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Eastern Data and Western Attitudes
by

Edward E. Leamer®

Empirical studies of the Eastern European economies for the
foreseeable future will have to make due with data sets that are limited
in terms of quantity, quality and relevance. Facing this scarcity of
useful data, analysts will have to import data from analogous Western
countries. Many of these imports will be buried in the baggage of ideas
that Western economists have formed from observation of Western
economies. These hidden stowaway ideas will make it difficult to
evaluate the inferences that Western economists draw from Eastern data.
We will be forced to guess if an analyst is acting as if Hungary is more
analogous to Austria or more analogous to Spain. It may be better to
pool Western with Eastern data in a formal econometric way, and thereby
to develop a language that facilitates the conversation about the
strength and the importance of the analogies on which the pooling
depends.

This paper proposes an econometric method of pooling Western and
Eastern data for the estimation of a linear regression model. The
method is Bayesian and uses prior information about the regression
coefficients. The pooled estimates depend on three parameters:(l) 4,
the lack of confidence in Western attitudes, (2) p, the degree of
similarity of Western and Eastern economic structures, and (3) A, the
amount of contamination in the Eastern and Western data caused by

measurement errors, left-out variables, simultaneity and the like.




Assumptions about these three items will be necessary whenever
data sets are pooled whether formally or informally. The formal
treatment suggested in this paper is simple and direct. It makes
obvious how the pooling depends on these three assumptions. The
simplicity and transparency of this framework should facilitate the
conversation that ought to occur about the role that Western and Eastern
analogies play in Eastern policymaking.

But a formal approach is not without serious shortcomings. A
formal analysis requires more work. More importantly, mathematical,
numerical and cognitive limitations dictate great simplifications and a
high degree of inflexibility in a formal approach. Though analyzing
Eastern data will necessarily depend on the confidence in Western
attitudes, the degree of similarity of the structures and the amount of
experimental contamination, these vague concepts are translated into a
precise mathematical model for inference in a way that may leave you so
uncomfortable that the mathematics impedes the conversation. Ultimately
it is up to the consumer to decide if the cost in terms of inflexibility
is worth the increase in clarity.

The principal methodological contribution of this paper is the
addition of the experimental bias parameters into the pooling problem.
The traditional econometric methods of pooling data sets are intended to
deal with data that are limited in terms of quantity, but not in terms
of quality and relevance. The experimental blas parameters allow the
data sets to be of doubtful relevance and quality.

The traditional methods for pooling data sets use the random
coefficients model in which parameters applying to different experiments

are treated as if they were a random sample out of a population.



Methods such as "the random coefficients model", "Type II Analysis of
Variance", "Bayes" or "empirical Bayes" differ primarily in how they
treat uncertainty about the hypothetical population of parameters. For
example, Aigner and Leamer(1984), use an empirical Bayes approach to
pool time-of-use pricing experiments that were performed by different
electric utilities. DeMouchel and Harris(1981) use Bayes and empirical
Bayes approaches to "combine cancer experiments in man and other
species".

These approaches generally presume that the data are perfect in
quality and relevance. Another tradition deals with dubious data by
referring to errors in measurement in the variables. Measurement error
causes bias in the estimates of regression coefficients, which can be
corrected only given some information about the probable amount of the
measurement errors. Absent that additional information, the model is
underidentified and a data set admits a set of equally good estimates -
the so-called errors-in-variables bound. See for example, Leamer(1987),
Klepper and Leamer(1984), Aigner et. al. (1984) and Patefield(1981).

In a companion paper, lLeamer(1991) directly combines these two
statistical traditions to deal with data sets that are both brief and
noisy, but with identical structures and no prior information. The
errors-in-variable model is complex to begin with and when it is
combined with the random coefficients model which would allow
differences in structures, the analysis becomes quite difficult. 1In
this paper, the errors-in-variable model is reparameterized to allow a
somewhat easier treatment. The explanatory variables are entered twice

in the regression model, once to represent the "true® or "structural”

coefficients and a second time to represent the experimental bias




associated with measurement errors, and other statistical problems that
cause bias. This "contaminated" regression model has been used by
Leamer(1974) and Leamer(1978) to discuss data-instigated models.

