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1. Introduction

It is often useful to have a sense of whether a univariate economic time series is better
modeled as being integrated of order one (is I(1)) or of order zero (I(0)). For example, this
distinction can be important in the subsequent application of asymptotic theory to obtain
approximate distributions of estimators and test statistics. Alternatively, different economic
theories can have different implications for the trending properties of certain series, in which
case it might be desirable to assess the probability that one or the other of these implications is
true (see the discussion in Christiano and Eichenbaum (1990)). These two applications suggest
the practical value of procedures that produce explicit posterior odds on whether the process
that generated the observed data is I(1) or I(0) Such a procedure would permit the formal
application of statistical decision theory to the I(1)/I(0) classification problem, with a loss
function defined solely in terms of whether the series is I(1) or I{0)

This desire to compute posterior odds for the I(1) and I(0) hypotheses has led to considerable
recent empirical and theoretical work on unit roots in economic time series from a Bayesian
perspective; see DeJong and Whiteman (1989), Sims (1988), Sims and Uhlig (1988), Sowell
(1991), and Phillips (1991a), and the discussions of Phillips (1991a) in the October-December
1991 issue of the Journal of Applied Econamerrics.l However, this work has the important
practical drawback of relying on finite-dimensional parameterizations of the I(1) and I(0)
hypotheses, which in turn requires formulating explicit priors over the values of these
parameters. Although some authors have described these priors as "flat”, the geometry of I(1)
and I(0) processes is sufficiently complicated that any prior restrictions on parametric
approximations are at best difficult to interpret.

This paper proposes a class of Bayesian procedures for deciding whether a process is I(1) or
I(0) that avoids the problem of making explicit parametric assumptions about priors within the
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1(1) or I(0) class under general assumptions on deterministic trends. These procedures are based
on a scaled cumulative sum process of the detrended data, VT' The process VT has the
following properties: (i) NiiﬁVT has a (classical) asymptotic distribution that depends on no
unknown nuisance parameters; and (ii) for I(0), N;p =1, for I, Ny = Np - = The first of
these properties means that it is possible to compute the asymptotic likelihoods — and thus the
likelihood ratio — of observing functionals of V-1 under the 1(1) and under the I(0) hypothesis,
and moreover that in large samples this evaluation does not depend on the nuisance parameters.
The second property implies that these asymptotic distributions diverge, so that in large samples
the likelihood ratio will tend either to zero or to infinity, thereby providing a consistent
procedure for distinguishing I(1) from I(0) processes. Of course, consistent 1(0)/I(1)
classification procedures already exist, at least in theory; such a rule can be constructed simply
by using a consistent test which is similar under either the 1(0) or 1(1) null, for example the
augmented Dickey-Fuller (1979) t-statistic, and critical values which depend on the sample size
and which tend to infinity at a suitable rate. The principal advantage of the classification
scheme proposed here is that it incorporates point priors in an explicitly Bayesian framework
and thereby produces interpretable posterior odds ratios.

The statistics based on the cumulative sum Vo are closely related to statistics studied in
three related literatures: cusum statistics that are used to test for structural breaks (Gardner
(1969), Brown, Durbin and Evans (1975), and MacNeill (1978); see Perron (1991) for a recent
review), LM tests for a random walk drift under the null of a stationary time series model (and
Nabeya and Tanaka (1988); see Harvey (1589) for a review of the earlier literature); and
recently developed tests of the I(0) null against the I(1) alternative, sometimes cast as tests of
the null of a unit moving average root in the first difference of the series (Park (1990), Park
and Choi (1988), Bierens (1989), Saikkonen and Luukkonen (1990), and Kwiatkowski, Phillips

and Schmidt (1990), and the references therein).



The procedures proposed here are developed for two trend specifications. The first is
general polynomial trends, estimated by OLS, as have been considered elsewhere in the unit
roots literature (see for example Ouliaris, Park and Phillips (1989) and Perron (1991)) Perron
(1989) and Rappoport and Reichlin (1989) suggested that an alternative to the unit root model
for many aggregate economic time series is that the series are stationary around a time trend
with a growth rate that changes once during the sample. Although the empirical support for
this model weakened when the break date is treated as unknown (Banerjee, Lumsdaine and
Stock (1992), Zivot and Andrews (1992)), their results are sufficiently strong to suggest that this
model be treated as a plausible specification. The second trend specification considered
therefore is the broken trend model in which the break date is treated as unknown.

In a paper closely related to this one, Phillips and Ploberger (1991) have also recently
proposed the use of Bayesian posterior odds ratios for constructing an I(1)/I{0) decision rule.
Like the one proposed here, their procedure permits placing priors only on the I(1) and I(0)
“point" hypotheses. One difference between the Phillips-Ploberger (1991) approach and the
approach in this paper is that they study posterior distributions of the data directly, while we
consider posterior distributions for a family of statistics whose asymptotic distribution does not
depend on the nuisance parameters under the I(0) or I(1) hypothesis.

The remainder of the paper is organized as follows. Theoretical results under general
conditions on trends and detrending are presented in Section 2 These general conditions are
examined for the leading cases of polynomial trends and piecewise linear trends, detrended by
ordinary least squares (OLS), in Section 3, Section 4 presents Monte Carlo results. Empirical

results are given in Section 5, and conclusions are presented in Section 6.



2. The Proposed Decision Rules

A. General Results
We consider time series which are the sum of a purely deterministic trend, d;, and a

stochastic term, ug
@1 yy=d;+u;

The X(0) and I(1) hypotheses refer to the order of integration of the stochastic element u,.
Here, the definitions of I(0) and I(1) follows recent convention: a purely stochastic process is
said to be I(d) if the process formed from the partial sums of its d-th difference, scaled by TJ’,

obeys a functional central limit theorem and converges to a constant times a standard Brownian

[Ta]

motion. Let UOT(,\)=T'L’):5=1

ug and UlTO‘)=TJ‘u[TA]’ where [+] denotes the greatest
fesser integer function, and let 7x(j)=°°v(xt’xt-j) for a second order stationary process x,. Also
let "=>" denote weak convergence of random elements of D[0]1] and let W(+) denote a standard

Brownian motion process restricted to the unit interval. The (0) and I(1) hypotheses are given

by:
22) K0 Ugp=>woW, where of = I,k 0<up<=,
(23) IOy Upp =>wW, where ol = T tayh 0<uy <=

Throughout it is assumed that second moments of I(0) random variables exist and that standard
. . - . s -1cT
estimators of second moments are consistent; in particular, it is assume that T Zt=ﬁ|+1“t“t-j
. 1T . . .
R 7,()) for u, 1(0)and T Et={j}+1A"tAut-j B -1Au(]) for u, I(1). In stating 7u(l)=c°v(“t'ut-j)
(1(0) case) or v Au(j)=cov(Aut,Aut_j) (I(1) case), we are further assuming that I(0) variables are

second order stationary.



The basis of the proposed statistics is the scaled partial sum process of the detrended data.
Let d‘ denote the estimate of the trend component and let the detrended process be y‘!’ =Y -

dr The decision rules studied are all functionals of the statistic,
<-1-ko[TA] d
@) v =iy

where
e Nt PRGN

. -1+T d
7yd(m) =177 =m+1yfy t-m

where £ is an increasing sequence of integers and k(+) is a kernel satisfying: k(x)}=0 for Ixp1;
k(x)=k(-x), 0<k(x)<I for |x|<1; k(0O)=]; and £ Zﬁslk(u/t)zk for all £>1, where k>0. It is
assumed that the sequence L is such that 52 is consistent for the spectral density of u, under
the I1(0) hypothesis. With the transformation (2.4), the task of distinguishing 1(0) from I(1)
processes is shifted to distinguishing the cumulation of an I(0) process, now I(1), from the
cumulation of an I(1) process, now 1(2)

The results are stated under gencral assumptions on the trend estimation error §, = at'dr
Let |x,] = T-IE-{=1X% for a time series x,, Dgp{(}) = ™ 5”65, and Dyr()) =

T"‘s[.“} The estimated trend is assumed to satisfy the following conditions:

Detrending Conditions

A.If ug is 1(0), then:
(i) (Ugy: Do) => wy(W, Dg) where Dy € C[01}
(i) #305,] Bo

B. If u, is I(1), then:



@ YUy Dyp => w(W, D) where Dy € C[o1]

(i) flas i = OpM

Specific examples of trends that satisfy these conditions are given in the next section.
Because ycti =Yy d,=u,+ 8, these conditions lead to general definitions of limiting
detrended processes. Let Yg-[(A) = T'kzs[_;_rl’\]yg = Ug{}) - Dyp{*); for an 1(0)
process, it follows from condition A(i) that YS-I(-) = wowg(-), where W8(~) =W()

Dy(+) Similarly, let Yg-[(,\) = T’ky[—n] = Ul’l'(’\) - DH(X); condition B(i) implies that, if
u, is X(1), then Y§{(+) => wgW3(+), where W3(+) = W(+) - D(+).

Under these conditions, because L - =, A(ii) implies that if u, is I(0) then the estimated
trend is consistent (in the L, norm) However, if u, is I(1), Dn-(-) = T'HS[T.] is Op(l), so the
estimated trend is not consistent. In the specifications studied in Section 3, however, ||A5t|| Ro
in the I(1) case, so that the first difference of the estimated trend is consistent for the first
difference of the true trend.

Limiting representations for the statistic T'IZ’£=1VT(IH)2 under the general 1(0) and I(1)
hypotheses have been obtained by Kwiatkowski, Phillips and Schmidt (1990) (for OLS
detrending with a constant or linear time trend) and by Perron (1991) (for general polynomial
trends estimated by OLS). Their applications differed from ours, however, respectively testing
1(0) vs. I(1) and testing for breaks in deterministic trends. The following theorem generalizes

their results to general trends and provides limiting representations for the statistic Vp & D[01]

- 2
Let Ny = T/52T , k(m/A1)

Theorem . Suppose }Z%lnT/T +0, -+ = and assumptions A and B hold.
(2) 1t y, is 1(0) then V. => W§.

(b) It y, is (1) then N3*Vp => V3, where Vi(3) = SywSedsisiwiisas)”



Proofs of theorems are given in the appendix.

For the detrending procedures studied in Section 3 which satisfy conditions A and B, the
distributions of Wg and W‘l1 depend on the type of detrending but typically do not depend on
any unknown parameters (the exception, discussed in detail in the next section, is broken-trend
detrending under the I(0) case with an unknown date) Moreover, VT has different rates of
convergence depending on whether u, is 1(0) or I(3} Thus V.1 can be used as the basis of an
asymptotic decision rule for categorizing u, as I(0) or I(1)

B. Decision Rules Based on Scalar Functionals of V-p

The statistical decision rules considered here are based on scalar functionals of V1. In
particular, we consider functionals ¢(+) that have the properties: (i) ¢ is a continuous mapping
from C[0]1] - e ; (i) ¢(ag) = ¢(g) + 2Ina, where a is a scalarand g € D[O,l];2 and (iii) ¢(Wg)
and ¢(V?) respectively have continuous densities f, and f; with support (=, @) Let ¢ =
#(V1) Then the asymptotic approximation to the likelihood ratio (or Bayes factor) Bpof ép

under the I(1) hypothesis, relative to the I(0) hypothesis, is

(25) B = f)(¢1 - InN1)Vfy(é7) .

