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Abstract

We use a fractional difference model to reconcile two features of
vields on US government bonds with modern asset pricing theory: the
persistence of the short rate and the variability of the long end of the
yield curve. We suggest that this process might arise from the response
of heterogeneous agents to changes in monetary policy.

1 Introduction

The term structure of interest rates links the academic fields of macroeco-
nomics and finance. Depending on one’s point of view, the level and slope
of the yield curve are indicators of the current stance of monetary policy
(Bernanke and Blinder 1992), predictors of future movements in real output
(Estrella and Hardouvelis 1991}, or reflections of the market’s assessment
of the risk and expected returns of bonds of different maturities (Brennan
and Schwartz 1982, Cox, Ingersoll, and Ross 1985, and Vasicek 1977). We
continue the tradition of linking finance and macroeconomics by connect-
ing prices of bonds of different maturities to the stochastic process for the
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comments on earlier drafts.
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short-term rate of interest, as commonly done in finance, then' going on to
speculate about the macroeconomic origins of interest rate movements.

The primary focus of our analysis, though, is not the relation between
interest rates and the macroeconomy, but the dynamics of interest rates.
Roughly speaking, there are two dimensions to the dynamics of interest
rates: the correlation between short rates at different points in time and the
relation between yields on bonds of different maturities at the same date.
These “time series” and “cross-section” features of interest rates are not
the same, but we show that they are closely related in existing theory. For
example, in many of the popular theories of bond pricing, the short rate
process has the property that the correlation between short rates n periods
apart goes to zero exponentially. We show, in this case, that the yield on an
n-period bond converges to a constant: the variance of the yield on a long
bond goes to zero exponentially, as well. In this way the time-series and
cross-section properties of interest rates are closely linked.

The implication that long yields are constant seems to us to be at odds
with the data. Although the yield curve generally flattens out as the matu-
rity increases, there is considerable varjation in long yields, even for yields
on bonds with maturities up to ten years. We attempt to reconcile these
two properties using the so-called fractional difference process introduced
into economics by Granger and Joyeux (1980). With this process the vari-
ability of long yields approaches zero, but at a rate slower than exponential.
With plausible parameter values, there is substantial variability in yields for
maturities up to 20 years.

We develop these points in the remainder of the paper. In the next
section we outline a theoretical framework that retains the simplicity of
linearity but is general enough to include long-memory. We derive, for this
framework, formulas for prices and yields of bonds of all maturities. In
Section 3 we confront the central issue of the paper: the bekavior of long
yields. We argue that for many common short rate processes, the theoretical
properties of long yields and forward rates differ significantly from what we
see in US government bond data for the postwar period. This discrepancy
between theory and data motivates the fractional difference model of Section
4.

Section 5 is concerned with the ability of the fractional difference model
to mimic some of the features of short term interest rates, inflation, and



mdney growth. With the possible exception of money growth, we find that
the fractional difference model performs well relative to stationary ARMA
or random walk models. Thus the model is able to reproduce important
features of both the long end of the yield curve and the high-order auto-
correlations of short rates and inflation. We speculate that the fractional
short rate cum inflation process might be the result of heterogeneous agents
responding to changes in monetary policy.

2 A Theoretical Framework

We begin by deriving prices of riskfree bonds in a log-linear theoretical
framework. There are two common approaches to theoretical bond pric-
ing. One approach, epitomized by Campbell (1986) and Hansen and Jagan-
nathan (1991), is to start with an equilibrium price measure, or intertempo-
ral marginal rate of substitution: given a stochastic process for one-period
state-contingent claims prices, we construct prices of riskfree bonds of dif-
ferent maturities. A second approach, common in finance, is to start with
the short rate: given a stochastic process for the short rate and an assump-
tion about how risk is priced, we derive prices of bonds of longer maturities.
Popular examples include the models of Cox, Ingersoll, and Ross (1985) and
Vasicek (1977). The two approaches are closely related and, in some cases,
equivalent. We follow the second approach in this paper.

