated by investigating
the tail properties of the criterion functions. We comsider two cases:
directions 6@ for which @‘x is negative with positive probability and
directions @ for which 8°x is nonnegative. To study the former case we take
the criterion in (2.8) and divide it by 1 + |« 2 For large values of |«

the scaled criterion is approximately:
@.13) - E((x'0)*2]  where 0 = o/l + |a]H2 .

Hence | @ is approximately one for large values of |a|. Morcover, 8°x is a
payoff in P. Consequently, the unscaled criterion will decrease (to -)
quadratically for large values |a .

Consider next directions 6 for which 6'x is nonncgative. From

Assumption 2.2 and relation (2.4) we have that

14



(2.14) Em(@’'x) s 8'Eq

for some m that is strictly positive with probability onc. Hence §’Eq must
be strictly positive unless §’x is identically zero. However, when 0'x is
identically zero, it follows from Assumption 2.3 and inequality (2.14) that
@’Eq is still strictly positive.

For directions @ for which the payoff @‘x is nonnecgative, we study the
tail bebavior of the criterion after dividing by (1 + |a |2, which yields
approximately - 8’'Eq for large values of |a]. Hence in these directions the
the unscaled criterion must dimigish (to -oo) at least linearly in |a|. Thus
in either case, we find that the set of solutions to conjugate problem (2.8)
is bounded.

For some but pnot all of the results in the subsequent sections, we will
need for there to exist a unique solution to conjugate problem (2.8), Siace
the set of solutions is convex, local uniqueness implies global wuniqueness.
To display a sufficient condition for local uniqueness, let x° denote the
compopnent of the composite payoff vector x for which the pricing relation is

satisfied with equality:

(2.15) Emx’ = Eq

where ¢’ is the corresponding price vector.  Also, let l{ ™ >0) be the the
indicator function for the event {m>0}. A sufficient condition for local

uniqueness is that

Assumption 2.4: Ex'x"l{ M >0) is nonsingular,

15



To see why this is a valid sufficient condition, observe that from the
complementary slackness condition (2.12), m is given by (y - x™*})* for some

vector J. Consequently,
(2.16) Eq. = Eyl{,’,", >0} - E(J.x.'l{'?")o})ﬂ
When the matrix E(x'x"‘1 (7 >0) is nonsingular, we can solve (2.16) for }.

IL.D: Volatility Bounds and Restrictions on Means
The second moment bounds described in the previous subsection can be

converted into standard deviation bounds via the formulas:

- l32 ; (Em)z]m
= [32 - (Em)llln

2.17

-~

g
~
a

where 32 and 32 arc constructed by sctting the proxy to zero. When P
contains a unmit payoff, Em is also equal to the average price of that payoff
and hence is restricted to be between the sale and purcbase prices of the
unit payoff. However, data on the price of a riskless payoff is often not
available, so that it is difficult to determine Em. In these circumstances,
bounds can be obtained for cach choice of Em by adding a unit payoff to P
{(augmenting x with a 1) and assigning a price of v to that payoff (augmenting
Eq with v). In forming the augmented cone, there should be no short sale
constraints imposed on the additional security and hence no mew price
distortions should be introduced. The price assignment v is equivalent to a

mean assignment for m. Mean-specific volatility bounds can then be obtained

16



using (2.7), (2.8) and (2.17).

The Principle of No—Arbiiragc puts a limit on the admissible values of
v. v € [Ao,vol where Ao is the lower arbitrage bound and v, is the upper
arbitrage bound. These bounds are computed using formulas familiar from

derivative claims pricing:

(2.18) A, = -infla’Eq:a € Cand a’'x = -1}

and
(2.19) v, = infla’'Eq : a« € Cand a’'x 2 1}

While Ao is always well defined via (2.18), v, miy not be because there may
not exist a payoff in P that dominates a unit payoff. In  such

circumstances, we define v, to be + .
II1. Econometric Issues

In this section we develop consistency and asymptotic distribution
results for the specification-error bounds presented in Section II. A key
presumption underlying our analysis is that the data on asset payoffs and
prices are replicated over time in some stationary fashion. That s,
associated with the composite vector (x’,q’,y)’ is a stochastic process
{(x",qt’.yl)'} whose sequence of empirical distributions approximate the
joint distribution of (x’,g",y)’. We denote integration with respect to the
empirical distribution for sample size T as L. More precisely, for any z
that is a (Borel measurable) function of (x’,¢’,y) with a finite first

moment, we will approximate Ez by Lz where

17



3.1 gz = (m)zf_lz‘ .
Among other things, we requirc that this approximation becomes arbitrarily
good as the sample size T gets large. That is we presume that {zl) obeys a

Law of Large Numbers. A sufficient condition for this is:

Assumption 3.1:  The composite process {(xt‘,qt',yl)} is stationary and

ergodic.

Uoder this assumption, we can think of (x’,¢’,y) as (xo'.qo’,yo).
Assumption 3.1 could be weakened in a variety of ways, but it is maintained
for pedagogical simplicity. More generally, we might imagine that the
process {(xt‘,ql’,yl)} is asymptotically stationary, where the .convcrgencc
to the stationary distribution is sufficiently fast to ensure that the Law
of Large Numbers applies to averages of the form (3.1). In this case, the
joint distribution of (x‘,g’,y) is given by the stationary limit point of
the process {(xt .9, ,yt)) .

To estimate the specification-error bounds, we suppose that a sample of
size T is available and that the empirical distribution implicd by this data
is used in place of the population distribution. (Thus we are applying the
Analogy Principle of Goldberger 1968 and Manski 1988). We introduce two

random functions 3 and @:
(3.2) 0 = y¥-@-an?- 24,

and

18



63 @ = FP-0-an?o2g.
The sample analog estimators of interest are given by

64 @ = max I, [6(c)]
x

and

a5 (d)Y = ax L13()
) T ::ec Lidl

I11.A: Consistent Estimation of the Specification-Error Bounds
We first establish the statistical consistency of the estimator

sequences {;'T] and {d_ }:

Proposition 3.1: Under Assumptions 2.1-2.3 and 3.1, {21'} and {d s} coaverge

almost surely to & and §, respectively.

The proof of this proposition is given in Appendix A. The basic idea is
that the population and sample criterion functions for the conjugate
problems arc concave and the sets of maximizers are comvex. By Assumptions
2.1 and 3.1, the criterion functions converge pointwise (in « and ) almost
surely to ‘the population criterion functions introduced in Section ILC. In
light of the concavity of the criterion functions, this convergence s
uniform on compact sets almost surely (for example, sec Rockafellar 1970).

Finally, since the sets of maximizers of the limiting criterion functions

19



are compact, for sufficiently large T one can find a compact set such that
the maximizers of the sample and population criteria are contained in that
compact set (for example, sce Hildenbrand 1974 and Haberman 1989). Hence
the conclusion follows from the uniform convergence of the criteria on a

compact set.

I11.B: Asymptotic Distribution of the Estimators of the Bounds

We consider mnext the limiting distribution of the analog estimator
sequences of the specification-error bounds. Our ability to express the
objects of interest as solutions to the conmjugate problems permits us to
obtain results very similar to those in the literature on using likelihood
ratios as devices for model selection in environments when models are
possibly misspecified (for example, sce Vuong 1989). We show that when the
specification error bounds are positive, we obtain a limiting distribution
that is equivaleot to the onme obtained by ignoring parameter estimation, and
when the specification error bound is zero the limiting distribution is
degenerate.  (Sce Theorem 3.3 of Vuong 1989 page 307 for the correspoading
result for likelihood ratios.)