It is readily seen that (2.5) provides a consistent rule for classifying U, as I(1) or I(0). If the
I(0) hypothesis is true, then by the continuous mapping theorem ¢ = ¢(Vp) => ¢(WS) = Op(l),
s0 (1) = Op(1) but fy(47-InN) B 0; thus B B 0 and 1(0) is chosen with probability one. On
the other hand, if u, is I(1), then ¢ - IoNp => §(V9) = Oy (1), but £(¢7) B &, thus VB B 0
and I(1) is chosen with probability one.

Although the focus here is consistent classification rules, we note in passing that the statistics

#(V) can be used to perform classical tests of the ¥0) or I(1) null hypotheses. In particular,



¢(N-}BVT) can be used to test the null hypothesis that u, is 1(1) against the alternative that it is
1(0). Critical values are obtained from the density fj, and consistency of the test follows from the
different rate of convergence under the I(0) alternative. Alternatively, qS(VT) could be used to
construct a consistent test of the I(0) null against the I(1) alternative; see Park and Choi (1988),
Saikkonen and Luukkonen (1990), and Kwiatkowski, Phillips and Schmidt (1991}

The likelihood ratio (2.5) permits performing Bayesian inference when priors are specified
only on the point hypotheses 1(0) and I(1). Let these priors respectively be =g and x; (so that xg

+xy=1). Then the posterior odds ratio is the product of these priors and the Bayes factor (2.5),
(26) Py = (ny/np)BT.

The consistency of decision rules based on By implies that decision rules based on the posterior
odds ratio also are consistent.
In the Monte Carlo investigation and empirical analysis of Sections 4 and 5, we will consider

three specific functionals ¢

(272) #1(®) = In{fge(s)’ds}
@) 4(8) = 10{(suP g0 )6 - 0T 186"}
@7¢) 40) = I0{T oy | Soe 2 Fas )

The statistic 1T and close variants have been studied in several related literatures. In terms
of the original data, ¢, = ¢(Vp) = 1n{a'7’r'12¥=1(r' z;___lyg)z}. One motivation for
using ¢, comes from recognizing that, with no trend or detrending, 31-1- =
T Z—{‘___l(T';’Z;:lus)z/%u(O) (which is appropriate if d, =0 and u, is serially uncorrelated) is

the Sargan-Bhargava (1983) statistic testing the null that x, = Z:___lus has a unit root, which in



turn is motivated as being the Durbin-Watson (1950) ratio for the Gaussian random walk. If the
rejection region is the right tail, 3,1 accordingly can be interpreted as testing for the null that u,
is I(0). against the I(1) alternative. The statistic $1T has also been studied by Nabeya and

Tanaka (1988) (to test for random coefficients) and Saikkonen and Luukkonen (1990) (to test for a
unit MA root) Saikkonen and Luukkonen (1990) proposed a generalization of ¢, test I(0) vs.
1(1) with ARMA errors, although their generalization differs slightly from that examined here.
Kwiatkowski, Phillips and Schmidt (1990) proposed the generalization exp(¢;T) as a test of the
general 1(0) null against the I(2) alternative. Gardner (1969) and MacNeill (1978) studied $1T as

a test for a broken time trend; Perron (1991) extended their statistic to general error terms and
proposed exp(¢;) Both Kwiatkowski, Phillips and Schmidt (1990) and Perron (1991) derived
asymptotic representations for exp(¢,) under the general 1(0) and I(1) hypotheses.

The statistic ¢, is based on the range of the cumulative process, scaled by an estimator of the
spectral density of y, at frequency zero. Scaled by its variance rather than w, this was proposed
by Mandelbrot and Van Ness (1968) and Mandelbrot (1975}, Lo (1%91) studied the generalization
(27¢) and applied it to financial time series data.

The statistic 31 has a somewhat different motivation: if y, is I(1), then the cumulative
process will have more mass in its spectral density at low (but nonzero) frequencies than it will if
¥, is I(0). Although the population spectral density of Vop is not well-defined for frequencies

near zero, ¢, nonetheless has a well-behaved asymptotic distribution for fixed integer J.
3. Examples of Estimated Trends
This section provides specific results for two types of trends and detrending procedures,

polynomial time trends detrended by OLS and piecewise linear or broken trends, also with OLS

detrending. Both are shown to satisfy the detrending conditions A and B in Section 2.



A. Polynomial detrending by OLS.

Consider the polynomial time trend,
(31) d, =z.8

where z<(1, t, t2, ..., t9), where the unknown parameters g are estimated by regressing y; onto
z, to obtain the OLS estimator 3 of 8. Thus g=0 corresponds to subtracting from y, its sample
mean and g=1 corresponds to linear detrending by OLS.  For general g, under (31) the
detrended data are y‘z = yyzyB = u8, where §, = zt'M'i‘lz};lzt“r

To verify that theorem 1 applies when this detrending procedure is used, it is sufficient to
verify that conditions A and B hold. The relevant properties of the detrending process are

summarized in theorem 2.

Theorem 2. If d, is given by (31) and 8 is estimated by OLS, then:

(a) If y, is (O), then:
(i) (Ugp Do) => wg(W, D) where Dy = Q’M'lv(,\), where &, M, and v are
respectively (g+1)x1, (q+1)x(q+1), and (q+1)x1, and &, = W(1) - (i-l)f(l)si'ZW(s)ds,
Mj; = U(i+D), and v(3) = Mg,
(if) T))s ) => u3oMTe

(b) If y, is K1) then:
(i) (Uyp, Dyp) => wy(W, Dy) where Dy() = §0)M ¥, where £() = A ang
v = [LeeWds.
(ii) TJas | => oM MMy, where M} ; = (DG max(Li+i3)

Parts a(i) and b(i) of theorem 2 have previously been obtained by Ouliaris, Park and Phillips
(1989) and Perron (1991). Theorem 2 implies that conditions A and B hold when y, is detrended
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using a polynomial deterministic trend, estimated by OLS. Parts a(i) and b(i) verify conditions
A(i) and B(i), respectively. Condition A(ii) follows from part a(ii) under the rate result stated in

Theorem 1 (that is, 40 T/T = 0 and T|5, => wfeM

¢ implies that I;%-I]&tll Boas
desired). Part b(ii) implies |as | B 0, which verifies condition B(ii}

In the case of a linear time trend, an alternative estimator for the slope coefficient is the "first
difference” estimator, (y-y;)/'T. This detrending procedure is used by Bhargava (1986) in his
construction of a locally most powerful invariant test of the unit root null against the stationary
alternative, under the maintained assumption of iid. Gaussian errors and a linear time trend
component. As Watson (1992) has pointed out, if u, is I(1) then this results in a trend estimator
that has a standard limiting representation, but if u, is 1(0), the large-sample distribution of the
estimated trend depends on the exact marginal distributions of up and uy, which in general will
not be Gaussian. Thus detrending procedures which use this estimator, such as Bhargava’s (1986),
will producing limiting representations for Vor in the I(0) case that depend on the nuisance
parameters describing the marginal distribution of u,, making such procedures impractical for our
purposes.

B. Piecewise-linear ("broken-trend") detrending

The piecewise-linear trend consists of two connected linear time trends with the break at the
fraction r; of the sample, corresponding to a break in period kj = [Trg} We assume that is
unknown within a range r S TS T The trend term is,

min ax

32) dkg) =o+ gt + 7-I(t-k0)l(t>k0) = z,(kg)'d
where z, (k)= (L ¢, (t-l)(t>k)) and 6 = (o, 5, yT), where 1(+) is the indicator function.
Following Picard (1985), the sequence of coefficients on the trend-break term, v-[, is assumed to

be local to zero and to satisfy,
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(33) T~ 0, TV~ =

The estimated trend is

(34) 3,(R) = z,(RY3(K)
where
33) 800 = (T 1 12,002 RN 3T gz, ®)y,

and where k is the value of k that minimizes the sum of squared residuals, that is, k solves

386) miny_ 3T )?

Kmin, - - - » Kmax

where d,(k) =y, - z,(kV8(k}, kp;p = [Trp o band k0 = ([Trp .01
The asymptotic behavior of the trend estimation error, §, = dt(k) - dy(kg) is summarized in

theorem 3 for the local break model.

Theorem 3. Let d, be given by (32), where v satisfies (33), and let dt(k) be given by

(34) - (36).

(a) If y, is I(0), themn:
(i) (Uyy, Dg) => ug(W, Dg) where Dgx) = u(hroY&(r), where v(ar) = (3, 3%,
B(,\-r)zl(/\>r), <A-r)I(A>r)) and the 4x1 random vector &(r() is a functional of W that is
distributed N(0, irg)™), where 0y, = or, 8y = {1r), 8y = 3s(1-r2), 0 = 3(1-7)%,
8y =1 Oy = ¥ g = (1), g3 = 13, 0y = (23r+r)6, and 0y = (1-1)°/3,
(i) Ths ) => vie(r e Hsr e srordsiatry) where ¢1(s,r) =



(&(s7), (s-7)(s>r)) and where £(s;r) = (1, 5, (s-)I(s>7)).

(b} If y, is I(1) then:
(i) (Uyp Dyp) => w(W, Dy), where Dj(3) = Fy(3,r*) where Fy(3,r) = ORI
where ¥(r) = f(l)f(s,r)W(s)ds, M(r) and £(\r) are defined in part a(ii) of this theorem,
and r* has the distribution, argminfe{,m,m}f}){W(syFl(s,f)}zds.
(ii) Let n-p(hr) = §pa{(T7D - 61y (T7D Then n{-,) Ro.

It follows from Theorem 3 that the detrending error §, satisfies conditions A and B. Parts a(i)
and b(i) respectively verify conditions A(i) and B(i) Condition A(ii) follows from part a(ii) of
the theorem as long as I%JT - 0, which holds by assumption. Condition B(ii), the mean-square
consistency for zero of n-, follows from the sup-norm consistency result in part b(ii}

One possibility is that the series is detrended using the broken trend model (32), but in fact
there is no break in the trend, that is, v =0 In this case 0 is not identified, and the conditions
of theorem 3 no longer hold. The next theorem summarizes the properties of the trend estimation

error when in fact 1= Q.

