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This paper examines- the statistical properties of three alternative methods
for conducting inference and making measurements in long-horizon forecasting
experiments with an application to dividend yields as predictors of stock retums.
Recent evidence on the predictability of stock returns at horizons of one year or
longer has generated considerable controversy, and this analysis helps to resolve
some of the outstanding disagreement.!

There are two aspects to this debate. First, some researchers question
whether there is solid evidence that expected returns vary. The poor small
sample properties of some statistical methods and thc low power of tests
contribute to this problem. By examining the statistical properties of the three
methodologies in Monte Carlo experiments, I provide evidence dn the bias of the
various approaches and on their power to reject the ﬁull of no expected return
variability. Second, there is substantial debate about why expected returns might
vary. While there are sound rational economic theories that predict movements
in expected returns, some economists argue that such movements reflect
irrational transitory components in stock prices. Although I cannot resolve the
debate on the efficiency of the market, I examine the link between short-run and
long-run predictability of returns and demonstrate that a relatively large amount
of long-run predictability is consistent with only a small amount of short-run
predictability.

I am interested in the methodological questions for two reasons. Any theory
of variation in expected stock returns predicts that data series other than returns

are useful in forecasting returns at various horizons. Testing such predictions is
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useful. Moreover, new theories are guided by the development of facts, and
reliable methodologies for investigating the ability of candidate series to predict
returns at various horizons are necessary.

Many forecasting studies use ordinary least squares (OLS) regression.
Consequently, it is my first methodology, and I use the Fama and French (1988b)
regression as my canonical example. They investigate the ability of dividend
yields to predict compound returns on the value-weighted and equal-weighted
New York Stock Exchange (INYSE) portfolios for intervals between one month
and four years. In the first section of the paper I reexamine the asymptotic
distribution theory of the OLS estimator in long-horizon forecasting situations.
I demonstrate how to formulate an alternative estimator of the standard errors
that imposes the null hypothesis of no serial correlation in returns but does not
impose an assumption of conditional homoscedasticity. This approach builds on
Richardson and Smith (1989).

The second methodology builds on Jegadeesh (1990) who advocates a
reformulation of the regression in the first methodology in order to assess
statistical significance of the forecasts. If the slope coefficient in an OLS
regression is different from zero, the covariance of the regressand and the
regressor must be non-zero. In the first methodology, the regressand is the
compound return between time t+1 and time t+k, while the regressor is the
dividend yield at time t. An alternative way to examine the statistical

significance of the long-horizon forecasts is to estimate the same numerator
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covariance in the slope coefficient but by measuring the regressand as the return

at time t+1 while summing the regressor into the past from time t to time t-k+1.

The third methodology recognizes that long-horizon linear predictions can
be generated by iterating one-step-ahead linear predictions from a vector
autoregression (VAR}) as in Campbell and Shiller (1988), Kandel and Stambaugh
(1988), and Campbell (1991). The VAR completely characterizes the
autocovariances of the time series, and I explore how it can be used to generate
implicit long-horizon statistics without actually measuring data over a long
horizon.

Much of the literature on the predictability of stpck returns only addresses
questions of inference. Researchers ask whether a test rejects the null hypothesis
of constant expected returns using the .05 or .01 critical values derived from an
asymptotic distribution theory. There are two problems with this approach. First,
proper inference requires knowledge of the small sample distribution of the test
statistic when the null hypothesis is true. If the small sample distribution of the
test statistic coincides with that predicted by asymptotic distribution theory, the
asymptotic critical value provides the correct type I error. If the statistic is
poorly behaved in small samples, correct inference requires that an alternative
critical value be determined, possibly from a Monte Carlo experiment. There is
now ample evidence that some of the techniques used in the literature do not

have good small sample properties especially if the forecast horizon is large

.
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relative to the sample size. The second point is that examination of the null
hypothesis using the .05 or .01 criﬁcal values from the asymptotic distribution
.ignores the tradeoff between type I and type II errors. Unfortunately, without a
well specified alternative hypothesis we cannot determine the power of various
test.

To address these issues, I examine each of the methodologies in Monte
Carlo experiments using artificial data generated from a first-order VAR of
returns, dividend yields and the Treasury bill rate relative to its recent average,
as in Campbell (1991). Much of the paper is devoted to the issue of inference
under the restrictive null hypothesis that expected retums are a constant. But,
since the statistical properties of the VAR approach are found to be quite good,
I also perform a number of different measurements of long-horizon statistics as
well. The validity of the asymptotic distributions of these test statistics is also
evaluated with Monte Carlo experiments.

In Section 1 I examine the OLS methodology with long-horizon returns as
the regressand. Section 2 examines the second methodology that reorganizes the
regression to have only one-step-ahead forecasts. The VAR alternative is
discussed in Section 3 where implicit long-horizon statistics are derived. The
estimation of the three methodologies ’is in Section 4, which also presents the
small sample properties of the estimators. Section 5 presents the estimates and
the small sample properties of the implicit long-horizon statistics from the VAR.

The VAR is extended to include term premiums and default premiums in Section
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6. Addition of these variables does not change any of the inference from the
three variable VAR. Section 7 provides a conclusion.
1. Forecasting Long-Horizon Returns with Ordinary Least Squares

This section examines ordinary least squares as a forecasting methodology
as in the analysis of Fama and French (1988b). After describing their
methodology, I examine the asymptotic distribution of the OLS estimator and
demonstrate an alternative way to estimate the standard errors which imposes the
null hypothesis that stock retums have a constant conditional mean.

Fama and French (1988b) use CRSP monthly data, which begin in January
1926. Because dividends are highly seasonal, they construct annualized dividend
yields by summing the previous twelve months of dividends. Consequently, their
sample begins in January 1927 and ends in December 1986 for 720 observations.
Define the one-period real return as R,,; = (P, + d.,)/P, where P, is end of
month real stock price and d, is real dividends paid during month t. Define the

“annualized dividend yield as D/P,.

A typical OLS specification of Fama and French (1988b) is the following:
Dl
InR,,) =0, + Bk,l(-ls-) * U @
where In(R.,.) = In(R,,;) + . . . + In(R,,) is the continuously compounded k-

period rate of return. The error term u,,, is an element of the time t+k

information set, and if the data are sampled more finely than the compound

return interval, it is serially correlated, even under the null hypothesis, as
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discussed in Hansen and Hodrick (1980). If all of the monthly data_ are
employed, u,,,, is correlated with k-1 previous error terms. Under alternative
hypotheses in which returns have a variable conditional mean, u,,, can be
arbitrarily serially correlated if dividend yields do not capture all of the variation
in the conditional mean.

Since the regressor is only predetermined and not strictly exogenous,
asymptotic distribution theory must be used to generate standard errors.
Traditional OLS standard errors are appropriate asymptotically if there is no
serial correlation of the error term and if it is conditionally homoscedastic. The

error term is serially uncorrelated when forecasting one month ahead under the
null hypothesis, but the variability of conditional variances of retums,
documented for example by French, Schwert and Stambaugh (1987), makes an
assumption of conditional homoscedasticity inappropriate. To avoid inducing
serial correlation when forecasting quarterly and annual returns, Fama and French
sample the data and use the traditional OLS standard errors. This gives 240
quarterly and 60 annual non-overlapping observations. For the longer horizons
of two, three, and four years, they use annual observations with overlapping data
and modify the standard errors.

The asymptotic distribution of the OLS estimator of & ; = (¢, By,) can be
derived from Hansen’s (1982) generalized method of moments (GMM) when the
data are sampled more finely than the forecasting interval and allowing for

conditional heteroscedasticity of unknown form. It can be demonstrated that
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VT, - 8,) ~ N, Q), where Q = Z'S,Z;', Z, = E(xx() with x’ = (1, D/P),
and S, is the spectral density evaluated at frequency zero of w,,, = u,,, X, Under

the null hypothesis that returns are not predictable,

k-1
S, = Z E(wnkwll‘k'i)’ @

j=-kel

which may be estimated with

S = 0 + Y IC,G) + CGY ], 3)

i1
where C;(j) = (lﬂ')Ef,j,l(w‘,kw{,k,j) and the estimated residuals are used in w,
The estimator of Z, is Z; = (1/T)ZT_xx!. The resulting standard errors for the
coefficients in equation (1) are the conditionally heteroscedastic counterparts to
the standard errors of Hansen and Hodrick (1980) and are henceforth labelled
standard errors (1A).
An Alternative Standard Error for Specification (1)

This section develops an alternative estimator of S, that is valid only under
the null hypothesis. The new estimator utilizes the fact that the values of
unconditional expectations of stationary time series depend only on the intervals
between the observations.?