To fix the notation, let b7 denote the dollar price at date ¢ of an n-
period discount bond: the claim to one dollar in all states at date f + n. By
convention b7 = 1. The yield on a bond of maturity n, for n > 0, is

T

Y = —n"llog bP. (1)

The yield on a one-period bond is simply the short rate: y; = r,. The
n-period ahead forward rate is implicit in the prices of #- and (n+ 1)-period
bonds:

i = log(b7 /67 +1). (2)
From definitions (1) and (2) it is clear that yields are averages over forward
rates:

n .
wwr=n1y A7 (3)
=

Thus we can express the maturity structure of interest rates in two equivalent



ways. The conventional yield curve is a plot of " versus the maturity n.
The forward rate curve of fJ* versus n contains the same information.

These definitions provide different ways of expressing bond prices at a
point in time in terms of interest rates. Another way of doing this is to
consider returns from holding a bond for one or more periods. We denote
the one-period return from holding an (n + 1)-period bond from date ¢ to
datet + 1 by

Ry = log(biy, /b7+). (4)

This definition of the return, like that of the yield, retains the analytic
convenience of log linearity.

With these definitions in hand, we can approach the theory of the term
structure of interest rates. We follow Vasicek (1977), and others in the fi-
nance literature, in deriving prices of multi-period bonds from the stochastic
process for the short rate and an assumption about how risk is priced. To
make this as simple as possible, let us say that the short rate r is a station-
ary linear time series with iid normal increments. It can be expressed, then,
as the moving average

e o]
r=p+ E €, (5)

j=0
for {¢;} normally and independently distributed with mean 0 and vari-
ance o2, Stationarity requires that the coefficients be square summable:
YR} < 00. We will see that this process guarantees positive bond prices
but, since the increments are normal with constant variance, it permits in-

terest rates to be negative with positive probability.

Our assumption about risk is that the expected excess return, or term
premium, on a long bond is proportional to the conditional standard devia-
tion of its return:

EREE — vy = M Van RN, (6)

where F, denotes the expectation conditional on the history of bond prices
and returns through date ¢ and Var, the analogous conditional variance.
The parameter A is referred to as the price of risk. Dependence of the term
premium on the conditional variance, rather than a covariance, is justified
by the one-factor structure of the model: since ¢ is the only shock each



period, returns on bonds of all maturities ate perfectly correlated. Since
7! is known at date t, we see from (4) that the variance of the return is

Var, R?_:'Il = Var/log b -

Using the return relation, equation (6), we can express the price of an (n+1)-
period bond in terms of moments of the n-period bond price:

—logb7t! = — Eylog b7, + ¢ + A( Var log b7, )1/2. (7)

This equation is the basis of our derivation of equilibrium bond prices, and is
analogous to the partial differential equation for the bond price in Vasicek’s
(1977) continuous time theory.

With our log-linear structure we can readily compute prices of bonds
of all maturities. We show, by induction, that the log of the price of an
n-period bond can be expressed as a moving average:

[+
—logb} = ™+ ) B} €j, (8)
=0

for some choice of parameters {u*, ﬁ;"} For n = 0 we have, by convention,
log b = 0, so
.u'o = ﬂ_? =0, (9)

for j = 0,1,.... Given the pricing function (8) for an n-period bond, for any
n 2> 0, we use (7) to compute the parameters of the pricing function of an
{(n + 1)-period bond. To do this we need the first two conditional moments
of the one-period ahead price of an n-period bond:

o0
—Et ].Og b?'f'l = [-Ln + E ﬂ;z+1 €1miy
Jj=0

and
Var log b7, = (B30)°.

From these moments and equations (5,7,8), we find that the parameters of
the (n + 1)-period bond price satisfy

P = ™ (4 Aof) (10)



and
ﬂ?“ = _1,'1+1 + aj, (11)

forn =1,2,...and j = 0,1,.... In short, the log-linear structure makes it
fairly easy to derive bond prices.

We summarize the behavior of bond prices in this economy in

Proposition 1 The price of an n-period bond in this economy has the mov-
ing average representation,

oo
- logb? = “-n. + Zﬁ;‘ €17,
—o

with coefficients {u“,ﬁ}‘} given by the initial conditions (9) and the recur-
sions (10) and (11), for all n,j > 0.