Theorem 4. Let d, be given by (32), let dt(k) be given by (34) - (36), and suppose that

the true value of T is 0,

@Iy is 1(0), then:
(i) (Ugp Dop) => wo(W, D) where Dy(3) = &(x,r y¥(r 1), where &r) =
f(l)f(s,r)dW(s), v(Ar) = (3, 3y, k(,\-r)zl(,\>r))’, and r! has the distribution
argmax
Xa)
(ii) T]5,) => & tyM(r ety

(b) If y, is I(1) then the results of theorem 3(b) continue to hold.

I&(f)’M(r)'lé(r), where £()\,r) and M(r) are defined in theorem

'e["mim Tmax
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In the I(1) case, the distribution of the detrended process does not depend on whether y is
zero or local to zero, an intuitively plausible result because the trend process and rg are not
estimated consistently in the I(1) case even for nonzero y In the I(0) case, however, the
detrended process has a different distribution if vy =0 than if v is local to zero. This differs
from the results for polynomial detrending, and raises the practical problem that the distribution
fyin (2.5) will depend on v and, if v # 0, on r, Our proposed solution is to estimate f(x) by
fo(x;-'y/&u,}), where fo(x;-'y/&uj) is the density of W'g(-;:y/&,;), which in turn is
computed as the limit of the partial sum process constructed from the residuals from the broken-
trend detrending of a time series with an iid. N(0,]) stochastic component and with trend d; =
(4/6 XHTT DU T7]), where ¥, &, and 7 are the OLS estimates of v, o, and 1.

Assuming that v, is is fact 1(0), this procedure is justified in two steps, first for v local to
zero, next for -yT=O. First suppose that v is local to zero as in theorem 3; to be concrete, let
1=b/T, where b is a constant, a sequence that satisfies (33). Under this local nesting 58b, 4
Boand 7 B 7 (Picard (1985), Bai (1991); see the proof to theorem 3), Wg()‘;‘y,r) is continuous
in r, and W‘i] does not depend explicitly on b beyond the maintained assumption that b#0. Thus
the distribution of Wg(',fo) in Theorem 3a) can be approximated with an asymptotically
negligible error by the distribution of W‘{(-;-‘y/&u,}) Next suppose that y=0, so that 4 is
unidentified and 7 has the limiting distribution of -t given in theorem 4(a). Then results in the
proofs of theorems 3 and 4 suggest that the distribution of Dy (and thus of fo) is continuous in b
as b » 0 and moreover b B 0.3 It follows that Wg(-;-}/&u,?) has the limiting distribution in
theorem 4, so that for b=0 or b#0 this procedure yields a (pointwise) consistent estimator of f;

If u, is in fact I(1), then for this procedure to yield a consistent decision rule it is sufficient to
show that the proposed procedure produces a limiting I(0) distribution fj that has support on the

real line. In fact, a stronger result holds, namely that if u, is I(1) and vy is local to zero with the
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nesting y=b/T (where b might be zero), then the distribution of ¢(W8(-;%/&u,?)) converges

to the distribution resulting from Theorem 3(a), with the random variable o (defined in theorem
3(b)) replacing r( This follows from the fact that, if u, is I(0), Tyle, = Op(l) under the local
assumption (an implication of the proofs of theorems Xb) and 4(b)), so the coefficient on the
trend used to generate Wg will with probability one satisfy (33) and therefore will satisfy the
conditions of theorem Xa). Although f4(x;7/5,,7) for fixed x will asymptotically be a random
variable in this case (because r => rT), the posterior odds and Bayes ratios will still yield

consistent decision procedures.4
4. Numerical Issues and Finite Sample Performance

A Computation of Densities and Likelihood Ratios

Because the limiting distributions of the statistics ¢ are nonstandard, f1(¢T), f0(¢T), BT’ and
P were evaluated numerically using a kernel density estimator of the likelihood. The approach
was first to produce a matrix of discretized pseudo-random realizations of the limiting random
variables ¢(Wg) and ¢(V‘1’), and second to use these realizations to evaluate the likelihoods
fO“T) and fl(é-r) for observed ¢ Specifically, series of length 100 were drawn according to the
1(0) model u, = ¢, ¢, iid. N(01) these data were then used to construct Vop (imposing 21=0)
and ¢, and the realization of ¢ was saved. This was repeated using the I(1) model Auy = ¢, €,
iid. N(O}1), T = 100, and ¢(N-}HVT) was computed (with £1=0) and saved. Both cases
entailed 8000 Monte Carlo replications. Given a realization ¢, the densities fo(¢-r) and f;(¢)
were then computed by kernel density estimation.5 Five trend specifications are considered: no
detrending, demeaning, linear detrending by OLS, and two versions of broken trends estimated by
OLS, first with v=0 and second with v=05 and r0=0.5. In this final case, the pseudo-data were

generated using y, = v(t{Try)}(t>[Tr(]) + u, because of the dependence of the limiting 1(0)
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distribution on 0 for T local to zero. Because T=100 was used to generate the null distributions,
in the nesting vy = b/T this final trend specification corresponds to b=50. (Looking ahead to the
empirical results, this value of b is large relative to empirical estimates using annual time series
data for the United States, so we would expect the v=0 and 7T-—-50/T cases to bracket a wide range
of cases of empirical interest). This nesting is used to set v as a function of the sample size in
the Monte Carlo simulations reported in the subsection C below. The Monte Carlo and empirical
work with the trend-break specifications all used 7 . =15 and T max=23>

The densities f; and f; for ¢; (that is, the densities of ¢(Wg) and ¢1(Vc11) ) and the
corresponding cdf’s are plotted in figures 1 - 5 for the five trend specifications. In each case, the
1(1) distribution lies to the left of the I(0) distribution Although the 1(0) distribution does not
"change its shape substantially as the detrending procedure changes, the I(1) distribution does,
becoming substantially less skewed and more bell-shaped the greater is the amount of detrending.
The densities for the two detrending cases differ little, suggesting that as a practical matter the
numerical imprecision introduced by the dependence of the distribution on (v, A) will have little

practical importance.

B. Large-sample Approximate Error Rates

These densities can be used to compute large-sample approximations to the error rates for this
procedure, or equivalently for the probability of correctly classifying a series. Fora posterior
odds ratio of P{¢), if the series is truly I(0), the probability of correctly classifying the
procedure is Pr[PT<]Jut is 1(0)] = fl(P-I(¢T)<l)dF0T(¢T), where FO’I“T) is the cdf of ¢
Because ¢ => ¢(Wg), this can be approximated by fl(rlf1(¢-lnNT) < x0f0(¢))f0(¢)d¢.
Similarly, Pr[PT>1Iut is I(1)] can be approximated by fl(wlfl(qs) > x0f0(¢+]nNT))f1(¢)d¢. These
two probabilities are respectively large-sample approximations to the correct classification rates

under the I{0) and I(1) hypothesis.
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These large-sample correct classification rates for ¢, are plotted as a function of N in
figures 6 (demeaned case) and figure 7 (detrended case) for a prior odds ratio of 1L These figures
suggest four conclusions. First, in both cases the probability of correctly classifying the series
initially declines with N. The mechanical explanation for this is that the I(1) distribution is to
the left of the 1(0) distribution, but as N-p increases the asymptotic approximation to the finite-
sample distribution of ¢ shifts to the rate (at the rate InN), so that for 1IoNy small these
distributions overlap and likelihood ratios are large. Second, for all values of N the probability
of correctly classifying an I(1) process is high, exceeding 50% in both the demeaned and the
detrended cases. Although this probability drops to 35% if the process is I(0), it quickly rises
above 75% for lnN-IzB‘ Third, the correct classification rates for the demeaned case lie above
those for the detrended case for Nt>2 Thus detrending inhibits the ability of this procedure to
distinguish between the two classes of processes. Fourth, high correct classification rates are
obtained for moderate values of Ny If the task were to distinguish an iid. process from a
random walk, then the MacNeill/Sargan-Bhargava statistic 31’1‘ would be appropriate (that is, 62
= ;yd(())) In this case, with T=35, InN-.;=4 and the correct classification rate exceeds 95% in
both the demeaned and linearly detrended cases. In general, however, 2 will be nonzero. For
example, if !T=5, T=100, and a Bartlett kernel is used, then lnNT =24 and the correct
classification rates are, for the detrended case, approximately .65 (I(0)) and .50 (I(1)). This
suggests limitations on the ability of the procedure to distinguish between processes with
substantial short-run dependence.

These results are based on the large-sample approximations to the distributions and do not take
into account the differences between the finite sample and asymptotic distributions, which are
likely to be particularly important for series with substantial short-run dependence. The following

Monte Carlo analysis investigates this finite-sample behavior.
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C. Finite-sample Performance: Monte Carlo Results

The Monte Carlo experiment examines the ability of this procedure to classify various
Gaussian ARMA(L1) processes as I(1) or I(0). The spectral density estimator is a truncated
version of one recommended by Andrews (1991). Specifically, the Parzen kernel was used and £
was chosen as £T=min(,\-r, IT,max)’ where IT is Andrews’ (1991) automatic bandwidth selector.
Because 2 is unbounded in the I(1) case it was truncated at ‘eT,max = [10('1'/100)2],, where the
rate is taken from Andrews (1991) and satisfies the condition of theorem 1, and where 10 was
picked arbitrarily. The prior odds ratio xy/xj is the relative prior weight on the I(1) and I(0)
hypotheses, respectively.

The Monte Carlo results — the rates at which the series are classified as 1(0) based on the
posterior odds ratios, for various prior odds, sample sizes, and nuisance parameters — are
summarized in Tables 1-3 for, respectively, the $17 ¢2T’ and é3T statistics. These results suggest
five observations.

First, the asymptotic approximate classification rates summarized in Figures 6 and 7 provide an
approximate guide to the finite-sample performance, even for T=50, for the i.id. and pure
random walk models. In the iid. case, the true value of A is one for which NT=T; for T=50 in
the demeaned case, the Monte Carlo error rate is 2%, comparable to the approximate error rate of
1% from figure 6. For the demeaned ¢, statistic with T=50 in the random walk case, the
median value of Np is 96; from figure 6, this corresponds to an error rate of 38, comparable to
the Monte Carlo error rate of 30 from Table 1 For the other parameterizations, however, the
rates in figure 6 and Table 1 differ, reflecting differences between the finite sample distributions
of the cumulative sums and their large-sample approximations as martingales or integrated
martingales.

Second, the prior odds can have a substantial effect on the classification rates for moderate

sample sizes. For example, for T=100, p=1, and §=0, decreasing the prior odds ratio in favor of
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I(1) from 1 to 025 increases the false classification rate for ¢, (linearly detrending) from 12% to
58%.

