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1. Introduction

A prominent problem in empirical macroeconomics during the past decade has been the
measurement of the persistence of shocks to macroeconomic time serics variables. Since Nelson
and Plosser (1982), much of this literature has focused on the size of the largest autoregressive
root (p) of a time series, and tests for whether p is one have played a central role in the
cmpirical analysis. This emphasis on unit root tests, which in part is attributable to the
availability of appropriate statistical theory, has been criticized on several grounds. While
macroeconomic theories suggest substantial serial dependence in time serics data, a unit root
typically is predicted only as a special case. Moreover, reporting only unit root tests and point
estimates of the largest root is unsatisfying as a description of the data: this fails to convey
information about the sampling uncertainty or, more precisely, the range of models (ie., values
of p) that are consistent with the observed data. While not new (sce for example Campbell and
Mankiw [1987] and Cochrane [1988]), these criticisms suggest that confidence intervals for p
could provide a more useful summary measure of persistence than unit root tests alone.

This paper reports asymptotic confidence intervals for p, calculated for the fourteen
historical U.S. annual macrocconomic time series studied by Nelson and Plosser (1982). The
methodological contribution of the paper is to provide a set of figures and tables for usc in
constructing confidence intervals for p when p is large. Becausc the distribution of the t-
statistic testing p is non-normal and depends strongly on p when p is ncarly one, the usual
approach of constructing asymptotic confidence intervals as the point estimate + 2 standard
crrors is not appropriate here. Morcover, as Cavanagh (1985), Sims (1988), and Sims and Uhlig
(1988) emphasized, the first order asymptotic theory does not provide a suitable framework for
the construction of confidence intervals because it is discontinuous at p =1 Instead, the

confidence intervals reported here are constructed using the local-to-unity asymptotic theory




developed by Bobkoski (1983), Cavanagh (1985), Phillips (1987), and Chan and Wei (1987). In
this theory, the true value of p is modeled as being in a decreasing neighborhood of one,
specifically p = 1+¢/T, where c is a fixed constant (the Pitman drift) and T is the sample size.
This device -- nesting p as a function of the sample size ~ is analogous to the usual approach
used to study the asymptotic power of econometric tests against local alternatives, except that in
the conventional case the alternatives are in a 1//T rather than a I/T neighborhood of the null
value. Cavanagh (1985) originally described how to use this theory to construct confidence
intervals based on the t-statistic testing p = 1 + ¢/T for first-order autoregressions with no
intercept in the regression. This paper extends his approach to the empirically more relevant
case of higher order autoregressions with an intercept, or an intercept and a time trend. Two
sets of confidence intervals are studied here: one based on the augmented Dickey-Fuller (1979)
(ADF) t-statistic testing p = 1, and onc based on a modification of Sargan and Bhargava’s
(1983) uniformly most powerful test statistic (the MSB statistic).

The main new empirical result in this paper is that the confidence intervals for p for many
of the annual Nelson-Plosser series are wide. As Nelson and Plosser emphasized, the ADF
statistic rejects p =1 against p <1 at the.5% level only for the unemployment rate, so
unemployment is the only series for which the 9% central confidence interval for p (based on
Nelson and Plosser’s ADF statistics) falls below one. But these intervals also include values of g
substantially different from one. The 90% intervals for rcal GNP and real per capita GNP,
based on 62 years of data, arc approximatcly (0.6, 1.04) using cither the MSB or ADF statistics.
This provides additional empirical content to the often-voiced view, recently expressed for
example by Christiano and Eichenbaum (1990), that cither differcnce-stationary or trend-
stationary models are capable of producing the autocorrelations observed in U.S. output data.
Some scries, however, have substantially tighter intervals than GNP. The serics with the
tightest interval estimates are industrial production, consumer prices, and velocity — the scries

with the most observations — and the bond yicld. For example, the %% ADF interval for



consumer prices, on which there are 111 annual observations, is (0.901, 1037) and is (0873,
1.039) for stock returns (the S&P 500). These tighter intervals in part reflect the longer
samples available for thesc series than for GNP. Reporting solely the results of unit root tests
fails to convey the evident imprecision with which the largest root is estimated in many of these
series, even with these long annual data,

The paper is organized as follows. The method for constructing these confidence intervals
is summarized in Section 2. Section 3 reports a Monte Carlo experiment that examines the
finite sample performance of the intervals. The empirical results are reported and discussed in
Section 4, and some conclusions are summarized in Scction 5. Tables of central confidence

intervals as a function of the ADF and MSB statistics arc provided in the Appendix.