Let ;r be a maximizer of {‘,ra, ; a maximizer of Ev;, 31_ a maximizer of

L,$, and & a maximizer of E§. To study the limiting behavior of the

estimators, we use the decompositions:
6.6 VII)? - 51 = VITI8@) - $@) + VILIG) - ESG).
and

G Vi@ - 3% = IR IB@ ) - @0 + ILIFE) - EFEN

20



As we will now demoanstrate, the limiting distributions for the maximized
values depend only oo the second terms of these decompositions. In other
words, the impact of replacing the unknown population maximizers by the
sample maximizers in the sample criterion functions is negligible.

Take the case of the sequeace {(Hr)z}. Then by the concavity of &, we

bave the following gradient inequalities:

3.8 @) - @) s (Fix- 9@, - )
= |(Fix - q) - E(Fix - @](d - &)

+ E(mx - q)-{?i_r -a).

However, it follows from the first-order conditions (including the
complementary slackness conditions) for the population conjugate problem

that
(3.9) E(mix - )(d_- &) = E(mx -q)d_ s 0.

The incquality in (3.9) is obtuincd because E(g - mx) is in the dual C

while ?J'T is constrained to be in C. Combining (3.8) and (3.9) we have that

(G.10) 0 = VILI¥@E) - (@)
s VILlGAix - @) - E(Rix - @I'(F, - @)

Therefore, (@[3(3’1) - $(a)]) converges in probability to zero if the

sample counterparts to the pricing errors obey a Central Limit Theorem and

the maximizers can be chosen so that {(&_ - &)} converges almost surely to
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zero. This latter convergence can be demonstrated by exploiting the
concavity of the population criterion function and the convexity of the
constraint set (for example, sce the discussion on page 1635 of Haberman 1989

and Appendix A).

[mx - q) - E(mx - q)]
normally distributed random vector with mean zero and covariance matrix V.

Assumption 3.2: [ﬂ'ﬁr[ $la) - E¢£a) ]} converges in distribution to a

Assumption 3.3: {VTL, $(@) - E¥ i &) converges in distribution to
{(mx - q) - E(mx - q)

a normally distributed random vector with mean zero and covariance matrix V.

More primitive assumptions that imply the central limit approximations
underlying Assumptions 3.2 and 3.3 are given by Gordin (1969) and Hall and
Heyde (1980).

Let u denote a selection vector with a one in its first position
folowed by k + ¢ zeros. The limiting distributions for  the

specification-error bound estimators are:

Proposition 3.2: Suppose that 3 # 0and J # 0. Under Assumptions 2.1 -
2.3, 3.1 - 3.2, {»"I‘[c‘},r - 3]} converges to a normally distributed random
vector with mean zero and variance u'f’ul(43). Under Assumptions 2.1 - 2.4,
3.1 and 3.3, {\/T[QT - 3 converges in distribution to a mormally

distributed random variable with mean zero and variance u’ Vul(43').

To use Proposition 3.2 in practicc requires consistent estimation of

u'Vu or u'¥u. Consider the case of u’Pu. For each T form the scalar
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sequence {$‘(aT): t=1,2,3, ... T} and usc one of the frequency zero spectral
density estimators described by Newey and West (1987) or Andrews (1991), for
example.

As is sbown in Appendix A, when the price vector ¢ is a vector of real
numbers (degencrate random variables), the asymptotic distribution for {vI[d r
- ¥]} remains valid even when the population version of the conjugate maximum
problem fails to have a unique solution (Assumption 2.4 is violated). In
this case, the lack of identification of the parameter vector a does not
alter the distribution theory for the specification-error bound. While this
special case is of considerable interest, it rules out the possibility of
using conditioning information to form syathetic payoffs as described in
Section II.

Notice that if § = 0 or § = 0, Proposition 3.2 breaks down. This
occurs if y is a valid stochastic discount fact;)r in which case the
solutions to the population conjugate problems are ; = a = 0. As a
consequence, ‘;’.(;) and ¢ (a) arc both identically zero giving rise to a
degencrate  limiting  distribution  for {\/T(QT)zl and {fr(‘ar)’}. Our
subsequent results on the convergence of the parameters can be used to
establish that the rate of convergence of {(21,)2} and {(31.)2} is T, and is
given by a weighted sum of chi-squared distributions (see Vuong 1989). As a
result {:iT} and {31,} converge at the rate VT, although the limiting

distribution is not normal,

II1.C: Asymptotic Distribution of the Parameter Estimators
In several situations it is wuseful to examine the solutions to the
conjugate problems used in constructing the bounds. For example, it may be

of interest to examine whether a particular asset or group of assets are

23



important in determining the bound or it may of interest to determine
whether the coefficient vector is zero, in which case the bound is
degencrate.  In developing a central limit approximation to do this type of
statistical inference, we initially consider the case where there are no
assets that are subject to short sales constraints. In other words, we
assume that the cone C is R®. Since, in the absence of market frictions, the
estimation problem is posed as an unconstrained maximization problem, the
limiting  covariance matrices for the asymptotic distribution of the
cocfficient estimators have a form that is familiar both from M estimation
(e.g., scc Huber 1981) and from GMM estimation (e.g., sec Hansen 1982). Our
formal derivation of this distribution theory is given in Appendix C and uses
a result from Pakes and Pollard (1989). A byproduct from our analysis in the
appendix is a (modest) weakening of the assumptions imposed in Hansen (1982)
to accommodate kinks in the moment conditions used in estimation.

The population moment conditions of interest are:
G Elx(y-x'a) - g} = O,

for the specification-error bound in which the no-arbitrage restriction is

eot fully exploited, and

(3.12) E@x(yx’'a)* - q) = 0,

whea the no-arbitrage is exploited.  Equalities (3.11) and (3.12) are simply
the first-order coaditions (2.9) and (2.10) for the conjugate maximum

problems when short-sale constraints are not imposed.  The sample analog

estimators satisfy:
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(3.13)  Elx‘a)-ql =0
and
G149 Lh(xd) -q =0.
While the equations for ; are lincar, those for o arc nonlinear. In
the latter case, we use a linear approximation to the moment conditions in

deriving the central limit approximation for the parameters:

(3.15)  xox'@) -q = x(yx'a) -gq- xx'l{y_x.gzo}(a-z)

= x(y-x'a)l{y_x,azo} -q.
Notice that the function of « on the left side of (3.15) is differentiable

except at values of & such that yx'a = 0. We assume that such sample

points arc "unusual”:
Assumption 3.4: Pr{yx'a = 0} = 0.