Traditionally, errors-in-variables issues would be analyzed with a
measurement model and prior information about the bias would be entered
indirectly through prior information about the signal to noise ratio in
the measurement model. Here the path is the opposite direction. Prior
information about the signal to noise ratio is being introduced
implicitly through prior information about the bias parameters. The
choice of approach depends on economy and accuracy. It is clearly more
economical to use the bias parameters rather than the signal-to-noise
ratios since the econometric procedures that refer to bias parameters
are an order of magnitude easier than procedures that refer to a
measurement model. But accuracy is another matter. If your prior
information refers directly to signal-to-noise ratios, you may find it
very difficult to think about the blas parameters which are complicated
functions of the signal and noise covariance matrices.

The symbols that represent the three critical inputs are (1) &,
the doubt about the prior (2) p , the structural similarity,and (3) A,
the experimental bias. The traditional pooling model uses the data to
estimate p, the degree of similarity in the structural parameters, but
takes special values of 6 and A\;: 6 =~ » (No prior information), and Ay
= 0 (No experimental bias).

Doubt about the values of these "hyperparameters" can be treated
either with a sensitivity analysis or with an estimation approach. The
discussion that follows presumes that there are only two data sets to be

pooled.z With a sample size of only two it is impossible with accuracy



to infer much about the distribution from which the regression
parameters are drawn and a sensitivity analysis may be the preferred
approach. Both Bayesién estimation of these hyperparameters and also
sensitivity analysis are proposed.

The method is illustrated by a study of the determinants of the
growth rates of developed and developing countries. These two data
subsets yield estimates that are very similar, which makes the results
not very sensitive to the form of pooling and which points toward low
experimental bias and a high degree of similarity.

1.0 Bayesian pooling of contaminated data sets

A Bayesian approach for the pooling of contaminated data sets
makes use of the contaminated regression model:

y, =X B, +X 8, +¢ i=1,2

e, ~ N(O, 0’1)
where y, is an nx1 vector of observations of the "dependent” variable,
X is an n, Xk matrix of observations of the k "explanatory" variables,
B is the kxl vector of "true" parameters and ¢ is the kxl bias vector
representing the experimental contamination due to measurement errors or
any other statistical pathologies. This model suffers from an extreme
multicollinearity problem: all the variables enter twice, once to
capture the structural effects f and again to capture the experimental
contamination §. The informational deficiencies of this underidentified
model can be overcome by supplementing the data information with prior
information. The prior that seems natural should embody the ideas that

the experimental contamination is probably small, and that the

structural parameters are probably similar in the two data sets.



Smallness of the experimental contamination can be captured with a prior
located at the origin:

6, ~ N(O, V),
where V1 is the prior covariance matrix, the smaller its value the
smaller is the probable experimental contamination. A prior for the
structural parameters that captures information about their probable
sizes as well as the idea that they are similar is the normal

distribution
MR
- K( , )
B, P LU
Here the parameter p is the correlation of the structural parameters
across the two data sets, the vectors p represent the most likely values
of these structural parameters and the covariance matrix U measures the
likely departures from p. Incidentally, this parameterization allows a
relative lack of information about the values of B but confidence that
B, - B, is small. This can be accomplished by selecting a large value
of U and a value of p close to one such that Var(ﬂ1 - ﬂz) = 2U(1l-p) is

small.

With these as the elements, the full prior covariance matrix takes

the form
B, U pU 0 0
B, pU U 0 0
\Y = Var( ) =
6, 0 0 v, 0
f, 0 0 0 v,

The corresponding sample precision matrix is
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( X,'X /0, 0 X, ‘X /o, 0

2 , 2
. 0 X,'X,/0, 0 X,'X,/0,
2 2 !
X'X /0% 0 X,'X,/0, 0
2 , 2
L 0 Xz’Xz/az 0 Xz Xz/a2

and the sample cross-product matrix is
[ X,'y./0,]
X,'y,/%"

' 2
X'y\/o

=

2
X,'y,/9,

If we denote the stacked vector of parameters by v:

