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ABSTRACT

This paper provides an algorithm for computing Markov Perfect Nash Equilibria
(Maskin and Tirole, 1988a and b) for dynamic models that allow for heterogeneity among
firms and idiosyncratic (or firm specific) sources of uncertainty. It has two purposes. To
illustrate the ability of such models to reproduce important aspects of reality, and to provide a
tool which can be used for both descriptive and policy analysis in a framework rich enough to
capture many of the features of firm level data sets (thereby enabling it to be integrated with
the empirical detail in those data sets).

We illustrate by computing the polic; functions, and simulating the industry structures,
generated by a class of dynamic differentiated product models in which the idiosyncratic
uncertainty is due to the random outcomes of each firm’s research process (we also allow for
an autonomous aggregate demand process). The illustration focuses on comparing the effects
of different regulatory and institutional arrangements on market structure and on welfare for
one particular set of parameter values. The simulation results are of independent interest and
can be read without delving into the technical detail of the computational algorithm.

The last part of the paper begins with an explicit consideration of the computational
burden of the algorithm, and then introduces approximation techniques designed to make
computation easier. This section provides some analytic results which dramatically reduce the
computational burden of computing equilibria for industries in which a large r;xumber of firms
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This paper is part of an ongoing project designed to help structure the empirical
analysis of data on firms and industries. It has two purposes; to illustrate the ability of
models that allow for heterogeneity among firms and idiosyncratic (or firm specific) sources
of uncertainty to reproduce important aspects of reality, and to provide a computational
framework that allows one to compute the equilibrium implications of these models. As we
illustrate below, provided one has estimates of the parameters needed for the computations,
this algorithm can be used for analyzing both the descriptive and welfare implications of
alternative policy and environmental changes. For a discussion of some of the issues that
would arise in estimating these parameters see Pakes (forthcoming) and the literature cited
their.?

Ore of the more striking features of data on plants or firms is the degree of
heterogeneity among firms in the same "industry" in both the levels, and the movements
over time, in the variables we typically want to analyze (shares in industry output,
investment, productivity, etc.). Most often these differences have 2 direct impact on the
way we analyze the issues of interest. That this is so even if we are only after the
"aggregate" impacts of a policy or an envirionmental change (say the effect of a change in
input prices on industry output, or the effect of an investment tax credit on productivity)
is a result of the simple fact that firms’ responses in realistic models of behavior are
typically different nonlinear functions of the changing variable. As a result the industry’s
aggregate Tesponse, which is the sum of the individual responses, depends on higher order
moments of the distribution of individual responses.

In markets with little entry and exit the differences in response patterns are largely

2 result of differences in the past choices and the past successes of incumbents, and

*Two points on estimation are probably worth noting here. First, estimation is separate
from computation in the sense that one can estimate the relevant parameters without
computing their equilibrium implications. Second, estimates of most of the needed
primitive parameters can be obtained from the cross sectional variation in panel data sets,
and do not require a long time series for their consistency properties.



nonlinearities are induced by equilibrating mechanisms which typically imply that losses to
one set of firms are partially offset by gains to others. If there is entry and exit then these
-processes generate an additional natural nonlinearity in response patterns, and any analysis
of the aggregate impacts of a policy or environmental change on a market requires not only
the distribution of responses of the incumbents in the given market, but also an analysis of
the entry and exit that the policy or environmental change induces. Interestingly the
importance of explicitly accounting for heterogeneity in response patterns when analyzing
the aggregate impacts of changes has been a theme of recurrent emphasis in the (recent)
empirical literature that uses panel data on firms or plants to study an industry’s reaction
to a policy or an environmental changes (for two examples see Thomas?,1990, analysis of
the impact of changes in FDA regulations on the rate of innovation in the pharmaceutical
industry, and Olley and Pakes’,1991, study of the impact of deregulation on aggregate
productivity growth in the telecommunication equipment industry).

Moreover, we are often specifically interested in the relationship of policy, or
environmental, variables to the more detailed structure of the distribution of agents
characteristics, and in how the equilibrium distribution of those characteristics is likely to
react to the policy or environmental change. Obvious examples where more detailed
knowledge of the determinants of the equilibrium distribution is of overriding importance
are easy to come by in almost all aspects of economics. The analysis of the link between
default probabilities and the market for finance capital, and of the effects of the various
regulatory changes on market structure, are examples that occur re'peatedly in the finance
and industrial organization literatures; and we focus on the effects of regulatory changes in
the numerical analysis below. More recently, the finding that almost all of the variance in
gross job creation and gross job destruction is within time—period, within—industry,
variance (see Davis and Haltwinger,1989), makes any analysis of the causes or the effects of
job turnover in labor markets highly dependent on the detailed characteristics of the

equilibrium from dynamic heterogeous agent models (for an analysis of this dependence in



one particular setting see Hoppenhayn and Rogerson,1990). We note that once our models
acknowledge the fact that agents do differ, and grant that their actions may impact on one
another, then the computation of either the aggregate response, or of the distributional
characteristics, needed to analyze any of these problems can become quite demanding.*

There is more than one source of idiosyncratic uncertainty that firms react to, and
different sources are likely to be more relevant for analyzing behavior in different
industries. We focus here on a differentiated product version of the Ericson—Pakes (1990)
model of industry dynamics. That model focuses on the uncertainty generated from the
random outcomes of research and exploration processes, and so should be primarily applied
to industries where these processes seem to be important. 4

The Ericson—Pakes model has firms invest to explore, and if warranted, develop,
profit opportunities (improved goods or techniques of production). The outcomes of the
investment process are uncertain. Positive outcomes lead the firm to states where the good
or service can be marketed more profitably. If the outcomes generate lesser increments
than those of its competitors (both inside and outside the industry) the firm’s profits
deteriorate, and may lead to a situation in which it is optimal to abandon the whole
undertaking (this endogenizes exit behavior, and provides one way of accounting for
selection in the nature of the evolutionary process).

A firm’s supply to the spot market for current output, and its current profits,

3The Hoppenhayn and Rogerson paper is also one of the few that worries about computation
in hetero%eneous agent models. They assume that all agents are zero measure and all
sources of uncertainty are idiosyncratic, show that under their conditions the industry
structure converges to a fixed s* (and stays there) and then provide a simple way of
computing s*. Judd (1990) has computed Markov perfect equilibria for two agent models
with no entry and exit, and Hansen and Sargent (1990) provide a computational algorithm
for a class of heterogeneous agent models that allow for linear decision rules and equilibria
(they assume quadratic preferences, linear technologies and information sets, no discrete
choices, and that continuous choices are always interior).

41t is analytically easy to incorporate exogenous price uncertainty provided the alternative
possible price realizations do not reorder the relative efficiencies of the firms in the
industry, as in Dixit, 1989. If, as in Lambson (forthcoming), relative efficiencies are
effected by price realizations, then we would require a more substantive remodelling effort.



depend on its own level of development, a counting measure which provides the level of
development of other firms currently active in the industry, and the level of development of
the alternatives outside the industry. The level of development of the outside alternative
evolves exogenously. Entry and investment decisions (which determine the levels of
development of the actors in the industry) are made to maximize the expected discounted
value of future net cash flow conditional on the current information set. That information
set includes a distribution for the counting measure of possible industry structures in future
years conditional on the current structure. The equilibrium notion insists that this
distribution is in fact consistent with optimal investment behavior by all incumbents and
potential entrants. Since we restrict strategies to be measurable functions of the set of
variables which determine either current production costs or current demand conditions (to
use the terminology of Tirole, 1989, to "payoff relevant" state variables), the equilibrium
we obtain is Markov—Perfect Nash in investment strategies in the sense of Maskin and
Tirole (1987,19882,1988b).

At the heart of this equilibrium is a stochastic process which generates the industry
structures that the model emits. That process is ergodic, but its more detailed
characteristics depend on the precise values of the model’s parameters. So we introduce an
a.lgorifhm for computing the equilibria, and use it to analyze special cases of the model.
Here we begin by simply simulating out the pattern of industry structures that are likely to
materialize for different sets of parameters. This allows us to illustrate the many aspects of
reality that can be capturred by models wich allow for idiosyncratic uncertainties in a
dynamic market setting.

We then move on to a numerical analysis of the effects of different institutional
arrangements on market structure and on welfare for one particular set of technological
parameter values. The analysis compares five different institutional structures to one
another, and to the outcomes of the actions of a social planner. Those institutional

structures are; the free entry Markov Perfect equilibrium, an initial temporary monopoly



followed by free entry, free entry with an institutional constraint which limits the market
share of the largest firm to be below some fixed fraction of the overall market, free entry
with institutionally induced incremental sunk entry costs (2 license must be obtained to
enter the market), and a "perfect" cartel. The results from these experiments both
illustrate the potential usefulness of the computational techniques for policy and
descriptive analysis, and provide some insights into the implications of the institutional
arrangements we analyze.

The algorithm we suggest for computing the Markov Perfect Nash equilibria is
analytically simple, but may be computationally demanding, particularly if the industry we
are describing tends to have a large number of firms active in a given period. The last part
of the paper begins with an explicit consideration of the computational burden of the
algorithm, and then introduces approximation techniques designed to make computation
easier. We focus on techniques based on polynomial approximations to the value function.

Define a grid point to be a combination of the value of a firm’s own state variable
and 2 list of the state variables of all the firm’s active competitors. The approximation
techniques are based on fitting a polynomial to the value of being active at a small number
of grid points, and then using the polynomial coefficients obtained from this fit to predict
the value function at other grid points as needed.