2. Local-to-Unity Asymptotic Confidence Intervals
The model and statistics. Let the univariate time serics yy obey

Ye=potmttv, all)vy=e, al)=blL)Yl-pL) t=1....T, (1)

where b(L) = X?—:()hij where by =1and L is the lag operator (so that the lag polynomial
a(L) has order k+1), b(1)#0, vo =0, and ¢, is a martingale difference sequence with Ee% = 02
and suptEc‘:< @, with py and uy nonzero in general. The factorization of a(L) is used to
distinguish the largest root, p = 1 + ¢/T, from the fixed stable roots describing short run
dynamics in h(L).1

The representation (1) can be rearranged to yield the usual Dickey-Fuller regression,

- k
Yy =hg+ it + oy + zjzla}_IAyt_J- + ¢ (2)




where, with p = 1+¢/T, a{L) = L'l(l—u(L)) s0 o1y =1+ cb(I)/T, gy = -cb(Duy/T -

cb*(Duy/T + Pb(Wuy, #q = -cb(Q)u /T, b} = _z}(=i+lbj‘ and of = 'z}(=i+1°‘j' The

ADF t-statistic, denoted by #7, is the t-statistic testing the hypothesis that (1) = 1 in (2).
Sargan and Bhargava (1983) proposed a different test statistic, motivated as the uniformly

most powerful test statistic for testing p = 1 against the stationary alternative using an

approximation to the Gaussian likelihood when 4;=0. Bhargava (1986) extended these results to

the case of nonzero g and py, showing the Sargan-Bhargava statistic to be locally most

powerful invariant when computed using detrended y,, where the detrended data are y? =Y,

- (t-DAT-Dyp - (T-OT-1)yy - (v - ytyy) Although the Sargan-Bhargava statistic has

these optimality properties in the first-order Gaussian case, the test is not similar when b(1) #

1. As is shown in Stock (1988), however, it is readily modified to provide an asymptotically

similar test statistic. Let the spectral density of (1-pL)v, at frequency zero be w2/21r, so that w

2= &2/(1{1‘(1))2, where o and o*(L) are estimated from the

= g/b(1), and estimate w2 by
regression (2) without the time trend. When u; and gy are possibly nonzero, the modificd

Sargan-Bhargava statistic (in logarithms), computed using y?, is
a2 20
MsBE = snZr iyl o B 3)

The regression (2) includes t as a regressor, and the detrended serics y? is used to
construct the MSB statistic in (3). This is appropriate if pj and y; are not restricted a-priori,
and this will be referred to as the "detrended” case. Alternatively gy, but not necessarily pg,
might be known to be zero. Then the appropriate ADF statistic is ##, the t-statistic testing
a(1) =1 in (2) excluding the time trend, and the MSB statistic is computed using y’: =Y y

(rather than th) and is denoted MSB¥. This will be referred to as the "demeaned” case.



Asymptotic distributions. One approach to constructing confidence intervals for p would be
to assume a distribution for ¢, and to derive the exact finite-sample confidence intervals based
on an appropriate test statistic. Because any specific distributional assumption typically would
not be satisfied in practice, the justification for such an approach would be that, in large
samples, it might nonetheless provide a good approximation under more general conditions.
This suggests instead computing confidence intervals with an explicit asymptotic justification,
which is the approach taken here.

Limiting representations for the statistics at hand are obtained using the local-to-unity
asymptotic distribution theory given in Bobkoski (1983), Cavanagh (1985), Chan (1988), Chan
and Wei (1987), and Phillips (1987) (for a different approach, see Ahtola and Tiao [1984]). For
a technical review of this literature, seec Nabeya and Tanaka (1990, Section 1). The basic result
in this literature is that the process v, in (1) obeys a functional limit theorem, in which V(3 =
T'kv[,“] converges to a diffusion process as T —+ =, where [+] is the greatest lesser integer
function. Specifically, V{+) => wI(+), where J(-) satisfies d)(s) = c)(s)ds + dW(s), where W(-)
is a standard Brownian motion and "=>" denotes weak convergence in D[0,1] If c=0s0 p =1,
this specializes to the more familiar limit, Vi{+) => wW(-) These results are extended here to
include additional regressors using the techniques of Sims, Stock and Watson (1990).