By P
g
- | E(y) -
01
4 0

2
the Bayesian posterior moments are(e.g. Leamer(1978, p.78)):
ECv |y, X 9, X0 0% 0 = (N+VH M+ VIE() ) (1)
Var( v | ¥, X 3,0 Xy, alz, azz) = (N+VH? (2)
These two posterior moments condition on the residual variances
‘712 and azz, which rarely would be known. A prior distribution for these
parameters is required to deal with the uncertain case, but,
unfortunately, there is no prior distribution that leads to a tractable
nonapproximate posterior distribution. A traditional prior distribution

2

would be the product of gamma distributions on ¢,"2 and 0, . Then after

1
integrating these parameters from the likelihood function, the posterior
is the product of a Student distribution for (pl,ol) times a Student
distribution for (ﬂz,oz) times the normal prior for (ﬂl,ﬂl,ﬂz,ﬁz). This

complicated density can have many modes but will look like a unimodal




normal distribution if the two Student pieces are approximately normal.
This occurs when the data and prior combine to firmly establish the
values of of and az2 and we then revert approximately to the former case

of known ¢.? and azz. In this paper, I will act as if the values of a:

1
and a; can be accurately estimated from the data and treated as known.
The estimates that I will use are:

02 = 3, (I-X,(X,"X) X, )3,/ (n, k) | )
where n, is the dimension of y, and k is the dimension of 8. An
improved approximation would make use of the prior information about the
slope parameters and use the (iterative) estimate

o = (y,- X, B)'(v,- X, B/, (4)
where ﬁx is evaluated at, or at least near, the posterior mode. The
approximation (3) will be accurate if (3) and (4) are not very different
and if the degrees of freedom n,-k are both adequately large.
Sensitivity Analysis.

It is highly unlikely that the prior parameters (U, p, Vie V,, P)
could be chosen with complete confidence. If the data are not
sufficiently informative about these parameters a sensitivity analysis
is required to identify those inferences that are too sensitive to the
choice of prior to be taken seriously. The sensitivity analysis is
facilitated if the number of prior parameters is reduced. A natural
constraint is

vV, = AU,

1 i
where ), measures the relative importance of experimental contamination.
Furthermore, since it will be difficult to carry on a sensitivity

analysis for all elements of the prior covariance matrix U, it seems

better only to perturb U by a scalar §:



U -8y,

Thus for this sensitivity analysis the initial prior covariance matrix
U, and the vector of prior means p are taken as given and the scalars
AL A, 8 and p are perturbed.

To decide if an inference is excessively sensitive to the choice
of these parameters we need to select an sensible amount of perturbation
which requires clear thinking about the meaning of each parameter. The
parameter & 1s a discount rate applicable to the prior information.
Formally, it is the factor by which the prior standard errors are
multiplied. A value of § = 1 selects the initial prior covariance
matrix. A value of 6 = 2 selects a prior covariance matrix with
standard errors multiplied by two. A range of 1/4 < 6§ < 4 seems like a
large range.

The parameter p measures the similarity of the structural
parameters across data sets. Though this correlation could be negative,
it is unlikely that there would be many settings in which that would be
a sensible choice. For that matter, the reason for pooling must be that
the structures are adequately similar and values of p in excess of .5
see, seem sensible.

To think about the choice of A it is instructive to consider the

problem of a single contaminated data set. Then the posterior mean is a
weighted average of the prior mean p and the OLS estimate with weights
that depend on },. In the next paragraph it is shown that, as the
sample size increases, the weights on prior and sample converge
respectively to A‘/(1+A1) and 1/(1+X1). Thus Ai measures the resistance

to the new information: the larger is the value of A, the less weight

is put on the sample result asymptotically. The traditional value is A




= 0, meaning that in a sufficiently large sample, the prior is
altogether discarded. A value of X, equal to one selects a degree of
experimental error that asymptotically assigns half the weight to the
prior and half to the data.

