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On Inflation and Output with Costly Price Changes: A Simple Unifying Result

by Roland Bénabou and Jerzy D. Konieczny *

We study the effect of inflation on the average output of monopolistic firms facing fixed
costs of changing their nominal price. The slope of this long run Phillips curve has been an-
alyzed by several authors, usually with specific functional forms. As a result, the literature
offers a somewhat confusing array of special results. In this paper we derive a simple, ex-
plicit formula which incorporates all the effects previously identified, and determines their
net impact.

Julio J. Rotemberg (1983) claims, for constant elasticity demand functions and quadratic
costs, that inflation has no effect on average (log) output; we show that it actuallly has
a negative impact. Timur Kuran (1986) finds effects of opposite signs for nonincreasing
elasticity and concave increasing elasticity demand functions. Howard F. Naish (1987) uses
linear and isoelastic specifications of demand and costs to demonstrate the important role
played by asymmetries in the profit function around its peak. Jerzy D. Konieczny (1990)
shows, more generally, that the effect of inflation on output depends not only on the skew-
ness of profits, but also on the curvature of the demand function. But he does not provide a
way of determining which factor dominates, and incorrectly claims that, at small inflation
rates, the profit effect is negligible. Finally, Leifl Danziger (1988) stresses the role played
by discounting at small inflation rates.

The route taken in this paper is to focus on the case where the costs of price adjustment

are small, which is empirically the most relevant. This allows the use of Taylor expansions



to obtain a closed-form solution, applicable .to any specification (Proposition 2). Within
this unifying framework, the three effects which determine the slope of the long run Phillips

curve become perfectly clear.

1. The Model

We consider a monopolistic firm which produces a single, perishable good and expects
the inflation rate to remain constant over time. The firm can change its price at any time
but doing so entails a real cost, ¢ > 0; the new price must be decided upon, the information
disseminated, etc. ¢ also proxies for the adverse reaction of customers and competitors, not
captured by the model. It is convenient to express profit and demand functions in terms of
the log of the real price. The firm’s problem is to choose the sequence of adjustment times

{t,}22, and (log) real prices set at those times {P,}%2, so as to maximize the present value

of profits:
00 t’
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where F is the profit function, assumed to be strictly quasiconcave and Cs; g > 0 is the
inflation rate, and r is the discount rate. We shall denote by z™ the (log) real monopoly
price, and assume: F(z™) > 0 = F'(z™). The optimal pricing policy is of the (s,S) type
(Eytan Sheshinski and Yoram Weiss, 1977); at each adjustment date, the firm sets the
nominal price so that the (log of) real price is § > z™; a new change occurs when inflation

has eroded the real price to s < z™. Moreover, the optimal (s, S) policy satisfies the first



order conditions:!

(2a) F(S)-F(s)=rc
(2b) F(sy=rV

Strict quasiconcavity implies that the optimum is unique and satisfies:
(3) F'i(s)>0>F(S); —>0>—.

We now consider an economy consisting of many such firms which stagger their price
changes uniformly over time. Aggregate output is then equal to the average output of a

firm over its price cycle:

o g s 1 s
(4) V=t [T -gat = o= [(ue)e

where y(-) is the demand function, y'(-) < 0. Differentiating (4) and rearranging, we obtain:

0l = rrrs=a () {250 - 7] oo - [P o -7

As both F'(s) and y(s) — Y are positive, (5) makes clear that the effect of inflation on

output depends on:

(i) the skewness of the profit function (represented by the asymmetry in marginal profits,

F'(s) + F'(S)), which determines the effect of inflation on the price bounds s and §,



through (2). This will be called the profit effect;

(1) the curvature of the demand function (represented by the difference (ﬂﬂ%(ﬂ -7),

which determines the output effects of those changes. This will be called the demand
effect.

Following Konieczny (1990), we call F(-) strongly left skewed if F'(z;) < —F'(z;) for every
71 < 2™ < z3 such that F(z;) = F(z;), and strongly right skewed if the opposite inequality
holds. Strong skewness has a simple interpretation in the case of no discounting, where
(2a) requires that F(S) = F(s). If F(-) is strongly left skewed then, as inflation rises,
8§ — z™ increases slower than z™ — s. As a result, each price cycle is skewed towards lower
values, so that the profit effect tends to increase output (see (5) and also (11) below). The

opposite holds for F(-) strongly right skewed.