We can get some intuition for these formulas by relating the parameters
directly to economic fundamentals ~ the parameters of the short rate process
and the price of risk. In doing this, it’s useful to define partial sums of
moving average coefficients,

n
Anp1 =) aj, (12)

=0

with Ap = 0. Note from the recursion (11) and the initial value (9) that
By = Ay, and, for n,j > 1,

n—1

B} =3 aigi = Anyj — Aj. (13)
=0

The intercept in the bond price function is then

n . n—1
Br=np+Ae) Bl=npt+ A 4;. (14)
i=1 7=0

Thus the behavior of bond prices is governed by the partial sums of moving
average coefficients, A,,.

Some of the mathematical structure is more obvious if we look at forward
rates, rather bond prices. From Proposition 1 and equation (2), we see that
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forward rates can be expressed
fi= (- ) + Z(ﬂ"“ B )er-j.

From (10) we find that the intercept in the forward rate function is
+1—[Ln=[.t+/\0'An
and the moving average coeflicients are

1
ﬁ;+ - ﬁ? = Antjt1 — Antj = Qntj

Thus the forward rate is

ftn =,u,+)\o‘A,,_+Zan+jet_j. (15)
7=0

The mean forward rate curve, which we get from setting the innovations
equal to their unconditional means of zero, is simply the intercept term. Its
behavior, for large n, mimics that of the partial sums 4,. If 4, converges,
then so does the mean forward rate. Yields are similar: since they are
averages over forward rates [see (3)], we can express them as

% = p+ (Ao/n) Z Aj+(1/n) E(Aﬂh — Aj)er—j. (16)
=0

The behavior of yields, like that of forward rates, is governed by the partial
sums of moving average coefficients, A,.

3 The Long End of the Yield Curve

Our interest in this model concerns the long end of the yield curve. Some of
the salient properties of bond prices and yields in this economy are evident
from two examples, which we use to motivate a more general result.

Ezample 1: MA(q) short rate. Suppose the short rate is a finite moving



average:
g
Ty =I‘L+Zaj€t—j! (17)
=0
for some finite integer g. Then the partial sums of moving average coefficients
converge to

q
Agy1 = Zaj- (18)
—

This implies that the mean forward rate curve and mean yield curve are
constant for large maturities . The mean in the forward rate relation is
4+ AgAgqq, for all » > q. The mean yield curve is

n—1

By = u+n7(00) Y 4;.

j=0
For large n this converges to p + Ao Ay,

In this example and others, there is a stronger sense of convergence than
that of mean forward rates and yields: the rates themselves converge. Con-
sider forward rates. We have shown that the unconditional mean converges
to a constant. We now show that the unconditional variance also goes to
zero, thereby establishing that forwards converge to a constant with prob-
ability one. The variance of the forward rate is, from its moving average
representation,

o0
Var ff = ¢?> al,.. (19)
i=0

For n > q the moving average coefficients are zero and the variance is there-
fore zero as well.

Ezample 2: AR(1) short rate. Suppose the short rate is a first-order autore-
gression with parameter p less than one in absolute value. Then its moving
average representation is

rn=p+ ipjet_j. (20)

3=0



The partial sum of moving average coefficients is
Angr = (L= p™1)/(1-0),

which approaches 1/{1 — p) as n goes to infinity. Thus the mean forward
rate converges to g + Ac/(1 - p). The variance of the forward rate is

Varfy = o?p™ (1 - p?),

which goes to zero with n. Thus the forward rate in this economy is ef-
fectively constant at long maturities. And since the yield is an average of
forward rates, long yields are constant, too.

Both of these examples have the property that long forward rates, and
hence yields, converge to a constant. In the MA case this convergence is
sudden, in the AR case it is exponential. This convergence does not apply
to all bond pricing theories, but it holds in most of the stationary models
used in practice, including the popular examples from Cox, Ingersoll, and
Ross (1985) and Vasicek (1977). We summarize this property in

Proposition 2 Suppose the short rate process is stationary ARMA (p,q) for
finite p and q. Then long forward rates and yields converge:

ffi=f

and
AR

where f* and y* are time-invarient constants.