To show the influence of A, as the sample size grows, we may
explore the contaminated model with a single data set. Leamer(1978,
PP.295-299) reports the following posterior mean:

EB| y,, X) =D (U p 4 [N, - NN + ATUDHTR] D)
where b1 is the OLS estimate (xl'xl)'lxl'yl, N1 - x1’X1/°1' and D = U! +

N, - N(N + Aqu'U-l N, vhere N, - Xl'xl/alz. In words, the posterior

1
mean is a weighted average of the prior mean and the sample estimate.
If there were no contamination, that is if A -0, then the weight on the
prior would be the prior precision U™} and the weight on the data would
be the data precision N,. The effect of the sample contamination is to
reduce the sample weight to [N, - N (N, + X;qU-lfd N ]

= NN+ AT+ AT - N = (TN, DT Y Thus as the
sample size grows in the sense that Al'ﬁfINfl converges to the zero
matrix, the weight on the sample converges to A;luﬂ, compared with the
sample-independent weight on the prior of U™},

Estimation

The prior parameters A, A,, 6§ and p can be perturbed to see how

2
much they matter. They can also be estimated since there is at least
some sample information about their values. For example, if the two
ordinary least squares estimates are both very precise and very
different, the data are incompatible with the assumption that the

parameters are very similar (p = 0) and without experimental error

(A,=0).
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The posterior distribution for a parameter is proportional to the
product of the prior times the marginal likelihood

f(yx'yz' Xy X Ay Ay 6, 00)
which is the joint marginal density for ¥,»Y, evaluated at the sample
values. The label "marginal likelihood" refers to the fact that the
parameters f and # have been integrated from the likelihood function.
This integration is rather easily accomplished. We may stack the model

to form:

DO DR IR
y,/ 9, 0 X,/0, Bt0, €,/ 9,
which in obvious notation can be written as:
Y~Xy +E
Then given the normal prior distribution for the vector y, the marginal
distribution for Y is normal with mean and covariance
E(Y) - XE(vY), Var(Y) = X Var(y")X' + I.
The corresponding marginal likelihood is therefore:
£(Y|X,2,,2,,6,0) « |[Var(¥)|™2exp(- (Y-XE(7™)) " [Var(¥) ] M(¥-XE(v*))/2) (4)

where the dependence of this statistic on the parameters A, Ay, 6, and

20
p is implicit (Var(Y) depends on them.).

This marginal likelihood involves the inverse and determinant of a
high-dimensional matrix, a calculation which stretches the computing
capacity of most machines. The dimensionality of the problem can be
reduced using the following matrix results:

[Var(¥)| = [X Var(x")X' + I| = [Var(v*)| | [Var(z%)) + x'X |

(Var(¥)] = I - X ([Var(y"))t + X'5)! X*

11
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Using these formulae one needs to compute inverses and determinants of
matrices of order 2k where k is the number of variables. This contrasts
with Var(Y) which is of order n+ n, where n is the number of

i

observations of type 1. Typically n+ n, is a much larger number than

2
2k.

The covariance matrix of the parameters can be expressed in

Kronecker notation as Var(7*) - (A Q® Uo) 62, where

1+)‘1 P
A=
P 1+A2

With A a 2x2 matrix and U, a 7x7 matrix, results on Kronecker products
imply

[Var(y)| =|a @ U, 62| = |a]7[U,|? 6% = [(1-p%)A2,)7|U,|2 6%

[Var(m) ™t = At e U™ 672
2.0 An Example: The Convergence Hypothesis

In a companion paper, Leamer(1991) has studied the determinants of
the growth rate of per capita GNP using a cross-section of countries as
has been done by Barro(1991). That paper deals with the incompatibility
of the developed country and developing country subsamples using an
errors-in-variables approach but with the assumption that the regression
coefficients are the same in both subsamples. Here we combine errors-
in-variables concerns with doubt about the similarity of the
coefficients. Doubt about the similarity of coefficients is expressed
with a random coefficients model that allows variability of regression
parameters across observational units. Errors-in-variables concerns
enter through a bias parameter vector.