The major result of this section is analytic. It shows that provided the value
function of a given agent is symmetric (more precisely exchangeable) in the state vectors of
its competitors, then the number of polynomial coefficients one needs to determine for a
given order of approximation is independent of the number of agents active in the market.
This result implies that the number of grid points we need to evaluate at each iteration of
the fixed point calculation does not depend on the number of firms active in the industry.
Unfortunately the computational burden at each grid point still depends on the number of
active firms. We do, however, show how one can adapt a technique due to Kortum

(forthcoming) to reduce the computational burden of evaluating each grid point from being
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(a high order) polynomial in the number of firms that are active at that grid point, to
being linear in the number of active firms. Hopefully this combination of results will allow
us to use the algorithm to analyze markets with large numbers of firms. Whether or not it
does depen;ls on the quality of the resulting approximations, and this may well vary from
problem to problem. We conclude withra brief summary of some early results on the fit of
the approximation for our problem.

The paper begins by providing a brief description of each of the primitives of the
model, starting with the profit function, then turning to the other primitives determining
incumbent behavior, and finaily to those determining the behavior of entrants. For each
primitive we outline the general characteristics it need possess, and then go over a detailed
example that is used in the actual computations. We then give a verbal characterization of
optimal pblicies and the nature of equilibrium (for more detail see Ericson and Pakes,1989).
The second section of the paper introduces the computational algorithm, the third provides
the numerical results, and the fourth considers its computational burden and the
approximation techniques. A short summary closes the paper. A reader should be able to

read sections I and III of this paper without paying any attention to sections IT and IV.

L.The Model.

The state variables determining the firm’s perception of its opportunities are
z
(05)e AXSc X .‘Z‘+ g

where % is notation for the integers, so v is an integer—valued index of the firm’s own
efficiency, and the vector s is a counting measure providing the number of firms at each
possible efficiency level.

Thus
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provides the "reduced" form of the current profit function. In the general case we need
only that 7{w,s) is: increasing in v for all 5; that there exists a complete preorder on 5, say
r, s.t.if §; 8y then 1[u,sl]2 r{u,52] for all v; and that sup r{w,s] < 1* and for each v,
[w,s] < (1-8)® for sufficiently large s.

Here §is the discount rate, and ¢ is the scrap or exit value (the value of the firm
and its entrepreneur in its best alternative use) so (1—)# is the per period return on the
firm’s transferable assets. Thus the last condition states that no matter the firm’s v, there
is a level of competition that is sufficiently stiff to make the returns the firm earns by
operating in the industry less than the returas that would be earned were the firm’s
resources invested in its best alternative activity.

The special case we actually compute is a differentiated product model (for more
detail on the specification of such models see Berry,1991, Berry Levinsohn and Pakes,1991,
and the Literature cited in these articles). Good "0" is the outside good, and goods 1,...,N
are the goods produced by the firms competing in the industry. Each consumer purchaseé
at most one good from the industry. The utility consumer "i" derives from purchasing and

consuming good "j" is given by
(1) U(X,j) = vj—p*j + E(i,j),
where A is the quality or efficiency index, and p’lf is the price, of the good, and i=1,...,M.

Consumet "i" chooses good "j" if and only if he prefers it over all the alternatives, that is if

for q=0,1,...,N,

@) (i) - i) 2[vg—v] + At
=[Vq—V0] - [VJ - Vo] + [P*j - P*O] - [P*q - P*O]
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= g{wq] ".‘7{"*’0] + Pj—l’qy

where ¢(+) is increasing and concave, Vg = _q_l[vq - vo], and = p*q - p*o. We will
assume g{-) to have an upper bound, and this will generate the needed upper bound to the
profit function.s

Note that (2) implies that consumer choices are determined entirely by the quality
and prices of the goods marketed in this industry relative to the quality and price of the
outside alternative (only relative qualities and prices count, and we have chosen the outside
alternative as our "numeraire"). Therefore when we refer to an increase in the quality of
the product marketed by the firm we will mean ar increase relative to the outside
alternative, and we will say quality decreases only when the improvements to the firm’s
own product are not as great as the improvements in the outside alternative. Note also
that movements in A will cause synchronized movements in the relative efficiencies, in the
w’s, of all firms in the industry, which in turn will generate a positive correlation in their
profits. Since movements in the v f will tend to generate negative correlations in the profits
of the firm’s in an industry, dealing explicitly with the outside alternative allows us to
rationalize the positive correlations in the profits of firms within an industry that we often
observe in the data. l

Let the set C [uj;p,s], where s is the counting measure providing the number of firms
at each ¢, be the set of ¢’s that satisfy the set of inequalities in (2), and hence induce the
choice of good j. Then, letting G(-) provide the distribution of ¢ and assuming it to be

multivariate extreme value, the probability that a random consumer will choose good "j" is

5g generates decreasing marginal utility to increments in the relative quality of the goods
marketed in this industry, and this, in turn, generates an upper bound to profits. A more
detailed model of consumers would explicitly incorporate a distribution of income
constraints and decreasing marginal utility of income (see, for eg. Berry, Levinsohn and
Pakes, 1991), and this would have similar effects on demand patterns (though it would also
be computationally more burdensome).
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() olejpsl=f o Clojpsl dG(e)=explo(u))—p]/{1+Zexp[o(v,)-p ]}

If there are N firms in the market, no fixed costs of production and constant
marginal costs equal to mc, then it can be shown that if firms choose prices to maximize
profits a unique Nash equilibrium exists (Caplin and Nalebuff,1991) and satisfies the vector

of first order conditions

(4) —[pj—-mc]aj[l—aj] +oj= 0

for j=1,...,N. Profits are given by
(8)  rlogsl={plo;s}me}Mofugs],

where it is understood that the price and share vectors are calculated from the spot market
equilibrium conditions (3 and 4), and M is the number (or measure) of consumers.

The distribution of Verq conditional on A depends on the amount the firm is
willing to invest in developing its product. We let the family of distributions for the

increment in w, i.e. for U1 T Y= Ty conditional on different values of X be
P= { P(' |x)1 XEIR+ }1

which we assume to have finite support.

This family is built as a difference, or a convolution, of two random variables. The
first, say v, is the increment in efficiency the firm gets from its own research process, and
is stochastically increasing in x (in the first order dominance sense). The second, say v, is

an exogenous random variable which represents the force of the competition from outside of
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the industry (the efficiency of the outside alternative in the example above). Note that the
possibility of advances by outside competitors imply both that; P(-) puts positive
probability on negative values of 7, and that the realizations of r are not independent
across the firms that are active in a given period.

The example used in the computations puts

(6) rt=v-v
where,
b = 1 with probablity a.x/(1+ax)
0 otherwise,

and,

1 with probability &
' {0 otherwise.
By making the time period per decision small relative to the time period in the data we can
generate distributions of increments that make large changes in 7 possible (in which case
we would want to adjust the other parameters of the problem, eg. the discount rate,
accordingly).
To choose optimal investment and exit policies incumbents need also a perceived

distribution for the number and efficiencies of their future competitors, for

(M) sy =5 el

141h

where e[ut +1] is a vector which puts one in the Ver1 spot and zero elsewhere, conditional

on sy, and v. This will be denoted by

a, {54105 = Ba{sgpplsptiy dpleg b
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where, recall that v is the realization of the increment in efficiency of the outside
alternative. Note that this distribution embodies the incumbent’s beliefs about entry and
exit.
We assume that the functions qw[gls] can be derived as the transition probability
fors, ;- e[”t+1] from some regular Markov transition kernel, say Q[- | -}:5XS-[0,1] and
that S is compact. Ericson and Pakes show that the Markov—Perfect Nash equilibrium will
generate transition kernels with these properties (i.e. that these conditions are indeed \
satisfied in equilibrium).
Given that g u(' |s) provides the incumbents perceived distribution of future market

structures, the Bellman equation for the firm’s maximization problem is

(8) V(us)=
max {®, sup(xzo) [r(v,8) —cx + F I V(v+T7,s+efut7]) qu[s Is,9] p(7]x,v) p(v)]}.

Here § is the sell off value of the firm and c is the cost of a unit of investment.. If it is
greater than the expected discounted value of net cash flows from staying in operation
conditional on optimal behavior in each future period (the second argument after the max
operator), the firm shuts down.

Ericson and Pakes (1989) provide a reasonably detailed exposition of the nature of
optimal policies in this framework. What we require here is the fact that boundedness of
the value function implies that if  is high enough, the value of additional increments in v
can be made as small as we like. Since the return to investment in this model is
determined by the increment in the value function generated by higher values of v, the
boundedness assumption insures that investment will be zero for all v greater than some w.
Since firms cannot improve their quality index without some investment, states above w
are "coasting states" from which the firm’s ¢ can only deteriorate (and will stochastically).

So there is an upper bound to the achievable v states (this argument is conditional on s,
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but since S is compact, there is an overall upper bound). Similarly, the possibility of exit
generates a lower bound for the observed v states. So we can, without loss of generality,
assume v € = {1,...,.K}.

To complete the description of the model we need also to specify the primitives
which determine entry behavior. We have chosen a very simple model of entry where entry
is sequential from an unlimited pool. Here a potential entrant who decides to enter pays a
(sunk) setup fee of x,(m), which is nondecreasing in the number of entrants (m), then
obtains a draw from the distribution P[wO] and begins operation in the next period at the
wlocation generated by that draw. Potential entrants enter if the expected discounted
value of net cash flow from entry exceeds x e(m).

Formally, if qm—l[; |s,v] provides the perceptions of the m'h potential entrant of

the distribution of future market structures and

Ve[s,m] =fL V[w,;+ev]qm_1[; ls,u]p[u0| vlp(v)

then
0 if Ve[s,l] gxg , else
(0) my=
. . e e e e
min {me Z: x <V 5,m’ Vs,m+1 < xm+1}.