We will not prove this proposition here, although its content should be
clear from the examples. Proofs of related, and more general, propositions
are reported in Backus, Gregory, and Zin (1989) and Dybvig, Ingersoll,
and Ross (1987). Suffice it to say that the convergence property is not a
consequence of the log linear structure we have imposed on the problem.

What we find interesting about this proposition is its apparent contrast
with what we see in the data. In Figure 1 we report the mean yield curve
for US treasury securities over the 1947-1986 period, based on monthly data
from McCulloch (1990). The data suggest that the mean yield curve flattens
out at the long end, as the theory suggests. But in Figure 2 we see that the



variance of long yields is nowhere near zero: there is still a lot of variability
of long yields, even out to ten years. Although the standard deviation of the
yield declines somewhat for maturities over a year, the decline is modest: the
standard deviation of one-year yields is 3.44 percent, that of ten-year yields
3.24 percent. The variability of long yields is inconsistent with Proposition
2 unless convergence occurs at maturities longer than ten years.

We get a clearer picture of the discrepancy between theory and data if
we are willing to choose particular parameter values. In Figures 3 and 4
we plot the first two moments of the theoretical yield curve for an AR(1)
short rate (Example 2). In Figure 3 we plot the theoretical mean yield
curve for the AR(1) example with parameter values p = 0.62, ¢ = 2.69,
and A = 0.117. The computations use a period length of one year. The
parameters were chosen from an informal moment matching exercise, which
we call the Quattro Method of Moments: we varied the parameters until
the graph of the theoretical mean yield curve was fairly close to the mean
yields in the data. As you can see from the figure, the theory with these
parameters matches quite well the observed mean yield curve, represented
in the figure by black squares. The slope of the yield curve depends on the
product Ae but its curvature depends only on p: for p = 1 the mean yield
curve is linear, and for smaller values the yield curve gets progressively more
concave. In this sense, the curvature of the mean yield curve suggests that
p must be smaller than one. The data do not speak loudly on this point,
but we feel the choice p = 0.62 is also consistent with estimates of short rate
autocorrelations. This value corresponds to an autocorrelation larger than
0.9 at monthly time intervals.

What Figure 3 hides is the variability of yields, which we report in Figure
4. Although the standard deviation of the yield varies little with maturity in
the data (again represented by black squares), in the theory it declines more
than 70 percent between one and ten years. With these parameter values, at
least, the effects of Proposition 2 produce predictions that are wildly at odds
with what we see in the data. With larger values of p this decline is more
gradual, but for any value less than one it occurs at an exponential rate.
Thus values of short rate volatility ¢ chosen to match short rate behavior
will generally understate volatility of long yields and prices. This feature
of the theory is well understood by financial practitioners, who routinely
choose volatility parameters for long bond prices that are larger than those
implied by the volatility of short rates.
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One way of resolving the discrepancy between theory and evidence is to
consider nonstationary processes. We could, for example, consider a random
walk short rate -~ that is, set p = 1. This is essentially what has been done in
the theoretical models of Dothan (1978) and Ho and Lee (1986). We consider
this suggestion later on. In the next section we consider an alternative in
which the short rateis stationary, yet there is substantial variability of yields
out to ten years and beyond.

4 A Fractional Short Rate Process

We have seen that with ARMA representations of the short rate, our theory
produces long yields whose variance approaches zero at an exponential rate.
In this section we consider a fractional difference process for the short rate.
This process is stationary for appropriately chosen parameter values, but the
autocorrelations damp out more slowly than with ARMA processes. The
process is said to exhibit long memory for reasons that will be apparent
shortly. More to the point, the theory based on this process generates yields
whose variance approaches zero at a slower rate.

_Let us say, then, that the short rate process is
(1= LY(re— ) = &

or
re=p+(1- L)%, (21)

where L is the lag operator, § is the differencing parameter and, as before,
the increments ¢ are normally and independently distributed with mean 0
and variance o?. The Taylor series expansion of eq (21) around L = 0 is the
infinite moving average
o0
re=p+ Y o6,
j=0
with .
o= _L0+7)
P IOrG+ 1)’
where T’ is the gamma function. This process is stationary for -1/2 < § <
1/2. See Granger and Joyeux (1980) and Sowell (1990) for details.