Table 1 contains a list of variables together with various summary

statistics. The dependent variable is the average annual growth rate of
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real per capita gross domestic product from 1960 to 1985. The 98
countries that form the data set grew 2.2 per cent per annum on the
average. The lowest per capita growth rate was minus 1.7 per cent; the
highest was 7.4 per cent. Seven variables are hypothesized to determine
the growth rate. A variable of special interest is the initial per
capita GDP which is the focus of the convergence literature. A negative
coefficient on initial GDP would indicate that countries which are
initially ahead tend to grow more slowly; thus there is convergence of
per capita GDP. Barro chooses to control for a number of other effects
including school enrollment rates, government expenditures, frequency of
revolutions and coups, frequency of assassinations and last a measure of
macro-economic disequilibrium - the deviation of investment prices from
their mean.

Table 2 contains the prior parameters and the OLS estimates of
this model. The prior means and standard errors in the first column
were chosen to approximate the author's state of mind prior to analyzing
this data set. The coefficient of -0.01 on GDP60 means that it would
take a change of initial per capita GDP by 1($1000) to change the growth
rate by .01(1 per cent). Similarly, it would take a 10 per cent change
in the secondary school enrollment rate, or a 20 per cent change in the
primary school enrollment rate, or a 100 per cent in the share of
government, or .l more revolutions per year or 1 more assassinations per
year to alter the growth rate by .0l (1 per cent). As I think of this,
I am revealing an attitude that the measured share of government
probably doesn't matter very much but that political upheavals do matter
a lot. Prior standard errors are all set equal to the prior means to

suggest a fair degree of confidence in the sign of the coefficients.
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The pooled OLS estimates are smaller than the prior means, but all
the same sign. The exception is the coefficient on government, which is
more than ten times as large as the prior. The other big differences
are the coefficients on revolutions and assassinations which are a very
small fraction of the prior means. Thus the data seem to want to make
me change my mind: government matters more than I thought; revolutions
and assassinations don't matter as much.

The regressions on subsets of the data are remarkably similar.

The developed country estimates are almost all slightly smaller than the
developing country estimates. One exception is the coefficient on
government expenditures which is much smaller for the developed than the
developing countries. Perusal of Table 2 thus suggests one puzzle: what
is the size of the government effect? Are there assumptions that could
justify an estimate as big as the pooled OLS of -0.13 or the even
greater developing-country OLS of -0.16? Why is the estimate for the
developed countries so much smaller (-0.04)?

Various Bayes estimates are reported in Tables 3, 4, and 5. These
three tables indicate respectively how the Bayes estimates depend on the
three critical inputs: (1) Inaccuracy of the prior information (&8); (2)
experimental contamination (A1 and Az); and (3) structural
similarity(p). The central case around which the sensitivity analysis
is performed uses the prior inaccuracy defined by the standard errors in
Table 2 (6=1), a significant amount of experimental bias (Al- Az-l) and
a moderate degree of structural similarity (p = .5).

Table 3 is designed to demonstrate the sensitivity of the
estimates to the choice of 8, the factor that multiplies the prior

covariance matrix. A large value of 6 indicates relatively little
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confidence in the prior estimates. The first column of numbers in Table
3 has the prior estimates which apply if the prior is taken to be exact,
6§ =0, Noté that the estimates are then the same for both developed and
developing countries. The last column contains the separate OLS
regressions, applicable if the prior i{s fully diluted (6 = =) but also
if there is no structural similarity (p=0) and no experimental
contamination A = 0.

The central case is reported in the column headed by § ~ 1. These
numbers might be compared with the pooled OLS estimates reported in
Table 3. Although the Bayes estimates for the two subsets are very
similar, they are very different from the pooled OLS estimates in the
sense that eight of the fourteen Bayes estimates are outside the two-
standard error confidence sets around the pooled OLS estimates. The
Bayes estimate of the effect of govermment expenditure, in particular,
is much smaller than the pooled QLS estimate.

Nothing very dramatic happens as the inaccuracy of the prior
information is increased or diluted. In particular, diluting the prior
does not uniformly increase the size of the coefficient on government
expenditure. This table indicates generally that the greatest
departures from the pooled OLS estimates occur when the prior estimates
are held with great confidence (small 6). This need not have been the
case, and is not the case for some of the coefficients.,

Table 4 has the Bayes estimates for different values of the
experimental bias parameters: A, (developed) and A, (developing). Note
that the middle column of this table is the same as the middle column in

Table 3. For the reasons discussed above, a value of A equal to one

indicates that the prior and data will be equally weighted if the sample
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size is infinite. A value equal to 10 indicates that 10/11 = 0.91 of
the weight is placed on the prior. A value equal to .l indicates that a
weight of 0.1/1.1 ~ 0.09 is placed on the prior.