To evaluate further the quality of the approximation in (3.15), let r(a)

denote the random approximation error:
(3.16) (@) = Ix(y-x’ra)(l tyx’az 0} Yy G zoP | -

It follows from the Caucby-Schwarz Inequality that
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@1 re@) s Ixoxra) | g g0y et § z0p |

s |x'a-x'all (l{y.x'azo}'l{y-x'a P_U}) |

< x| aal

where the second inequality follows because | x’a - x’ & | dominates | x(y-x‘a) |
whenever y-x‘a and y-x'd bave opposite sigas. Therefore, the random

approximation ecrror satisfies:

3.18)  rlad] s |x|?

for « # o implying that the modulus of differentiability

(3.19) dmod(e) = sup{r(a) |a-& | : |la-a& | <¢, for a® a}

is dominated by | x| 2, Combined with Assumption 2.1 this implies that for any
positive value of ¢, E[dmod(¢)] is finite. As € » 0, dmod(¢) goes to zero
except when l{y-x’a-o) = 1. In this case it is possible to choose a such

that |a-& | < cand1 = ] so that r(a) = | xx’ | . However Assumption

{y-x'a<0}
3.4 implies that this occurs with probability zero so that as ¢ » 0, dmod(e)
converges almost surely to zero. As is shown in Appendix C, these
restrictions are sufficient for us to study the asymptotic behavior of the

estimator {a_} using the lincarization on the right side of (3.15):

(3.20) ExGx'e)l(y i n o0y -9 = O
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To use linear equation system (3.20) to identify &, we mneed the

matrix Ear’l 3 20p © be nonsingular. Given Assumption 3.4, this rank

{y-x’
condition is equivalent to one in Assumption 2.4 because x and x' must
coincide when no short-sale constraints are imposed. The counterpart to
this rank condition for & is that the second moment matrix E(xx’) be
nonsingular as required by Assumption 2.3.

Working with the two lincar moment conditions, we obtain the

approximations:

@G2)  VI@E - &) - -[E(xx'l{y_x.v&Zo})]'l\’TE,IX(y-x"&Y - q]

M@, - @) = -E@) VI lGx'a) - g

where the notation = is used to demote the fact that the differences between
the left and right sides of (3.21) converge in probability to zero.  These
approximations are justified formally in Appendix B. Let w = [0 In].
Combining approximations (3.21) with Assumptions 3.2 and 3.3 gives us the

asymptotic distribution of the analog estimators.

Proposition 3.3:  Suppose Assumptions 2.1-2.3, 3.1 and 3.2 are satisfied.
Then {\/T(;T-;)} converges in distribution to a normally distributed random
vector with mean zero and covariance matrix: [E(xx')]'lw{lw‘[E(xx')]'l.
Suppose Assumptions 2.1-2.4, 3.1 and 3.3-3.4 arc satisfied. Then {(vT(d - )}
converges in distribution to a nmormally distributed random vector with mecan

zero and covariance matrix: [E(xx‘1 lyx'& zo})]°lew'[E(xx'l{y_x. e 0})]'1.

To apply these limiting distributions in practice requires consistent

~
estimators of the asymptotic covariance matrices. The terms wVw’ and w¥w’
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can be estimated using one of the spectral methods referenced previously.
Under assumptions maintained in Proposition 3.3, the matrices E(xx’) and
E(”'l{y-x'&'zO}) can be estimated conmsistently by their sample analogs,
where the estimator & is used in place of & in estimating the second of
these matrices.

We now briefly describe how the distribution theory is modified when
some short-sale constraints are imposed (C is a proper subset of R"). We
will focus on the limiting behavior of v’l’(z_r-&'), but the results for
V’T(;T-;) are very similar. As in Section II, we partition x by whether or
not m prices the payoffs with equality or not, that is by whether

~ g

(3.22) Emx' = E¢, or Emx' < Eg'

The component cocfficient estimators that multiply x“s for which there is
strict inequality will equal zero with arbitrarily high probability .as the
sample size gets large.  Hence the limiting distribution is degencrate for
these component estimators.

Consider next the estimator of the remaining subvector of a, which we
denote F. Because of the degeneracy just described, we can, in effect,
treat the limiting distribution of the estimator of } scparatcly. Let & be
the lower-dimensional cone associated with estimating Z. If ¥ is an
interior point of ¢, then the argument leading up to Proposition 3.3 can be
imitated to deduce a limiting normal distribution for the paramecter
estimator. However if J is at the boundary of the cone C, the limiting
distribution may be a nonlincar function of a normally distributed random
vector (sce Haberman 1989, page 1645).3

As in any cconometric estimation problem with inequality constraints,
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the problematic featurc of this limiting distribution theory is the manaer
in which it depends om the true parameter vector J including the associated
discontinuities.  This feature makes the distribution theory barder to wuse
in practicc and, in other secttings, bas led researchers to compute
approximate bounds on probabilities of test statistics (see, for example
Wolak 1991 and Boudoukh, Richardson and Smith 1992). Recall, however, that
in our derivation of the distribution theory for the specification-error
bounds, we were able to circumvent the nced for a distribution theory for the
parameter estimators. Thus even though the distribution theory for the
parameter estimators becomes more complicated in the presence of market
frictions, thc distribution theory for the specification-error bounds remains

simple.

III.D: Consistent Estimation of the Arbitrage Bounds.

As we discussed in Section II the second moments bounds can be
converted into standard deviation bounds if the mean of m is known or if it
can be esfimaled using the price of a risk-free asset. When Em is not known
it must be prespecified. Let v be the hypothesized mean of m when a risk
free asset is not available. Proposition 3.1 can be applied to establish
the consistency of the second moment bound estimators for each admissible
price assignment v. In the casc of 82, for the price assignment to be
admissible, it must not induce arbitrage opportunitics onto the augmented
collection of asset payoffs and prices. Aay price (mecan) assignment in the
open interval (Ao.vo) is admissible in this sense.

The final question we explore in this section is whether the arbitrage

bounds, A =and v, given in (2.18) and (2.19), can be consistently estimated

0
using the sample analogs:
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(3.23) 4 = -:’nf{a‘):rq ta € C and

a‘x| z -] for all t=1,2,...,T}
and
3.24) u_ = inf{a')_‘,rq :a € C and

T
a'x = 1 for all t=1,2,....T} .

The estimated upper arbitrage bound He is always finite when there is a
payoff on a limited liability sccurity that is never observed to be zero in
the sample. Our estimated range of the admissible values for the (average)
price of a unit payoff and bence mean of m is [Ir,u,l_]. Notice that these
bounds can be computed by solving simple lincar programming problems. In

Appendix A we prove:

Proposition 3.4:  Under Assumptions 2.1-2.3 and 3.1, {4} converges to A

almost surely. If v is finite, then {uT} converges to v almost surely;

and if v, = +oo, then {ur} diverges to + oo almost surely.
1V. Applications and Extensions

In this section we discuss several applications and extensions of the
analysis of Section III.  First we discuss consistent estimation of the set
of feasible means and standard deviations of stochastic discount factors.
Previously we showed that for a given mean of the stochastic discount factor,
the standard deviation bound can be consistently estimated. However, the
mean of the stochastic discount factor typically is not kmown. As a result

it is important to understand the sense in which the entire feasible region
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can be approximated.