(22)

The relevant features of this process stem, obviously, from those of the
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gamma function. Among these are
r(1)=1
and, for all z > 0,
I'(z + 1) = z0(z). (23)

These imply, for example, that for any positive integer n, ['(n 4+ 1) = nl.
With respect to the moving average coefficients we see that g = 1 and that
successive coefficients are related by

i (5] o

Since 6§ < 1/2 we see that the moving average coeflicients decline at rate
(1= 8)/7 < 1. For large j this rate approaches zero, which is the source of
the long memory. Finally, partial sums of moving average coeflicients are

TG +1) T +LDI(n+1)

Z“ Z": T'(6+7) P(6+n+1)

'n+1 (24)

=0
This property follows from successive application of (23) to (22).

Let us turn now to the behavior of bond prices, forward rates, and yields,
which we compute using Proposition 1. Qur interest is in the properties of
long forward rates and yields which depend, as we have seen, on partial
sums of moving average coefficients. The behavior of the mean forward rate
is, from (15), governed by the partial sum A,. In the fractional difference
model this sum does not converge if § is positive. The variances of long
forward rates and yields approach zero at a hyperbolic rate, which is slower
than the exponential rate of the ARMA models of Proposition 2.

We can see the impact of the fractional difference process on bond pric-
ing by comparing yields in this model with those in the AR(1) example of
Figures 3 and 4. In Figures 5 and 6 we report the mean and standard devi-
ation of the yield curve with differencing parameter § = 0.3. With A = .17
and o = 2.33 this choice of § matches the mean yields as well as the AR(1)
model. The most interesting implication of the fractional model, however,
is the relatively slow decay of the variability of yields across maturities. As
with the AR(1) example, we choose ¢ to match the standard deviation of
the one-year yield. We see in Figure 6 that the standard deviation of the
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yield also reproduces the variability of long yields. The'AR(1) model, of
course, is a miserable failure in this regard.

Another potential resolution of the variability anomaly is a random walk
short rate, represented either by setting p = 1 in Example 2 or § = 1
in the fractional difference model. We know that estimates of short rate
autocorrelations at short time intervals are close to one, and that these
estimates are difficult to distinguish from one. With é equal to one the model
does not have unconditional moments, but we can nevertheless construct
moments conditional on an initial value that are comparable to the sample
estimates we compute from data. The conditional variance of bond yields,
in this case, is flat: the conditional standard deviation is the same for all
maturities. This is roughly what we see in the data (Figures 2 and 6). The
theory implies, in this case, that shifts of the yield curve are paraliel ones,
so that yields of all maturities vary the same amount.

The random walk model does less well in replicating average yields. At
least in our theoretical framework, a random walk short rate implies that
the mean yield curve has no curvature: it has no tendency to flatten out
at the long end as we see in the data. The fractional model performs much
better in this regard. Both are pictured in Figure 7 where, again, the black
squares are data.

In short, the fractional difference model, despite being relatively exotic,
has implications for long yields that are closer to what we see in the data
than low-order autoregressions, including the random walk.

5 Origins of a Fractional Short Rate

In this section we provide direct evidence on the fractional differencing
paremeter for the short interest rate. We find modest evidence that short
rate dynamics are closely approximated by a fractional process with & of
about 0.3. We also document somehwat stronger evidence of a fractional
root in inflation and money growth. We conjecture that the long mem-
ory apparent in short rates is inherited from inflation, money growth, and
monetary policy.

Estimates of fractional ARMA(p, 6, ¢) models for the short rate are pre-
sented in Table 1 and model selection criteria are reported in Table 2. The

13




parameter p is the order of the autoregressive polynomial, ¢ is the order of
the moving average polynomial, and § is the fractional difference parameter.
We present estimates for all combinations of orders p and ¢ up to three a
total of 16 models per series. The estimates are maximum likelihood for
normally distributed innovations, as described in Sowel) (1992). The short
rate series consists of monthly observations of the three-month treasury bill
yield reported by McCulloch (1990).