Third, these results permit some preliminary comparisons across estimators. One way to make
such comparisons is to consider the performance of the classifiers, standardized so that their error
rate is constant for a certain model; this is effectively the same as comparing size-adjusted power.
For the leading case of linear detrending with T=100, comparison of the ny/xg=1 results for ¢;1
with the "1/"0=5 results for $7T indicates higher correct classification rates for 1 than ¢, for
the AR models with large roots and comparable rates for the IMA models, holding the random
walk classification rate constant. A similar comparison of the ny/mg=25 results for ¢, with the
xy/xg=1 results for 3 (T=100, linear detrending) suggests that #,7 outperforms ¢ for the I(0)
AR(1) models. The results for ¢37 suggest an additional difficulty with interpreting this statistic
with linear detrending, the large incorrect classification rate of the random walk with even prior
odds (41% for T=100). In contrast, the error rates for #T in the same case is 12% for a pure
random walk and 6% for the iid. process. For linear detrending and typical macroeconomic
sample sizes, this initial evidence suggests that, of the three tests, #yr bas the best performance.
The relative performance of the estimators is similar under broken-trend detrending (in particular
compare the T=200 results across estimators), except that the error rate of 1T for the pure
random walk, T=100 is much higher than for the other statistics, making posterior odds based on
1T difficult to interpret.

Fourth, for each estimator, increasing the extent of detrending through the first four cases
(panels A-D) reduces the discriminatory power of the statistics. For example, for xy=xq and
T=100 for ¢, the random walk error rates for the demeaned, detrended, and broken trend-
detrended (y=0 case) are comparable, respectively .13, .12, and .09, but the I(0) correct
classification rates for the p=9, §=0 case drop sharply, respectively being .47, 27, and .17.

Moreover, the IMA error rates increase with the nature of the detrending, rising from 36 to 57
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to 73 for p=1, §= -B75 for the three cases. In short, detrending leads to large-root 1(0) AR

models being increasingly classified as I(1) and large-root I(1) MA models being increasingly
classified as I(0). This suggests that in practice these statistic might not be very informative when
broken trend detrending is used.

Fifth, the results indicate that the misclassification rate for models near the 1(1)/1(0) boundary
increases as the sample size increases. To be precise, consider models that have roots local to one,
in the sense that p = 1+c¢/T, where ¢ is a constant. For demeaned $T with m=ng and with c =
-10, for example, the correct classification rate drops from 57% for T=50 to 47% for T=100 to
39% for T=200. The same pattern is present for the other statistics. For ¢ as negative as -20,
these I(0) models that are close to the I(1) boundary are misclassified with a probability that

increases with the sample size.

5. Empirical Results

This section presents 1(1)/1(0) posterior odds ratios for Nelson and Plosser’s (1982) annual data
on 14 aggregate economic time series for the United States for linear detrending and for broken-
trend detrending. The results with linear detrending and even prior odds are reported in Table 4.
With linear detrending, the Monte Carlo study found a high misclassification rate for the 31
statistic in the random walk case relative both to the iid. case and to the other statistics, so table
4 gives results only for the ¢4 and éT statistics.

The ¢, and ép1 posterior odds ratios yield the same I(1)/I(0) classifications of 13 of the 14
statistics; for these 13 series, 12 of the classifications agree with the inferences commonly drawn
from Nelson and Plosser’s (1982) results for the Dickey-Fuller statistics, that the series are
consistent with the I(1) model. The only series on which the ¢; and ¢, statistics disagree is the

unemployment rate, for which the ¢, posterior odds ratio just favors I(1. However, the Monte
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Carlo results indicate that the ¢ statistic has greater discriminatory power than the ¢, statistic,
suggesting that greater weight should be placed on the ¢, results. Moreover, because the
unemployment rate is bounded below and above, it is arguably more appropriate to demean than
to linearly detrend the data. For the demeaned case, the posterior odds ratios (even prior odds)
are 44 and .11 for the ¢;1 and ¢, statistics, respectively, both favoring the 1(0) hypothesis, with
the evidence using the ¢, statistic being rather strong. These two observations suggest
classifying the unemployment rate as I(0)

It is interesting to note that, at the level of the I(O¥I(1) classification, the only difference
between the posterior odds ratio results and conventional Dickey-Fuller tests is for the money
stock. However, for this series neither the classical nor the Bayesian results are clear cut: the
classical 90% asymptotic confidence interval based on inverting the ADF statistic is wide, ( 687,
1030), and barely contains 1, while the two ¢ posterior odds ratios exceed 8, providing only
weak evidence in favor of the I(0) model.

From a Bayesian perspective, the posterior odds ratios in the final two columns of Table 4
provide information about the relative certainty of the I(1) and I(0) hypotheses. For some series,
in particular industrial production, consumer prices and stock prices, the evidence strongly favors
the I(1) model. However, for most series the evidence is much less strong, even that based on the
$, statistic. For example, a researcher with a prior odds ratio of 1/2 in favor of the I(0)
hypothesis would reach the conclusion that the GNP deflator is I(0) using the ¢, statistic, and
that seven additional series are I(0) using the ¢, statistic.

Posterior odds ratios for broken-trend detrended statistics are presented in Table 5. Because
of its relatively large error rate found in the Monte Carlo experiment under the random walk
model with even priors, the ¢4 statistic is not considered. The Monte Carlo analysis suggested
better performance of ¢, than ¢4, so we place greater weight on the ¢y results. As discussed

in Section 3, in the I(0) case the asymptotic distribution depends on the break parameters v and r
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(if v#0), so the ¢o1 and g3 likelihood ratios are evaluated under two cases, y=0 and (y=50/T,
r=5). In addition, the é)p statistic is evaluated for estimated 1, r, where the limiting distribution
under I(0) was approximated by the distribution of ¢2(Wg(-;-}/&u,$)) as described in Section

3. The likelihood ratio statistic for the estimated v, r case was computed as described in Section
4(a), except that the kernel density evaluations were based on 4000 Monte Carlo replications.

The striking feature of the broken trend results is that most of the Bayes ratios are near one.
In several cases, the I(1)/I(0) classification is sensitive to the statistic used or to which I(0)
distribution is used to compute B. However, with the exception of the bond yield, in these cases
the Bayes ratio typically ranges from 8 to 13, so that small shifts from even prior odds would
change the classification. In this sense, for all series except industrial production, the GNP
deflator, velocity and perhaps the bond yield, the data are uninformative about the I(0)/1(1)
classification under the broken trend model. For industrial production and velocity, the reported
Bayes ratios strongly favor the K1) xnode].6 The Bayes ratios also provide moderately strong
evidence in favor of the I(1) model for the GNP deflator.

For 13 of the series, the Bayes ratio computed using fo(-;-iléu,}) distribution either falls
within, or is close to, the range of B(¢,) in the b=0 and b=30 cases. This is unsurprising, in the
sense that in absolute values the scaled estimates of b, T-‘y/&u, are small and always less than 50.
The one series for which this is not the case is the bond yield. For this series, the likelihood
ratios are also unstable to changes in the kernel density estimator and bandwidth used to evaluate
f The source of this instability is that the point estimate of ¢, for the bond yield falls in the
tails of both the I(0) and I(1) distributions; that is, after broken-trend detrending the empirical
realization of ¢, for the bond yield is unlikely to have been generated by either an I(0) or I(1)
process. This suggests exploring other characterizations of the long-run properties of the bond

yield, such as fractionally integrated models.
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6. Conclusions

The empirical results for the long US. economic time series data suggests three main
conclusions. First, if linear detrending is used, the Nelson-Plosser (1982) I(1)/I(0) classifications
are supported by the proposed decision-theoretic procedures, with the sole exception being the
money supply, for which the posterior odds slightly favor (0} Second, for several series the
empirical evidence is weak, in the sense that moderately strong priors that a series is I1(0) would
change the posterior conclusion. Third, when the series are detrended using piecewise linear
trends, the evidence‘ in these data is much weaker, with Bayes ratios often in the range 8 - 13.
This final point accords with the Monte Carlo experiment, which found that the difficulty of
ascertaining whether the stochastic component of the series is I(0) or I(1) increases as the severity
of detrending increases from demeaning to linear detrending to broken-trend detrending. In
addition, although the presence of nuisance parameters in the I(0) distribution in the trend-break
model poses a potential practical difficulty, in the empirical application we found that the results
were largely insensitive to the specific method used to estimate the I(0) distribution with the
exception of one series (the bond yield), which seemed to be well described by neither the I(0) nor
the I(1) models.

At the level of econometric theory, these results suggest several areas for further work.
Primary among these is the desirability of constructing optimal classifiers among the set considered
here, that is, of constructing optimal ¢T statistics. It would also be of interest to compare these
classifiers to other approaches, such as 1(0) or I() tests with critical values that increase with the
sample size or the Phillips-Ploberger (1991) posterior odds ratio approach. Another question is the
calibration of this classifier in the context of specific loss functions, which presumably would

depend on the application at hand. These and related problems are left for future research.



Appendix A

Proof of Theorem 1

The proofs are applications of the functional central limit theorem (FCLTY); see for example
Hall and Heyde (1980), Ethier and Kurtz (1986), or Herrndorf (1984). Throughout, set

K(m) = k(m/2 VLT, KG/AT)

Proof of Theorem 1.

(a) By Assumption A(i),

T.Hzt[gf\]yctl = T-kzt[gf\l(“t -6y

(A = Ugp(¥) - Dyp(x) => ug(W(3) - D)) = wgWo(a:

Let &:2 = EIT erk(m/‘eT)T-IZ'f%mH-l“t"t{mr Under the stated assumptions on 21 and the

kernel k, 2R w%, Thus it is sufficient to show that ]&2 - C:Z| B0 Now,
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< Qep+Dzhu, ) s 1 + Lo )

where |5 ]| = T'IZT=16%. Because £1 = and [Ju,| R 1,0} }&2 - 621 Boif z%"stﬂ B o, which is
assumed as condition A(ii).
() Write N3 V() = N3 T3 4 = B29A-(3), where Ap(n) =
132548 g g = Tl ) N

_ygand By =T ETK—I(m)yyd(]mD. By Assumption B(i), A{:)=>
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In the case of no detrending, it was shown by Phillips (1991b, appendix) that if u, is I(I) then B =>
u%f(l)wl(s)zds. This result was extended to linear trends (OLS detrending) by Kwiatkowski, Phillips
and Schmidt (1990) and to general polynomial trends (OLS detrending) by Perron (19%91) Lemma Al
(below) extends this result extended to the general trends satisfying conditions A and B. It is shown in
the lemma that Ep =T 2):T_l(yt -By R 0, so that by Assumption B(i) and the continuous mapping
theorem, B => u%féwl(s) ds. Combining the limiting representations for A-{+) and B yields

the desired result. O

= 2¢T d2 S N .
Lemma Al Let Sy =T L{(yy)" - B where Bp =T 1EnLITKT(m)"’yd(]mD Ity is
1Q2), l%hﬂ'/’r ~ 0, and assumption B holds, then E Bo