We next cxamine extensions of the distribution theory of Section III
that are useful in answering several questions about the bounds and asset
pricing models.  First we extend the analysis of Section IlI to examine
whether, given an initial set of asset returns, additional asset returns
result in a change in the volatility bound. We call this set of tests region
subset tests. Snow (1991) used this type of test to examine whether returns
on a portfolio of stocks of firms with small capitalization contained
additional information about the volatility of stochastic discount factors
over and above that found in the return on the market portfolio; Cochrane and
Hansen (1992) wused it to determine whether conditioning information is
important; Knez (1993) used it in his iavestigation of the links between the
markets for Treasury bills, certificates of deposit and commercial paper; and
De Santis (1993) wused it to study the significance of returns on foreign
securities  vis-a-vis  domestic  securities in  the conmstruction of the
volatility bounds.4

A particular example of the region subset test occurs when checking
whether a constant discount factor would correctly price the assets under
consideration. This is a test of whether the volatility bounds have content
and is an important initial bypothesis to examine since, if true, the bounds
do not preclude constant discount factors (risk-neutral pricing).

We then show bhow the feasible regions for the means and
standard-deviations can be wused to test a specific model of the discount
factor. Burnside (1992) and Cecchetti, Lam and Mark (1992) have. developed a
version of this test when there are mno assets subject to short-sale
constraints or transactions costs. We show how this test can be implemented

in a relatively simple manner by exploiting the results of Section III
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Further we formulate the test so that it js also applicable when there are
asscts subject to short-sule constraints. As a result this provides (large
sample) statistical foundation to the tests of asset pricing models sugpested
by He and Modest (1992), and Lutimer (1993).

Finally we outline an cxtension of the specification-error  bound
analysis that is uscful when the discount factor proxy under consideration
depends upon a vector of unknown parameters. We consider an estimator of the
parameter vector that minimizes the specification-error bound and briefly
describe how 1o develop an asymptotic distribution for this estimator and for
the implied bound.

Some of the formal discussion in this section focuses on the case when
positivity is imposed im  the construction of the volatility and
specification-error  bounds.  Morcover, when considering volatility bounds, we
study the more usual case in which data on the prices of a unit payoff are
not used in the ecconometric anmalysis.  Comparable results without positivity
or with a unit payoff require the obvious modifications and are sometlimes

computationally simpler,

1V.A: Consistent Estimation of the Feasible Region of Means and Standard
Deviations

As discussed in Section I and II, it is often of interest to construct
approximations 1o the feasible region of ordered pairs of means and standard
deviations of stochastic discount factors implicd by security market data.
Such a region can be computed with or without imposing the no-arbitrage
restriction that the stochastic discount factors be positive. Let § denote
the region without positivity and S; the (closure) of the region with

positivity. Similarly, let S, snd the S; denote the sample counterparts.
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The question we now turn o is in what sense are S and S; good
approximations to S and 37

From our results in Section Il we know that when there is a unit
payoff, all four regions arc vertical rays because the (average) price of
this payoff is the mean discount factor. In this case the points of origin
of the rays § and S; can be estimated consistently by the points of origin
of the correspunding rays .S‘T and S;.

In the more usual case when data on a unit payoff and its price is not
available, matters are a little more complicated.  The feasible regions are
no longer vertical rays but instecad arc unions of such rays resulting in
convex sets with nonempty interiors. The boundaries of these sets can be
represented  as  (pussibly extended) real-valucd functions of the ordinate
(hypothetical mean), and our previous analysis  implies poiniwise (in  the
mean) convergence of the sample analog functions to their  population
counterparts.  This result implies wniform convergence of the sample analog
functions in following sense.

Since the lower and wupper arbitrage bounds can be consistently
estimated, for large cnough T, the sample analog functions under positivity
are finite on any compact subset of (Ao.uo). When positivity is ignored the
functions are finite on any compact subsct of R.  Further these functions are
convex functions of the bypothetical mean of the discount (factor. As a
result (scc Theoremn 10.8 of Rockafellar 1970) the sample analog functions
converge uniformly, almost surely, on any compact subset of (.lo.vo) in the
casc of positivity and on any compact sct when positivity is ignored. One
difficulty is that the approximations deterioratc as the mean assignment, v,
approaches the arbitrage bounds in the case of positivity, or when v gets

large when positivity is igonored.
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The deterioration of the sample analog to S in the vicinity of a
finite arbitrage bound turns out not to be problematic. To see this,
instead of viewing the boundaries of tbe regions as functions of the
ordinate, we explore the approximation error from a set-theoretic vantage
point in R*. Consider first the case in which v < +oo. Associated with a
sample of size T is an approximation error as measured by the Hausdorff

mctric:s

@1 n, o= max{p(S1.5).0(51.50)}
where:

4.2)  HK.K) =  sup inf [ v w)-(vw) |
(vl,wl)el(l (vz'wz)€K2

Since the arbitrage bounds can be consistently estimated and the lower
boundaries of {S1} approach the lower boundary of S, uniformly on any
compact interval within the arbitrage bound, the approximation error
sequence {nT} converges to zero almost slm-,ly.6

Measuring the approximation error via the Hausdorff metric allows
ordered pairs to get close without restricting them to have the same
ordinate. In other words, we no longer confine our attention to “vertical”
measures of distance, as is the case when we view tbe boundaries of the
regions as functions of the hypothetical (expected) prices of a wunit payoff.
The added flexibility in the Hausdorff metric permits us to exploit better

the consistent estimation of the wupper and lower arbitrage bounds

(Proposition 3.5).
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When v, is infinite, the approximation error n, defined by (4.1) will

be infinite. As a remedy, we replace y by

(4.3) v (C.C) = sup inf | (v, ,w)-(v.,w) |
o (v, .w)EK (v, w)ex T 17
Osvlsp 05":5”

where p is any arbitrary positive number greater than the lower arbitrage
bound Ao. Then the modified approximation error will be well defined and
finite for sufficicntly large T and will converge almost surely to zero.
Thus we still get uniform convergence as long as the ordinate is restricted

to a finite interval.

IV.B: Region Subset Tests

The first set of tests we consider are whether the volatility bounds can
be constructed using a smaller vector of security payoffs. As in section
II1.C, we initially consider the case where there are no assets that are
subject to short-sale constraints, and we assume th;lt the parameters are
uniquely identified. Let z denote an (a-1)-dimensional vector of assets
under coasideration with price vector s, and let f be the k-dimensional
vector including the k-1 ass payoffs that arc to be used to construct the
bound augmented by a unit payoff. Formally, the hypothesis of interest can

be represented as:

1

(4.4) E[z(r ¥)* - s)

0,
El(Fr )" - vl = 0

Onc possibility is to test this hypothesis for a prespecified Vo and the
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other is to test whether it is satisfied for some v, > 0.

Consider first the case in which v is prespecified. To map this into
the setup of Section I, form the n-dimensional vector x by augmenting 2z
with a unit payoff and form ¢ by augmenting s with the "price” Vo Then
bypothesis (4.4) can bec interpreted as a zero restriction on the coefficient
vector & cmployed in Sections I and IlI.  The components of coefficient
vector a set to zero are just the eotrics of z that arc omitted from f. A
large sample Wald test of this zero restriction can be formed by applying the
limiting distribution in Proposition 3.3. Alternatively, we could construct
a test by solving the GMM optimization problem:

. wWrots RS | 2(f0)-s
“s)  min o | (f'a)"-vJ (v w) v | (f’o)’-o]

where (wVw')T is one of the spectral estimators referenced in Section III.
Since this test is embedded within a GMM estimation problem, the analysis in
Section III.C. can be easily modified to show that the minimized value of the
criterion function is distributed as a chi-square random variable with n - &
degrees of freedom (see Haosen 1982). When the bypothesis of interest is
modified to be for some vy > 0, this GMM approach is modified by minimizing
the criterion in (4.5) by choice of 6 and v, with a corresponding loss in the
degrees of freedom.