The short rate data leave us in some doubt about the short rate process.
With the exception of the models with p = 1, estimates of the fractional
parameter, §, are between zero and one-half, but the data are otherwise
not very informative. The Akaike criterion, AIC, favors the model with
p = g = 3, whereas the Schwartz criterion, S/C, favors the simple p = 1,
¢ = 0 model. A likelihood ratio test across these models rejects at the 1
percent level but not at 5 percent. The direct evidence from the short rate,
therefore, provides less than overwhelming support for a fractional model.

Curiously, the fractional root shows up more clearly in inflation and
money growth (Tables 3 to 6). We measure inflation as the growth rate
in the implicit price index for monthly consumption of nondurables and
services. With this data we find that the fractional parameter is typically
positive, significantly different from zero, and in the stationary region (less
than one-half). The Akaike criterion favors a high-order model, p = ¢ = 3,
but the Schwartz criterion favors a parsimonious one, p = 0 and ¢ = 1.
A likelihood ratio test rejects the restrictions implicit in the parsimonious
model. A closer look, however, suggests that the high-order model suffers
from redundancy, given the apparent root cancellation in the lowest panel of
the table. OQur feeling is that a fractional model with no AR term and a single
MA term is a fair characterization of inflation dynamics. This conclusion
conforms with Granger and Joyeux’s (1980) analysis of food prices over a
shorter period.

We turn next to money growth, using the broad aggregate M2. Table 5
presents the clearest evidence of the presence of a fractional root in nominal
variables. The estimate of the fractional parameter is remarkably stable
across ARMA specifications and the model selection criteria agree on the
simple fractional] ARMA(0,1). The estimate of § in this case is 0.31. This
estimate provides some support for our choice of § = 0.3 in the previous
section.

14



On the whole, we feel that this evidence is suggestive of a fractional
unit root in the short rate arising from money growth and inflation. The
fractional model, in this sense, fits both the time series behavior of the short
rate and the cross sectional behavior of the yield curve. This emphasis on the
inflation component of nominal yields is consistent with the weak evidence
of fractional long memory in real output growth documented by Haubrich
and Lo (1991) and Sowell (1992).

A deeper question is whether the fractional long memory apparent in
inflation and money growth is the result of long memory in monetary policy
or of the behavior of private agents. We outline a theory, adapted from
Granger (1980), in which long memory in inflation is the result of aggregation
across agents with heterogeneous beliefs. Haubrich and Lo (1991) tell an
analogous story for a multisector real business cycle model.

Granger’s (1980) aggregation result starts with N independent autore-
gressive time series,

Tie4l = %50 + Zie41

for j = 1,2,..., N, and z;; dependent across j and t, the aggregate series,
F = Eﬁﬂ @ jt, has very different properties than any of the underlying series.
In particular, if the individual parameters, o, are drawn from a Beta dis-
tribution with parameters ; and 7, then the aggregate series approaches,
for large N, a fractional process with differencing parameter é = 1 — 73/2.
The smaller the value of 74, the larger the mean of the Beta distribution,
and the more persistent is the aggregate series. Our choice of § = 0.3 in

Section 4 corresponds to 72 = 1.4.

If the inflation expectations that affect nominal variables like interest
rates are, in fact, an aggregation of individual beliefs, then in a situation
in which monetary policy is subject to continual change, Granger’s result
may provide a useful description of the dynamics of aggregate beliefs. This
line of reasoning is at this point strictly conjecture, but we feel that it is
a direction worth further investigation. Perhaps it could be melded with a
model of regime changes like that of Evans and Wachtel (1992).

6 Final Remarks

This paper has two purposes. The first is to show that one class of asset
pricing theories, which we argue includes many of the popular bond pric-
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ing models, has the implication that long yields are constant. In fact the
variability of long yields is not much different than that of short yields, a
feature of the data emphasized by Shiller (1979) in the context of the expec-
tations theory of long rates and by den Haan (1990) in a dynamic general
equilibrium monetary economy. Our second purpose is to suggest a frac-
tional differemce model as a resolution of the discrepancy between theory
and evidence on long bond yields. This, too, is not completely new: Shea
(1989) suggests a similar interpretation of Shiller’s results. What our study
adds is a theoretical structure that incorporates risk and, as a consequence,
introduces the possibility of replicating the mean and variance of the yield
curve and the time series properties of the short rate.
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Table 1
Parameter estimates for fractional ARMA models: Three-Month Short Rate
Monthly Short Rate: McCulloch 3-month zero-coupon yield; 1959:01-1986:12
t-statistics in parentheses