Notice that under the null hypothesis, u,,, = (&, + ... + €,,,), where e, is
the serially uncorrelated one-step-ahead forecast error. Estimates of e,,; can be
obtained from the residuals of a regression of In(R,,) on a constant. To derive

the new estimator, examine a typical term in equation (2), E(w,, W1,,), for j >

0, and substitute (e,,, + ... + &,,) for u,,,. The result is




x k-j x-j
E(uuk,kxxuuk-j.kxll-j) = E[(E eui)xx(z euk)xt/-.i] = E[(E C:L)X‘X‘I_J] (4)
i=1

h=l-j izl

With stationary time series, the unconditional expectation on the right-hand
side of equation (4) is the sum of k-j unconditional expectations, each depending
only upon the distance between the terms. Hence, rather than summing e,,; into

the future, one can sum xx; into the past:

k-j k-j-1
E[Y en)xxy) = Eledi(} %, x5l ®)
i=l i=0
Applying the same lbgic to all of the terms in equation (2) implies that
. k-1 k-1
S, = Eleai(y x )0 x.)']- ©)
i=0 i=0
By estimating the residual series ¢,,, and forming
k-1
Wk[ = eul(E xl-i)’ (7)
i=0
the alternative estimator of S, from equation (6} is
1 T
St = TZ wk Wk, . ®
tek

The new standard errors for the coefficients in equation (1) are henceforth
labelled standard errors (1B).

Two aspects of the estimator S are important, and both are induced by the
fact that it avoids the summation of autocovariance matrices as in equation (3).
First, the estimator is positive definite since it estimates the variance of wk,, in
contrast to S} which is not guaranteed to be positive definite. Second, if

summation of autocovariance matrices in finite samples causes poor small sample
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properties of test statistics, the small sample properties of test statistics
constructed with S3 ought to be better.
2. A Reorganization of the Long-Horizon Regression

This section demonstrates how inference about the statistical significance of
dividend yields as predictors of long-horizon returns can be conducted by
considering the regression of one-period returns oﬁ the sum of the dividend
yields.® This specification also avoids the summation of autocovariance matrices
and may have better small sample properties under the null hypothesis than
specification (1A).

Notice that because the compound k-period return is the sum of k one-
period returns, the numerator of the regression coefficient B, in specification (1)
is an estimate of

cov[In@®,,) + ...+ InR,); (D/P)] )
This covariance is the sum of k covariances of returns and dividend yields
separated by between one and k periods. With stationary time series the
covariance (9) is identical to
cov(In®R,,)); OP) + ...+ D /P, b (10)
which is the numerator of the slope coefficient in the following regression:
InR,,) = &4, + BLIOPY + - . +D P 0 (D
The first subscript on the coefficients of specifications (1) and (11} indicates how
many periods ahead is the realization of the dependent variable, and the second

subscript indicates how many terms are included in the summation on the right-
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hand side. Under the null hypothesis, there is no serial correlation of the error
term in equation (11). Therefore, the asymptotic distribution of &, , = (0., B,,)’
can be derived as in Section 1, but only one term (j = 0) is not zero in equation
(2). While both specification (1) with standard errors (1A) or (1B) and
specification (11) are correct asymptotically, specifications (1B) and (11) should
have better size in small samples if the null hypothesis is true because both avoid
the summing of autocorrelations necessary under specification (1A).

If the null hypothesis is false, the power of the different specifications
becomes important. Unfortunately, without specifying a precise alternative
hybothesis, little can be said about type II errors. Fama and French (1988a,b)
and Poterba and Summers (1988) argue that an interesting altemnative hypothesis
is that stock prices have highly serially correlated temporary components that
induce negative serial correlation in returns. Fama and French note that
forecasting increasingly longer compound returns as in specification (1) allows
these temporary components to manifest themselves because the variance of the
compound returns grows less rapidly than if returns were serially uncorrelated.
This makes forecasting ability easier to detect at long horizons if the small
sample distributions of the statistics are well behaved. While estimation of
specification (1) thus allows certain aspects of alternative hypotheses to arise
naturally, which could improve power, standard errors (1A) and (1B) are only
correct under the restrictive null hypothesis of this paper because they do not

allow for possible additional residual serial correlation that would be present
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under alternative hypotheses in which the dividend yield does not capture all of
the predictable variation in stock retumns.

-Since returns have predictable components under plausible alternative
hypotheses, there is also no reason to expect that the error term in equation (11)
will be serially uncorrelated. Because the order of the serial correlation under
the alternative is unknown, I also construct an alternative covariance matrix for
specification (11) by summing twelve autocovariance matrices with declining
weights as in Newey and West (1987). Hence, tests of the statistical significance
of dividend yields as predictors of returns can be conducted under the weaker
null hypothesis that returns have predictable componemsv.

3. A Vector-Autoregressive Alternative

A third way to conduct inference about the ability of dividend yields to
predict returns at various horizons, and to measure these effects in the presence
of alternative hypotheses that allow expected returns to vary, is 10 examine the
incremental power of dividend yields with lagged retumns and possibly other
information present in the forecasting equation. This vector-autoregressive
approach has been used by Campbell and Shiller (1988), Kandel and Stambaugh
(1988) and Campbell (1991), for example.

Inference about one-step-ahead predictability of retufns is conducted by
testing the forecasting ability of the variables in the lagged information set.
Measurement of long-horizon statistics relies on the fact that these statistics, such

as the slope coefficient of the long-horizon return regression (1) or the variance
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ratios of Poterba and Summers (1988), are functions of the unconditional
covariances of the data. These covariances are characterized by the parameter
estimates of the VAR.

This section demonstrates how to measure long-horizon statistics by
estimating the parameters of the VAR and constructing the appropriate statistic
that is a non-linear function of these parameters. Standard errors are derived
from the asymptotic distribution of the coefficients of the VAR.

Consider a first-order VAR in three variables: the continuously compounded
real return on the CRSP value weighted portfolio, the dividend yield, and the
one-month Treasury bill return relative to its previous twelve-month moving
average, which is denoted rb. This specification is used by Campbell (1991).
Let Z, = [In(R) - E(In(R)), D/P, - E(D/P), 1b, - E(tb)]". Since Z, follows a first-
order VAR,

Z, =AZ +u,, (12)
where A is a (3 X 3) matrix.* Although long-horizon statistics require long-
horizon forecasts, the forecasting problem is simple since the error process u,,
is unpredictable. If @, is the information set consisting of current and past
observations on Z, forecasts at horizon i are E@Z, ®) = AZ.

Since the series are covariance stationary, equation (12) implies
Z““ = (I B AL)-luul = EAiunl-j’ (13)
j=0

where the three-dimensional identity matrix is I and L is the lag operator. The
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unconditional variance of the Z, process is therefore
C) = Y AlVAT, (14)
j=0

where V = E(u,,u,,,).*
To allow for compounding of returns over k periods, consider the sum of

k consecutive Z’s. The variance of this sum is

k-1

V, = kCO0) + Y (k - HICG) + CGY), (15)

o
where C(j) is the j-th order autocovariance of Z, and C(j) = AiC(0). Then, the
total variance of the sum of k returns is e1'V,e1, where el is the indicator vector,
el’=(1,0,0).

The slope coefficient in equation (1) is the covariance of the sum of returns
from t+1 to t+k and the dividend yield at t divided by the variance of the
dividend yield. The alternative estimator of this slope coefficient implied by the
VAR is

_ el’/[CQ) +. ..+ CK)e2 (16)
B ¢2'C(0)e2 '

where €2 is the indicator vector, €2’ = (0, 1, 0).
The R? from this implied regression is the ratio of the explained variance

of the dependent variable to its total variance. Hence,

RXK) = 2%, 17
1 (K) B(k)(cl’vkel) (17)

where the subscript 1 is used to distinguish this from the R? implied by the VAR.
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The explanatory power of the VAR at long hod;ons can be assessed by
examining the ratio of the explained variance of the sum of k returns to the total
variance of the sum of k returns. These long-horizon R? coefficients can be
calculated as one minus the ratio of the innovation variance in the sum of k
returns to the total variance of the sum of k returns.