Proof. Use §1L , K-(m) = 1 and K{m) = K{-m) to write ¥ = 2T'1Zf,1__'1KT(mX§y(O)-

-:,y(m)) For mz1,

3O, m) = TIE 1Y $8mye + T L TmgO D

m
where &n = 1-L™. Thus
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+ 2T T Kp(m) | T L Ty 0
= ATt Ap

say. These two terms are handled in turn.
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Using the two inequalities X < 1+x for all x>20 and, for £1>1, KT(m) < IT k for all T,m, we have
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and q is a positive nonstochastic sequence such that g + =. To be concrete, set qT=(lnT)2.
Now Dyp => u%f(l)wtlj(s)zds by Assumption B(i} Also, Dy =VKInT 0. Thus Ajr Roif
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for some constant ¢. Under the I(1) assumption, {au| B 7,(0) and under assumption B(ii) flas,| =
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Proof of Theorem 2.
s q Api5T o ecl
Throughout, let Tp=diag(}, T, ..., T7) and let Mp = T" T Ly y2,2,T7". The
. , . N, 2 e

nonstochastic gxq matrix M has typical element MT,ij =T Zt=l(t/’r) , which has the limit MT,U
- Ui+l = Mij whether y, is I(0) or I(1)

. . [TA), _ -1 =
(aXi) Direct calculation shows that DO-I(,\)=TJ*ES=1 65 = $T{(AYM @, where ¢7(3) =
T'l):sg’\]’r—i-lzs and ¢ = T'L’th-___l'rilztut. The (g+1)x1-dimensional process ¢-{) is
nonstochastic and has the limit, ${(1) + ¢(3), where the i-th element is ¢i(A) =Y. Under the I(0)
assumption (22), the random (g+1)-vector & has the limit, & => w;®, where ¢; = W(1) and &; =
W(l)-(i-l)fésﬂW(s)ds for i=2,..., g+1 Thus (Upp, Dgp{+)) => wy(W(+), Dy(+)) where Dy(3) =
é’M'lqs(,\), which verifies condition A(i)
(i) Similar calculations demonstrate that T|s || = QT’Mi-léT = w(z)Q’M'lé = Op(l).

s ) _ g~ L _m-1 -3/2¢T -1
(oXi) DM =T SIT*] = §(AYM ¥p, where £0(3) = T Loy and ¥p = T L T Zp8, =
ftl)el(s)Ul-I(s)ds. The nonstochastic (q+1)x1 vector has the limit §-{(¢) » £(+), where £,(3) = AL Asa
consequence of this result, the I(0) assumption (22), and the continuous mapping theorem, Yoy => wy¥,
where ¥ = [L¢(sW(s)ds. Thus Dyp{+) => u¥M 1¢(+) = wD()
(i) Write a5, = (B-pysz, = (B-BYRz|, where R is gxq and lower triangular with Rj;=0i=1...
,q and Rij = (ifl), i=2...,91=2...,j,and where Z;j = tj'l - (t—l)j'l. Also define
ST ={T (5 papérap- Then SHUT) = (T788)7 = EMUT)Bh where M{(UT) =
T'ZT-i-lz;z;“r-i-l and gp= T'H'r-r(ﬁ-ﬁ). Using the results in the proof of part (bXi), Ap-=

-1 - - - -1 - -
MiYer => wM™N. In addition, let §(3) = “-rlzm]; then §(0)» €)=, L2,
qkq'l) and M{(}) = §(A)6(AY ~ £ ()¢"(3), both uniformly in A It follows that ||THA5(H =
f(l,,S-I(A)d,\ = u%‘YM-IMtMJW, where M! = fée(x)e(x)’d,\. Direct evaluation of M} shows that
M}, =M =0and M} §= (DG i 22 o

Proof of Theorem 3.
(a) The proof uses Proposition 1 in Bai (1991} Under the conditions of Theorem 3(a), Bai (1991) shows
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that (Typ{k-k), T"T{0-8)) => wg@, where T = diag(L, T, T) and & = (k™ ¢} is distributed N(0,

r(ro)'l), where () is given in the statement of Theorem Xa). Under this nesting, kk# Op(l), but 7

= KT is consistent for r; because T y(k-kg) => ugk® = OL(1) T2y (5rg) => wgk®, but T2y

- = by assumption, so 7 B o

(i) It is useful to express the trend estimation error as the sum of two components, a term arising from
the error in estimating § and a term arising from the error in estimating k: §(k) = d,(k) - dy(kg) =

z,(ky(8-6) + (z,(k) - z(kp)yd. Thus,
(A3) Dy = TOLIMs (R) = 5000 Y0445) + pp00)

where 7p(0r) = T 2 (Tr) = P_gep(sr) where €p(0n) = T3z ((T7D =

[TAVT, (TAHTr DO VTY; 30) = TT(0-0) and pp(ar) = T e, 117D -
z[TA]([TTOD)’o =T ‘; _geT{s7)ds, where ep(rr)= Tk(z[TA]([TrD - Z[TA]qT"OD)'a' The three terms v,
DT, and p are considered in turn.

;T(A,r) This is a deterministic function of X and r. Note that €T is deterministic and has the limit,

(A4) gp{s,0) = £(+,0), where £0r) = (L, 3, -r)I(3>7)).

Because op is a continuous functional of £ it has the limit, iq{s,) = ¥(s,+), where sy =() HAZ,
ln(A-r)zl(A>1))’. Because £ and therefore ‘—"I‘ and their limits, are continuous in r, and because 7 E
g vp{*:7) => v(nrgh

(). From Bai (1991), 8-{7) => ¢* as defined previously.

p—r()\,r). A direct calculation shows that,
(AS) ef(TX/T) = Thypsign(kgkXtmin( ko)l (min(kkgist<max(ikg) - Ty pk-k(emax(kky)
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Although e’I(,\,?) is discontinuous in X in the limit, f:=0e-l(s,})ds is continuous in A. The consistency
of 7, the continuity of f’;=oe—1-(s,r)ds, and a straightforward calculation imply that e[{(A,7) =>
-Jougk 1(s>r s = -ugk*(r-r JIO>1)

Combining these three results, we have that Dy{+,7) => wOD(-,rO)’e‘ - wok‘(A-ro)l(A>ro) =
woy(-,ro)’é, where v()\,7) and & are defined in the statement of the theorem.
(ii) Define ¢p(3) = THS[T’\], so that T|§,] = f(l);,l(,\)zd,\, Using previously defined expressions and
results, we have, f(l);T(A)sz = fé{&T’ET(A,?) - e-r(,\,;—))zd,\ = wgf(l){ﬁ"e(/\,fo) -
KO-r O Pds = uo U Se T(sr e (s ydshe, where £1(s,r) = (6(sr), (s-r)U(s> ), which is
the desired result.
(bXi) Let Fyp{hr) = TJ’E[—UI([Tr]), so that Dy{(2) = Fll-(A,?) The strategy of the proof is first to
obtain a limiting representation for the process FIT("')’ which will be continuous in its two arguments,
next to obtain a limiting representation for r, and then to use these two results and the continuous
mapping theorem to obtain the desired limiting representation for Dy{+).

Using terms defined in the proof of part (a), write FyT as,
Fyp(um) = ex0 T (n) + The (o)
It was previously shown that £ —» £ Next consider T'le—l-(x,r) From (A5),

T e (UT /T = ™%y {t-min(k ki(min(k kgst<max(k ko) + [T~y p{k-kii(zmax(k ky)
=< I’T';"y—r(k-ko] s frk7T|

where the two inequalities are uniform in t and k and the second follows from |k-kOBT. By assumption,

Th'y—r - 0; thus T‘leT(-,-) - Q.
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Next consider T 0.1(r). Now T 8(r) = T T L(d([Tr]-6) = M(r) {N{r) + ¥1{(r)), where
MT(r) is defined in the proof of part (a) and has the limit M'I() -+ M(+), where N{r) =
13257 _ 12t (T Xz (T gDz (Tr D)9, and where ¥(r) = 1325 T_ 7l (TrDu, Ny can
be rewritten, N—r(r) = f(l)sT(s,r)(T'leT(s,r))ds; the results £~ £ and T'leT R 0 imply that Nt RBo
Under the I(1) assumption, the remaining term, W-I(r), has the limit, WT(-) = f(l)é-r(s,-)UlT(s)ds =>
ulf(l)f(s,-)W(s)ds = ¥(+)} Combining these various expressions, we have T'IPT(-) = M(-)'lw(-), so
Fyp(,+) => wiFy(+,+), where Fi(r) = O M(rY (r)

The next step of the proof is to obtain 2 limiting representation for 7. By definition, 7 solves (36),
which can be rewritten as the problem of minimizing S{r) over r . srsr .., where Sp{r)=
T2 T_ 6, ATr )% Let 6,(k) = (k) - d(kg), where 3,(k) = d(Kyz,(k}. Then Sp{r)=
THT_ v, - 40T = T2y, - 80T D = T g {UpUT) - Fydt/T, [TV D)
= [L_{Up(s) - Byp(s{TrYT)ds. It foliows that S(+) => (+), where S(r) = WL WEs) -
]f(l){W(s}Fl(s,r)}st.

Because F, is continuous in , it follows that Dy{(+) = Fn-(-,?) => w Fi(sr") = wDy(+)

2 PR . s .
Fl(s,r)} ds. Thus + => r* where r* has has the distribution, argmm’_e[ﬁnimflm

(it). By direct calculation,

n 0 TRITY = s fT7D - 6[papa (T
= Ka(k)—ﬁ)‘{zt(k)-ll_l(k)) - 9,{zt(k)'z((k0)'zt_]_(k)+z(. (k())}{
(A6) < B}A + F Kk (k) + by-pil(min(k kghst<max(k ko))

In the proof of part (b)i) it was shown that T'lﬂ-l(-) = M(-)'IW(-), where T"lﬁ-r(r) =

T (T IH) = (TG T D), THA(Tr])5) TG (T )rp). Thus in particular

supflﬁ([Tr])-ﬂ Boand sup h{(Tr 20, so the first two terms in (A6) converge to zero uniformly
in A=t/T, r=k/T. In addition, T 0 by assumption, so the final term in (A.6) vanishes. Thus

s“px,rhT(’\”'l 20 s0 7{*>e) B 0 as desired. D
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Proof of Theorem 4.
The proofs of parts (a) and (b) are, respectively, modifications of the proofs of theorem 3(a) and Xb),

and notation and expressions refer to those proofs.
(aXi) In the notation of the proof of theorem ¥(a), because yp =0, pT(A,f) = 0 identically, so Dyp{d7) =
J-I(A,r)'o-r(r). As in the proof of theorem 3, D-I{-,-) - p(+,») Because T= 0, $f=
M-I(f)'lé-r(r), where &{r) = T'H'I’-i—lz'{ﬂz(([TrDur It follows from the FCLT that &{+) => uy¥+)
as defined in the statement of theorem 4; thus 8}(+) => ¢*(+), where #*(r) = UOM(f)'1¢(r), from which
it follows that Dyp{+,*) => wgDq(+,*), where Do(hr) = v(Arye%(r)

Because DO(A,r) is continuous in r, DO-I(-,?) b DO(-,rT), where ! is the limiting representation for
7 (obtained jointly with the other expressions comprising DO) Because ““[" does not depend on r, the
solution to the problem, min’qu’ rm,]uﬁt([T'D" is equivalent to the solution to the problem,

max ]H-r(r), where Hp(r) = T(Ju{l - [6,dT7D]), where i (k) = y, - 3(k). A standard

7€[ T min, Tmax
calculation reveals that, when v = 0, H{(+) => H(:) = 64+ YM()8%(+) = Q(-)’M(-)'lé(-). By the
continuity of the distribution of the argmax, the limiting representation for 7 as

argmax g .o me]H(T) follows.