Model $ é1 ¢2 o3 il 8y 63
(0,6,0) .50
(3.12)
©6,1) 48 23
(23.85) (4.85)
062) .44 32 .16
(7.80) (4.07)  (2.85)
063) .44 32 .16 00
(7.39) (4.87) (277)  (.05)
(1,60) -.19 -.94
(-2.15)  (-23.79)
1,61) -24  -95 03
(-1.16) (-16.85) (.23)
(1,5,2) -.45 -.98 .22 1
T (348)  (-52.56) (170)  (1.44)
(1L53) -40  -98 18 .08 -.04
(-2.09) (-37.41) - (1.08)  (.TT) (-.51)
260) 27 48 -12
(1.76)  (-2.87)  (-2.10)
(2,51 .32 24 -.42 69
(216) (.82 (277 (2.82)
(2,6,2) 28 .22 -.56 .69 -.10
(1.82)  (1.08)  (-3.06) (4.16) (-.88)
(253 .22 110 -5l 43 17 ~10
(111)  (-23)  (-1.90) (1.05) (-127)  (-1.04)
(36,0) .27 48 -12 .00
(2.03)  (-333) (192) (.03)
3,61 .29 33 <50 -05 80
(1.84)  (1.31) (-2.75) (-68) (3.88)
(362 24 .26 -6 .23 25 .43
(119)  (-29)  (-281) (.51) (.32) (-79)
(3,6,3) .25 27 .20 -.66 .79 73 -.26

(156)  (1.94)  (L58) (-5.57) (6.68) (5.48)  (-2.30)

Note: A fractional ARMA(p, §, ¢) model for «; has the form
(L 1L+ $al? 4o+ L)1 = L) (2o = p) = (L+ 01 L+ 6207 + -+ 6, LO)ee

where ¢, is white noise and L is the lag operator.



Table 2

Model Selection Criteria: 2log(L), AIC, SIC
16 Fractional ARMA models from Table 1 (3-Month Short Rate)

Number of MA parameters (q)

Number of AR

parameters (p) 0 1 2 3
-1258.921 -1113.901 -1105.099 -1105.097
0 -1260.921 -1117.901 -1111.099 -1113.097
-1264.739 -1125.535 -1122.551 -1128.366
-1103.573 -1103.533 -1101.885 -1101.615
1 -1107.573 -1109.533 -1109.885 -1111.615
-1115.207 -1120.984 -1125.154 -1130.700
-1102.065 -1100.762 -1100.101 -1099.121
2 -1108.065 -1108.762 -1110.101 -1111.121
-1119.516 -1124.030 -1129.187 -1134.023
-1102.064 -1100.310 -1099.685 -1091.393
3 -1110.064 -1110.310 -1111.685 -1105.393
-1125.333 -1129.395 -1134.588 -1132.113

Note: AIC is the Akaike Information Criterion, SIC is the Schwarz
Information Critericn, and L is the normal likelihood function.




Table 3
Parameter estimates for fractional ARMA models: Inflation
Monthly Consumption Deflator: Citibase GMDC; 1959:01-1989:12
t-statistics in parentheses

Model é $1 L) ¢3 6, P B3
05,0) .31
(10.27)
©51) 48 -.36
(15.80) (-5.74)
0,62 .48 35 .04
(19.57) (-6.33)  (-90)
053 48 _.35 04 -0
(19.15) (6.04)  (-77)  (-13)
(150) Al 24
(11.20)  (4.37)
(1,61) 48 -11 46
(19.10)  (-.92) (-4.19)
(162) 48  -04 -39 .03
7 (18.83)  (-07) (-65)  (~11)
(153) .48 67 32 .27 -0
(19.40)  (1.39) (66)  (-150) (-95)
(250) 45 31 11
(11.55)  (4.91)  (2.03)
@61) 48 -.09 01 44
(19.01) (51 (.17) (-2.56)
(262 06 -167 .68 -1.63 69
(44) (-2006) (12.51) (-15.83) (7.23)
(2,6,3) -.12 -1.75 76 -1.53 .94 .06
(-53) (-16.65) (7.37) (7.18)  (2.19) (.75)
(3,5,0) .48 34 16 09
(16.85)  (5.93) (2.81) (L.67)
(345,1) 48 06 07 05 -.29
(19.85)  (20)  (B4)  (75)  (-88)
(3,6,2) 46 -1.29 46 .16 -1.64 .88
(11.86) (-12.82) (4.28) (2.02) (-25.70)  (9.68)
(3.6,3) -.15 -2.30 1.90 -.59 -2.84 2.90 .94
(-128) (-17.77)  (5.98) (-3.11) (-30.11) (11.70) (-3.27)