The innovation variance of the sum of k returns is e1"W,el, where

k
W, = Y 0 - AN - AYV(E - AY T - A, (18)

j=1
Hence, the implied long-horizon R? from the VAR is

el’Wel

- . (19)
el’Vel

RIK) =1 -

Implied variance ratio statistics, which are parametric counterparts to the
estimates in Cochrane (1988), Lo and MacKinlay (1988) and Poterba and
Summers (1988), can be calculated as

/
el’V.el (20)

VREK) = .
0 kel/C(0)el

If returns were independently and identically distributed, the variance of the sum
of k returns would be equal to k times the variance of one return, and the
variance ratio in equation (20) would be one. If the variance ratio falls below
one, this is evidence of negative serial correlation in returns, since the variance

of the sum is growing less rapidly than an i.i.d. variable.
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Asymptotic Distributions for the Statistics

Each of the long-horizon statistics derived above is a function of the slope
coefficients, A, and the innovation covariance matrix, V, of the VAR. Let T, be
the vector of these parameters, and let H(n,) represent the true value of one of
these functions. If iy is an estimate of the parameters from a sample of size T,
the asymptotic distribution theory of GMM implies that VT(1j; - 1,) ~ N(0, ©).
Numerical derivatives can be used to calculate the gradient of H evaluated at N
which is denoted VH, and by a Taylor’s series approximation, the asymptotic
distribution of the function is

VTHH®,) - Hny) ~ N©, VHOVH'). @1)

I esLiméte the nine slope coefficients of the VAR with OLS and the six
parameters of V with the corresponding sample moments of the OLS residuals.
The asymptotic distribution of 1y is derived by recognizing that these estimates
coincide with GMM estimation of a just-identified system of orthogonality
conditions. The first nine orthogonality conditions are the usual OLS conditions
that the residuals are orthogonal to the right-hand-side variables, E(u,,, ® Z) =
0. The last six orthogonality conditions are given by stacking the distinct
elements of E(u,u,,” - V) = 0 into a vector. In constructing the GMM
weighting matrix, 1 impose the restriction on the first nine orthogonality

conditions that u,, is serially uncorrelated, but I allow a Newey-West (1987) lag

of six for the orthogonality conditions associated with the parameters of V, since
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the deviations of the squared residuals from the elements of V can be arbitrarily

serially correlated.

4. Inference and Measurément with the Alternative Specifications

The previous sections develop three different approaches to conducting
inference about the predictability of stock returns. The statistics provide
measurements that characterize the serial correlation properties of the returns and
their cross-correlations with other variables. This section analyzes the properties
of these alternative estimators. In each case I report estimates of the statistics
and their asymptotic standard errors, and I provide evidence on the small sample
distributions of the statistics from Monte Carlo experiments.

A Data Appendix provides a discussion of the construction Qf the data
series, the NYSE value-weighted real market returns, the corresponding
annualized dividend yields, and the nominal Treasury bill returns. All data are
from CRSP.

Estimation Results for the VAR

1 first present the results of the VAR for two reasons. The test statistics
allow assessment of the short-run predictability of returns, and the point
estimates are used to generate artificial data for the Monte Carlo simulations.
Table 1 presents results for three different sample periods: sample A from
February 1927 to November 1987 has 730 observations; sample B from January

1952 to November 1987 has 431 observations; and sample C from February 1927
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to December 1951 has 299 observations. Sample A includes all of the available
data. Sample B coincides approximately with one of Campbell’s (1991) samples.
In recognition that the forecasting power of the Treasury bill rate may depend
on the monetafy policy regime, it allows for the change in policy induced by the
Treasury-Federal Reserve Accord of 1951. Sample B also leaves out the
depression years. Kim, Nelson and Startz (1989) argue that the time series
properties of returns before World War II are quite different from those of the
post-war years. Sample C contains the years prior to 1952.

If returns are not predictable, each of the three coefficients on the lagged
variables in the return equation must be zero. The test statistic of this joint
hypothesis has a chi-square distribution with three degrees of freedom. For
Sample B its value is 22.765 with a confidence level larger than .999. The
evidence for return predictability is less strong when the full sample is employed
since the confidence level falls to .980. This decrease occurs because the
confidence level for the test statistic from sample C is only .850.

There is very strong evidence that the Treasury bill return has predictive
power in sample B, since the confidence level of its test statistic is larger than
.999. The evidence that dividend yields predict returns is slightly less strong
since the confidence level of its test statistic is .980. These confidence levels are
from asymptotic distributions, and reliable inference requires that the small
sample properties of the estimators coincide with th.c asymptotic distributions.

The next section examines this issue.
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Small Sample Considerations

Monte Carlo experiments require a data generating process that provides
artificial stock returns, dividend yields and Treasury-bill returns whose time
series properties are consistent with those of the actual data. I follow Campbell
and Shiller (1989) and generate artificial data from simulations of the VAR.

The VAR can be used to generate data that satisfy either the null hypothesis
of no return predictability or an alternative hypothesis. When generating data
under the null hypothesis, I simply set the coefficients on the lagged variables
in the return equation equal 1o zero, and I set the constant in the return equation
equal to the mcondiﬁonal mean of returns implied by the original VAR. When
generating data under the alternative, I set the coefficients at their point estimates
from Sample B since it has the strongest evidence against the null.

Because the actual data are conditionally heteroscedastic, I estimate a
generalized autoregressive conditionally heteroscedastic (GARCH) model of the
conditional covariance matrix of the residuals of the VAR to generate realistic
data.’ Rather than consider several models for different time periods, I work
only with sample B to estimate the parameters, but I generate as many
observations as needed in the simulations. Estimation of the GARCH model and
a complete description of the data generating process are in Appendix B.

The small sample properties of the VAR tests of the null hypothesis of
constant expected returns are presented in Table 2. Each experiment has 431

observations as in sample B, and 2,000 experiments are conducted. Tests 1, 2,
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and 3 examine the null hypotheses that returns are not predicted by lagged
returns, lagged dividend yields, and lagged Treasury bill returns, respectively.
Test 4 examines the joint hypothesis that all three variables do not predict
retums.

The small sample properties of the four tests are very good. The quantiles
of the empirical distribution of Test 4 in Panel A are quite close to those df the
%*(3). Panel B presents the empirical Type I error rates of the four tests. These
are the percents of the 2,000 expcrimemsv conducted under the null hypothesis in
which the values of the test statistics are greater than the nominal .10, .05, and
.01 critical values. The four tests seem quite reliable. For example, only 5.8%
of the observations are greater than the .05 nominal critical value.” Given that
the empirical distributions of the test statistics are very close to the asymptotic
distributions, there is no reason to reassess the asymptotic inference discussed in

connection with Table 1 above.

Results under the Alternative Hypothesis for VAR Tests

Panel C in Table 2 examines the power of the VAR tests using the .05
critical values of the empirical distributions, when the alternative hypothesis is
that retumns are serially correlated as in the conditionally heteroscedastic VAR.
Consistent with the findings of Poterba and Summers (1988), Test 1 has very

low power since the Type II error rate of a test with .05 size is 80%. This

finding reflects the fact that returns generally have a large innovation variance
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which makes it difficult to detect serial correlation in samples of this size. Tests
2 and 3 have better power since the corresponding Type II error rates are 48.1%
and 12.6%. Test 4, the joint test, is very powerful, with a Type II error rate of
2.5%. Before examining the empirical distributions of the long-horizon statistics
implied by the VAR, I consider the properties of the other approaches to
inference and measurement developed above.

A Comparison of Specifications (1) and (11)

Table 3 presents the results from estimation of specifications (1) and (11)
for five horizons between one month and four years. In both cases two standard
errors are reported. Specification (1) has standard errors (1A) and (1B), and
specification (11) has standard errors constructed either with no Newey-West lags
or 12 lags. The ratio of an estimated coefficient to its asymptotic standard error
is reported as a z-statistic, which is asymptotically distributed as a standard
normal under the assumption that the speciﬁcation of the model is correct.