One special case of this setup is a test for risk-ncutral pricing. In
this case k is onc and f contains only a unit payoff. In other words, a
constant discount factor prices the securities correctly on average and the
volatility bound is zero.  Furthermore, the central limit approximations for
the volatility bound estimator (without imposing risk-neutral pricing) is

degenerate since the second moment of the discount factor is a constant. For
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both of these reasons, a test for risk-neutral pricing is a wuseful starting
point in an empirical investigation.

Conducting such tests can proceed as described with one modification.
There is no sampling error associated with the second moment coandition in
(4.4) implying that w¥w' is singular. Instead this second condition should
be imposed (¥ = v) and testing should be based only on the initial set of
moment conditions. When v is not known, this second condition should be
omitted and 6 should be restricted to be nonnegative when solving
miaimization problem (4.5).

Region subset tests without positivity turn out to be closely connccted
to tests of factor structure and mean-standard deviation  boundary
intcrsection tests (e.g., scc Braun 1992 and Knez 1993 for an elaboration).
This connection follows from the duality of the mean-standard deviation
frontier for stochastic discount factors and the comparable frontier for
returns (scc Hansen and Jagannathan 1991 for an claboration). Also, the Wald
and GMM test statistics coincide because the moment conditions are linear in
the parameter vector §.

The tests using the criterion (4.5) rely upon the distribution theory of
the estimator of &«. To use the theory of Section III.C requires that there
are no sccuritics subject to short-sale constraints. As we discussed in that
subsection, the presence of the imequality restriction on the parameter
vector & can complicate the distribution theory of the parameter estimators.
As a result, testing zero restrictions on a subvector of & when some of the
remaining cocfficients arc against a noonegativity constraint can be
problematic. On the other hand, the results of Haberman (1989) could be used
to develop such a test when the zero restrictions are imposed on at least all

of the securities to which the short-sale constraints apply.
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IV.C: Testing a Specific Model of the Discount Factor using Volatility
Bounds

Suppose that in addition to asset market data, a model of the discount
factor is posited and a time series of observations of the discount factor is
available:  {m: t=1, .., T}. One way to test the model is to examine
whether it satisfies the volatility bounds discussed in Sections II and III.
Since observations of the discount factor are available, the average price of
a unit payoff can be estimated by the mean of m. Specifically, form x by
augmenting the original vector of payoffs with a unit payoff; form ¢ by
augmenting the original vector of prices with the random variable m; and form
C by constructing the the Cartesian product of the original cone with R. In
effect, we bhad added an unit payoff with an average price m that is not
subject to a short-sale constraint. In forming a test, we can apply the
results of Section II and III.LB with one minor modification. The random
functions 8 and ¢ are nmow constructed by setting the proxy y to zero and
subtracting mz:

(4.6) dla) = - (a'x)? - 2a’q - m?,

and

4.7) $@ = -Can)*?-2a'q-m

Subtracting m? does not alter the solutions to cither the sample or

population maximization problems. It doecs, bowever, change the maximized

values of the criteria functions. The volatility bounds for Em will be
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satisfied, if, and only if

A

(+4.8) E & max Ea(a) < 0,
aelC

when positivity is ignored, or

(4.9) ¥ w max E$(a) = 0,
a€C
when  positivity is  imposed. The limiting distribution reported in

Proposition 3.2 (appropriately modified) can be applied to construct a test
of these bypotheses using sample analog estimators of 2 and 2’.7 Again, we
bhave formulated the problem so that approximation error duc to parameter
estimation plays po role in the limiting distributions for these sample
analogs.

In practice we find the solutions for the sample maximization problems,
cstimate the asymptotic standard errors, and form one-sided tests, In
particular, let ¢ T be the maximized value of 2r(3) over the constraint set C.
Then {\/T[?T - ¥ converges in distribution to a normal random variable with
mean zero and variance #’¥wu. This variance can be estimated in the manner
described in Section IIL.B. Since ¥ is not specified under the null
bypothesis (4.9), the “conservative” choice of 2’ = 0 is used in constructing
the test statistic.

Finally when there are no transactions costs, short sales-constraints or
other constraints to be comsidered, the asymptotic distributidn of the
estimators can be used to construct a different test, (analogous o a

Likelihood Ratio test) that exploits the inequality restriction in the
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first-stage estimation of the bound.  Considering the case when positivity is
imposed, the parameter vector a that solves problem (4.9) satisfies the

moment conditions:
(4.10) Ex(x'a)t -q) = 0.

The inequality restriction (4.9) implics the further moment condition:

(@.11)  E{{$a)- ¥} =0,

for some ¥ s 0.

Without a constraint on the parameter ¥, moment conditions (4.10) and
(4.11) exactly identify a and ¥. However, with the restriction that T be
nonpositive, we can set up a GMM criterion in the parameter vector (a,f)
using the moment conditions (4.10) and (4.11) and minimize this function
subject to the constraint that { =< 0. If the population moments of m are on
the boundary of the feasible region S* (that is, when ¥ = 0), then the
appropriately scaled minimized GMM criterion function bas a limiting
distribution that bas probability one-half of being zero and the remaining
balf of the probability is allocated according to a chi-square one
distribution with one degree of freedom.  This chi-square distribution then
bounds the distribution of the GMM test statistics (under the null
hypothesis) for other negative values of ¥. When positivity of the
stochastic discount factor is ignored and the a random function is used in
place of &, it can be shown that the resulting test statistic coincides with
the test statistic based solely on (4.6).8

Similar approaches to testing a model of the discount factor can be
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applied when a time series for m can be coostructed from simulated data
instead of actual daia. In this case the randommess of ¢$(a&) can be
decomposed additively into two compounents, onc due to the randomness of the
security market payoffs and prices and the other duc to the simulation of m.
As in the work of McFadden (1989), Pakes and Pollard (1989), Lec and Ingram
(1991) and Duffic and Siogleton (1993), the asymptotic variance in the
limiting distribution will now have an extra component due to the sampling
error induced by simulation.

When the first two moments of m can be computed numerically with an
arbitrarily high degree of accuracy, we can proceed as follows. Augment the
pricc vector with Em instead of m and subtract Em?® from the criteria instead
of m2 as in (4.6) and (4.7). This samc stratcgy can be cmployed to assess
the accuracy of the estimated feasible region for means and standard
deviations of  stochastic  discount  factors. - For amy  hypotbetical
mean-standard deviation pair for m, one cam compute the corresponding test

statistic and probability value.

IV.D: Mipimizing the Specification-Error Bound for Parameterized Families of
Models

Recall that the specification-crror bounds provide a way to assess the
uscfulness of an asset pricing model even when it is technically
misspecificd. In many siwations the discount factor proxy depends on
unknown paramcters. For cxample, in a representative consumer model with
constant relative risk aversion preferences, the pure rate of time preference
and the coefficient of relative risk aversion are typically unkmown. In this
case one way to estimate the parameters of the model is to minimize the

specification  error. Alwernatively, in  an  observable factor model, the
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discount factor proxy depends on a lincar combination of the factors with
unknown coefficients. As in the work of Shanken (1987) one could imagine
selecting factor coefficients to minimize the specification error.  We now
sketch bow the results of Section III.LB extend in a straightforward manner to
obtain a distribution theory for the minimized value of specification-error
bound.