II. Small Adjustment Costs or Low Inflation: A Simple Formula

While (5) reveals the qualitative effects at work, its implicit nature makes it rather
opaque and unwieldy. For instance, the effect of discounting is buried deep inside the
formula., We therefore concentrate from now on on the case where the inflation rate g, or
especially the adjustment cost ¢, is small. These cases are the most empirically relevant,
and also allow us to derive closed-form solutions for s, S and dY/dg. To simplify the
exposition, we first consider the case where r = 0; discounting will be incorporated in

Section IV. The first-order conditions become:

(2a7) F(s) = F(S)



(2b%) FS)=F

where F denotes average profits per unit of time, net of adjustment costs: F = [f,s F(z)dz — gc] /(S—
s). By (2’) both price bounds, s and S, approach the monopoly price z™, as c or g approach

zero. Define therefore:
§=8—-2"« 1 and T="—sxa, 640,68

Throughout the paper, X ~ 1%, a; 2%, @, # 0, represents a Taylor expansion of order n
in z, i.e. stands for X — ¥ o z' €« z". Thus oy + a3 6 represents the relative rate at
which 7 = 2™ — s goes to zero in comparison to § = S — z™, when ¢ or g become very
small. Now, for all z in {s, S]:

Fll(zm) ,

my2 , F7(z™) my3
e

(6) F(z) ~ F(z™) +

Expanding (2a') to the third order in § and substituting’in T = § (ay + a2 6%), we get:

" m
F"(« )03
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Identifying the two polynomials leads to ; = 1 and az = —2a/3, wherea = —F"(2™)/(2F"(2™))

measures the skewness of the profit funciion around 2™, relative to its curvature.? Hence:

(7) Z™ —s =171 = 61— 2a6/3)



Next, expanding (2b’), we get:

iz F"( ™)

F(")+

)52] (6+1) ~/ [F( 2™y + (z z"‘)z] dz—cg = F(z™)(6+71)+ ( )(63 3

Using (7), this gives for the upper band width the familiar “cubic root” expression:

(8) S'-—z’":(Sz[—g i ]1/3

as in Michael Mussa (1981) and Rotemberg (1983). The interpretation of the effect of
each parameter on the optimal S — z™ is straightforward. Finally, we return to output.

Expanding y(z), integrating (4) and using (7) we get:
- 82 82
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and so

6 FIII( ) y”(z’")
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Proposition 1 Let r = 0. Then, for smali adjustment costs and/or inflation rates (gc <

—F"(z™)), the slope of the long run Phillips curve is:

dY i m i m
(10) ~AgmlP F(z )_ y'(=™)
Iy Fem) v
‘gm . 123
where A = —£32 [_%W] > 0.



III. Interpretation and Examples

The use of Taylor approximations yields explicit measures of the profit and demand
effects on average output. It is intuitive, and easily verified, that F(-) is strongly left
skewed in the neighborhood of z™ if F*'(2™) < 0, and strongly right skewed if F(z™) > 0.
Thus two equivalent measures of the effect of skewness on price bounds are, from (6)

through (8):

2 2
1) u *2' S Eg— or F'(s)+ F'(S) ~ —F”(z'")é;i

The effect of changes in the price bounds on average output depends, in turn, on the

curvature of the demand function. A measure of this effect is, from (7) through (9):

(12) y(s)+y(s) _?z yl/(zm) 63_3

2
By Jensen's inequality, the demand effect tends to increase output if the demand function
is convex, and to decrease it if demand is concave.

Proposition 1 shows how the net effect of inflation depends on the relative strength of
the profit and demand effects. Konieczny (1990) claims that, at low inflation rates, the
profit effect is negligible in comparison to the demand effect, because the profit function is
log-quadratic, hence symmetric, up to a third order approximation. It is clear from (11)
and (12) that this is not correct: both bracketed terms in (5) are of order 62. This is due
to the fact that the relevant asymmetry is not that of profits, but of marginal profits.