The convergence effect is largest when XA, is large. Then the
developed data are treated as noisy and consequently more weight is put
on the relatively large estimate using the developing data. The
estimates of the effect of government expenditures vary little with A.
One other pattern that emerges in Table 4 is that the Bayes estimates
generally depart more from the pooled OLS estimates as the values of A
increase. Again this seems to repeat the lesson from the previous
table. The prior is substantially different from the pooled OLS
estimate and changes that tend to put more weight on the prior have more
dramatic effects on the estimates.

Table 5 indicates the effects of changing the degree of similarity
of the developed and developing regressions. A value of p = 0 indicates
complete dissimilarity and no pooling. A value of p = .99 indicates
that the regression coefficients are virtually identical. The
similarity of the estimates does increase with p. In the case of the '
convergence coefficient, it is the coefficient of the developing data
set that does the most adjustment. For the government effect, both
coefficients get larger with p.

This small sea of numbers challenges our cognitive ability. It
would be very helpful if the data could focus attention on a subset. 5
Marginal likelihoods offer one tool for focussing. These statistics
point to parameters that are most favored by the data, in the same way
that likelihood ratios would. The difference is that instead of

maximizing the likelihood function, a marginal likelihood is found by
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integrating the likelihood function using the prior distribution as
weights of integration.

Ratios of marginal likelihoods evaluated at different sets of
parameter values are called Bayes factors. The Bayes factors comparing
different values of the prior parameters with the central case are
reported in Tables 6, 7, and 8. These Bayes factors are all defined
relative to the central model, which accordingly has the Bayes factor of
one in each of the tables. The Bayes factors in Table 6 point to a
sharper prior distribution. With the grid of é-values in the table, the
maximum Bayes factor occurs at § = .5, suggesting that the prior
standard errors could be reduced by fifty per cent.

It is more difficult to improve upon the central case by varying
either the experimental bias parameters. The Bayes factor in Table 7 is
maximized at 56.1 when there is no experimental contamination, X = 0, in
both data sets. In this display the Bayes factors are slightly higher
above than below the diagonal, indicating a very slight preference for
relatively accurate developing data set. This result presumably comes
from the (relative) similarity of the prior and developing OLS
estimates.

The data information about the degree of similarity is the
weakest. The Bayes factors in Table 8 grow slightly with the degree of
similarity, attaining the level of 2.14 when p = .99.

Generally a data analysis must combine estimation and sensitivity
analysis, When the data are adequatel& informative, estimation is the
preferred approach. These Bayes factors select &, the prior distrust

parameter, with an adequate degree of precision. But neither the

experimental bias X nor the structural similarity can be estimated with
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adequate accuracy and the sensitivity analysis that was previously
discussed comes into play. By limiting the sensitivity analysis to
parameter values with adequately high Bayes factors, we can in this case
narrow down the estimates very precisely.
3.0 Conclusion

This article proposes and illustrates an econometric method for
pooling two noisy data sets. The pooled estimates depend on parameters
measuring doubt about the prior, experimental contamination and
structural similarity. Implicit or explicit reference must be made to
these three concepts regardless of the method that is used to pool data.
The explicit mathematical reference to these concepts in this paper is
intended to facilitate the discussion about the assumptions that
underlie a pooling exercise. The method is illustrated by a study of
the determinants of the growth rates of developed and developing
countries. These two data subsets yield estimates that are very
similar, which makes the results not very sensitive to the form of
pooling and which peints toward low experimental bias and a high degree

of similarity.
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computational assistance was provided by Rodrigo Fuentes. The
data set has been provided by Robert Barro of Harvard University
and the NBER and is available on request.