Suppose that the discount factor proxy y depends on the parameter vector
B € B where B is a compact set, The population optimization problems of

interest are now:

4.12) 8% = min max [Ey(ﬁ)2 - E{0®) - x'a)?) - 2a'Eq],
BEB a€C

and

413 3% = min max [Ey(ﬂ)z - E{loB) - x' )% - 2a'£q]
BeEB acC

When & and & are strictly positive and the parameterized family of stocbastic
discount  factors  satisfies the  appropriate  smoothness anod  moment
restrictions, an extended version of Theorem 3.2 can be obtained for the
sample analog estimators of 3 and ¥. Again the limiting distribution will be
the same as if the solutions to the population optimization problems were
known a priori.

The approach can be extended to compare the  smallest
specification-errors for two nonnested families of models. Such a comparison
potentially can be used as a device for selecting between the two families of

models. Vuong (1989) examined a very similar problem by using the large
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sample bebavior of likclibood ratios for two nonnested families of
misspecified models (in particular, see the discussion in Section 5§ of Vuong
1989); and wec can imitate and adapt bhis analysis to our problem. More
precisely, let 3‘ and 31 denote the specification-crror bounds associated

with two such families. Take the null hypothesis to be:
(4.14) d = 9

Under the null hypothesis, the smallest specification-error associated with
each parameterized family is the same. As a consequence the performance of
the two paramcterized families can not be ranked once sampling error is
accounted for.  This hypothesis can be tested by using the corresponding
distribution theory for the difference between the analog estimators of 3:
and & 2 scaled by the square root of the sample size.

Finally, we sketch the distribution theory for the coefficient
cstimators when there is a parameterized family of discount factor proxies.
Suppose that the unmique solution J of (4.13) is contained in the interior of
B, the parameterization family satisfies the appropriate smoothness and
moment restrictions, and no short-sale constraints are imposed. The

population moment conditions are given by:
@.15)  EL(F)x@) - g} = O

and

(4.16) E%wmw»um»awﬂ = o
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The distribution theory for the analog estimators {31_} and {'x’i'r} of  and «
respectively can  be  deduced by taking lincar approximations to the sample
moment conditions (4.15) and (4.16) and appealing to the results of Appendix
C.

Y. Concluding Remarks

In this paper we provided statistical methods for assessing assct
pricing models using  specification-error  and volatility  bounds. In
developing these procedures, it was advanlageous to exploit duality theory
and represent the measurcments of interest as solutions to unconstrained
conjugate maximization problems. This duality approach simplifies both
computations  and  statistical  inferences. The  resulting  statistical
procedures can account for market frictions due to transactions costs or
short-sale constraints, and are oftcn easicr to interpret thun standard tests
of asset pricing models. For the most part these methods arc quite cusy to
implement, even when market frictions are considered. They are designed to
provide a better understanding of the statistical failures of some popular
asset pricing models and to offer guidance in improving these models.

Among other things, the results in this paper allow one to do the
following: (i) to test whether a specific model of the stochastic discount
factor satisfies the wvolatility bounds implicit in asset market returns; (ii)
to compare the information about the means and standard deviations of
discount factors contained in different sets of asset returns; and (iii) to
test hypotheses about the size of possible pricing errors of misspecified
asset pricing models. An advantage of (i) is that the resulting test s

robust to misspecification of the joinr distribution of asset returns and the
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stochastic discount factor. In regards to (ii), our results permit these
comparisons among data sets to be made independent of a specific stochastic
discount factor model.  Our motivation for (iii) is to shift the focus of
statistical analyses of asset pricing models away from whether the models are
correctly  specified and towards measuring the extemt to which they are

misspecified.
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Appendix A: Consistency

In this appendix we demonstrate formally the results of Section IILA,
and III.D. We maintain Assumptions 2.1-2.3, and 3.1 throughout,

Let 4 denote a compact set in R". For any subset h of 4, we let cl(h)
denote the closure of h. Let & denote the collection of all nonempty closed

subsets of 9. We use the Hausdorff metric # on X given by

(A.1) nth h) = max{ sup inf I“|°°‘1I"”‘P inf la -al}.
: a €h a €h a €Eh, a €Eh

1o 22 Dokt T !

to define notions of comvergence of compact sets. For some of our results we

will use the coostruct of a lim sup of a sequence in oK We follow

Hildenbrand (1974) and define:

Definition A.I: For a sequence {hj} in %, lim sup hj = 0ol (nghj) .

Since the lim sup is the intersection of a decreasing sequence of closed
sets, it is closed and not empty. An altermative way to characterize the lim
sup is to imagine forming sequences of points by selecting a point from ecach
h‘. All of the limit points of convergent subsequences are in the lim sup,
and, in fact, all of elements of the lim sup can be represented in this
manner.

We shall make reference to an implication of a Corollary on page 30 of
Hildenbrand (1974) that characterizes the set of minimizers of an

*approximating” function over an "approximating set.”
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Lemma A.1: Suppose

(i) {v/j} is a sequence of continuous functions mapping 4 into R that

converges uaniformly to Vo
and
(i) {hl} converges to h .

Then lim sup 8 < 8o where g™ {v € hj: wj(u) =< u/’(u') for all u* € h}.
and lim min y = min y_,
hj s h,

Proof: To verify that this follows from the Corollary in Hildenbrand, let ¢
denote the set of positive integers augmented by +o, and endow § with the
usual metric for a onc-point compactification. Then in light of (i), the
sequence {wj} in conjunction with V oo defines a continuous function on ¢ x 4
and in light of (i), the sequence {hj} in conjunction with h_, defines a
continuous compact correspondence mapping £ into % The conclusion of the

Lemma Al then follows from the Corollary together with part (ii) of

Proposition 1 of page 22 in Hildenbrand. Q.E.D.

Turning to the result in  Section IIILA, we formally establish

Proposition 3.1:

Proof of Proposition 3.1;

We treat only the consistency of {HT} because the corresponding argument
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for {2’1} is very similar.  Assumptions 2.1 and 3.1 imply that {I;rﬁ(a)}
converges almost surely to Ea(a) for each a€C. Since for each T, }:r$ is
concave as is E¢, Theorem 10.8 of Rockafellar implies that {{;r&} converges
uniformly on any compact set in R®. Further as argued in Section II, the set
of maximizers of EQ is bounded. For a positive pumber N, define CN w {ad € C
: lal s N}andD, = {a € C: |a| = N}. Then C, and D are compact. By
choosing N to be sufficiently large we can ensure that CN contains all of the
maximizers of EQ over the constraint set C and that none of the maximizers
are in D . Let JN be the maximized value of E$ over Du' Then by choice of N
we have that § < &. Since {}:ré} converges uniformly to E¢ on C, almost
surcly, for sufficiently large T, the maximizers of 2‘,‘,6 over CN are also not
in DN. By the comvexity of C and concavity of [:r&. it follows that for
sufficieotly large T, the maximizers of };r& over CN coincide with those over
C. Consequently, the almost sure convergence of {ﬂ_r} to & follows from the

almost sure uniform convergence of {}:ra} on C. QE.D.