We conclude this discussion by identifying the two effects for some of the functional



forms most commonly used in the literature. When the demand function is linear in the
real price, y(z) = a — f¢*, and marginal cost is either constant or linear, the profit and
demand effects are respectively 34¢~1/3 and —Ag~1/3, where A is given by Proposition 1.
The former, which tends to make output rise with inflation, dominates the latter, which
goes the other way; thus dY /dg = 24¢7'/% > 0.

When both demand y(z) = B e~#* and costs ®(y) = ¢¥*, a >0, B > 1 are isoelastic,
the profit effect is Ag~/*(1 — # — af); the demand effect is Ag~'/*8, and so dY/dg =
Ag~3(1—ap). The profit effect tends to decrease output, while the demand effect operates
in the opposite direction. The profit effect is stronger for af > 1, and in particular for
non-decreasing marginal costs (a > 1). For the demand effect to dominate, marginal cost
must decrease fast enough.

Rotemberg (1983) uses isoelastic demand and quadratic costs {a = 2). Approximating
profits as quadratic in log-price, he claims that inflation has no effect on average log-output,
and that the same should hold for average output. This is incorrect on two counts. First,
the quadratic approximation neglects the profit effect, equal to Ag='/3(1—3 ) < 0. Second,
evaluating the average log-output instead of output itself amounts to omitting the demand
effect, Ag=*/3f > 0. The correct analysis yields d¥Y /dg < 0.

The isoelastic case also helps to identify the contributions of the elasticity of demand
and of the convexity of costs to the profit and demand effects. A lower degree of returns
to scale (a larger value of a) accentuates the strong right skewness of the profit function,

and thus tends to make output fall with inflation. Indeed, as the real price is eroded by



[ —— e

inflation output increcases and, with a large a, costs rise fast; this magnifies the profit loss
for prices below 2™, relalive to losses flor prices exceeding z™. The effect of an increase in
the elasticity of demand is more complicated. First, the demand function becomes more
convex (relative to its slope), as —y"(z)/y(z) = B. Second, the profit function becomes
more strongly skewed to the right (relative to its curvature); as above, profits {all {aster
for prices below z™ than for prices above z™. The intuition here is as follows. Marginal
revenue M R(z) = —(f —1) Be =A% and marginal cost MC(z) = —a BC e~*P* are both
increasing and concave functions of the (log) real price z, with M C(z) sleeper at z™, by the
second-order condition. A higher demand elasticity can be shown to raise the difference in
curvature between the two functions, relative to the difference in their slopes. This implies
that marginal profits M R(z) — MC(z) are steeper to the left of z™ than to the right.
Apart from the isoelastic case, it is generally not feasible to isolate the contributions of
demand and costs to the profit effect, as IT"(z™)/I1”(z™) is a very mesy combination of
derivatives of both functions. In fact, our analysis shows that profits really are the proper
general concept; the effects of demand and costs specifications are interdependent, and
trying to scparate them only leads back to the catalogue of special resulls from the earlier

literature.

IV. A General Formula with Discounting

When the discount rate is positive, firms care more about profits closer to the beginning
of cach cycle than those in the later phase. Therefore, they sct the initial real price S closer

to the profit maximizing level 2™ than when r = 0. The price is then allowed to deteriorate



more before the next adjustment. In particular, discounting creates a discontinuity in the
pricing rule: as ¢ — 0%, § = § —z™ — 0 but 7 = z™ — s remains bounded from below,
since F(S) — F(s) = rc. This results in an upward jump in the level of average output Y at
g = 0%; see Danziger (1988). As to the slope dY/dg of the Phillips curve at any given g > 0,
it is negatively affected by discounting. Indeed by (2), F'(S)(dS/dg) = F'(s)(ds/dg); since
discounting makes S closer to z™, for small ¢ or ¢ it reduces | F'(S) | relative to F'(s).
Therefore, as the inflation rate rises, the initial price increases more than the terminal one
falls. This raises the average price and lowers average output (Danziger, 1988, Konieczny,
1990). To show precisely, and explicitly, how discounting combines with the profit and
demand effects, we generalize Proposition 1 to the case where r > 0. We let g take any
given positive value, and consider the case where the adjustment cost ¢ is small. Then,

(2b) can be rewritten as:

s ™ brfg _ g=7rlg
(13) / F(2) ="l 4y = cgefTle + F(s) [-e—;]

rfg

where, as before, § =5 — 2™ € 1 and 7 = 2™ — s & 1 § + o 6%. Expanding again the
first-order conditions (2a) and (13) to the third order in &, we obtain (see the appendix): .