The basic sample period for forecasting one month ahead is from January
1929 1o December 1987 for 708 observations since specifications (1A) and (11)
with no lags are the same.® Then, for specification (1), one observation is lost
for each higher order compound return with the result that the four year
compound return equation has 661 observations. For specification (11), the
sample period is constant until thirty-six or forty-eight lags are required in the
sum of the dividend yields. Then, twelve and twenty-four observations are lost

from the beginning of the sample which allows 696 or 684 observations with
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thirty-six or forty-eight lags in the regressor.

To facilitate interpretation of the slope coefficients, the compound return in
specification (1) at horizon k is multiplied by (1/k) and for specification (11) the
sum of k dividend yields is multiplied by (1/k). The slope coefficients in
specification (1) consequently measure the response of an annualized expected
return over a given horizon to a change in the current dividend yield, while those
in specification (11) measure the change in the annualized one-month return with
a change in the average dividend yield. A coefficient of 3.6, for example,
indicates that a 100 basis point increase in the dividend yield implies a 360 basis
point increase in the expected annualized return.

Because the regressors in specifications (1) and (11) are only predetermined
and not exogenous, estimates of the slope coefficients have small sample biases,
as Stambaugh (1986) and Mankiw and Shapiro (1986) demonstrate.
Consequently, I report adjusted estimates, *’s, which are obtained by subtracting
the means of the slope coefficients of the Monte Carlo distributions from the
OLS estimates. Table 3 also reports the R? for each equation.

For each statistic I provide the critical value associated with the 95th
percentile of the empirical distribution of the test statistic from the Monte Carlo
experiments conducted under the null hypothesis. The 2,000 simulations were
conducted exactly as in the actual estimation. Since the construction of standard

errors (1A) does not guarantee a positive definite covariance matrix, twenty-three

experiments were discarded when this occurred. The problems arose primarily
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in summing forty-eight lags.

Comparing a z-statistic to the 95th percentile of its empirical distribution
provides a one-sided test of the null hypothesis that the slope coefficient is zero
versus the alternative hypothesis that the coefficient is positive. A one-sided test
is appropriate because both rational and irrational theories of time varying
expected returns predict that high dividend yields forecast high expected returns.
To interpret the results, recall that the critical value of the 95th percentile of a
standard normal is 1.645, and compare this to the critical values of the empirical
distributions. In ali cases, the z-statistics are positively biased. Notice, though,
that the results in Table 3 support the conjecture that the sizes of the test
statistics are closer to the desired nominal sizes for specifications (1B) and (11)
than for specification (1A).

For example, for specification (1A) the .05 critical values of the empirical
distributions increase from 1.966 at the one-month horizon to 3.825 at the 48
month horizon while the new critical values for specification (1B) fall slightly
from 1.935 to 1.917. The primary source of bias for specification (1A) is the
summing of the covariance matrices.”

There are two sources of potential bias in specification (11), the use of lags
in the Newey-West (1987) standard errors when there is no residual serial
correlation and the additional serial correlation in the regressor induced by
summing the lagged dependent variable. The test statistics are slightly more

biased using twelve lags in the Newey-West technique, but since the regressor
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is already highly serially correlated, summing the regressor does not cause a
pronounced deterioration in the test statistics as it might if the regressor were not
initially very serially correlated.

Do the results of Table 3 indicate that dividend yields predict stock retumns?
The overall picture appears to be yes. Although the results at the one month
horizon do not provide strong evidence against the null hypothesis, the overall
evidence appears strong. At the annual horizon, for specification (1A) the z-
statistic of 2.395 is above the empirical critical value of 2.275. Similarly, the
test statistic for specification (11) with 12 lags is 2.034, compared to the
empirical critical value of 2.097. The values of the R¥s for the annual and
longer horizons are also greater than the 95th percentiles of the empirical
distributions. At the two, three and four-year horizons, the differences in
inference are less pronounced across the different specifications. In all cases the
point estimates of the test statistics and the Rs are well above the respective -
critical values of the empirical distributions.

Richardson (1990) argues correctly that interpretation of the above analysis
must take account of the correlation of the different test statistics, which requires
simultaneous estimation of the five forecasting equations. The test statistic of the
joint hypothesis that the five slope coefficients are simultaneously zero has a chi-
square distribution with five degrees of freedom. For specification (1B) its value

is 26.696, which substantially exceeds the .05 critical value of the empirical

distribution of the test statistic, 18.015. Since the nominal .05 critical value for
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a x*5) is 11.071, there is a substantial bias in the joint test statistic.
Simultaneous estimation of the five equations for specification (1A) results in
failure of the GMM weighting matrix to be positive definite. For specification
(11) the values of the test statistics are 10.545 (0 lags), and 8.326 (12 lags), but
there is less bias in these joint tests as the .05 empirical values are 11.497 and
13.143, respectively. Although these latter findings support Richardson’s (1990)
conclusion that evidence for long-horizon predictability of returns is not as strong
as the individual test statistics indicate, the overall picture still appears to be one

of return predictability.

The Power of Specifications (1) and (11)

I next examine how the two specifications perform when the null hypothesis .
is false. The alternative hypothesis allows returns to be serially correlated as in
the data from the conditionally heteroscedaédc VAR for sample B, and I again
examined 2,000 experiments. The probability of a Type II error is calculated as
the percent of the observatioris in which the test statistics are not larger than the
.05 critical values associated with the empirical distributions calibrated under the
null hypothesis. After correcting for small sample biases, the Type II error rates
are remarkably similar. For specifications (1A) and (1B) the Type II error rates
are, respectively, 5.1% and 5.0% when k = 1, 2.6% and 1.4% when k = 12, 3.9%
and 3.1% when k = 24, 9.2% and 8.4% when k = 36, 14.7% and 13.9% when

k = 48, and 2.2% for the *(5) for specification (1B). For specifications (11)
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with no lags or twelve lags, the corresponding Type II error rates are 5.1% and
12.3% when k = ‘1, 1.3% and 2.1% when k = 12, 2.9% and 3.9% when k = 24,
7.7% and 10.2% when k = 36, 14.2% and 18.4% when k = 48, and 14.7% and
19.8% for the x*(5). Hence, although specification (1A) and specification (11)
with additional Newey-West lags allow aspects of the alternative hypothesis to
manifest themselves in the estimation, the approaches are not more powerful than
the approaches that impose the null hypothesis because the statistics are more
biased under the null.

In terms of methodology the message from this section is clear. If
conducting inference without inducing a serially correlated dependent variable is
possible, such an altemative procedure is preferred since its small sample
properties under the null hypothesis are closer to the standard asymptotic
distribution. But, even in this case, the potential for bias appears strong, and

Monte Carlo analysis is appropriate.

5. Implied Long-Horizon Statistics

I next examine estimates of the impliéd long-horizon statistics, derived in
Section 3. These are highly nonlinear in the underlying parameters of the VAR.
I compare their asymptotic distributions to the empirical distributions under the
null and alternative hypotheses. Given the good small sample propertiés of the
coefficient estimates and basic test statistics of the VAR, the question is whether

the nonlinearities in estimating the implied long-horizon statistics induce biases.
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Table 4 reports estimates of the implied long-horizon statistics (with their
associated asymptotic standard errors in parenthesis) for the three sample periods.
Panel A contains estimates of B(k), the implied slope coefficient in the regression
of the sum of k future returns on the current dividend yield, derived in equation
(16), for k equal to one, twelve, twenty-four, thirty-six, and forty-eight months
ahead, and for the infinite horizon forecast. Panel B reports the R(k) in
equation (17) associated with this implied regression and substitutes the sixty-
month result for the infinite horizon. Panel C contains estimates of the Ri(k)
derived in equation (19), and Panel D reports the implied variance ratios of
equation (20). The empirical distributions of the four statistics are presented in
the corresponding panels of Table 5 under the null hypothesis of no return
predictability and in Table 6 under the alternative hypothesis.

First, consider the point estimates relative to their asymptotic standard
errors.  Since only in sample B is there strong evidence of predictability of
returns in the linear VAR, it is not surprising that only for this sample are the
standard errors of the long-horizon statistics small relative to their point
estimates. To conserve space I therefore focus only on the relation of the
estimated results from sample B to the empirical distributions in Tables S and 6,
which are generated from the sample B point estimates.