Note that the distribution of entering ’s is fixed over time. Thus the "ability" of
entrants progresses at the same pace as the "ability" of the outside world (in terms of our
example it advances with the ability of the outside alternative). If this were not the case
entry would eventually go to zero and stay there. Also in the computational example we
set xi = x% and xg = wu, 50 the maximum number of entrants in any given period is one
{the maximum number of entrants in any time interval depends on the number of

decision—making periods in that time interval), and
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*
1forw0=u, ifv=0

(10)  plogle] =[

*
1forw0=u-1 ifv=1

Ericson and Pakes first show that under our conditions there is an upper bound to
entry in any period. That is for all s, m, < m*. They then show that there exists ar
industry size (say N*) such that whenever there are N* or more incumbents there will be
no more entry. That is if Esj > N*, then m, = 0. Hence there will never be more than
N*+m* firms active in a given period, and since each must have an v € {1,...,K}, the

*
cardinality of § (the set of attainable industry structures) is no greater than KN*"'m ;
thus there is only a finite number of industry structures possible, and S is compact.

They also provide a formal definition and proof of the existence of a rational
expectations Markov Perfect Nash equilibrium under these assumptions. In equilibrium,
firm behavior (incumbent and entrant) depends on the perceived distributions of industry
structures formalized in the transition functions, q(#)[-|-]. Yet the investment, entry, and
exit choices, generated by that behavior, together with the known distributions of 7 given
alternative values of x, and P{¢(0)], generate an objective distribution of industry
structures. The model is considered consistent for a Q(s’ |s) if and only if the objective
distribution generated by the investment, entry, and exit decisions which result from a
perceived distribution of industry structures equal to Q(s’|s), is Q(s’ |s). Any such
Q(s’ |s) (and there may be more than one of them) will be associated with a rational
expectations, Markov Perfect, Nash equilibrium.

The industry structures generated by this equilibrium will all be counting measures

on f with a finite number of firms, i.e.

5 = {s=[s;nsge) s B5; ¢ N'4m'),
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with the vector [Sl""’SK] providing the number of firms at each possible efficiency level.
So the heart of the equilibrium is a stochastic process for industry structures [for {s;} ],

defined on (S°,8,P). This process is Markov i.e., if st= 5,8, q,-,8¢), then
t77t—1 1
7 t ! = 3
Pr{st+1=s [s'} = Pr[st+1=s 8] = Q[s lst],

with transition kernel Q[- | -], and initial condition s (assumed in S). The Ericson—Pakes
paper also proves that this transition kernel is ergodic. We now provide first a technical,
and then a verbal, description of the ergodic result.

Formally it is shown that: the state space, S, contains a unique, positive recurrent,
communicating class, say RCS; that there exists a unique probability measure, say p*,
whose support is R, and which satisfies, u*Q=;4*; and that if uT[so,s], gives the fraction of
time periods for which s,=s, then pT[so,s]—-o p: a.s. uniformly over s€S.

In words we have that no matter what 89 is, 5 will eventually wander into a subset,
say R, of the possible industry structures. Once in this set there is no probability of
communicating with states outside R (all other states are transient). The states in R all
communicate with one another (with finite expected transition times), so every point in R
is visited infinitely often. Eventually, the sample frequencies of landing on the various
points in R goes to u* (a vector which is reproduced by the transition kernet Q[-]).
Consequently sample averages of all random variables which are functions of s will
converge to their expected values with respect to the probability distribution given by u*.

Note that though (1/T)Est — p*, s, itself never settles down. Rather the
structure of the industry is in perpetual flux. Depending on the nature of Q[-] we can
expect the industry to go through periods when output is concentrated in the hands of a
small number of large firms, and then, perhaps as a reaction to a sequence of new
inventions, to fracture into an industry composed of a large number of approximately

equally sized firms. Of course even over periods when the industry structure remains
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relatively stable there will be heterogeneity in the outcomes of the active firms, with rank
reversals, and simultaneous entry and exit as the normal course of affairs.

It is worth emphasizing, however, that the actual nature of the limit distribution,
ie of p* (whether in fact it does include both relatively fractured and relatively
concentrated structures), and the nature of the pattern of likely transitions between
elements in that limit distribution (do we cycle over the divergent types of structures, or
are their Poisson type events that take us more directly from one type of structure to
another?), depends on the nature of the primitives of the model; the profit function, the
discount rate, the sunk costs of entry and exit, and the impact of investments. These in
turn, depend on demand patterns, technological opportunities, and the institutional
structure of the industry.

What the ergodic theorem tells us is that if we are willing to suffice with limit
properties we can analyze them, and how they react to different values of the parameter
vector, without specifying initial conditions. It is silent on both the characteristics of the
limiting averages, and on the likelihood of the alternative sample paths that could lead to
them. On the other hand, if we could compute the transition kernel, Q[-| -], we could
analyze the impact of alternative events from the actual initial condition prevelant in the
economy, and compute the ergodic distribution of industry structures, together with both

their welfare and descriptive implications, directly.

II. Computational Algorithm

The model has been set up so that most of its parameters can be estimated without
actually solving for the fixed point which defines the stochastic dynamic equilibrium.
Indeed one ot; our intentions in setting out an internally consistent dynamic model was to
provide a framework for evaluating the properties of alternative estimators when the agents

that generate the data are forward looking and do interact with one another (for an
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example of this type of application, see Olley and Pakes,1991).6 Though that may well
turn out to be the major advantage of our approach, we also wanted to be able to provide a
complete analysis of the equilibrium process and its relationship to the primitives of the
model. In particular, we wanted to be able to trace out how the industry’s equilibrium
path was likely to respond to changes in policy or in the environment. To do this we need a
computational algorithm that allows us to solve for (or simulate) the stochastic process
generating {s(t)} for different values of the parameters of the model.

We turn now to a description of one such computational algorithm, and its
limitations. We then use that algorithm, together with the functional forms given in the
example provided above, to compare the set of industry structures that would be generated
from one particular set of technological parameters under alternative institutional regimes.
The reader who is not interested in the computational detail but might be interested in the
results of the numericl analysis should be able to omit this section and have no difficulty
with section IIIL.

What we need is the form of Q[- | -]. This transition kernel is computed from the
transition probabilities for all incumbents and potential entrants, and these in turn are
functions of the optimal policies and the primitives of the model. Though the actual
computation may well be complicated (see Ericson and Pakes,1989), given the optimal
policies, i.e. {x(u,s),x(u,s),ve(s,m)}, and an initial s, it is easy to simulate different sample
paths and then derive an empirical distribution which will converge (uniformly) to the true

Q[-]+]. So the whole computational problem is in finding the optimal policies. To obtain

¢The estimation problem breaks down into subproblems which, provided care is taken to
account for the simultaneity of input decisions and the selection induced by entry and exit,
allow one to obtain estimators of subvectors of the model’s parameters. The natural
breakdown is to esimate the parameters of the cost and demand functions that determine
the spot market equilibrium in one part of the analysis, and to use data on the evolution of
market shares and investment expenditures to estimate the parameters of the family P, and
B. This still leaves us without estimators for the sunk costs of entry and exit, which will
either have to be gotten exogenously or estimated from the implications of the more
complete framework.
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these policies we compute the value of being active for different values of a firm’s own and
of its competitors state variables. This is a map from ! X S +R. We turn now to a
description of a computational algorithm designed to find this function and the associated

polices and a discussion of its properties.

We work off value functions for problems with a limited amount of active firms, and
then push that limit up. Start with the value function for 1 active firm. Thisisa
straightforward contraction which sets the support of (the upper and lower limits for) ¢,
i.e. it sets .

For N=2 we need to calculate V[ul;uzl for {”1""2} € 82 Start with VO[ ] =

r[ul;u2]. Then get Vk[ul;u2] as the solution to:

Vk—1

k
(1) Vv [”1;"2]='[”1;“2]_cx+ﬁzfi,rj,v [oy+ry+vup+ry+vlp[ry le,v]p[rzlxz’v]p(v),

where the couple [xl,x2] satisfy the Kuhn—Tucker conditions

(1) xf—c+ a8, V[ p 00,/ 0k )p(0)}=0,
17 J,

X 20,
foritjp, = p[ri |xi,u], and so on. One way of calculating the fixed point would be to
iterate on this procedure until [|Vk—Vk_1[| was below an acceptable tolerance for an
appropriate norm |- |.

This procedure does away with one of the "nests" that is implicit in the fixed point
calculaton. To see this note that a straightforward alternative way of calculating Vv(-)
would be to begin with a candidate function for the process generating the competitors

states [for p(r,|s,v) in our two firm example], use it to solve the implied contraction for
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V[ [p(75]+)} and the associated investment policy, then use that investment policy to
calculate a new process generating the competitors states, and iterate on this procedure. By
solving for all the x’s simultaneously at each iteration our procedure has done away with
the second fixed point calculation at each iteration. However, the procedure in (1) does this
at the cost of solving an implicit nonlinear system of equations at each iteration of the
fixed point calculation, and the nonlinear search increases computational time
dramatically.

An alternative is to use xlg_l, last iteration’s x—value for one’s competitors, in the
Kuhn~Tucker condition for x;. 1f we ignore the constraint that x > 0, this gives an explicit
solution for each X If x £ 0, set it equal to zero. This does away with the need for
solving a nonlinear system in N variables at each iteration, and replaces it with the
solution to N univariate problems (each of which is nearly linear in our example).
Computaional time decreases accordingly. Of course we could iterate on this "policy step"
until convergence and (provided convergence is achieved) solve the nonlinear system
exactly without ever having to compute an explicit solution to the nonlinear system.
Though it did not prove helpful to iterate on this "policy step" in the examples presented
here, it is more likely to prove helpful once we substitute a polynomial approximation into
the computational algorithm(see below).