Table 4
Model Selection Criteria: 2log(L), AIC, SIC
16 Fractional ARMA models from Table 3 (Inflation)

Number of MA parameters (¢)

Number of AR
parameters (p) 0

1

2

3

3712.112
0 3710.112
3706.134

3726.636
1 3722.636
3714.678

3730.447
2 3724.447
3712.510

3732.972
3 3724.972
3709.056

3732.059
3728.059
3720.101

3732.845
3726.845
3714.909

3732.873
3724.873
3708.957

3733.413
3723.413
3703.519

3732.853
3726.853
3714.917

3732.858
3724.858
3708.943

3744.431
3734.431
3714.536

3741.075
3729.075
3732.166

3732.868
3724.868
3708.953

3733.121
3723.121
3703.227

3744.743
3732.743
3708.870

3746.166
3732.166
3704.313




Table 5
Parameter estimates for fractional ARMA models: Money Growth Rates
Monthly M2: Citibase FM2; 1959:01-1989:12
t-statistics in parentheses

Model s & ) $3 6 ) O3
0,5,0) .50
(3.17)
061) .31 38
(6.46) (5.97)
062 37 32 -.08
(5.12) (3.59) (-1.14)
063) .34 35 .05 04
(3.89) 3.37)  (-50)  (.67)
1,60 .29  -34
(8.14) (-7.96)
1s1) 31 .27 58
(652) (1.51) (4.50)
(162 34 .78 113 .23
T (6.03)  (3.48) (4.34)  (1.62)
(1,63) 35 .81 115 .22 .02
(4.64) (3.83) (527) (147)  (-23)
260) 40 21 .14
(542) (-3.15) (2.60)
261) .33 38 -10 73
(422) (173)  (-.70) (3.40)
(262) 35 .90 .07 124 .32
(5.00) (1.76) (.24) (2.63)  ( .89)
(2,6,3) .35 1.24 34 1.58 .71 .08
(5.40) (1.21) ( 41) (52 (58 (29)
(360 32 -36 .15 -.08
(2.74) (-2.74) (2.60) (-1.20)
(361) .36 52 -10 05 .84
(4.18) (255) (-91) (.67) (5.27)
(3,62) 35 99 11 -02 133 .39
(4.32) (143) (31) (~12) (1.90) (.67)
(3,63) 35 124 34 00 158 .71 08

(3.06) (.25) (.07) (.00) (.31) (.1) (.08




Table 6
Model Selection Criteria: 2log(L), AIC, SIC
16 Fractional ARMA models from Table 3 (Money Growth)

Number of MA parameters (g)

Number of AR
parameters (p) 0

1

2

3

3576.667
0 3574.667
3570.688

3622.668
1 3618.668
3610.710

3629.052
2 3623.052
3611.115

3630.584
3 3622.584
3606.669

3630.659
3626.659
3618.702

3632.338
3626.338
3614.401

3632.863
3624.863
3608.948

3633.202
3623.202
3603.307

3631.850
3625.850
3613.914

3633.201
36256.201
3609.285

3633.256
3623.256
3603.362

3633.264
3621.264
3597.391

3632.302
3624.302
3608.386

3633.254
3623.254
3603.359

3633.275
3621.275
3597.401

3633.275
3619.275
3591.423
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Mean Yield Curve with AR(1) Short Rate
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Mean Yield Curve: Fractional Short Rate
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Mean Yields: Fractional vs Random Walk
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