2 If there are more than two data sets, additional contamination
parameters, X, would be required. Furthermore, a single
correlation parameter p indicating the similarity of structures is
unlikely to be judged adequate. A variety of higher dimensional
correlation matrices might be used but one that has some appeal
begins with data sets ordered by their similarity and assigns a

correlation depending on the differences in their orders. (Like a

stationary time series,)
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NAME
GR6O8S
GDP60
SEC&0
PRIMGO
GOVEXP

REVCOU

ASSASS

PPIGODEV

TABLE {

DEFINITION

Growth rate of real per capita GDP 1960-1985
1960 value of real per capita GDP (1980 base ycar , $1,000) 1917
1960 secondary-school enrollment rate

1960 primary-school enrollment rate

Average from 1970 to 1985 of the ratio of real

government cons. (exclusive of defense and educa-
tion) to real GDP.
Number of revolutions and coup per year (1960-1985

or sub-sample)

Number of assassinations per million population

per year (1960-1985 or sub-sample)

Magnitude of the deviation 1960 PPP value for the
investment deflator from the sample mean

GOVEXP
REVCOUP
ASSASS
PPPIDEV

PRIOR
0,01 (0.01)
01(0.1)
0.05 (0.05)
001 (0.01)
20.1(0.)
0.01 (0.01)
o)

VARIABLE NAMES and DESCRIPTIVE STATISTICS

MEAN STD.DEV,

0.022

0.019
1813
0214
0312
0.053

0.231

0.462

0.340

MIN
0.017
0.208
0.010
0.050
0.000

0.000

0.000

0494

DEVELOPING
-0.011 (0.002)
0.023 (0.020)
0.027 (0.008)
-0.161 (0.034)
-0.025 (0.008)
0,002 (0.004)
-0.008 (0.005)

TZs=®z=2x CTTFEESASSRE FRECCSSLENESM EZCU2ZESRSZ SSOoTIESERESE

0.226
0.785
0.107
0.180
0.226
0.001
TABLE 2
OLS and Prior Estimates
OLS ESTIMATES
POOLED DEVELOPED
00074 (0001)  -0.005{0.001)
0.0327 (0.011) 0.025 (0.010)
0.0224 (0.006) 0.022 (0.014)
<0.1332 (0.029) -0.042 (0.040)
-0.0236 (0.007) 0.019 (0.041)
-0.0028 (0.003) 0.000 (0.006)
-0.0067 (0.004) 0.004 (0.013)

0.074
7.380
0.860
1440
0.245

1150

2.850

1.827



TABLE 3

Sensitivity Respect to Prior Accuracy
(lambdas=1, rho=0.5)

Variables Prior d=0.1 d=0.5 d=1 d=2 d=10 OLS
DEVELOPED
GDP60 -0.01 (0.01) 00092 00077 -00076 -0.007S  -0.0075 -0.005 (0.001)
SEC60 0.1 (0.1) 0.0693 0.0561 0.0553 0.0548 0.0550 0.025 (0.010)
PRIM60 0.05 (0.05) 0.0458 0.0432 0.0427 0.0432 0.0428 0.022 (0.014)

GOVEXP -0.01 (0.01) -00100 00108 00127 -0.0207 -0.0162 -0.042 (0.040)
REVCOUP -0.1(0.1) 00768 00555 -00530 -0.0505 -0.0517 -0.019 (0.041)

ASSASS 2001(001)  -0.0093 -00057 -0.0046 -0.0042  -0.0042 0.000 (0.006)
PPPIDEV 0 (1) 00014 00008 -0.0008 -0.0007 -0.0008 0.004(0.013)
DEVELOPING

GDP60 001(001) 0009 00086 -0.0085 -0.0086 -0.0085 -0.011(0.002)
SEC60 0.1 (0.1) 00741 00527 00501 00477  0.0487 0.023(0.020)
PRIM60 0.05(005) 00457 00456 00462 00481 00470 0.027 (0.008)

GOVEXP -0.01 (0.01) -00100 -00113  -00142 -0.0266 -0.0196 -0.161 (0.034)
REVCOUP -0.1(0.1) -00608  -0.0497 -0.0492 -0.0478  -0.0486 -0.025 (0.008)
ASSASS -0.01 (0.01) 00091  -00057 -0.0048  -0.0047  -0.0046 -0.002 (0.004)
PPPIDEV 0@ -00020 -0.0033  -0.0033 -0.0033  -0.0033 -0.008 (0.005)