For expositional simplicity we ignored entry and exit in the discussion above. To
account for exit we simply compare Vk(ul;uz) to . If the latter is larger we set Vk()=§
and the associated x to zero. To account for entry when N<2, consider states where
Vl[wg,e;} = &. In such cases we use 7[w;] instead of 7lwyiu,], and calculate Ve[ul]. If this
term is greater than x°, we calculate V[ul;wo] for V[o;u,], where the transition
probabilities for v are given by P[uo].

We still continue iterating until [|Vk—Vk—1|] is within a given tolerance, but now
also check ||xk—-xk_1”. A fixed point to this problem can be shown to satisfy all the

requirements for our equilibrium if the maximum number of firms (our N), set either
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endogenously by the model’s parameters, or by an artificial barrier to entry, is 2. Now

push N up to 3 and do the iterative calculation again starting at

(2) VE=ON=3 yh=e,N=2

[wgiug.e5] = {wy;max{vg,uq]}.

This procedure should be repeated until we reach an N where, for all industry
structures at which ¥s(i)=N, Ve(s,1)<xe, implying that no matter the industry structure
there will be no further entry. The N which satsifies this condition is an upper bound to
the number of firms ever in the industry (provided, of course, that the initial s has no more
than N firms).

Some caveats are in order before proceeding. We have not proved a contraction
property for our algorithm yet, so we have no way of knowing for sure whether it
converges. On the other hand it has converged for every set of parameter vectors we have
tried. We have not proven uniqueness either. We did calculate all results we describe here
thrice, starting each at different initial conditions [once at (- ), once at zero, and once at

V(-) from the smaller N, see above]. In each case we got to precisely same answer.

II. Numerical Illustrations.

o>

. The Base Case.
To illustrate the type of equilibria that result from this class of dynamic

heterogeneous agent models, we have computed the policy functions, and simulated the
equilibria, for the following set of parameter values:

& (the probability that the outside alternative moves up) = .7;

B (the discount rate) = .925,

x% (sunk entry cost) = .2,

® (scrap value) = .1,
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M (size of market) = 5,
a = 3 (determines the efficacy of own investment in
increasing the probability of quality improvements),

mc (marginal cost of production) = 5,

! if weo*
H

59
eu*{Z _ - u*)]

otherwise.

The total current cost of producing the output of this industry is about 25, so the

th of the cost of production in a given period. That

sunk entry cost, i.e. x°, is about 1/125
is, it is not very costly to enter in this, our base, case. An arbitrary unit can be attached
to M (i.e. thousands, millions,...), and the marginal cost is in those units (the cost of
producing a thousand or a million units,...). The functional form for g{v), in particular the
difference between g{v) and v for sufficiently large v, is to insure that profits are a smooth
and bounded function of «.

The columns labelled "MP" in the tables to follow were constructed as follows. We
substituted these parameter values into the computational algorithm given in the last
section, and let that algorithm compute the Markov Perfect Nash investment, entry, and
exit policies. We then used these policies, together with a pseudo random number
generator, to generate ten thousand periods of industry evolution from an initial condition
of an industry with one firm at v=u,. The other columns in these tables will be described
in more detail presently. They were constructed in a similar way to the MP column but
with a change in either a behavioral assumption, or in 2 parameter value. In particular for
the column labelled "a* = .65" we imposed an institutionally created upper bound to the
market share of the largest firm; in the column labelled "x€=2" we imposed an

insitutionally created tenfold increase in the sunk cost of entry; in the column labelled
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"Coll" we used the parameters above but assumed there was a perfect cartel controlling all
pricing, investment, entry and exit decisions; and in the column labelled "PP" we used the
parameters above but assumed there was a benevolent social planner controlling all picing,
investment, entry and exit decisions.

Table 1 provides some statistics which help describe the evolution of market
structures in the ergodic distribution of market structures that the various solutions
generated. We will focus on the Markov Perfect column first. Part A of the table
indicates that the ergodic process characteristically has either three or four firms active in
a given period. There is, however, lots of entry and exit, so the firms active in equilibrium
are not always the same three or four firms. Note also that entry and exit are positively
correlated; in most years when there is entry there is also exit (Part B of the table). This
is in stark contrast to models of industry dynamics that do not allow for idiosyncratic
sources of change, for these models characteristically predict either entry, or exit, but not
both, in the same period.

The firm specific, or idiosyncratic, sources of uncertainty also generate a significant
amount of job turnover (even though total demand for the industry’s products barely
changes from period to period). We calculated gross job creation and gross job destruction
figures by assuming that the new jobs available during a year were proportional to the
increases in output in firms that increased their output over that year, and the jobs
destroyed during a year were proportional to the fall in output in firms that decreased their
output over the year. On average about 4% of the jobs were destroyed each year (with
approximately the same percentage of new jobs created during the year); but that figure
was surprisingly variant over subperiods (its standard deviation was about twice its mean).
So there were periods in which the industry was undergoing alot of flux, or churning, and
periods in which it was more stable (see below).

About one thousand and eight hundred firms participated in the industry during the

10,000 periods simulated (Table 2, columns MP). Most, however, remained active only a



Table 1

Characteristics of

Ergodic Distribution’

§=.7 a=3 = .925 xe = .2 & =.1
m=5 ¢=5

No. of Time Periods 10,000

MP o = .65 | x* = 2 PP Coll.
% with 6 firms active .1 2 .0 0 0
% with 5 firms active 1.6 3.1 .3 .1 .1
% with 4 firms active 35.3 33.3 1.2 5.8 1.1
% with 3 firms active 63.0 63.3 17.1 44.5 23.1
% with 2 firms active .0 0.0 81.4 49.6 75.6
% with entry and exit | 13.1 11.5 .3 10.1 10.7
% with entry only 4.8 4.8 .7 3.0 1.9
% with exit only 2.0 2.5 .6 2.3 1.7
% with entry or exit 20.1 18.7 1.6 15.4 14.2
Gross job creation .086 .086 .031 .033 .027
Gross job destruction .087 .088 .032 .033 .027

1. Legend

MP = Markov Perfect Nash Equilibrium

o* = .65, MP with market share constrained to be
below .65.

% = 2, MP with sunk entry costs increased to 2.

PP = planner's problem (see the text below).

Coll. = perfect cartel (see the text below).




Table 2'
Lifetime Distribution

(Based on 10,000 time periods)

§=.7 a=3 B = ,925 xe= .2 &= .1
m =5 c=25
Life Percent Implied Hazard Cumulative
time Percent

MP x°®=2 PP MP x%=2 PP MP X%=2 PP

1 48.3 17.5 25 48.3 17.5 12.2 48.3 17.5 |25.0
2 24.7 14.6 44.0 47.7 19.6 24.0 73.0 35.0 (68.9
3 6.1 4.7 9.0 22.6 7.3 17.9 79.1 40.7 77.9
4 3.6 8.5 4.4 17.2 14.3 17.9 82.7 49.1 |182.3,
5 2.5 3.8 1.9 14.4 7.5 10.9 85.2 [52.1 |84.2
6 1.3 2.8 2.2 8.78 5.9 8.9 86.5 55.7 [86.5
7 .8 1.9 1.4 5.9 4.5 4.1 87.3 57.2 |87.9
8 .7 .9 .8 5.5 2 4.8 88.1 58.5 . [88.6
9 .7 .9 .5 5.9 2.9 5.7 88.8 59.5 |89.2
10 3 1.9 .7 2.7 4.6 5.7 89.1 61.3 |[89.9
Number Active Mean Median Standard
Deviation

MP 1,800 18.4 2 73.2
S 103 191.5 6 428.0
PP 1301 19.5 2 93.9

1.

See the note to Table 1.
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short period of time. The modal lifespan was only one year, and the median was about the
same. On the other hand the distribution of lifespans was extremely skewed with a2 mean
of 18.4 years, and a standard deviation of 77.5 years. Those firms which did survive the
initial period went on to be part of the industry for long periods of time. Relatedly, both
mortality and hazard rates decline markedly over the first seven or eight years, giving the
impression that the initial period is a "learning" period (the hazard rates shown in the
table are-estimated; their standard errors being on the order of .005).

Table 3 provides characteristics of the realized values of the firms which
participated. The first point to note is that over 90% of the firms which participated in
this industry had a net loss from their endeavor (generated negative realized values). Most
lose about .2 (the entry fee), but there are those who invest for awhile, never move up the
“quality ladder", and eventually drop out, losing also their investments in the interim.
Among the 9.4% whose realized values were positive, the mean realized value was a very
high 10.1 (recall that the sunk cost of entry was only .2 so this implies a benefit/cost ratio
of 50.5), and the distribution of realized values was very skewed (about 3% of them earned
57% of the total distribution of positive realized values).

These parameter values generate an industry in which it is relatively cheap fo start
up and explore some new idea. Most startups are not successful. The few that are
successful earn, on average, very high rates of return, and even among them the
distribution is very skewed, so that the 2 or 3% most successful earn rates of return that
are really quite phenomenal. Of course eventually even the most proﬁtbable are taken over
by better ideas and find it optimal to exit.