The PB(k) coefficients in Panel A are not divided by the horizon as in Table
1 to allow computation of the infinite horizon forecast. When they are divided

by the horizon, the results are 7.147 (k = 12), 6.176 (k = 24), 5.212 (k = 36) and
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4.424 (k = 48). These coefficients indicate that an increase in the dividend yield
of one percent implies a seven percent per annum increase in the expected retumn
on stocks over the next year and a four percent per annum increase over the next
four years.

The measures of the predictive power of dividend yields and the full VAR
for long horizon returns as estimated by the two R”s reported in Panels B and
C are essentially the same. Although only six percent of the return is predictable
over the next month, the dynamics of the VAR imply that the ratio of the
explained variance of the compound return to its total variance rises to 19% at
twelve months, 28% at twenty-four months, 34% at thirty-six months, and 39%
at forty-eight months. The variance ratios in Panel D first rise above one before
falling below one. This indicates that serial correlation in returns-is initially
positive then negative.

Now examine the empirical distributions of the implied- statistics. The
results for the first three sets of statistics are quite similar. Compare the implied
B(k), the implied R(k), and the implied R(k), to the empirical distributions in
the corresponding panels of Tables 5 and 6. In all three cases, the point
estimates from the data are larger than the 99th percentile of the empirical
distributions calculated under the null hypothesis in Table 5, except when k = 1,
in which case they are larger than the 95th percentile. The estimates are also
very close to the means of the empirical distributions calculated under the

alternative hypothesis in Table 6. The sample standard deviations of the
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empirical distributions calculated under the alternative hypothesis are also very
close to the asymptotic standard errors reported in Table 4. The conclusions are
that the asymptotic distributions of these long-horizon statistics accord very well
with the distributions calculated under the altemative hypothesis and that the
nonlinearities do not induce bad small sample biases.

The point estimates of the implied variance ratios are not as far into the tails
of the empirical distributions calculated under the null hypothesis, but they are
relatively close to the means of the distributions calculated under the alternative
hypothesis. These results suggest that implied variance ratios are not a powerful
way of testing the null hypothesis.

6. Adding Term Prvemiums and Default Premiums to the VAR

Fama and French (1989) conduct additional forecasting analyses similar to
their earlier paper for several portfolios of stock and bond returns. As in Keim
and Stambaugh (1986), they use the slope of the yield curve and the default
premium on low-grade bonds relative to high-grade bonds as well as dividend
yields. Table 7 reports the results of adding a term premium and a default
premium to the VAR of this paper. The term premium, ytp, is the difference
between the yield on long-term government bonds and the one-month Treasury
bill rate, and the default premium, ydp, is the difference between the yield on
BAA corporate bonds and AAA corporate bonds.'

The exclusion tests in Table 7 indicate very strongly that the two premiums

provide no additional explanatory power for the market return, the dividend yield
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and the relative Treasury bill rate compared to forecasts made with lags of these
variables. The tests also indicate very strongly that the term premium and the
default premium can be predicted by the first three variables. Consequently, in
regressions of stock returns on the two premiums, such as those reported in
Table 3 of Fama and French (1989), the two variables do have explanatory
power at long horizons if other variables are excluded. Given these findings,
there is little reason to recompute the long-horizon statistics with an expanded
VAR.
7. Conclusions

The paper explores three alternative techniques for conducting inference and
measurement in long-horizon forecasting environments. Procedures for
‘constructing standard errors under the null hypothesis that do not involve
summing large numbers of autocovariances have better size than ones constructed
under the alternative. Monte Carlo experiments indicate that substantial bias can
arise in test statistics in long-horizon forecasting. After cormrecting for such
_ biases, inference across thé different procedures is quite similar.  Such
procedures are also quite powerful. Since the vector autoregressive alternative
has correct size and supplies long-horizon statistics that appear to be unbiased
measurements, it emerges as the preferred technique. One caveat to this
statement is that the order of the VAR is taken as known in the Monte Carlo
analysis.

The application investigates the predictability of stock returns at five
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horizons from one month to four years. The VAR tests provide strong evidence
of the predictive power of one month ahead returns at least for the sample from
1952 to0 1987. The VAR analysis provides an alternative way to calculate
various long-horizon statistic including implied slope coefficients, implied R*'s
and variance ratios, and these implied long-horizon statistics indicate very
interesting dynamic patterns in the data. The estimates and Monte Carlo results
support the conclusion that changes in dividend yields forecast significant
persistent changes in expected stock returns,

Finding the economic explanation that is consistent with the rejection of the
null hypothesis of no expected retumn variability and the long-horizon
predictability of returns is a challenging area for future research. Kandel and
Stambaugh (1990) and Ceccheui,A Lam and Mark (1990) explore whether
representative agent rational expectations models can be calibrated o produce
long-horizon variance ratios and R¥s analogous to those reported in Fama and
French (1988a) and Poterba and Summers (1988). While their success
demonstrates that such models cannot be dismissed out of hand, the arguments
of Shleifer and Summers (1990) suggest that models with differential information

may be required to reconcile the patterns in the data that are reported here.



e

31

Appendix A

The data are from the Center for Research in Security Prices (CRSP) of the
University of Chicago’s Graduate School of Business. The four basic monthly
series are the NYSE value weighted -with-dividend nominal return, RN,, the
value-weighted without-dividend nominal retum, RX,, the one-month Treasury
bill return, i, and the CPI inflation rate, x. The sample period is January 1926
to December 1987 for 744 observations.

Since RX, = (P, - P,_,)/P,,, a normalized nominal value weighted price series
is produced by setting the price in December 1925 equal to one and recursively
setting P, = (1 + RX)P,,. A normalized nominal dividend series, d,, is obtained
by recognizing that d, = (RN, - RX)P,,.

The annualized dividend for month t is D, = Z}5d JH{,(1 + i.4.), which
sums the future values of the previous eleven months of dividends using the
nominal interest rate factors obtained from the one-month Treasury bill returns
with the current dividend. The first observation is therefore December 1926, and
the last observation is December 1987, for 733 observations. A nominal goods

price level, P,, is constructed from the monthly CPI inflation rates. Since &, =

[
®P,, - P,.))/P,.,, a normalized nominal goods price level series is produced by
setting the price in December 1925 equal to one and recursively setting P, = (1
+ m)P,.,. Real retums are constructed by dividing the nominal value weighted

price and dividend for month t by the price level for that month and forming the

return as real price plus real dividend divided by the previous months real price.
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Appendix B

This Appendix describes estimation of the GARCH model and its use as the
data generating process for the Monte Carlo simulations. Since there are six
distinct elements in the conditional covariance matrix of the VAR, many
GARCH models are possible. To avoid highly parameterized systems, the only
model I explored is the constant conditional correlation model discussed in
Bollerslev (1990). Let H, = E(u,,,u;,,) be the conditional covariance matrix of
the VAR in equation (11) with typical element hy,. Model each of the three
conditional variances as a first order ARMA process:

hy, = @ + Bhy,, +opl i=1,23, (22)
and to model the covariances of H,, estimate the nine parameters of equation (22)
simultaneously with three constant correlation coefficients, p,,, p,3, and p,,, using
maximum likelihood.

One problem with the estimation is induced by the large increase in the
variance of the Treasury bill return during the period from October 1979 to
October 1982. Attempts to estimate a GARCH model that do not allow for an
increase in the unconditional variance of the process during this period result in
parameter estimates for which the conditional variance is an integrated process.
I therefore first normalized the data for the Treasury Bill rate by dividing the
error terms from this sub-period by their standard deviation estimated for this
period, by dividing the remaining data by their standard deviation estimated

exclusive of this period, and by multiplying the entire series by the standard
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deviation for the whole sample period.

The parameter estimates are reported in Table 8. Most of the estimates are
quite significantly different from zero. All three o coefficients have confidence
levels above .997, and the three [; coefficients have confidence levels above
.999. The contemporaneous correlation coefficient between the dividend yield
and the equity return is highly significant as it should be, but the
contemporaneous correlation between the relative Treasury bill return and the
equity return is not highly significant.