oy =1, and ap = (2/3)(r/g — a). Hence:

2
(14) Tr::é—*—g T_4)6% or z”‘—8+5z:§— T_a
3 3 \g
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where & is still given by (8). Expanding average output as before leads to:

(15) Vrue -y (24 D)

Equations (14)-(15) clearly show that positive discounting lowers the average price and
raises average output, as argued above. As to its effect on the slope of the output-inflation

tradeoft, it is given by:

Proposition 2 When the cost of price adjustment is small (¢ € min{—F"(z™)/g,~F"(z™)/r}),

the slope of the long run Phillips curve is:

(15) ¥ g (F"'(z”) V(=) )

dg = Fr(zm) T y(zm) g

where A is the same as in Proposition 1.

This result embodies all three factors which affect the slope of the long run inflation-
output tradeoff, solely in terms of the underlying parameters of the model. It incorporates
Proposition 1 as a special case and also shows that, for small enough inflation rates and

r > 0, output falls with inflation, regardless of the strength of the demand and profit effects.

11



V. From Partial to General Equilibrium

Throughout the paper we have focused on the case of many firms operating indepen-
dently of one another. General equilibrium considerations (Bénabou, 1988; 1992, Pcter
Diamond, 1993 and Konieczny, 1991), introduce new factors affecting the Phillips curve:
firms’ demand and cost functions become endogenous, and are therefore not independent
of the inflation rate any more. As the Taylor approximations approach is much harder in
such models, we shall discuss their main features qualitatively. The main point is that the
eflects considered in this paper remain present, and form an important baseline on top of
which come the general equilibrium channels.

In fact, the first implication of any general equilibrium setting is to reinforce the partial
equilibrium effects on which this paper has focused, because firms’ prices are strategic
complements. Depending on the skewness of the profit function, the average price tends
to move up or down with higher inflation. If it increases, any firm can then shift its price
range up a little, without losing too many customers. This, in turn, encourages other firms
to move still a little higher, and so on. The same holds for downward movements.

Consumer search is one potentially important channel through which inflation aflects
the equilibrium demand curve faced by firms (Bénabou (1988,1992)). By increasing price
dispersion, inflation raises the return to search; demand becomes more elastic, so monopoly
power is reduced, driving all real prices down, and outputl up. Intuition suggests, and sim-
ulations conlirm, that this eflect is dominant when scarch is relatively cheap, while the

partial equilibrium effects studied above remain preeminent when information gathering




is relatively costly. For instance, let consumers have isoelastic preferences (indirecﬁxtility
function) U(z) = B e~P~Y#/(3—1), so that their demand, conditional on accepting the real
price z, is y(2) = B e ?%. In partial equilibrium, the resulting demand and profit effects im-
ply dY/dg < 0,
assuming non-decreasing marginal costs. In a general search equilibrium, the Phillips curve
remains negatively sloped when most consumers have relatively high search costs; but it
becomes flatter, and eventually upward- sloping, as search costs become low enough to al-
low a sufficient number of buyers to take advantage of the dispersion induced by inflation.
Similarly, if consumers have quadratic preferences U(z) = (a— 8 e*)?/(2f), their demand in
partial equilibrium is y(z) = a — B €%, and the balance of demand and profit effects implies
dY/dg > 0 (except at very low inflation rates when r > 0). This slope remains positive in
general equilibrium, and in fact becomes steeper for lower values of search costs.

The exit of firms, due to lower profitability at higher inflation rates, generates two other
effects on demand functions, through either the pricing or the search technology. As the
remaining firms have higher market share, hence a higher level of demand, they find it
worthwhile to incur the adjustment cost more frequently; this dampens all other effects
of inflation on the average price and output (Bénabou, 1992). On the other hand, if the
thinner market makes it more difficult for customers to search (Diamond, 1993), exit lowers
the elasticity of demand for the remaining firms. This increases their market power and
lowers output.

Finally, Konieczny (1991) considers general equilibrium effects which operate through

13



labor costs and aggregate demand. When firms face short run decreasing returns, the
increased variability of prices and output due to inflation raises average costs, and thereby
lowers labor plus profit income. This in turn reduces aggregate demand and equilibrium
output. This decline compounds the fall which results (given his assumptions of isoelastic

demand and convex costs) from the partial equilibrium effect discussed earlier.