This pattern of high initial mortality rates, and skewed returns and lifespan -
distribution for those few firms who survive the initial high mortality period, has an
analytic counterpart in the shape of the value function for this problem (that function can
be computed directly from the output of the algorithm described in the last section). If we

hold the o's of all competitors constant and compute a section of the value function
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showing how it changes with changes in the firm’s own v, we find it to be initially convex
and then concave in v (for a proof of this property for a simpler problem, see Ericson and
Pakes,1989). Since investment is, roughly speaking, an increasing function of the slope of
the value function, we expect little investment at the initial low values of v. Recall that
the change in v is stochastically increasing in investment, so the low investment levels will
generate a downward drift in v at low s~values, and hence high mortality rates. The odd
entrant whose v does take a sequence of steps upward will begin to invest more, and
continue to increase its investment, with the consequent improvement in the distribution of
the increment’s in the firms’s v, until its » passes the inflection point. From then on
increases in « will be accompanied by falling investment. However, should a firm with high
v drop down to near the inflection point, its investment will start increasing again. Asa
result mortality probabilities for a firm which has developed its v past its inflection point
are very low, and a firm which has become successful is likely to be a profitable actor in the
industry for some time. Note that any problem in which a firm has to develop its product
somewhat before that product can be sucessfully marketed, and in which profits are
bounded, will generate an initial convex, and a final concave, portion to the value function.
So their are a broad variety of functional forms for which we ought to expect high initial
mortality rates, reasonably long lifespans conditional on survival in the high mortality
period, and "coasting" states for very successful firms.

Recall that there is free entry into this industry. As a result, apart from integer
problems, entrants earn, on average, discounted returns that are just equal to the sunk cost
of entry (actually about .26). Of course if one limits themselves to either rates of profit, or
market values, of active firms one obtains an indication of supernormal rates of return (an
average per period profits of 5.42, and an average market value of over 20). This is, of
course, a simple result of the fact that the observed data is dominated by firms which
survived for long periods, and they did indeed earn very high rates of return on their sunk

investments. That is we ought to expect supernormal average returns for active firms even
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in the most "competitive" of industries; for the observed data is selected on the basis of
suCCess.

Tables 4A and 4B (again column MP) provide summary statistics on the
distribution of the one firm concentration ratio, and on price cost ratios, over the 10,000
periods, while figure 1 plots the evolution of the one firm concentration ratio over a period.
Ninety percent of the periods the avergage percentage markup lies between 27 and 44
percent. Accordingly, the industry is most often reasonably fractured. The one firm
concentration ratio averaged .39 in an industry in which there is almost always either three
or four active firms. Periodically, however, a firm will surge ahead of its competitors and
stay there for long periods of time, creating epochs where the industry looks quite
concentrated. For example there is an interval of forty periods between 320 and 360 when
the concentration measure never falls below .4, averages about .6, and even goes through a
10 year stint at .8. For the next 50 periods the concentration ratio never goes above .4 and
is almost always between .3 and .35. Note that these changes in industry structure occur

quite naturally, without any change in the external environment.

B. "Policy Experiments".

Once we have estimates of the relevant parameters, and the ability to compute the
equilibria that result from them, it is easy to perform a host of experiments. This
subsection provides some illustrations. We stress, however, that they are just that
—illustrations. There is little empirical basis for picking the parameters we do, and, not
much analytic knowledge of whether the qualitative results persist under alternatives.
What we are providing is a series of examples of what can happen.

We consider a set of perturbations to the equilibrium just described designed to
investigate the impacts of institutional change on both market structure, and on welfare.
The welfare associated with each different problem is calculated as the discounted sum of

the cash flows accruing to the active firms (profits minus investment), plus the discounted



Table 4A!

One - Firm Concentration Ratios
MP o = .65 x® = 2 PP Coll
.95 guantile .62 .61 .63 1.0 1.0
.90 quantile .5 .5 .63 .84 1.0
.75 quantile .43 .43 .51 .52 .72
.50 quantile .34 .34 .5 .5 .5
.25 quantile .33 .33 .5 46 .5
.10 quantile .26 .3 .34 .33 .33
.05 quantile .25 .25 .53 .33 .33
mean .39 .38 .51 .54 .60
standard deviation | .11 .097 .09 .20 .20

1. See the note to Table 1.




Table 4B?

Price / Cost Ratios

MP o' =.55 | x*=2]| coll.

MAX 2.11 2.21 2.18 1 2.45
.95 1.44 1.48 1l.46 2.34
.90 1.40 1.39 1.46 2.33
.75 1.33 1.33 1.40 2.33
.50 1.30 1.30 1.40 2.33
.25 1.30 1.30 1.40 2.24
.10 1.27 1.27 1.30 2.22
.05 1.27 1.27 1.30 2.20
Min 1.24 1.23 1.27 1.29
Mean 1.33 1.32 1.41 2.30
Standard Deviation .085 .073 . 099 (.089)

1. See the note to Table 1.
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sum of exit fees minus entry costs, plus the consumer surplus generated by the products in

existence in each period. The latter is calculated as
1) f[max(uj—pj+ej)]dG(el,...,en) =logl e.xp(wj—pj)

where the equality is a result of the fact that G(-) is multivariate extreme value (see
McFadden, 1984), and n is the number of active firms in the period.

Recall that for any given institutional environment there will be a distribution of
welfare results (the outcome will depend on the realizations of the investment processes).
As a result we simulate 100 runs for each institutional environment, and then list the
resulting means and standard deviations for; net cash flow to the firms, consumer surplus,
and total welfare.

The initial condition for each institutional environment is an industry started by a
single firm with a new product at an v=w; ie. so=e(wo). In the first example we bestow
monopoly power on the initial entrant for T periods, and allow the free entry Markov
Perfect equilibrium with initial conditon s, +1=e(uT +1) thereafter. Next we consider a
yariant to this case, in which the monopolist is allowed to produce as many products as it
likes. In this case, which we call the perfect cartel, a single decision maker controls the
pricing, investment, entry, and exit decision of each firm (or product). In the third case we
assume an "entry barrier" in the form of a licensing fee which increases the sunk cost of
entry by a factor of ten, from .2 to 2. The fourth case can be viewed either as a regulatory
constraint, or as a reaction of firms to the possibility of future regulatory constraints. In
this case we assume that the firm is constrained to keep its market share below some o* .
Each of these alternatives is comparred both to the original Markov Perfect equilibrium,
and to the market structures and welfare that would be generated by a benevolent social
planner.

A different (and much simpler) algorithm is used to calculate the policy functions
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for the cartel and the social planner. Let B(ul,...,un) be the one period (or current)
benefits to the decision maker when there are n firms active and their efficiencies are
(ul,...,un). The social planner is interested in maximizing social surplus, so it sets each
price equal to the common marginal cost, and then calculates the one period benefits from
the consumer surplus calculation in (1) above. The cartel is interested in maximizing the
discounted sum of the total profits of all firms in the industry. In each period it chooses a
vector of prices to maximize the total profits that could be generated from the n goods
currently marketed and calculates

(2) max Ej M ’(“j’pj;”1""’un’p1""’pn) [pj — mc},

(Pys--sPp)

where a(uj, j;ul,...,un,pl,...,pn), the market share of the jth

good given the prices and
efficiencies of all goods marketed, is calculated as in (I.3) above.

The value function for the planner and the cartel are calculated from the following
recursion. If Vk_l(ul,...,un) is the k—1 iteration of this function, and we have ordered the
v 50 that "’is"’i—l’ then we calculate the kth iteration value function as

3) Vk(ul,...,un) = m“(lgign)vk(ul""’”i)
where

Vk(ul,...,ui) = B(ug,.09) + (n—i)¥ + max

JJ
€ -1, , y € 3 ? e
suP(xl,...xi) - cijj -x + Eij (N )p(ul|u1,x1,v)...p(wilui,xi,v)p(w |v)p(¥) }.

-1 ] ) 1 ) .
{sup(xl’mxi) —cDx. + Eij (ul,...,ui)p(ul|u1,x1,v)...p(ui|wi,xi,v)p(y),

If the first max over i for i€{1,...,n} is i*, then (n—i*) of the incumbents exit. The second
max operator determines whether or not a new product is introduced in the following

period.
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Table § provides the welfare results. We begin by comparring the various
temporary monopolies to the Markov Perfect Nash equilibrium. The columns with the
means of the discounted cash flows, and of the discounted consumer benefits, show that, as
expected, there is a large distributive effect of going from one institutional environment to
another. An infinitely lived monopolist will earn on average about three times as much as
the total discounted net cash flows of all the competitors in a Markov Perfect Nash
equilibrium. However, consumer surplus will be about three times as high when we allow
for free entry. Since the two impacts of monopoly on welfare tend to offset one another,
the total impact on welfare is not as dramatic. Still monopolization does decrease welfare
by about 20%.

At least two caveats should, however, be stressed here. First these institutional
arrangements restrict the monopolist to produce no more than one product. Though,
depending on the source of monopoly power, there may be some limits on the number of
goods a monopolist can market, a limit of one is somewhat artficial. The extreme
alternative is to assume that the monopolist can market as many goods as it likes — but
no one else can enter the industry. The monopolist would then become a perfectly
colluding cartel; a cartel that controlled pricing, investment, and entry and exit decisions
to maximize the sum of the expected discounted values of future net cash flows of all of its
members.

The results of the welfare calculations for this institutional environment are given in
the row labelled "perfect collusion"” in Table 5. As comparred to the single product
monopolist, producer surplus, of course, goes up; but the increase is under 5%. Consumers,
however, now have a choice of products, and this increase in product diversity implies that
the change in institutional structure also generates an increase in consumer surplus; in our
case an increase of almost 20%. So the cartel, or the monopolist who is allowed to market
many products, generates a measure of total welfare that is only 10% lower than the total

welfare generated by the Markov Perfect Nash solution.