Table 8 also contains diagnostic tests for serial correlation that examine
either the residuals divided by their conditional standard deviations, the squared
residuals divided by their conditional variances, or the cross products of residuals
divided by the cross products of the respective standard deviations. In all cases
except the normalized Treasury bill rate, there is no evidence of additional serial
comrelation. The large values of the test statistics for the latter series indicate that
the VAR may be misspecified.

To generate artificial data at cach step in the Monte Carlo experiments, three
standardized normal random variables, €,,, are generated using the Gauss
command RNDNS. The conditionally heteroscedastic innovations of the VAR
are formed by taking the Cholesky decomposition of the conditional variance
matrix, C/C, = H,, and setting u,,, = C/e,,. These residuals are fed into the
VAR to generate the data, and they are used to update the conditional variance

for the next step using equation (22). The initial residuals are generated from
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a normal distribution with an unconditional variance implied by the GARCH
coefficients. In all simulations, the first 100 observations are discarded to reduce

the influence of starting values.
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Footnotes

I have benefitted greatly from conversations with Lars Hansen, who deserves
more than the usual thank you to a colleague. Any errors are of course my
responsibility. 1 also want to thank Laurie Bagwell, Tim Bollerslev, John
Cochrane, Wayne Ferson, Ken French, Michael Gibbons, Narayana Kocherlakota,
Bob Korajczyk, Ravi Jagannathan, Matt Richardson, Mark Watson and the
referee for useful comments and discussions. I am very grateful to Geert Bekaert
for excellent research assistance. This research was partially supported by a

grant from The Lynde and Harry Bradley Foundation.

1. Many authors have used dividend yields and other variables to examine
the predictability of returns. Campbell (1991) and Cochrane (1990) attribute a
large fraction of the variance of the price-dividend ratio to variation in
expected returns. Nevertheless, the controversy in this literature is typified by
the arguments of Jegédeesh (1990), Kim, Nelson and Startz (1989), Mankiw,
Romer and Shapiro (1989), Nelson and Kim (1990), Richardson (1990), and
Richardson and Stock (1989). These authors argue that the case for
predictability of stock returns is weak when one corrects for small sample
biases in test statistics.

2. Lars Hansen suggested this estimator, which is a heteroscedastic

counterpart to the covariance matrix in Richardson and Smith (1989).
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3. Jegadeesh (1989) uses similar logic and the explicit altemative hypothesis
that stock prices have a first-order autocorrelated transitory component, as
proposed by Fama and French (1988a) and Poterba and Summers (1988), to
derive the test with the best asymptotic slope for investigating long-horizon
predictability of returns using only lagged returns. He demonstrates that using
the one-period return as the dependent variable and the sum of k lagged
returns as the regressor is a superior way to conduct inference. The choice of
k depends on the share of the variance of retuns thought to be due to the
transitory components in prices.

4. Higher order systems can be handled in exactly the same way by stacking
the VAR into first-order companion form as in Campbell and Shiller (1988,
1989).

5. In actual calculations I truncate the infinite sum in C(0) at 127.

6. The GARCH estimation was done with Fortran programs written by Tim
Bollerslev who also helped me with the estimation. I am very grateful to him
for his advice and assistance.

7. If p is the nominal size and N is the number of experiments, the large
sample standard error for the respective significance levels is {p(1 - p)/N]*
which is .0067 for the .10 level, .0049 for the .05 level, and .0022 for the .01
level with 2000 experiments. Hence, although the percentages of the

distributions of the test statistics that are greater than the nominal critical
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values are quite close to the nominal sizes, some of the estirriated percentages
are slightly more than two standard deviations from their nominal levels.

8. The sample differs slightly from sample A to allow for lags of the
predetermined variable.

9. Richardson and Stock (1989) explore an alternative asymptotic distribution
theory in which the ratio of the forecasting interval, k, to the sample size, T,
limits to a non-zero constant as T goes to infinity. In the context of the Fama
and French (1988a) analysis using only return data, Richardson and Stock
demonstrate that the small sample distributions are closer to this alternative
asymptotic theory than to the traditional one. When data other than retums
are present, derivation of the alternative asymptotic distribution depends upon
nuisance paraméters that characterize the serial correlation properties of the
other series. I thank Lars Hansen for this insight.

10. I thank Rob Stambaugh for supplying me with data on yields. I updated

his series using the Federal Reserve Bulletin, the original source.
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Table 1
First Order Vector Autoregression of Returns, Dividend Yields and Relative T-Bill
Rate

Coefficients on Regressors

Dep. In(R) D/P, b, %*(3) R?
Variable (s.e.) (s.e.) (s.e.) (s.e.) Conf.
Sample A: 1927:2 to 1987:11, 730 Observations

In(R,,)) -12.432 0.110 3.941 -4.738 9.867
(14.098)  (0.063) (3.276) (2.360) 980 020

D,,/P., 0.164  -0.0006 0.964 0.023  1480.352
(0.113)  (0.0004) 0.027) (0.011) 999 .938

tb,,, 0.188 0.0004 -0.041 0.673 156.227
(0.082)  (0.0004) (0.017) (0.063) 999 456

Sample B: 1952:1 to 1987:11, 431 Observations

In(R,,,) -14.654 0.056 5.243 -8.546 22.765
(10.410)  (0.061) (2.590) (2.356) 999 057

D../P.. 0073  -0.0002 0.981 0.039  8065.333
(0.041)  (0.0002) (0.011) (0.010) 999 .960

b, 0421  0.0007 -0.103 0748  236.820
(0.210)  (0.0010) (0.058) (0.054) 999 .565

Sample C: 1927:2 to 1951:12, 299 Observations

In(R,,) -23.753 0.139 5.515 11.967 5314
(27.647)  (0.091) (5.466) (7.906) .850 .019

D /P, 0337 . -0.001 0.937 -0.025 632.463
(0:217)  (0.0006) (0.044) (0.040) .999 504

1b,,, 0.079 0.0003 -0.020 0.295 4.948
(0.154)  (0.0005) (0.025) (0.158) 824 .083

Notes: The variables are the continuously compounded real stock return, In(R), the
corresponding annualized dividend yield, D/P, and the one-month Treasury bill retumn
relative to its previous twelve month moving average. Coefficient estimates are OLS, and
standard errors are heteroscedasticity consistent. The x*(3) tests the joint hypothesis that
all three coefficients are zero.



Table 2
Small Sample Properties of the VAR Test Statistics

Panel A: Quantiles of the y*3) Test Statistic Under the Null

quant 1% 25% 5% 50% 95% 975% 99% mean  s.d.
emp. 0.186 0283 0417 2404 8160 9.691 11.68 3.088 2.548
23 0.115 0216 0352 2366 7.815 9.348 1134 3.000 2.449

Panel B: Percent of Observations Greater that Nominal Critical Values Under the Null
Hypothesis

Test 1 Test 2 Test 3 Test 4

Nominal Size Nominal Size Nominal Size Nominal Size
00 050 010 100 050 010 .100 .050 010 .100 .050 .010
103 050 .008 100 051 011 .124 067 011 .108 .058 .012

Panel C: Simulated Type I Error Rates for Tests of 5% Size and New Critical Values

Test 1 Test 2 Test 3 Test 4

Error Crit. Error Crit. Error Crit. Error Crit.
Rate Val. Rate Val. Rate Val. Rate Val.