We now turn to the results in Section IILLD and investigate the
statistical consistency of sample analog estimators {/} and {u_} for the
arbitrage bounds 1, and V- Recall that the arbitrage bounds are
representable as solutions to linear programming problems. Since there is no
natural compact sct for the choice variables in these problems, we must
explore “directions to infinity.” We study these “directions” wusing a
compactification of the parameter space.

First consider any o € C such that a’x = -1 with probability onc. Then
with probability one a’x‘ 2 -1 for all t with probability one and {a'};rq}
converges almost surely to a’Eq. Define £ = - ¢ and .l; m -A. Since

T 0

/T s a’)‘_rq, it follows that lim sup {r < A; with probability one.
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Similarly, if v, < @, lim sup Y Hence our interest is in the lim inf
‘{r and lim inf u_.

To construct a compact parameter space, we map the original parameter
space for cach problem into the closed unit ball in R® which we denote as 4
We consider explicitly the case of o The proofs for the case of 4 are
completely analogous to the case for Uy and arc omitted.

Notice that the constraint set used in defining v, can be represented as

the set of all a € C satisfying the equation:

(A.2) El() - a'x)*) = 0.

Consider now a transformation of the parameter space by mapping the parameter
space into the unit ball. The mapping { = a/(1+ | a|) maps 8® into the open
unit ball. To compactify the transformed paramecter space, we consider adding

the boundary points of the wunit ball. Notice that we¢ can recover the

original parameterization by considering the inverse mapping:
(A.3) a = (/-]

for |{| < 1. Using the transformation in (A.3), instcad of considering those

a's that satisfy (A.2) we consider:

(A.4) D" = {({e anCc | Eq - 1¢)y-x0%) = 0}

This transformation potentially adds solutions to (A.2) by including the

boundary of the umit ball. The potentially problematic values of { are those
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for which x'{ =2 0, {€C and [{] = 1. We rule this out by limiting attention

to values of { in

A5 D= {{e€ ¥nC | {Eqgs (-1{])u,+1}

Notice that any { in D for which } {1 # 1 satisfies {’Eq/(1-{{}) = (v,+1. In
effect by focusing om ('s in 5 we are climinating {'s corresponding to
payoffs with “high” prices. This doecs not cause us problems because we are
concerned with estimated upper arbitrage bounds that are too low, not too
high. Also, any { in D for which | {] = 1 must have an (average) pricc that
is nonpositive.  This ecliminates the troublesome points (directions) from D’
Let D; be the sample analog of D' and 51 be the sample analog of D. We first

consider the limiting behavior of D_; N f)T:

-~ . -~

Lemma A.2: Suppose that v, < co. Then lim sup D;_ ND < D nD,

Proof: First notice that since L.q converges to Egq almost surely, then
n(ﬁr,b) converges almost sure to 0. We next establish that lim D;_ = D'. To
do this we first show that L [(1 - I¢l) - x'0% converges uniformly to

El(1 - 1¢])-x'0" on & Note that % N C is compact and that:

@we L. 1 D-xg) -1 1 -2 1}

s (4 + E'HIE- LI

This is sufficient for the Uniform Law of Large Numbers of Hansen (1982) to

apply. Hence from Lemma A.1, the lim sup of the sequence of minimizers of
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gl - 1¢l) - x°0% over % N C is contained in the set of minimizers of
E((t- J¢1)-2°Q". Since v, < o, the set D is not empty and D' is the set
of minimizers of E[(1 - |{|) - x’{*. With probability onc, any point in &
must also be in D_; for all Tz1. Sioce D’ is separable, a common probability
measure one set of sample points can be selected so that D° € D for all Tz1.

As a result lim D;_ = D'. The conclusion follows. Q.E.D.

Lemma A.3: Suppose that v, < o, Then lim infur z .

Proof: First note that

(A7) u = min{ {'E/0-1¢1) | ¢ € D) N D_) for sufficiently large T,

and

v, = min{ {'Egit-1C1)| (€D aDY}.

Hypothctical expansions of the constraint set D,; N B‘r for u. can only result

in smaller values of the maximized criterion. For instance, suppose the

coastraint sct is augmented to include all of the points in D° N D. Then
Lemma A.2 implies that this sequence of augmented constraint scts converges
to D" N 13 The conclusion then follows from Lemma A.l. Q.E.D.

Finally, we consider the case in b, = .

Lemma A.4: Suppose that v = oco. Then {i } diverges with probability onc.

Proof: Since v, = oo, there are no values of « € C such that a’x = 1 with

h)|



probability one. Conscquently, the only values of { in D° arc ones for which
l¢| = 1. We consider two cases. First suppose that D' = o. The uniform
convergence of L [(1 - 1el) - x°q* w0 El(1 - 1¢1) - x°()" implies that for
sufficiently large T, D; = © and g = oo, Next suppose that D # o. Since
there are po arbitrage opportunities (Assumption 2.2), {'Eq > 0 for any { in
D’ such that ||{’x]] > 0. Also, Assumption 2.2 together with the no-redundancy
Assumption 2.3 imply that {"Eq > 0 for any { in D° such that ||{'x]] = O.

Furthermore, D is closed implying that
(A.8) e = infl{’Eq:{ €D} >0.

Since {}_‘,rq} converges to Eg almost surcly and D;_ converges almost surcly to
D', it follows from Lemma A.1 that with probability one for sufficiently
large T, {'Lg > e/2 for all { € D;. The convergence of {D;} to D° coupled
with the fact that all clements of D’ have norm one then implies that {uT}

diverges almost surely. Q.E.D.

Taken together, Lemmas A.2, A.3 and A.4 imply Proposition 3.4,
Appendix B: Asymptotic Distribution of Bounds Estimators

In this appendix we show that in the case io which the prices of the
payoffs arc constant, the asymptotic distribution of the estimated bounds can

be demonstrated even when the parameter vector is not uniquely identified

(even when Assumption 2.4 is not satisfied).
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Proaf of Proposition 3.2:

We consider the case of d_. The case of 31_ is similar. Let h_ be the
set of maximizers of [;r$ and let h_ be the set of maximizers of E§. For each
T, let & T be a mecasurable selection from h'r (scc Theorem 1 of Hildenbrand
(1974), page 54). Siace lim sup h. = h_, almost surely and A o 18 compact,
there is a scquence {a } in h, such that lim | a -r'“-r' = 0 almost surely (see
Appeadix A). Further an implication of Lemma A.l1 of Hansen and Jagannathan
(1991) is that all @ € h_, result in the same random variable /i = (y-a‘x)*.
Also (2.12) implies that for a € h , a’q = E{y(y-a'x)* - (y-a'x)’z}, 50 that
a’q is the same for all « € A o As a result the random variable ¢ (a) is the
same for all « € h_ Now consider the decomposition of \fl‘)_‘,1|(d';)2- 3% as in

(3.7):
@) v - Y = VIS - B@E) + vTLIBE) - ERE )
As in relation (3.10), we have:

(B2 0 = VIL[$(d) - $(a)
S VTLi(Rix - q) - E(mix - @))(d . - a)

Since | ?:'T-a,rl converges almost surely to 0, the result follows. Q.E.D,
Appendix C: Asymptotic Distribution
In this appendix wec consider the asymptotic distribution of our

parameter estimator. We begin by demonstrating that restrictions used in

Hansen (1982) can be extended along the lines of Pollard (1985) and Pakes and
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Pollard (1989) to accommodate “kinks” in the functions used to represent the
moment  conditions. Then from the discussion in  Section III.C,

it is straightforward to show that Proposition 3.3 follows from the main

result in this appendix.