(i) By direct calculation, T||6 (IT+D| = Hy{r), so T} | = H{(7)=> H(+1), the desired result.
(bXi) The proof of theorem 3b(i) applics directly, with the simplifications that ep =0 and Ny =0
identically. In particular, the key result that T'lai(-) => M(-)‘l\v(-) stiil holds.

(ii) This follows from the proof of theorem 3b(ii), using T'lavi(-) => M(-)‘lw(-) o

.31-



Footnotes

1 Since the original draft of this paper was written, three additional closely related papers
have appeared, by Kwiatkowski, Phillips and Schmidt (1990), Phillips and Ploberger (1991), and

Perron (1991); these are discussed below.

2. The additive property (ii) is achieved in practice by taking logarithmic transformations of a
functional (Vr), for which &(ag)=az$(g) Whether ¢ or  is used has no theoretical
significance. The choice of transformation is instead motivated by computational experience,
which indicates that the the additive property enhances the numerical stability of the techniques
described in Section 4.

3. From Bai (1991), under the local pesting v = b/T, TH(B - b) has an asymptotic normal
distribution if b # 0, and from the proof of Theorem 4 T = Op(l) ifb=0,5s068b for
general b. From theorem Xa) and its proof, for b # 0, Dyr(}) = 3(A,7)¥(r) + bh(X)r* +

op(l) uniformly in ), where r*is an Op(l) random variable that does not depend on A It
follows that the limit as b + 0 of the distribution of Dy is the distribution in theorem 4(a) if the
distribution of 7 is continuous in b. To argue this, note that for b#0, ¥ solves max re{rmin,
me]é(r)’M(r)'lé(r) + bQ(r), where Q(r) = Op(l) uniformly in a TJ’ neighborhood of rg

As b - 0, the objective function converges to the objective function in theorem 4(a), suggesting
the continuity of the distribution of r as b+ 0.

4. Because the limit distributions in theorems 3 and 4 do not depend on v, except that v is
respectively local to or equal to zero, there is some ambiguity in scaling v in the estimator of
fy Although 4/é,, is used here, an alternative would be to use y/w. For reasons

paralleling those just given, both estimators have qualitatively similar asymptotic properties.

Which procedure works better in finite samples is a subject for future investigation.

5. The Monte Carlo and empirical results were computed using a flat kernel with bandwidth
L where o is the standard deviation of the asymptotic distribution of the statistic in question
and x = 1 Figures 1-7 were computed using a Gaussian kernel with the same bandwidth.

With one exception discussed in Section 5, the density estimates and likelihood ratios are
numerically stable in the sense that the I(1)/I(0) decision rates are insensitive to the choice of
bandwidth over the range x=02 - 20.

6. It is curious that the evidence that velocity is I(1) is strong but the evidence concerning
-32-



money and income is ambiguous. This suggests handling these series in a multiviarate setting in
which inference is performed over the number of unit roots in a system with logarithms of

nominal money and income.
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Table 1
Monte Carlo Results: I(0) Classification Rates for the ¢1T Statistic

Model: (1-pL)x, = (1+8L)e ¢ 1.4, N(O,1)

e €

| § =0, p= | p=10,06~-
T ”1/”0 | O .6 .8 .9 .95 .975 1.0 [-.875 -.75 ~-.5
A No Detrepnding
50 1.00 0.97 0.84 0.68 0.49 0.36 0.27 0.19 0.23 0.20 0.18
50 0.50 0.98 0.92 0.82 0.62 0.47 0.37 0.26 0.29 0.26 0.26
50 0.25 0.99 0.97 0.90 0.75 0.59 0.49 0.34 0.35 0.36 0.32
50 0.10 1.00 0.99 0.96 0.87 0.72 0.63 0.52 0.53 0.51 0.52
100 1.00 0.97 0.85 0.79 0.57 0.41 0.28 0.14 0.15 0.12 0.13
100 0.50 0.99 0.93 0.89 0.73 0.56 0.40 0.21 0.20 0.20 0.19
100 0.25 0.99 0.98 0.94 0.82 0.64 0.48 0.28 0.25 0.25 0.26
100 0.10 1.00 1.00 0.97 0.92 0.76 ©0.59 0.35 0.34 0.32 0.32
200 1l.00 0.99 0.92 0.83 0.67 0.53 0.32 0.10 0.08 0.09 0.10
200 0.50 0.99 0.96 0.92 0.8l 0.67 0.45 0,15 0.12 0.12 0.16
200 0.25 0.99 0.98 0.96 0.88 0.72 0.52 0.19 0.15 0.15 0.18
200 0.10 1.00 0.99 1.00 0.92 0.82 0.60 0.24 0.20 0.22 0.25
B, Qemeaneé
50 1.00 0.93 0.49 0.39 0.28 0.25 0.27 0.30 0.65 0.38 0.32
50 0.50 0.97 0.78 0.72 0.63 0.63 0.6l 0.66 0.75 0.60 0.67
50 0.25 0.98 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.91 0.99
50 0.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00
1060 1.00 0.98 0.71 0.56 0.40 0.25 0.20 0.12 0.38 0.17 0.11
100 0.50 0.99 0.84 0.74 0.56 0.37 0.33 0.24 0.45 0.27 0.21
100 0.25 0.99 0.95 0.87 0.76 0.65 0.59 0.53 0.56 0.49 0.46
100 0.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.76 0.92 1.00
200 1.00 0.99 0.87 0.75 0.58 0.35 0.21 0.09 0.13 0.09 0.08
200 0.50 0.99 0.94 0.85 0.69 0.47 0.28 0.14 0.17 0.14 0.14
200 0.25 1.00 0.98 0.92 0.79 0.56 0.38 0.19 0.23 0.18 0.18
200 0.10 1.00 0.99 0.96 0.90 0.66 0.50 0.26 0,28 0.29 0.24
[ Linear tyend/OLS detrending
50 1.00 0.87 0.37 0.35 0.36 0.39 0.45 0.46 0.68 0.55 0.45
50 0.50 0.94 1,00 1,00 1.00 1.00 1.00 1.00 0.86 0.78 0.96
50 0.25 0.98 1.00 1.00 1,00 1.00 1.00 1.00 0.93 0.90 1.00
50 0.10 1.00 1.00 1,00 1.00 1,00 1.00 1.00 0.99 0.97 1.00
100 1.00 0.95 0.62 0.42 0.30 0.21 0.21 0.20 0.59 0.29 0.20
100 0.50 0.96 0.89 0.78 0.65 0.56 0.58 0.48 0.66 0.45 0.53
100 0.25 0.99 1,00 1.00 1.00 1.00 1.00 1.00 0.71 0.71 0.99
100 0.10 1.00 1.00 1.00 1,00 1.00 1.00 1.00 0.84 0.8% 1.00
200 1.00 0.98 0.76 0.67 0.45 0.28 0.15 0.10 0.28 0.10 0.11
200 0.50 0.99 0.88 0.80 0.62 0.43 0.28 0.19 0.34 0.18 0.17
200 0.25 1.00 0.96 0.90 0.74 0.58 0.42 0.28 0.42 0.27 0.28
200 0.10 1.00 0,99 0.97 0.88 0.78 0.64 0.50 0.51 0.43 0.47



Table 1, continued

} § =0, p= | p=1.0, 8=
T xy /=g | 0 .6 .8 .9 .95 .975 1.0 |-.875 -.75 ~-.5
D Broken trend/OLS detrending, =0

50 1.00 0.74 0.94 0.98 0.98 0.98 0.98 0.99 0.73 0.63 0.75

50 0.50 0.92 0.99 1.00 1.00 1.00 1.00 1,00 0.91 0.84¢ 0.91

50 0.25 0.97 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.95 0.98

50 0.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.99
100 1.00 0.89 0.69 0.63 0.63 0.57 0.53 0,53 0.73 0.41 0.49
100 0.50 0.94 0.99 1.00 1.00 1.00 1.00 1,00 0.83 0.58 0.96
100 0.25 0.97 1.00 1.00 1.00 1.00 1.00 1.00 0.88 0.75 0.98
100 0.10 0.99 1.00 1.00 1.00 1.00 1,00 1.00 0.95 0.87 1.00
200 1.00 0.95 0.60 0.48 0.35 0.21 0.16 0.17 0.52 0.15 0.16
200 0.50 0.97 0.85 0.81 0.66 0.49 0.42 0.44 0,59 0.29 0.43
200 0.25 0.98 0.95 0.90 0.85 0.73 0.64 0.64 0.66 0,42 0.63
200 0.10 0.99 0.99 0.98 0.97 0.92 0.8 0.81 0.73 0.59 0.85

E. Broken trend/OLS detrending, ¥y=50/T, A=,5

50 1.00 0.77 0.95 0,96 0.96 0.97 0.97 0.98 0.70 0.66 0.83
50 0.50 0.96 0.99 1.00 1.00 0.99 1.00 1.00 0.92 0.%0 0.95

50 0.25 0.99 1.00 1.00 1.00 1.00 1,00 1.00 0.98 0.97 0.97

50 0.10 0.99 1.00 1.00 1.00 1.00 1,00 1.00 0.99 0.99 1.00
100 1.00 0.93 0.50 0.91 0.93 0.96 0.96 0.96 0.75 0.45 0.82
100 0.50 0.98 1.00 1.00 1.00 1.00 1,00 1.00 0.86 0.68 0.96
100 0.25 1.00 1.00 1.00 1,00 1.00 1.00 1.00 0.91 0.83 0.99
100 0.10 1.00 1.00 1.00 1,00 1.00 1,00 1.00 0.96 0.95 1.00
200 1.00 0.99 0.61 0,51 0,32 0.18 0.14 0.11 0.52 0.11 0.14
200 0.50 0.99 0.90 0.87 0.70 0.55 0.44 0,36 0.60 0.22 0.44
200 0.25 1.00 0.98 0.96 0.89 0.78 0.69 0.59 0.68 0.42 0.72
200 0.10 1.00 1.00 1,00 0.99 0.95 0.91 0.83 0.78 0.67 0.93

Notes: Entries are the fraction of times that the posterior odds ratio favors
I(0) over I(1l) for the indicated prior odds ratioc xy/x,. The éT statistics are
defined in (2.7) in the text. The spectral density was estimated using the
Parzen kernel with bandwidth truncation parameter Iy was estimated using
Andrews’ (1991) automatic procedure, truncated at 10(T/100)'2. as discussed in
the text. For the model in panel E the coefficient y on the trend-break is set
to accord with the local nesting (3.3). Based on 500 Monte Carlo replicatioms
for each entry.