.800 3.838 481 3.842 J26 4427 025 8.160

Notes: The results are for 2,000 Monte Carlo experiments. Each has 431 observations.
Tests 1, 2, and 3 are Wald Tests of the respective null hypotheses that the lagged return,
the dividend yield, or the treasury bill variable does not forecast returns, while Test 4 is
the joint test that the three variables do not forecast returns. Panel A reports the quantiles
of the empirical distribution of Test 4, conducted under the null hypothesis of no expected
return variability, in comparison to those of a x*(3). Each entry in Panel B describes the
fraction of the experiments under the null in which the value of the test statistic is larger
than the critical value from a chi-square distribution corresponding to the nominal sizes
of .10, .05 or .01 with either 1 degree of freedom for Tests 1, 2, and 3 or 3 degrees of
freedom for Test 4. Panel C reports the new .05 critical values of the empirical
distributions and the fractions of the experiments that fail to exceed this value, when the
data are generated under the alternative hypothesis that returns are serially correlated as
in the conditionally heteroscedastic VAR. The nominal critical value of a %3(1) is 3.841
and of a %%(3) is 7.815.

o



Table 3

Comparison of Overlapping Regressors, Specification (1), and Summed Regressors,
Specification (11)

Specification (1)

Lead B, Bt 2A)  95%  z(B) 95% R 95%
1 3390 2381 1023 1966 1.005 1935 .005  .006
12 4501 3651 2395 2275 1607 1991 .085  .066

24 4337 3597 4960 2,677 1.962 1954  .168 111

36 3844 3165 4723 3247 2276 1938 235  .139
48 3616 2967 4605 3825 2937 1917 354  .154
X(5) 2669 1801

Specification (11)

Lag By, B, 200)  95%  z(12) 95% R? 95%
1 3390 2381 1023 1966 1221 2076 .005  .006
12 5429 4365 1.697 2.003 2034 2097 010  .006

24 6246 5085 2069 1959 2507 2104 011  .006
36 6355 5.037 2335 1981 2611 2074 .010  .006
48 6755 5235 2754 1963 2707 2093 011  .006
x(5) 1054 1149 8326  13.14

Notes: The By, are OLS estimates of equation (1) with the dependent variable is
multiplied by (1/k); the B,, are OLS estimates of equation (11) with the regressor
multiplied by (1/k). The adjusted coefficients B}, and P}, subtract the means of the
Monte Carlo distributions from the OLS estimates. Z-statistics are unadjusted estimates
divided by estimated asymptotic standard errors. The columns labelled 95% provide the
95th percentile of the empirical distributions from the Monte Carlo experiments conducted
under the null hypothesis for the respective asymptotic statistics in the adjacent left
column. The sample period for specification (1) depends upon the lead of the compound
return. The first sample is January 1929 to December 1987 for 708 observations. Each
higher compound return loses one observation. For specification (11), the sample period
is January 1929 to December 1987 for 708 observations for k equal to 1 through 24.
Twelve and twenty-four observations are lost from the beginning for k equal to 36 and
48. The %*(5) statistics test the joint hypothesis that all five slope coefficients are zero.
The value for specification (1A) could not be computed.



Table 4

Implied Long-Horizon Statistics and Asymptotic Standard Errors

from the First-Order VAR of Returns, Dividend Yields, and Relative T-Bill Rates

Panel A: Implied Slope Coefficients, Long-Horizon Returns on Dividend Yields

Sample B B(12) B(24) B@36) (ICE)) B(ee)
(s.e.) (s.e.) (s.e.) (s.e.) (s.e.) (s.e.)

A 3375 47.448 77320 95.058 105.587 120.966
(2.575) (28.879) (37.226) (36.776) (33.997) (28.253)

B 6.021 85.763 148.215 187.649 212375 253.375
(2.398) (28.117) (38.284) (37.358) (32.942) (30.393)
C 3.429 48.667 70.835 80.279 84302 87.287
(3.869) (40.252) (46.868) (45.210) (42.943) (39.583)
Panel B: Implied R¥(k) Coefficients, Long-Horizon Returns on Dividend Yields

Sample RX(1) R¥(12) R%(24) R3(36) R3(48) R¥(60)
(s.e.) (s.e.) (s.e.) (s.e.). (s.e.) (s.e.)

A .005 .070 107 122 127 125
(.005) (.056) (.076) (.082) (.085) (.087)

B 011 .160 272 337 373 .389
(.005) (.054) (.076) (.081) (.082) (.085)

C .004 .061 077 .076 .070 .063
(.007) (.077) (.088) (.083) (.075) (.069)




Panel C: Implied R¥(X) Coefficients, Long-Horizon Retumns on All Three Variables

Sample R¥(D) R}(12) R3(24) R3(36) R}(48) R}(60)
(s.e) (s.2) (s.2) (s.e) (s.e) )
A 024 074 108 123 127 125
(016) (.056) (075) (081) (.084) (.086)
B 062 187 278 339 373 389
(.028) (.056) (075) (079) (081) (.085)
c 029 063 078 077 070 063
(029) (077) (.088) (.083) (075) (.069)
Panel D: Implied Variance Ratios
Sample  VR(12)  VR(24)  VR(36)  VR@8)  VR(60)
(s.e.) (s.e.) . (s.e.) (s.e.) (s.e.)
A 1.085 0.904 0.826 0.739 0.673
(.146) (191) (213) (218) (213)
B 1.168 1.025 0.884 0.769 0.678
(.193) (215) (216) (210) (200)
c 1026 0.855 0.746 0.674 0625
(181) (:235) (:258) (:264) (263)

Notes: Sample A: 1927:2 to 1987:11, 730 Observations; Sample B: 1952:1 to 1987:11,
431 Observations; Sample C: 1927:2 to 1951:12, 299 Observations. The implied slope
coefficient B(k) in Panel A is derived in equation (16), the Ri(k) in Panel B is derived in
equation (17), the R}(k) in Panel C is derived in equation (19), and the variance ratio

VR(k) in Panel D is derived in equation (20).



Table §

Quantiles of the Empirical Distributions of the Implied Long-Horizon Statistics,

Under the Null Hypothesis

Panel A: Implied Slope Coefficients, Long-Horizon Retums on Dividend Yields

Quant. B(1) B(12) B(24) B(36) B(48) B(e<)
1% -4.475 -50.004 -89.845 -121.137 -147.026  -250.658
5% -3.293 -36.052 -63.082 -83.657 -98.373 -148.230
10% -2.590 -29.005 -50.068 -65.159 -75.913 -104.830
50% 0.418 5.037 8300 10.375 11.575 13.548

90% 4928 45.659 67.779 78.036 83.343 89.871
95% 6.470 60.162 86.998 99.209 105.438 112.218
99% 9.695 85.410 117.241 132.616 138.253 144.089
mean 0.859 7.281 9.101 8.658 7.529 0.589
std. dev, 3.082 29.533 45918 55.724 62.615 81.417

Panel] B: Implied Ri(k) Coefficients, Long-Horizon Returns on Dividend Yields

Quant, R¥(1) R¥12) R¥(24) Ri(36) R¥(48) Ri(60)
1% .000001 .000004 .000004 .000006 .000007 .000007
5% .00001 .0001 .0002 .0002 .0002 .00001
10% .00004 .0004 .0006 .0006 .0006 .0005

50% 001 .009 013 013 012 013

90% .006 .053 072 .070 067 .061

95% .009 .075 097 .100 .093 .087

99% .014 119 .147 157 .153 .145

mean .002 .020 .026 026 .025 023

std. dev. .003 .027 .034 .035 .033 .031




Panel C: Implied R¥K) Coefficients, Long-Horizon Returns on All Three Variables

Quant. RXD) Ry(12) R}(24) R3(36) R}(48) R¥(60)
1% .0004 .0003 0002 0002 .0001 .000007
5% .0010 .0011 .0009 .0007 L0006 .0005
10% 0014 .0021 0018 0016 0013 0011
50% 006 014 015 014 013 012
90% 015 059 075 072 .068 064
95% 019 081 .101 .103 096 088
99% 026 129 152 160 155 148

mean 007 024 028 028 026 024

sid. dev. 006 028 035 036 034 031

Panel D: Implied Variance Ratios

Quam.  VR(2)  VR@4)  VR@6)  VR@8)  VR(0)
1% 0.754 0.640 0.561 0.508 0.473
5% 0810 0.709 0.638 0591 0.564
10% 0.844 0.757 0.702 0.658 0.629
50% 0994 0982 0972 0.961 0959
90% 1169 1273 1365 1444 1.510
95% 1.224 1375 1.501 1.615 1719
99% 1338 1548 1.748 1937 2.088

mean 1.003 1.004 1.009 1016 1.024

st dev. 0127 0.202 0.265 0317 0359

Notes: Each experiment has 431 observations, and 2,000 experiments were conducted.
The row entries are the values of the test statistics associated with the quantiles of the
empirical distributions. The last row reports the sample standard deviation of the

empirical distribution. See also Table 4.