VI. Conclusion

We have analyzed the effect of inflation on the average output of monopolistic firms
facing a small fixed cost of changing nominal prices. Using Taylor expansions, we derived
a closed-form solution which can be applied to any specification. This extremely simple
formula allowed us to evaluate and clarify the relative impact of the three factors which
affect the inflation-output tradeofl: the asymmetry of the profit function, the convexity of
the demand function, and discounting. These effects remain important components of any

general equilibrium model with (s, S) pricing.



Appendix: Proof of Proposition 2

Throughout the appendix, y = o(g(z)) will mean that lim,_o[y/g(z)] = 0. We denote

0=r/gande = —cg/2F"(z™) < 1. Expanding § — z™ and s — z™ in powers of ¢,

S—2m=8 =)de"+ pe® + o(e?)
(17)

2 —s=T =XNe"+u'e? + o(e?),
where v is the smaller of the orders of § and 7 in ¢, and A > 0, ' > 0, A + A > 0. Now,
expanding F(-) around its maximum (and dropping the argument z™ from here on) yields:

) F(S) =F 4 F" )22 4 (F"\ u + F"\3/6) €% + o(e™)
18

F(s) =F+F'\2e0[2 4 (FX 4 — F"\3[6) €31 o(e™)

Hence, from (2a):
(Y- (A =A%) ¥ /2 4+ [F" - (A = M) + F - (O3 4 2°) /6] > + 0(6®) = rc = —2F"¢ 0
Next, expand the expressions on the left and right-hand side of equation (13):

F(z) =) = F(z™) 4 (z = 2™)0F + (z — 2™)2[F" + 0*F)/2 + o((z — z2™)%);

s
/ F(z)e*2™ d;

(B+T)F+(E~7")OF/2+ (8 + m3)(F" + 6°F) /6 + o(*") ;

(696 _ e—&r)/e

(6+7)+ (8 —7)0/2+ (8 + 1) 02/6 + o(>) .

Substituting into (13) and neglecting terms smaller than o(e3") we get, after some rear-

rangement:
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(204F"[6) (6 + 7) (8% — b7 — 27%) + o(6%7) = —2F" e(1 + 05 + 026?/2 + 6°6%/6) + o(e*")

Substituting from (A1): (8§ 4 7)(8% — 87 — 273) = (A + A)(AT = AN = 2X4%)e3 /6 + o(e¥) ,

and so:

(21) —2F"e(14+0(1)) = F" (A + X) (A% = AN = 20%) £¥/6 + o(e>).

Assume first that A # X. Then, by (A3), v = 1/2 and so (A4) becomes: —2 F" ¢+ o(€) =
Q%2 +0(e¥/?), where @ = F" (A+A)(A* = AN —2X?)/6. Hence: —2+o(1) = Qel/2/F" +
o(e'/?); but the right hand side tends to zero with ¢ while the left hand side does not, a

contradiction. So it must be that A = )\’ necessarily. Using this, (A3)-(A4) become:

(22) (F"(u — @) + F")33] €7 + o(e¥1) = —2F"¢0

(23) ~2F" e+ ole) F'(—4X3) 2 /6 + o(*)

Now, (A6) implies A* = 3 and v = 1/3. Inserting in (A5), we obtain u—p’ = 222 (a—0)/3.

So, from (Al):

(24) S—z" = &= (3e)3 4 pe¥? 4 ()
(25) 2" —s = 7= (3) 4 pe*P 4+ 2(0 — a)(36)3/3 + o(e)*.
Finally, (A7)-(A8) imply (8) and (14); (15) and (16) follow immediately. Q-E.D.
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1 Additional assumptions on F(-) and ¢ are needed so that V > 0 when the optimal policy is

followed. The case of deflation is obtained by permuting § and s throughout the paper.

*Throughout the paper we shall assume F"(z™) < 0, but the results can be generalized to
F"(z™) = 0. What matters then is the ratio F(:t0)(z™)/F)(2™) where F*}(z™) is the first
non-zero derivative of even order, and F(**)(z™) the next non-zero derivative of odd order. A

proof is available upon request.
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