TABLE 4

Sensitivity with Respect to Experimeatal Bias

(rho=03, dela=1)

Lambda_1=0.1 Lambda_1=1 Lambda_1=10

Variables  ambda_2=0.1 Lambda 2=1 ambda 2=10  Lambda 2=01 Lambda 2=1 ambds 2=10  Lambde 2=0. Lambda 2=1 ambda_2=10
DEVELOPED
GDP&0 -0.0058 0.0058 20,0058 00075 2.00% 0.0076 -0.0089 00092 00095
SECE0 00326 0,031 00353 00473 0.0553 00628 00593 00744 0.09%0
PRIMGO 0mM 00373 00373 00424 00427 00428 0.0469 00479 0.0486
GOVEXP 00129 20127 20118 o019 00127 00118 00126 Q014 0115
REVCOUP 0086 00312 00338 00442 0053 0.0609 00575 00736 0,084
ASSASS 00019 Q002 0.0024 00039 0.0046 00053 00060 00073 -0.0088
PPPIDEV 0.000t 0.0001 00001 ©.0017 0.0008 00001 £.0030 00016 0.0003
DEVELOPING

GDP&0 0.0081 -0.0080 0007 0.0082 0.0085 0,008 -0.0083 0.00% 2009
SECS0 00209 00439 0.0636 00221 00508 09764 00232 00557 0.0891
PRIM60 0.0450 0.0446 0.0440 00453 00462 00465 0.0456 00476 0.0492
GOVEXP 00146 20142 00123 00146 00142 012 00145 0.0140 20121
REVCOUP 00188 00430 00628 2097 00492 00757 00204 0550 -0.0889
ASSASS 0,003 00041 00059 00026 0.0M48 20012 0.0028 0.0057 0.0088
PPPIDEV 00063 00030 0.0004 0.0064 00033 2.0008 0.0065 £.0035 0.0006




TABLE S

Seasitivity Respect to Regression Similarities
(lambdas=1, delta=1)

Variables rho=0 rho=05 rho=09 rho=099

DEVELOPED

GDP60 -0.0076 -0.0076 -0.0077 -0.0078
SEC60 0.0645 0.0553 0.0490 0.0475
PRIM60 0.0427 0.0427 0.0435 0.0438
GOVEXP -0.0109 -0.0127 -0.0141 -0.0144
REVCOUP -0.0627 -0.0530 -0.0467 -0.0454
ASSASS -0.0055 -0.0046 -0.0042 -0.0041
PPPIDEV -0.0001 -0.0008 -0.0019 -0.0022
DEVELOPING

GDPGO -0.0091 -0.0083 -0.0080 -0.0078
SEC60 0.0568 0.0501 0.0475 0.0474
PRIM60 0.0479 0.0462 0.0444 0.0439
GOVEXP -0.0138 -0.0142 -0.0144 -0.0144
REVCOUP -0.0563 -0.0492 -0.0458 -0.0453
ASSASS -0.0059 -0.0048 -0.0042 -0.0041
PPPIDEV -0.0036 -0.0033 -0.0026 -0.0023




TABLE 6

Bayes Factors for Different
Values of Prior Accuracy

Delta Bayes Factor

0.10 3.99E-10
0.20 235E+00
0.30 2.00E+02
0.40 3.59E+02
0.50 2.00E+02
1.00 1.00E+00
2,00 3.95E-04
10.00 1.94E-13
TABLE 7

Bayes Factors for Different
Values of Experimental Bias

Lambdal 0 0.1 1 10
Lambda 2

0 56.1084 415369  6.3868  0.0295

0.1 412674 30.9494 50295  0.0244

1 60710  4.8100 1.0000  0.0062
10 0.0241 00201  0.0053 4.32E-05
TABLE 8

Bayes Factors for Different
Values of Regression Similarity

Rho Bayes Factor

0.00 0.66
0.50 1.00
0.90 1.80

0.99 2.14