Table 5
Social Welfare From
Alternative Market Structures’

Total Firm Consumer Total
Benefits/ Cash Flows Benefits Benefits
Market Structure
Mean | std. Mean | Std. Mean | std.
Dev. Dev. Dev.
Monopoly 207 66 96 17 303 83
20 Year Monopoly 180 57 140 21 320 74
then free entry
10 Year Monopoly 146 54 186 31 331 71
then free entry
Markov-Perfect 70 26 301 65 369 68
Nash
Perfect Collusion 218 55 115 19 332 74
Social Planner / / / / 377 /
¢ = .65 61.7 15.1 289.7 64.4 349.6 | 67.4
¢ = .55 54.4 | 12.0 | 284.8 | 66.1 | 337.5|73.1
sunk Costs = 2 76.5 26.3 293.4 55 361.5 | 69.8




*All calculations are based on 100 simulation runs and the
parameter values in Table 1. Each simulation run uses the
initial condition that there is only one firm active and it
is at o,.

-]

*“Total Benefits are net cash flows plus consumer benefits
minus the discounted value of entry fees minus exit fees (the
latter only make a small contribution to the calculation.)
***The mean of the discounted incremental entry fee is 7.8,
when x! = 2.
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The other point to note here is that the standard deviation of the welfare gains in
any of the institutional regimes is about 20% of the average welfare gain in those regimes.
This is about twice as large as the average difference in welfare between the collusive and
the Markov Perfect regimes, and about the same size as the difference in welfare between
the single product monoplist and the Nash solutions. On average, then, differences in
welfare within any institutional structure are likely to be at least as large as differences
between institutional structures. Such large standard errors provide one good reason for
eschewing case study approaches to analyzing the costs and benefits of different
institutional structures (and, this, even if the case studies compared were laboratory
perfect in the sense that we could insure that technology was exactly the same in the
different cases compared, and only the institution being studied differed).

We now compare these results to the solution to the social planner’s problem.
Recall that in each period the planner chooses all outputs, investments, entry, and exit to
maximize social welfare given the technological constraints that are operative in the
Markov Perfect Nash equilibrium. 7

Perhaps the most striking point to be made here is that in terms of welfare there is
not much difference between the planner’s solution and the Markov—Perfect Nash solution
(the planner does about 2% better). That is for this set of parameters a planner could not
do very much better than the Nash free entry solution. On the other hand the planner
generates a market siructure which is quite different from the Markov Perfect Nash
solution; indeed in many ways the market structure generated by the planner is more
similar to the market structure generated by perfect collusion (see the columns labelled PP,
and Coll.in tables 1 to 4). For example, the entry and exit rates generated by a colluder
are almost the same as those generated by the planner (and these are only three fourths of
the rates generated by the Nash free entry solution), both the colluder and the planner
generate markets where there are typically two or three firm’s active whereas the Nash free

entry solution typically has three or four firms active, and the one firm concentration ratio
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generated by the planner is much closer to that of the colluder than to that of the Nash
solution (though it does fall in between the two). Indeed the only really striking difference

- between the planner’s solution and the collusive solution is in price cost ratios. The
planner’s is one, always. The colluder averages 2.3, a number markedly higher than in any
of the other regimes we examine.

Table 6 sheds some further light on the relationship between the planner’s, the
colluder’s, and the free entry Nash solution. It compares the investment and number of
active firms generated by the alternative institutional environments. The planner typically
markets fewer products, and generates less investment, than the Nash free entry solution.
In the Nash solution the entrant and the investor do not take account of the effect of their
investment and entry decisions on the profits of their competitors, while the planner does.
The planner does, however, generate an equilibrium with both more firms and more
investment than the equilibrium generated by perfect collusion. This because the planner
takes account of the increase in consumer as well as producer surplus generated by entry
(product diversity) and increases in product quality, while the colluder takes account only
of the effect of entry and investment decisions on producer surplus.

Before leaving this comparison we should emphasize that our computations for the
"eollusive" case simply asssumed that there was some outside authority that could insure
that the collusive agreement was maintained (eg. a legal source of monopoly power). We
have not considerred whether one could support such a regime with an implicit system of
punishments (recall that for this type of collusion to be self—sustaining it must alsb deter
all but the collusively optimal entry); so there is a sense in which this is as extreme a
degree of collusion as one could ever find. On the other hand it is not clear that as the
degree of collusion increases the welfare measure decreases, o it might well be that less
collusive institutional structures (say a regime which could control the prices and
investment strategies of incumbents, but could not control entry) would generate lower

welfare.



Table 6

Average Investment and Number of Active Firms
Under Alternative Institutional Arrangements

Investment Active Firms

Markov Perfect Nash 2.57 3.4
' = .65 2.56 3.4
¥ = 2 1.97 2.2
Planner 1.95 2.6
Perfect Collusion 1.75 2.3
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We move next to the results from the simulation experiments in which we set the
upper bound to market share, i.e. U*, to .65. In these runs firms choose prices to maximize
their profits conditional on the price choices of their competitors and the market share
constraint (as a result, firms whose ¢ would induce a market share of .65 or more if there
were no upper bound, choose o increase their price and lose customers). At a*=.65 the
market share constraint has only moderate bite; the unrestricted Markov solution has
about 4% of the observations with ¢ 2 .65, while once we restrict market share firms at
higher values of  invest less 5o that, in the restricted runs, the constraint is binding just
under 1% of the time. The columns labelled v*=.65 in the tables show that the market
structures generated by the model with the market share restriction are very similar to
those generated by the model without it. Indeed, it would be hard to tell the difference
between the two institutional arrangements based on the observables listed in these tables.
On the other hand, though the change in institutional regime has only a small effect on
market structure, it does have a noticeable effect on welfare (welfare falls by over 5%).
Moreover, both components of welfare fall; total firm cash flows and consumer surplus, so
that there is not even a distributive reason for the market share restriction — at least for
this set of parameters. The fall in consumer benefits probably results from the fact that
the market share constraint forces firms with very high  to raise price; as the top 5% of
the price cost margins are higher when the market share restriction is imposed (Table 4B).
Decreasing s 1055 just moves all variables further in the same direction (now the fall in
welfare is about 9%).

What happens if we go back to our base case but increase the sunk cost of entry by
a factor of 10 (from .2 to 2)7 Total net cash flows to producers go up somewhat, but
consumer surplus goes down even more, go that total welfare falls; but only by about 3%.
Indeed if we assume that the incremental sunk costs were institutionally created, had no
administrative costs associated with them, and were recycled to consumers in another form,

then they should be added to the total benefits in the table. When we did this calculation
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we found that there was no effect of the increase in the sunk cost of entry on welfare.

Though this change in sunk costs has only small effects on total welfare, it has
surprisingly dramatic effects on market structure. The columns in Tables 1,2,3,and 4 that
are labelled x®=2 describe the market structures generated by the simulated runs when
sunk costs were set equal to 2. The increase in sunk costs cuts out almost all entry (entry
occurred in about 20% of the time periods in the base case but in only 1% of the cases after
the sunk cost increase), and changes the correlation between entry and exit from positive to
negative. It also generates an equilibrium in which new entrants last much longer (see
Table 2), and the one firm concentration ratio is both much higher (it goes from .39 to .52)
and much more stable over time (its standard deviation goes from .11 to .09). In sum the
increase in sunk cost generates a much more stable and concentrated industry.

Note, however, that the price cost margins are not too different than what they
were under our base case. Indeed the price cost margins are quite similar in all cases in
which there is free entry. The relative constancy of price cost margins, together with the
fact that entry and investment was higher in the free entry Nash than in the social
planner’s solution, provides some indication of why we would not expect welfare to fall too
much as a result of the sunk cost increase. Indeed it is likely that there is a level of
incremental entry costs that generates a larger value for the welfare measure than the free
entry Nash solution does. On the other hand, it could not beat it by much, as the Mardov
Perfect Nash solution is very close to the planner’s solution.

The latter two cases provide an interesting comparison. The effect of the market
share restriction on welfare was large, but its effect on market structure was almost
imperceptible. On the other hand the effect of the increase in sunk costs on market
structure was dramatic, but its effect on welfare was almost imperceptible. It is reasonably
clear then, that once we allow for the complexities of the investment, entry, and exit
processes, there is no simple way to relate changes in the descriptive statistics we generally

use to describe market structure to changes in welfare.
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We conciunde this section by reemphasizing that these results are for a set of
parameter values chosen more or less at random, and we have made no attempt to examine
their robustness. The section was not written to provide a set of policy prescriptions.
Rather we had three more modest goals. The first was to provide an illustration of the
detail that can in fact be generated by simple dynamic equilibrium models with
idiosyncratic uncertainty; detail which is a salient feature of data sets on firms. The
second was o illustrate some of the likely problems with other approaches to the analysis
of industry behavior. Finaly, we hope we have illustrated the potential benefits from
actually going to the data and obtaining reasonably reliable estimates of the primitive

parameters needed to actually analyze the nature of equilibrium in any given industry.

V. Computational Burden and Approximation Techniques.

We begin with a brief discussion of the dimension of the problem that needs to be
computed in order to obtain the optimal policies from the algorithm in section II, and then
move on to a discussion of ways to reduce that computational burden. Our discussion will
be based on the fact that the time required to compute the needed fixed point is roughly
the multiple of: 1) the time per grid point evaluation; 2) the number of grid points
evaluated at each iteration; and 3) the number of iterations until convergence.

An explicit calculation can be provided for the number of grid points that needs to
be evaluated at each iteration. Note first that the number of distinct grid point is KN,
where N is the maximal number of firms ever active in the ergodic distribution. So the
number of distinct grid points grows exponentially in the number of firms (N). Luckily

symmetry, or more precisely exchangeability, implies that
(1) V(vgugmuy) = V(0 7gs-my)s

for any N—1 dimensional vector ¥ = (7,,...,ry) which is a permutation of (Ugreesig)- Tt
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follows that we need not evaluate the value function at each distinct grid point. Indeed the
number of points one needs to evaluate are the number of distinct N—element vectors with
9] 2 U 2 0 and, 0 ¢ < K, for i=1,...,N. The actual number of points that emanate

from such a calculation is given by the following lemma.