Table 2
Monte Carlo Results: I(0) Classification Rates for the ¢2T statistic

Model: (l-pL)xc - (1+9L)£t, € i.1.d. N(O,1)

| 6 =0, p= | p =10, 8 =
T /7%y | 0 .6 .8 .9 .95 .975 1.0 |-.875 -.75 ~-.5
A No Detrending
50 1.00 0.88 0.73 0.53 0.40 0.34 0.29 0.23 0.21 0.23 0.21
50 0.50 0.96 0.82 0.65 0.50 0.46 0.38 0.31 0.30 0.32 0.32
50 0.25 0.99 0.91 0.79 0.63 0.58 0.50 0.44 0.40 0.44 0.43
50 0.10 1.00 0.99 0.94 0.89 0.81 0.82 0.76 0.71 0.76 0.73
100 1.00 0.91 0.80 0.69 0.52 0.40 0.32 0.23 0.17 0.19 0.17
100 0.50 0.97 0.88 0.81 0.64 0.51 0.40 0.29 0.24 0.27 0.25
100 0.25 0.99 0.94 0.88 0.73 0.61 0.48 0.39 0.30 0.35 0.31
100 0.10 0.99 0.98 0.94 0.86 0.74 0.61 0.52 0.42 0.46 0.44
200 1.00 0.97 0.8 0.77 0.62 0.50 0.38 0.15 0.15 0.18 0.16
200 0.50 0.98 0.96 0.88 0.80 0.65 0.48 0.25 0.21 0.26 0.24
200 0.25 0.99 0.97 0.92 0.84 0.72 0.55 0.30 0.24 0.29 0.30
200 0.10 0.99 0.99 0.97 0.92 0.80 0.65 0.41 0.32 0.38 0.41
B, Demeaned
50 1.00 0.93 0.72 0.57 0.37 0.35 0.26 0.18 0.49 0,26 0.21
50 0.50 0.97 0.8 0.75 0.56 0.4% 0.39 0.30 0.61 0.37 0.30
50 0.25 0.99 0.94 0.85 0.68 0.61 0.50 0.40 0.74 0.50 0.42
50 0.10 1.00 0.97 0.93 0.80 0.76 0.64 0.54 0.86 0.63 0.57
100 1.00 0.96 0.78 0.67 0.47 0.29 0.25 0.13 0.36 0.17 0.13
100 0.50 0.98 0.90 0.82 0.67 0.48 0.42 0.25 0.43 0.32 0.23
100 0.25 0.99 0.96 0.91 0.81 0.64 0.55 0.36 0.51 0.42 0.33
100 0.10 1.00 0.99 0.96 0.88 0.75 0.66 0.43 0.59 0.51 0.42
200 1.00 0.98 0.86 0.74 0.61 0.39 0.26 0.09 0.15 0.10 0.09
200 0.50 0.99 0.93 0.84 0.72 0.52 0,39 0.16 0.20 0.15 0.17
200 0.25 0.99 0.98 0.92 0.84 0.67 0.57 0.25 0.27 0.27 0.25
200 0.10 0.99 0.99 0.97 0.92 0.78 0.68 0.31 0.34 0.35 0.33
C. linear trend/01S detrending
50 1,00 0.87 0.45 0.28 0.17 0.16 0.16 0.15 0.69 0.48 0.19
50 0.50 0.95 0.74 0.57 0.40 0.41 0.37 0.38 0.81 0.60 0.38
50 0.25 0.98 0.91 0.82 0.71 0.72 0.68 0.68 0.90 0.73 0.68
50 0.10 0.99 1.00 1.00 1,00 1,00 1.00 1.00 0.95 0.90 0.99
100 1.00 0.94 0.72 0.45 0.27 0.15 0.14 0.12 0.57 0.25 0.15
100 0.50 0.97 0.85 0.65 0.40 0,26 0.22 0.22 0.65 0.32 0.25
100 0.25 0.98 0.95 0.83 0.69 0.50 0.49 0.38 0.71 0.43 0.44
100 0.10 0.99 0.99 0.95 0.82 0.71 0,67 0.58 0.77 0.60 0.62
200 1.00 0.99 0.81 0.66 0.40 0.23 0.11 0.07 0.29 0.11 0.06
200 0.50 0.99 0.91 0.80 0.59 0.41 0.23 0.16 0.33 0.18 0.13
200 0.25 0.99 0.96 0.86 0.68 0.49 0,32 0.20 0.41 0.25 0.17
200 0.10 1.00 0.99 0.92 0.79 0.63 0.45 0.30 0.50 0.34 0.29
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trend/OLS detr

k
50 1.00
50 0.50
50 0.25
50 0.10

0.72 0.62 0.59 0.54 0.53 0.52 0.53 0.66 0.52 0.34
0.86 0.96 0.99 1.00 1.00 1.00 1.00 0.84 0.76 0.80

0.94 0.99 1.00 1.00 1.00 1.00 1.00 0.93 0.88 0.91
0.98 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.95 0.98

0.14
0.65 0.77

0.95 0.81 0.69 0.60 0.48 0.42 0.39 0.81 0.50 0.45

0.98 0.97 0.92 0.87 0.82 0.76 0.77 0.86
0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.92 0.83 0.99

0.91 ©0.39 0.25 0.17 0.13 0.10 0.09 0.73 0.38

100 1.00
100 0.50
100 0.25
100 0.10

0.97 0.82 0.69 0.45 0.30 0.21 0.19 0.59 0.24 0.22

0.99 0.92 0.84 0.68 0.51 0.38 0.38 0.66 0.35 0.40
1.00 0.98 0.96 0.92 0.82 0.74 0,71 0.75 0.52 0.74

0.97 0.63 0.44 0.24 0.12 0.08 0.07 0.54 0.17 0.09

200 1.00
200 0.50
200 0.25
200 0.10

ok
50 1.00
50 0.50
50 0.25
50 0.10

0.99 1.00 1.00 1.00 1.00 1.00 0.81 0.77 0.84
0.97 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.93 0.9%

0.70 0.91 0.98 0.99 0.99 0.99 0.98 0.62 0.49 0.59
0.99 1.00 1.00 1.00 1,00 1.00 1.00 0.98 0.97 0.98

0.88

0.96 0.38 0.24 0.11 0.08 0.10 0.08 0.78 0.40 0.09
0.98 0.93 0.85 0.68 0.61 0.59 0.55 0.85 0.54 0.54
0.99 1.00 1.00 0.98 0.95 0.92 0.90 0.92 0.70 0.93
1.00 1.00 1.00 1.00 0.99 0.99 0.97 0.95 0.85 0.99
0.99 0.71 0.47 0.26 0.12 0.07 0.07 0,58 0,13 0,08
1.00 0.8 0.73 0.45 0.28 0.17 0.15 0.63 0.1%9 0.18
1.00 0,97 0.90 0.70 0.51 0.36 0.30 0.67 0.28 0.36
1.00 0,99 0.96 0.84 0.68 0.52 0.46 0.73 0.40 0.56

100 1.00
100 0.50
100 0.25
100 0.10
200 1.00
200 0.50
200 0.25
200 0.10

See the notes to table 1,

Notes:



Table 3
Monte Carlo Results: I(0) Classification Rates for the ¢3T statistic

Model: (1-pL)x. = (1+9L)et, €, 1.1.4. N(O0,1)
- i § =0, p= | p=1.0, 6 =
T xl/«o ] 0 .6 .8 .9 .95 .975 1.0 j-.875 -.75 -.5
A. No Detrending
50 1.00 0.95 0.78 0.64 0.57 0.49 0.35 0.28 0.52 0.38 0.30
50 0.50 0.99 1.00 0.98 0.95 0.94 0.95 0.94 0.98 0.96 0.95
50 0.25 1.00 1.00 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00
50 0.10 1.00 1.00 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00
100 1.00 0.89 0.58 0.50 0.40 0.33 0.37 0.32 0.48 0.41 0.33
100 0.50 0.93 0.85 0.79 0.64 0.58 0.60 0.58 0.71 0.67 0.65
100 0.25 0.97 0.96 0.93 0.83 0.74 0.75 0.78 0.84 0.84 0.81
100 0.10 0.99 1.00 0.99 0.97 0.96 0.96 0.96 0.91L 0.96 0.98
200 1.00 0.86 0.41 0.29 0.21 0.17 0.17 0.16 0.29 0.20 0.21
200 0.50 0.89 0.64 0.51 0.38 0.30 0.27 0.27 0.40 0.33 0.30
200 0.25 0.93 0.83 0.72 0.55 0.44 0.40 0.40 0.51 0.45 0.41
200 0.10 0.96 0.90 0.81 0.66 0.57 0.50 0.50 0.60 0.54 0.55
B. Demeaned
50 1.00 0.99 0.89 0.80 0.71 0.65 0.62 0.52 0.85 0.69 0.60
50 0.50 1.00 0.95 0.93 0.87 0.83 0.80 0.78 0.96 0.88 0.84
50 0.25 1.00 0.97 0.97 0.97 0.95 0.95 0,97 1,00 0.99 0.98
50 0.10 1.00 0.98 0.98 0.99 0.99 0.98 0.99 1.00 1.00 0.99
100 1.00 0.95 0.78 0.67 0.51 0.39 0.39 0.26 0.43 0.34 0.26
100 0.50 0.98 0.89 0.82 0.65 0.53 0.50 0.38 0.49 0.43 0.37
100 0.25 0.98 0.95 0.89 0.76 0.65 0.60 0.46 0.57 0.50 0.43
100 0.10 1.00 0.98 0.95 0.85 0.75 0.68 0.58 0.67 0.59 0.54
200 1.00 0.82 0.58 0.41 0.29 0.22 0.16 0,11 0.13 0.10 0.10
200 0.50 0.88 0.69 0.55 0.40 0.31 0.22 0.16 0.18 0.15 0.13
200 0.25 0.91 0.82 0.68 0.52 0.41 0.28 0.18 0.22 0.20 0.17
200 0.10 0.96 0.89 0.77 0.61 0.48 0.37 0.22 0.25 0.25 0.22
c inear trend S detrendi
50 1.00 0.95 0.71 0.66 0.63 0.58 0,58 0.59 0.85 0.82 0.59
50 0.50 0.98 0.86 0.82 0.81 0.77 0.78 0.76 0.96 0.93 0.80
50 0.25 0.99 0.89 0.87 0.84 0.81 0.82 0.80 0.98 0.96 0.82
50 0.10 1.00 0.94 0.91 0.88 0.86 0.87 0.83 0.99 0.98 0.88
100 1.00 0.90 0.75 0.60 0.54 0.47 0,42 0.41 0.68 0.49 0.45
100 0.50 0.97 0.92 0.79 0.73 0.65 0.62 0.60 0.82 0.64 0.62
100 0.25 0.98 0.97 0.89 0.83 0.78 0.79 0.76 0.87 0.76 0.75
100 0.10 0.99 1.00 0.99 0.98 0.97 0.97 0.96 0.94 0.88 0.9
200 1.00 0.69 0.31 0.31 0.22 0.1 0.17 0.22 0.24 0.21 0.21
200 0.50 0.80 0.61 0.56 0.41 0.33 0.32 0.36 0.33 0.32 0.32
200 0.25 0.86 0.75 0.68 0.51 0.42 0.41 0.44 0.41 0.43 0.40
200 0.10 0.92 0.87 0.81 0.64 0.54 0.49 0.54 0.53 0.50 0.50