The notation used in this appendix conflicts with some of the notation
used elsewhere in the paper. We let ﬂo denote the parameter vector of
interest and B any bypothetical point in the underlying parameter space &.

The parameter space is restricted to satisfy:

Assumption C.1: & contains an open ball in R* about ﬂo.

We will use the construct of a random function. A random function y maps the
set of sample points into the space of vector-valued continuous functions on

# We require that w(8) be an n-dimensional random vector for cach 8 in &

We also consider an approximating function
W:(ﬁ) = Wl(ﬂo) + At(ﬂ'ﬁo)
that is linear #. The composite random function satisfies:

Assumption C.2: {(w(’,w;')’} is stationary and ergodic and has finite first

moments.

We now specify the semse in which w; is required to approximate Wy

The approximation error induced by using is w; in place of Ve is

@ = ly®- vl .
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Define:
dmod,(8) = sup{r@B) | B-B,| : |B-B,| <3, =8} .

Note that dmodl(-) is monotone in 4. Therefore, we can take almost sure

limits as & declines to zero. We impose the following restrictions on mod, .

Assumption C.3: ‘l’ irg dmodt(d) = 0 almost surely.

Assumption C.4: E[dmodt(é)] < o for some & > 0.

To satisfy Assumptions C.3 and C.4, 4, is typically taken to be the matrix of
partial derivatives of v, at ﬂo when v, is differentiable at ﬂo and be well
behaved for the other sample points. The random variable modl(J) is
interpreted as the modulus of differentiability for v, at ﬁo.

The approach adopted in Hamsen (1982) is to restrict the modulus of
continuity of the derivative of ¥, to converge almost surcly to zero and to
bave a finite expectation for some neighborhood of the parameter. It follows
from the Mecan-Value Theorem that restrictions imposed in Hansen (1982) on the
local behavior of v, imply Assumptions C.3 and CJ4.

We use Assumptions C.3 - C.4 to study the semse in which v is

stochastically differentiable. Hence look at the approximation error
£ = sup {ILw® - W@ I/18B| : |88 | <5.8+8)

By the Triangle Inequality we have that
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£d) = L dmod(J)
Thus by Assumptions C.1-C.2, we have that

(C.1) iim lim sup cT(J) < lim Edmod(d)
Mo Tam oo

= 0.

This in turn implies the stochastic differentiability condition in Pollard
(1985) because the counterpart to cT(J) in Pollard's condition is scaled by
vT | BB, |11 + v | BB, |), which is less than one. Also, the iterated limit
in (C.1) implies the limit taken in Pollard’s condition because £, is
monotone in &. The differentiability of limiting moment function Ey follows
directly from Assumption C.4.  Therefore, ):rw - Ewy satisfies the stochastic
differentiability condition with derivative at ﬁo given by I:‘,A-EA. Since
{w;} is stationary and ergodic, {}:rA-EA} converges almost surely to zero
hence the derivative is asymptotically negligible.

Next we impose a global identification condition on the approximating
function w;. Since the approximation of v, by w; is local, this condition
can also be viewed as a local identification condition on the original

function W,
Assumption C.5: E|4,| <o and E4 bas full rank k.
This rank condition on the derivative together with the stochastic

differentiability conditions already established imply the equicontinuity
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condition (iii) in Theorem 3.3 of Pakes and Pollard (1989) (sec the
discussion on page 1043 of Pakes and Pollard).

We study the behavior of an estimator b'l‘ that solves the equations:

a’Lrw(bT) = 0

for sufficiently large T. The (k x n) random matrix a. sclects the linear

combination of moment conditions to be used in estimation.
Assumption C.6: {b'l‘} converges in probability to 8.

Assumption C.7: {a.r} converges in probability to a nonrandom matrix a,

where a E4 is noasingular.
Finally, to obtain a limiting distribution for {b..} we assume:

Assumption  C.8: {(vTorw(8)} converges in distribution to a normally
distributed random vector with mecan zero and nonsingular covariance matrix

Vo

Sufficient conditions for Assumption C.8 can be obtained using martingale
approximations as described by Gordin (1969), Hall and Hecyde (1980) and
Hansen (1985). This condition implies that Ew(ﬂo) is equal to zero.

The following exteasion of Theorem 3.1 in Hansen (1982) is now a direct

consequence of Theorem 3.3 and Lemma 3.5 in Pakes and Pollard (1989).
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Theorem C.I: Suppose that Assumptions C.1-C.8 are satisfied. Then
{V’I‘(bT-ﬂo)} converges in distribution to a normally distributed random vector

. : L4 'l ’ ’ "l
with mean zero and covariance matrix [aoE(Al)] aoVo"o [E(A( )aO] .

Estimation of EA follows as in Hansen (1982) as long as 4 can be expressed in
terms of a random matrix function D that satisfies 4 = D(ﬂo) where D is
continuous at ﬁo with probability onc and bas a modulus of continuity with a
finite first moment for some & > 0. In this case, {{:rD(bT)} converges in

probability to E4.
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Footnotes

1A weaker version of this restriction would replace Eq by q. In effect,
Assumption 2.3 does more than eliminate redundant securities. It also
preciudes cases in which distinct portfolio weights give rise to the same

payoff, possibly differeat prices but the same expected prices.

2f-‘ormally, the pricing-crror interpretation for least squares problem (2.6) is

F

§ = inf sup |Emp-Eypl| |,

me A 2’1;?51

and for (2.7) is
¢ = cnf ﬁ | Emp - Eyp |
?

where H is a complete set of derivative claims on the payoffs in P.

3Haberman characterized this nonlinear function as a particular projection
onte a closed convex sct formed by translating ' by -}¥. Although Haberman
(1989) only considers the case in which the data are iid, his
characterization of the limiting distribution applics morc gencrally with a

covariance matrix replaced by a spectral density matrix at frequency zero.
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4The impetus for this work was the econometric discussion in an unpublished

precursor to this paper: Hansen and Jagannathan (1988).

5Thc Hausdorff metric is usuvally employed for compact scts to ensure that
the resulting distance is finite.  Because of the vertical character of the
regions and the existence of finite arbitrage bounds, the Hausdorff distance

will be finite even though the sets are not bounded.

6‘l‘hc Euclidean distance in (4.2) could be replaced by the square root of a
quadratic form in the differences between two points as long as a

positive weight is given to both dimensions,

7Evcn if hypothesis (4.9) is satisfied, the sample analog may be infinite,
making implementation problematic.  This bappens when the sample mean is
outside the estimated arbitrage bounds. This phenomenon does not arise for

hypothesis (4.8).

8Burnside (1992) and Cecchetti, Lam and Mark (1992) developed and studied
altervative versions of the volatility bounds tests when no tramsactions
costs arc introduced. The test used by Cochrane and Hansen (1992) abstracted
from positivity and can be formulated equivalently using 3 in (4.6).  Sece
Burnside (1992) for a Monte Carlo comparison of various volatility tests

including the ones proposed here.
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