Table 6

Quantiles of the Empirical Distributions of the Implied Long-Horizon Statistics,

Under the Alternative Hypothesis

Panel A: Implied Slope Coefficients, Long-Horizon Returns on Dividend Yields

Quant. B(1) B(12) B(24) B(36) B(48) B(e=)
1% 2429 38.978 74.340 99.056 118.357 177.628
5% 3.450 52.068 95.979 128.505 152.206 204.798
10% 4.019 60.571 108.679 143.354 168.384 215.057
50% 6.892 92.417 155.490 192.494 214.478 250.177
90% 11.132 132.267 201.892 234.928 251323 288.660
95% 12.420 146.333 216.167 246.091 260.843 299.948
99% 15.212 169.995 240.729 265.188 281.410 330.405

mean 7.290 94.653 155311 190.399 211.404 251.053

std. dev. 2.825 28.569 36.521 35.776 33292 30.622

Panel B: Implied R%(k) Coefficients, Long-Horizon Retumns on Dividend Yields

Quant. R¥1) R}(12) R}(24) R¥(36) R¥(48) R¥(60)
1% .003 .053 097 123 136 .145
5% .005 .083 .150 191 215 226
10% .007 .102 AN 225 248 258

50% .013 173 283 .340 367 375

90% .023 .266 .396 451 475 485

95% .027 291 425 .480 510 522

9% 034 .345 481 534 .568 .588

mean .014 179 285 .339 364 373

std. dev. .007 .064 .085 .089 091 091




Panel C: Implied R¥k) Coefficients, Long-Horizon Returns on All Three Variables

Quant. RY(1) RX(12) RY(24) R¥(36) RY(48) R¥(60)
1% 016 068 101 126 138 146
5% 024 .104 157 193 215 227
10% 029 123 183 227 249 259
50% 055 196 288 341 367 375

90% 100 284 398 452 475 485

95% 125 312 427 481 510 52

99% 210 - 377 483 536 568 587

mean 063 201 290 340 367 364

std. dev. .42 065 084 089 090 091

Panel D: Implied Variance Ratios

Quant. VR(12) VR(24) VR(36) VR(48) VR(60)

1% 0.829 0.629 0.498 0.408 0.357
5% 0.897 0.715 0575 0.480 0.416
10% 0.949 0.770 0.627 0.526 0.456
50% 1.100 0.949 0.820 0.710 0.625
90% 1340 1.191 1.051 0.937 0.850
95% 1.441 1.308 1.156 1.029 0.931
99% 1.777 1.654 1.438 1.307 1.191
mean 1.133 0.977 0.837 0.729 0.645

std. dev. 0203 0212 0.198 0.184 0171

Notes: Each experiment has 431 observations, and 2,000 experiments were conducted.
The row entries are the values of the test statistics associated with the quantiles of the
empirical distribution. The last row reports the sample standard deviation of the empirical

distribution. See also Table 4.



Table 7

First-Order Vector Autoregression of Returns, Dividend Yields, Relative Bill Rates,

Term Premiums and Default Premiums

Coefficients on Regressors

Dep. In(R) D/P, th, Y ydp, 2(5) R?
Variable (s.e.) (s.e.) (s.e) (s.e.) (s-e.) Conf.
Sample A: 1927:2 10 1987:11, 730 Observations
In(R,,,) 0.109 3.880 - -4.582 0.404 0.012 11.426
(0.062)  (2434) (2.729) (2.403)  (6.526) 956 .017
D,/P, -0.001 0972 0.022 0.007 -0.031 5183.405
(0.001)  (0.017) (0.012) (0.010)  (0.043) 999 938
1b,,, 0.0003  -0.021 0.676 0.034 -0.083  220.871
(0.001)  (0.015)  (0.071)  (0.050)  (0.042) 999 456
Ytb,, -0.0001 0.008 -0.504 0.639 0.109 1447.686
(0.0003) (0.013)  (0.049)  (0.041) . (0.031) 999 .803
ydp. -0.001 0.008 -0.007 -0.005 0.969 4036.008
(0.0002) (0.007)  (0.009)  (0.005)  (0.024) 999 960
Sample B: 1952:1 to 1987:11, 431 Observa!ions'
In(R,,,) 0.058 6.180 -8.768 0.518 -4.022 24.786
(0.061)  (2.826)  (3.176)  (2.947)  (5.889) 999 .054
D,./P,,  -0.0002 0972 0.043 0.009 0.006 8548.105
(0.0002) (0.012) (0.012)  (0.011)  (0.024) 999 960
b, 0.0007  -0.060 0.750 0.048 -0.174  311.224
(0.001)  (0.044)  (0.065)  (0.047)  (0.133) 999 568
Y., -0.0005  -0.015 -0.503 0.607 -0.086  757.208
(0.001)  (0.028)  (0.038)  (0.037)  (0.086) 999 951
ydp.., -0.0002 0.024 0.006 -0.006 0.963 4330.088
(0.0001)  (0.006)  (0.009)  (0.006)  (0.018) 999 951




Coefficients on Regressors

Dep. D/P, rb, ytp, ydp, 2(5) R?
In(R)
Variable (s.e.) (s.e.) (s.e.) (s.e.) (s.e.) Conf.
Sample C: 1927:2 10 1951:12, 299 Observations
In(R,,,) 0.138 4.697 12431 -0.872 3329 5.822
(0.088)  (4.355)  (7.981) (5.153)  (8.826) .676 013
D../P.,  -0.001 0.950 -0.032 0.001 -0.001 1910.541
(0.001) (0.032) (0.038) (0.023)  (0.058) 999 .904
b, 0.0003  -0.002 0.285 0.052 -0.086 13.312
(0.001)  (0.025) (0.163)  (0.097)  (0.061) 979 .088
yth., 0.0002  -0.001 -0.724 0.685 0.110 1001.785
(0.0003) (0.018)  (0.113)  (0.092)  (0.053) 999 .783
ydp.,y -0.001 -0.006 -0.039 -0.002 0.967 4426.364
(0.0003) (0.013)  (0.022) (0.013)  (0.032) 999 958
Exclusion Tests
Equation Test Sample A Sample B Sample C
In(R,,;) 22 0.030 0.556 0.143
Conf, 015 243 .069
Du/Pu 22 0.744 0.606 1.008
Conf. 311 .261 396
b, (2 4324 2301 3.521
Conf. .885 .684 .828
YtP, 2(3) 107.462 185.729 41.401
Conf. 999 999 999
ydp,,, ¥(3) 22.117 21.256 28.392
Conf. .999 999 .999

Notes: The Exclusion Tests examine the restrictions that the term premjum and the default
premium do not forecast the market return, the dividend yield and the relative treasury
bill rate, and that-the latter three variables do not forecast the former two.



Table 8

Constant Correlation GARCH Model of the Conditional Variance Matrix

for the VAR of Returns, Dividend Ylelds and Relative T-Bill Rates

Cond. w
Var.

(s.e.)
hy,, 117.714
(54.563)
hy, 0.001
(0.0002)
hys, 0.027
(0.014)
P
(se.)
-0.946
(0.005)

by = @ + Bl + 0 i= 1,23

B

(s.e.)
0.908
(0.031)
0923
(0.013)
0.784
(0.049)
P

(s.e))
-0.072
(0.048)

«

(se.)
0.046
(0.016)
0.062
(0.011)
0.197
(0.049)
Pn

(se)
0.052
(0.047)

g

m o O = » @ P = >

Diagnostic Tests

Q(10)
9513
5.580

11.069

10.997

75.162
7.969
7.099
7.969

14.888

Q(15)
12.563

8.657
17.477
12.830
88.591
12.420

9.490
12.420
16.815

Q20
17.155
9.663
25.760
16.363
97.833
15.084
11.161
15.087
19.399

Note: Sample: 1952:1 to 1987:11, 431 Observations. The conditional variance models

are estimated simultaneously with the constant correlation coefficients. Conditional

variances 1, 2, and 3 are innovation variances in the market return, the dividend yield,

and the relative treasury bill retun. Diagnostic test A refers to the level of the residual

divided by the conditional standard deviation, B refers 1o the squared residual divided by

the conditional variance, while C, D, and E refer to the product of two residuals divided

by the product of their conditional standard deviations for (1,2), (1,3) and (2,3),

respectively. The .05 critical values of the %? statistics with 10, 15, and 20 degrees of

freedom are 18.307, 24.996, and 31.410, respectively.