Table 3, continued

| § =0, p= | p=10, 46 =
T =y/%g | 0 .6 .8 . .95 .975 1.0 |-.875 -.75 ~-.5
D. Broken trend/QLS detrending, vy=0
50 1.00 0.96 0.79 0.73 0.66 0.67 0.62 0.68 0.94 0.83 0.72
50 0.50 0.99 0.95 0.94 0.92 0.91 0.91 0.92 0.99 0.95 0.9
50 0.25 1,00 0.97 0.95 0,95 0.94 0.9 0.96 1.00 0.98 0.98
50 0.10 1.00 0.98 0.97 0.96 0.97 0.96 0.98 1.00 1.00 0.99
100 1.00 0.88 0.57 0.44 0,38 0.33 0.29 0.25 0.72 0.42 0.32
100 0.50 0.95 0.83 0.72 0.67 0.55 0.52 0.50 0.79 0.57 0.51
100 0.25 0.97 0.9 0.86 0.82 0.72 0.68 0.65 0.83 0.66 0.67
100 0.10 0.99 1.00 0.97 0.95 0.91 0.8 0.89 0.89 0.76 0.89
200 1.00 0.72 0.23 0.14 0.08 0.09 0.06 0.07 0.24 0.06 0.07
200 0.50 0.79 0.48 0,30 0,20 0.19 0.15 0.12 0.30 0.11 0.13
200 0.25 0.83 0.63 0.43 0.31 0.26 0.20 0.18 0.33 0.17 0.21
200 0.10 0.90 0.76 0.58 0.42 0.34 0.26 0.27 0.42 0.24 0.28
E. Broken trend/QLS detrending, ¥y=50/T, A=.3
50 1.00 0.93 0.73 0.73 0.71 0.73 0.71 0.74 0,91 0.87 0.73
50 0.50 0.99 0.89 0.86 0,87 0.87 0.87 0.89 0.98 0.97 0.93
50 0.25 1.00 0.93 0.91 0.90 0.91 0.90 0.91 1.00 0.39 0.95
50 0.10 1.00 0.97 0.97 0.96 0.95 0.95 0.96 1.00 0.99 0.98
100 1.00 0.90 0.53 O0.44 0.38 0.34 0.32 0.31 0,76 0.50 0.33
100 0.50 0.95 0.86 0.84 0.74 0.71 0.66 0.62 0.85 0.67 0.62
100 0.25 0.98 1.00 0.99 0.99 0.98 0.96 0.96 0.92 0.79 0.95
100 0.10 0.99 .1.00 0.99 1.00 0.99 1.00 0.99 0.97 0.93 0.98
200 1.00 0.72 0.19 0.17 0.13 0.10 0.09 0.06 0.26 0.13 0.10
200 0.50 0.80 0.41 0.33 0.23 0.20 0.14 0.12 0.34 0.20 O0.16
200 0.25 0.86 0.60 0.51 0.39 0.34 0.26 0.20 0.41 0.28 0.26
200 0.10 0.93 0.85 0.77 0.64 0,53 0.44 0.35 0.52 0.41 0.44
Notes: See the notes to table 1.



Table 4

Posterior 0dds Ratios for I(l) vs. I(0) for the Nelson-Plosser Data Set:
Linear Trend, OLS detrending

Prior odds ratio = “1/"0 =-1.0

ADF statistics 90% conf. Post. odds for:

Series T k ;f interval B(4y) B($5)
REAL GNP 62 1 -2.994 ( .604, 1.042) 1.44 3.89
NOMINAL GNP 62 1 -2.321  ( .757, 1.060) 1.54 4.06
REAL PER CAPITA GNP 62 1 -3,045 ( .591, 1.041) 1.35 2.43
INDUSTRIAL PRODUCTION 111 5 -2.529  ( .836, 1.031) 5.10 5.88
EMPLOYMENT 81 2 -2.655 ( .757, 1.039) 1.62 2.14
UNEMPLOYMENT RATE 81 3 -3.552 ( .577, .950) 1.07 0.44
GNP DEFLATOR 82 1 -2.516 ( .787, 1.041) 1.05 1.15
CONSUMER PRICES 111 3 -1.972  ( .901, 1.037) 7.75 44 .64
WAGES 71 2 -2.236 ( .800, 1.054) 1.37 2.31
REAL WAGES 71 1 -3.069 ( .644, 1.035) 2.07 12.71
MONEY STOCK 82 1 -3.078 ( .687, 1.030) 0.89 0.84
VELOCITY 102 0 -1.663 ( .929, 1.042) 2.18 38.00
BOND YIELD 71 2 .686  (1.032, 1.075) 2.10 6.38
S&P 500 100 2 -2.122  ( .873, 1.03%) 4.84 22.67

Notes: T is the total number of observations on each series, including
observations used for initial conditions in the augmented Dickey-Fuller (1979)
regressions regressions. The columns headed "k" and "?f" respectively give the
number of lagged first differences in the ADF regressions and the ADF t-
statistic. To facilitate comparisons of results, k was taken from Nelson and
Plosser (1982). The 90% confidence interval column, taken from Stock (1991), is
the confidence interval that results from inverting the ADF t-statistics. The
final two columns present the posterior odds ratios (with even prior odds, the
Bayes ratios) based on ¢ and ¢2T’ where © was computed using the Parzen
kernel with lag length estimated using Andrews' (1991) procedure, truncated as
described in the notes to table 1. Data sources: see Nelson and Plosser
(1982). The data are annual, with all series ending in 1970. All series except
the bond yield were analyzed in logarithms.



Table 5

Posterior Odds Ratios for I(l) vs. I(0) for the Nelson-Plosser Data Set:
Broken Trend, OLS detrending

Prior odds ratio = "1/”0 - 1.0

(a) 7=0 (b) y=50/T, rp=.5 (e) v, r estimated

Series B(ép) B(43)  B(éy) By ¥/, T¥/6, & B(#y)
REAL GNP 1.01 0.83 0.85 0.81 0.204 12.67 1934 0.90
NOMINAL GNP 1.03 0.64 0.79 0.74 0.188 11.66 1936 0.85
REAL PER CAPITA GNP 1.03 1.29 0.85 1.04 0.178 11.06 1533 0.92
INDUSTRIAL PRODUCTION 3.63  8.43  7.33 3,73  -0.076 -8.42 1901  3.89
EMPLOYMENT 1.66  0.85 1.5 0,91  -0.216 -17.51 1307 1,08
UNEMPLOYMENT RATE 1.39 1.12 1.48 1.04 -0,035 -2,81 1926 1.67
GNP DEFLATOR 1.85 3.97 1.83 2.07 0.089 7.37 1940 2.02
CONSUMER PRICES 1.2 153 1,53 1,37 0,219 24.36 1899  1.35
VAGES 1.40 073 115 0.78 0,120 8.51 1939 1.2l
REAL WAGES 0.97 0.62 0.97 0.75 0.209 14.85 1933 1.06
MONEY STOCK 1.47 1.82 1.57 1.89 -0.084 -6.88 1918 1.57
VELOCITY 4,87 8.48 6.41 3.17 0.221 22,52 1544 3.05
BOND YIELD 1.34 7.78 2.00 1.79 0.386 27.42 1955 .01-.09
S&P 500 0.92 0.47 1.11 0.57 0.310 30.98 1945 1.07

Notes: The B(él) and B(éz) entries are the posterior odds ratios (with even odds, the
Bayes ratios) for the indicated statistic, computed using asymptotic I(1l) distribution
and (a) the y=0 asymptotic I(0) distribution; (b) the (y=50/T, r=.5) I(0) asymptotic
distribution; and (c¢) the distribution of ¢2(Vg(-;ﬁ/5u,F)), computed as described

in Section 3 using 4000 Monte Carlo replications. The estimates in coluans (c¢), 7/¢,
and T%/&u were computed by OLS with r . =.15 and 7, .=.85. The second-to-final column
gives the estimated break date k. The kernel density estimate of £y for the bond
yileld, but not for the other series, is sensitive to the bandwidth choice; the reported
range for the bond yield in the final column is for bandwidths from .1 to .25. See the

notes to Table 4.
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Figure 1

Asymptotic cdf and pdf of ¢, under 1(0) (solid line) and I(1) (dashed line}
no detrending
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Figure 2

Asymptotic cdf and pdf of ¢, under 1(0) (solid line) and I(1) (dashed line):
demeaned data
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Figure 3

Asymptotic cdf and pdf of ¢y
linear tréncir

under I(0) (solid line) and I(1) (dashed line)

with OLS detrending
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Figure 4

Asymptotic cdf and pdf of éy under I(0) (solid line) and I(1) (dashed line}
broken trend with OLS detrending, y=0 case
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Asymptotic cdf and pdf of
broken trend with
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igure 5

under I(0) (solid line) and I(1) (dashed line}
S detrending, y=50/T, 0= 5 case
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Figure 6

Approximate theoretical correct-classification rates for ¢
as a function of InN under I(0) (solid line) and I(1) (dashed line}
demeaned data
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Figure 7

Approximate theoretical correct-classification rates for ¢,
as a function of InN under I(0) (solid line) and I(1) (dashed line}
linear trend with OLS detrending
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