2.Lemma.
The number of distinct sequences [ul,...,wN] with v, > ¢;_,, and uiE[O,...,K], say

S(K+1,N), is given by

_ K+N, _ (K + N)!
st = (f= 2 T

Proof. See Pakes (forthcoming) Lemma 32.

Note that Lemma 2 implies that the number of grid points that need to be
evaluated grows as a polynomial in N. The approximation methods we introduce presently
are designed to reduce the number of grid points that need to be evaluated at each
iteration. In particular we will present an approximation technique for which the number
of points that need to be evaluated at each iteration of the fixed point calculation is
independent of the number of firms active in the industry.

Still, at each grid point we do evaluate, we need to evaluate the value function at
every achievable industry structure in the following period. For example, recall that in our
case the outcome of the firm’s research endeavors could lead the firm’s vy to either equal 0
or 1, while the increment in value of the outside alternative could have the same
realizations. So if n is the number of incumbents who remain active, there are 211+1
industry structures to evaluate with no entry, and the same number with entry. Lemma 2

can be used to reduce the number of distinct industry structures that need to be evaluated,
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but we will still be left with a number of structures that grows as a K"h order polynomial
in n. We indicate below how one can adapt a technique due to Kortum(forthcoming) to
reduce the computational burden at each grid point from being polynomial in n to being
linear in n.

We note that the combination of approximation techniques we shall introduce also
make the computational burden of the fixed point calculation independent of the fineness of
the grid (of K in our notation). As a result they could be used to approximate the value
function for problems defined on continuous state spaces (as well as for the discrete
problems discussed here).

As for the third component of the calculation of the required CPU time, the number
of iterations needed for convergence, we expect it to, at least eventually, become
independent of N. As we increase N, the effect of an additional active firm on the value of
being at a particular point ought to diminish, so the final iteration for the value function
calculated at the N—1 firm equilibrium should be closer to the N—firm value {unction we
are looking for.

We calculated 2 to 6 firm equilibria (i.e. N=2,...,6) for different values of the
parameter vector for our example, and found that the computational time for the 6 firm
equilibria was about 5 hours on our sparc 1. The no—entry barrier equilibria value of N for
most of these runs was 6 firms. However the time required to calculate the equilibria went
up by a factor of 5 as we went from an N to an N+1 equilibira. This in spite of the fact
that the number of iterations required before our convergence criteria was met typically got
multiplied by fractions between .5 and .7 when we moved up N in units of one (though this
was more variant between runs). Thus, though the computational techniques discussed
thusfar may suffice for computing equilibria for markets with a small number of agents, we
will need to improve on them in order to analyze many of the markets of interest.

One possible source of improvement is to consider computational techniques that

attempt to reduce the computational burden of obtaining the equilibrium by fitting the
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value function at only a small fraction of the points in S, and then using the information
obtained from those values to predict the value function at other points as needed. More
generally, all we require is an approximation to a function which determines optimal
policies at any point in S, and there are many different ways of doing this. The symposium
in the JEBS (1990) reviews and compares several different approximating techniques in the
context of computing equilibria for a representative agent stochastic growth model. Judd
(1990), sketches a general framework and computes equilibria from models with two agents
(no entry or exit), and Marcet (1990) reviews progress in this field to date.

Many of these techniques fit polynomials in a set of fucntions that span, or form a
basis for, a "rich enough" collection of approximating functions (the Chebyshev or
Legendre polynomials for example) to a small set of points, and then use the fitted
polynomial to predict the other points as needed. We begin by showing how to embed such
approximations into the computational algorithm described in section II.

The heterogeneous agent problems we are interested in are by nature
multidimensional, the dimensionality of the state vector for any given agent going up with
the number of other agents active in the market.? So our polynomial approximating
functions will be maps from QN into R. A function f which takes ﬂN into R is a polynomial

of order X if for all ueQN

A p-ih P N
A R e 1 h
(3) fopig) = 3, N, - Z afby byl 1 0N
p=0 hN=0 h1=0
Al
=) cfb)e(h)
N
heH

"Throughout we will consider the case where N, the least upper bound to the number of
agents ever active in a given period, is less than or equal to K = #. In this case the
dimensionality of the state vector is smaller when we calculate value functions as a
function of the vector of v values of all active agents. When N > K, use of a counting
measure on { as the state vector minimizes the dimensionality of the state space.
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where h={hy,...hy }eH, HN={he 2 : Thi<)}, and ofb)eR™ for all h € BN,

The collection of all such polynomials (obtained by varying a), together with the
usual operations of addition and scalar multiplication, is a vector space (over the real
numbers), say 76‘ A basis for this vector space is the set of tensor products of the ulil(i)
with h varied over il (see Hoffman and Kunze,1972,section 5.6). These are just the
functions implicit in the «(h) in equation (3). Though we do not pursue it here, the
following discussion could be generalized by looking for an approximation in a vector space
spanned by the tensor products of in g(ui) for suitably chosen g(-).

The iterative procedure used to calculate the fixed point defining the value function
for our problem can be modified to find an approximating polynomial, a {/e ¥, as follows.
Define a set of basis points, say u(j)eQN, for j=1,2,.... I there are J basis functions, the
basis points must generate at least J linearly independent values for those functions.
Starting at some initial guess for the vector a, let the estimate of the coefficients at the

th

k—1"" iteration of the recursive calculation be ak_l. Now calculate the value function at

the basis points by substituting
Tk=1; .. o, k=1
(4 V7)) = W) e

into the k*! iteration of the recursive calculation in (11.1a). (II.1b) then produces an xk,
which when substituted back into the (II.1a) that used vkl produces a new value
function, say V*k(- ), at each of the basis points. We choose o to minimize the Euclidean
distance between v’ ak and V*k(-) at the basis points. That is, if W is the matrix formed

from the rows v(j),
) & = wwtwovek,

This procedure can be generalized slightly by approximating a montone function of V(-) by
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a polynomial in the basis functions, instead of approximating V(- ) itself.

Without further restrictions the number of functions needed to form a basis for 7,
and hence the minimum number of points at which we need to fit the value function for
this approximation, still grows as a polynomial in N. However, we have not yet used the
fact that the value function is exchangeable in the vector (u2,...,uN). If we restrict our

search to the subspace of 3 that satisfy the restriction that, for all uNenN,
(6) V(ul;u2,...,uN) = V(vimgnmy)s

for any N-1 dimensional vector 1 = (m,...,my) which is a permutation of (uz,...,wN), we
reduce the number of required basis functions dramatically. Indeed, provided N24, the
number of required basis functions becomes independent of N. That is the content of the

following theorum.

7. Theorem
The space of polynomials of order ) satisfying equation 6, together with the usual
operations of addition and scalar multiplication, is a vector space, say 7/5; C 7f\, with

dimension
(&) dim BT8P A@)=u(N),

where a(i) is the number of partitions of the number i (see below). Further, (8) holds with

equality if N>X. Note that ¢()) is independent of N.

)
-y
S
8

The fact that addition and scalar multiplication preserves partial exchanageability

proves that the subspace of functions satisfying (6) is a vector space. The proof of (8) is a
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result of the following lemma.

9. Lemma (proved in Appendix 1 of Pakes, 1991).
Anfe 7; is also a member of 75 g, if and only if for all heHN,

af(hl;hZ"“"hN) = ai(h1;7r2""”rN)'
for any ("2"""7"N) which is a permutation of (hz"“'hN)' o

Define m j(h) to be the jth largest element in the vector (h2""’hN) for j=1,...,N—1
(using any tiebreaking rule that preserves the natural order of pairs that are ordered).
Then the lemma implies that we can form a basis for # é’by simply adding together the

basis functions from 73 that have

af(hl;h2,...,hN) = af(hl;mz,...,mN),

for each distinct value of the vector (hl’m2""’mN)' What remains is to determine the
number of distinct a coefficients this generates. Let p(h) be the order of the basis function
corresponding to a{h), that is p(h) = EZh(i). Then the number of distinct a coefficients
generated by h vectors with p(h) = p, 2nd a particular value of h, is the number of ways
the number p—h1 can be allocated among N—1 locations (without regard to order). If
N>A>p-h, this is simply the number of partitions of p—hl, or A(p—hl) (see below).
Consequently, the number of distinct « coefficients required to generate all distinct

coefficients for the pth order basis functions is ¥(p), where

"
¥(p) = 3, a(0)
{0
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@(}) is derived by summing this equation over p=0,1,...,A. 0

Note that the theorum applies to polynomial approximations to any function which
satisfies the exchangeability restriction in (6), and need not be used solely for
approximating value functions emanating from dynamic stochastic equilibria with
heterogeneous agents. For example, Berry, Levinsohn, and Pakes {1991) show how to use
Theorum 9 to reduce the dimensionality of polynomial approximations to optimal
instrument vectors in estimation problems emanating from Nash Equilibria (see
Chamberlain, 1990, for the development of the optimal instrument formula, and
Newey,1990, for the use of standard polynomial approximations to them; the example used
in the Berry, Levinsohn and Pakes paper is estimation of a generalized version of the
differentiated product model discussed in Section I of this paper).

We now provide a set of basis functions for % & The two distinct first order

coefficients implied by the theorum are
«1;0,...,0), and of0;1,0,...,0).
Consequently the basis functions associated with these coefficients are
¢y, and Ei:?. .
The four distinct second order coefficients are

2(2;0,...), o(1;1,0,...), a(0;1,1,...), and af0;2,0,...)

" with basis functions
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uf, 0121_2 ¥, E _2212__2441 u2 and 2 2u?.
‘More generally, the a(p—j) pth order coefficients with h1= jare
ofjip=i,0,...), a{fip—i~1,1,0,...), ofiip—-2,2,0,0,-..),

o(iip—21,1,0,) ey @(§i1,1,01,0,.),

with associated basis functions

N
PWY b~ WY Bl h—;,—2 2
“1 _AZ.{ i o9 AZJ >|l 11 1 } 01 2 2
i=2 i1=2
jz‘ A A P2 iy 3
v m U G ey 038 LD 0 0
144 J PR 15 19" "171 i 1,
{22 = i=a b 27 1l

The general formula for a(q) requires fairly detailed notation (see, for eg.,
Abramowitz and Stegum, 1972, p. 825; it is a sum of Stirling numbers of the second kind).
For convenience, we provide a listing of A(q) and ¢(q) for q=1,...,12, in Table 7.

Recall that if a A—order polynomial is a good approximation to the value function,
then we need only calculate the value function at ¢()) points. Table 7 indicates that
¥(12)=854. For comparison, the pointwise technique used to calculate the results reported
earlier required calculating the value function at 639,000 points; and this for a vector of
parameters that generated an ergodic distribution of industry structures with an upper
bound of six active firms. Thus, at least for industries with a moderate number of firms,

polyromial approximations restricted to the subspace of exchangeable polynomials should



Table 7

Number of Basis Functions for g'" Order Exchangeable

Polynomials
q A(q) e(q)
0 1 1
1 2 3
2 3 7
3 4 14
4 5 26
5 7 45
6 11 75
7 15 120
8 21 186
9 30 276
10 41 407
11 55 593
12 75 854
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allow us to cut the number of points at which we evaluate the value function by several
orders of magnitude.

A numerical test of the quality of the approximation from the exchangeable basis
can be obtained by simply fitting the calculated value function for one or more of our
examples to the exchangeable basis, and then considerring how "good" a fit one obtains.
We now provide a brief summary of our results from these tests to date. It works out that
just how well the approximation does depends on both the metric we use (that is on what
we are most interested in fitting), and on details of how the approximation is done, so a full
analysis of our results will have to await a separate paper.

Pakes (forthcoming) reports on the fit of the value function per se from such an
approximation. The results were encouraging for two reasons. First the measure of fit
obtained from the exchangeable basis for a given order of approximation was, as the
theorum suggests it should be, pretty much independent of the number of firms active in
the market. Second, the results were not noticeably different when, instead of fitting the
coefficients by projecting the calculated value function at all grid points onto the
exchangeable basis, we fit the polynomial to a small number of points first (the points that
were mod 3 in the vector sense) and then used the resulting coefficient estimates to predict
the value function on the entire set of grid points.

Qur primary interest is not in reproducing the value functions per se, but rather in
reproducing the policies that those value functions imply. We have not yet fit the
polynomial approximating technique into the recursive fixed point algorithm, so we have
no clear answer to how well the approximating technique does in this regard. We have,
however, found the policies generated by the approximated value function obtained from
projecting the actual value function onto the exchangeable polynomial basis. The recursive
algorithm would then use these policies as input into a second step approximation to the
value function, and then iterate on this procedure. The iterative procedure is likely to

generate an internal consistency between the errors in the approximating functions and the
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errors in the policies that will be absent in our one step procedure.

The results from the one step procedure were better for investment, than for entry
and exit. Largely this is because the investment policy is a smooth functional of the value
function, whereas entry and exit policies are, by their very nature, discrete responses. Of
course some averaging over time goes on for the exit and entry policies, so that if entry is
missed in one period, it may well be compensated for in the next, but at least in some
respects the impacts of these errors did not seem to "average out" over the 10,000
simulated periods. For example the approximated policies for the base case discussed in
the last section had about 15% of the equilibrium points with 5 or more firms active, while
the actual base case had 5 or more firms active in only 3% of the cases. On the other hand
the approximations generated simulations that were almost exactly on the mark for total
investment, the average price—cost ratio, the average of the share of the largest firm, and
the welfare measures. So if it were these latter statistics that one were interested in, the
approximation error would have been acceptable. We note again that one might do better
on the entry and exit policies by fitting the polynomial approximation technique directly
into the recursive calculation, and that there are many details of the approximation
technique that can be varied in order to try to improve its performance, so these results
should be treated as preliminary.

Recall that the CPU time required to compute the value function is a product of;
the number of points evaluated at each iteration, the time per point evaluated, and the
number of iterations required before convergence. The approximation techniques discussed
above have shown how to reduce the dimensionality of the number of points we need to
evaluate at each iteration. However, without further development they will actually
increase the complexity of the computation needed at each poiut evaluated. The reason is
that at each point we evaluate we require the integral of the value function over the states
achievable from that point in the next period, and use of the approximation implies that

the values of the value function required for the integrand in this computation must be
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computed as a product of basis functions and polynomial coefficients (instead of just calling
them up from memory, which is what is done when we calculate the value function
pointwise).

We now show how to decrease the computational burden at each grid point by
adapting a computational suggestion due to Kortum (forthcoming) to heterogeneous agent
models. To begin, note that using our approximation the k—lth iteration of the recursive

calculation produces a value function which can be written as
k—1 A

(10) VT (wgsugety) = E‘P( ) gk ' bl(ul’“’z' 9p)

where
2
o= (wi,ui,...w’i‘).

Our problem is that we need to have an expression for

k-1, , k-1

(11) Eui’mux,lv (ul;uz,...,ul’l)p(wil (dl,xl,l/)p(a;éh.;z,x2 )+ (o loy u)p(v).
Let
(12) I (UI,XI,V) =z ‘”' p(”l ! lxy)r and ﬂ(” )xlfv) _[l‘ (” ¥ ”)1 of (ul,xl,v)]

Then (10) and the fact that the basis functions are all sums of polynomials in [ul,u2,...,un]

implies that (11) can be written as

(13) 35,2900 o5 fuly x;,0) 0 0, iyl YIR()-

Note that to obtain (13) as a function of x, we have to use the moment generating
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function for the ' to compute (n—1)A moments. Given those moments we can obtain the
Kuhn Tucker solution for xli‘(ul,...un) without explicitly calculating the value of V(-) at all
possible future industry structures. So this procedure does away with the need to evaluate
each possible future industry structure at each grid point, and replaces it with a need to
calculate the A(n—1) moments of the incumbents state variable. As a result the
computational burden at each grid point changes from being polynomial to being linear in
the number of active firms. If there are a large number of active firms this will make the
computational burden at each grid point smaller using the exchangeable basis of
polynomials then in the pointwise calculations. Just how much savings one gets depends
on how difficult it is to calculate the vectors p{w,x,v), and this is where a judicious choice
of functional forms for the family P might be helpful.

At least two further points on the computational approximation should be
mentionned. First note that once we move to the exchangeable basis of polynomials and
adapt Kortum’s suggestion for replacing the pointwise calculation of possible future values
with calculations of the moments of those values, the computational burden of the
algorithm becomes independent of the fineness of the grid (in our notation, of K). That is
K is relevant only in as much as it effects the computation of the moments in (13). If we
were to choose a P which generates an analytic expression for g(v,x,v), then K would be
entirely irrelevant (at least from a computational point of view we could, for example,
allow the underlying state space to be continuous). Second, we have ignored the possibility
of using policy iterations at each iterative step of the calculations to decrease the number
of iterations needed before convergence. Since, at least for industries which
characteristically have a large number of active firms, the major computational burden of
our technique is in obtaining the policies at each grid point, iterating on the given policy is
likely to be particularly helpful in reducing the computational burden of our algorithm.
Moreover use of the

moment’s in (13), instead of the actual values of the v, should also allow us to reduce the
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computational burden of the policy iterations (see Kortum,forthcoming, for a detailed

discussion).

V1. Summary.
This paper has developed a simple algorithm for computing Markov Perfect Nash

Equilibria and applied it to analyzing the effect of different regulatory structures in a
differentiated products version of the Ericson Pakes model of industry dynamics. The
advantage of the Markov Perfect framework is that it is flexible enough to allow for
heterogeneity among firms and serially firm specific sources of randomness. This allows
models based or it to reproduce the differences in outcome paths that are both so much a
feature of firm level data sets, and so integral to our understanding of the impacts of
environmental changes on industry behavior and performance (see the introduction).

The allowance for difference in outcome paths also explains the richness of the
descriptive results generated by the model of section III. The Markov Perfect Nash model
computed their is only one of several that could be computed using our algorithm, and the
relavant model undoubtedly depends on the industry to be analyzed. The model of section
1II was developed primarily to analyze industries in which the outcomes of research and
exploration processes are important sources of the differences that develop among firms.
The numerical results are quite detailed and serve to illustrate the relationship between
observable magnitudes, welfare results, and policy alternatives in a much more realistic
setting than could have been investigated using analytic techniques. On the other hand
those results are dependent on the particular range of parameter values analyzed in section
IT1, and this was a range of parameter values that generated industry structures which
typcially had only a small number of firms active; too small to match the data for many of
the industries we might want to analyze.

Moreover for exact pointwise calculations the computational burden of our

algorithm grows as a (high order) polynomial in the number of firms ever simultaneously
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active. To enable us to use our techniques to compute equilibria for parameter values that
are apporpriate for larger industries we developed a modification to our algorithm that is
based on a polynomial approximation to the value function. Here we showed that provided
the value function is exchangeable in the state vectors of a firm’s competitors the number
of basis functions one needs for a given order of pelynomial approximation is independent
of the number of agents active in a given market (and is in fact quite small). This together
with an adaptation of a moment generating function technique developed for representative
agent models by Kortum(forthcoming) ought, at least in principal, to allow us to compute

equilibria for large industries relatively quickly.
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