For uy and p, possibly nonzero, the appropriate statistics involve detrending. It is shown in

Appendix A that, when p =1+ ¢/T and (2) includes a constant and a time trend,

TG() - 1) = KIS sy L1 (s)aw(s) + ) @
P = (51709 U () 2asy L LI (0)awes) + o) )
MsBB => utn{f315(s)%as), ©




where J7() = J(A) - f%)(fi—()s)l(s)ds - ,\f(l)(12$—6)l(s)ds and JB(A) = J(A) - (A-})J(1) - f(l)J(s)ds.
The limiting representations (4) - (6) are the same in the demeaned case, cxcept that J¥(+)

replaces J7(+) and JB(-), where J¥(3) = J(3) - f(l)l(s)ds.

Construction of asymptotic confidence intervals. The distributions corresponding to (4)6)
are non-normal and the dependence on c is not a simple location shift, so confidence intervals
for p cannot be formed using a simple "£2 standard error rule. Still, because the
representations (5) and (6) depend only on ¢ and are continuous in ¢, the ADF and MSB test
statistics can be used as the basis for interval estimation.

Recall that a 10(1-a)% confidence set for c, S(yqs+ -« » Yk is a set-valued function of
the data with the property that Pr[c € 5(yg - - -» yp)} = 1 for all values of c. In general, a
confidence sct can be constructed by "inverting” the acceptance region of a test statistic that has
a distribution which depends on ¢ but not on the nuisance parameters. To be concrete, consider
confidence sets based on 77, If A (cq) is the (1- or 2- sided) asymptotic acceptance region
for a level a test of the null of ¢ = ¢g, then SGNy={c"e A (c) }is a 100(1-a)% confidence
set. Because 77 is a scalar, a 100(1-a)% closed confidence set can be constructed as 5¢GT) =
{e: f!;ag(c) =i =< fu;au(c)}, where fz;al(c) and fu;au(c) are respectively the lower and upper
@, and 1« percentiles of #7 as a function of ¢, where apta, =a lIf fl,,al(c) and fu;uu(c)
are strictly monotone increasing in ¢, the critical values can be inverted to yicld the more
familiar representation, S(+7) = {: f'leu(} BELES fzal(}r)}. Here, we construct
central confidence intervals, so that ay =a, = ha.

A simple way to construct these intervals is to use the graphical device described by Kendall
and Stuart (1967, Chapter 20). Asymptotic local-to-unity central confidence belts (the graph of
{f‘e;;m(c), fu;l‘sa(c)}) arc plotted in Figurcs 1-4 for, respectively, the demeancd ADF t-statistic
7, the detrended ADF t-statistic 77, the demeaned MSB statistic MSB¥, and the detrended

MSB statistic MSBB, The computation of these belts by Monte Carlo simulation is described in



Appendix B. In each figure, the four bands describe the 95% (the widest band), 90%, 80%, and
70% confidence belts. The central line plots the median of the local-to-unity distribution of
the test statistic. The 100(1-a)% confidence sct is given by those valucs of ¢ falling within the
l-a belt for a given value of the statistic. Each 1-a confidence belt has the property that, for a
given value of ¢, the asymptotic probability of realizing a value of the statistic inside the belt is
l-e. For any true value of c, the confidence intervals constructed using the belt will contain ¢
if and only if the realized statistic falls within the belt. Thus, the asymptotic probability that
the confidence interval contains the true value of c is l-cx.2

As an example, supposc 7* = -30 is calculated from a series with T = 100. The 95%
confidence interval is those ¢ in the 95% belt in Figure 1, read vertically for t# = -30 (or
alternatively taken from Table A-l, part A) which is -27.9 < ¢ < 08 The 95% confidence
interval for p is (1-27.9/100, 1+0.8/100) = (721, 1.008). Because the medians in Figures 1 and
3 arc monotonc increasing in ¢, an asymptotically median-unbiased estimator is obtained using
the central line in Figure 1 (or the final column of Table A-], part A) Because the median of

## is -30 when ¢ = -149, ¢med _ 149 is an asymptotically median-unbiased estimate of c,

ed . 1-14.9/100 = 851. Based on the level of numerical accuracy used

corresponding to p™
to produce Figures 14, it appears that the medians of +7 and MSBB bend backwards for ¢
between zero and one, so estimators thus constructed using 77 and MSBB are not median
unbiased. However, because the range of values of +7 and MSBB over which these curves
bend backwards is very small (specifically, 7 € (-1.346, -1334) and MSBB € (-2193,

-2184)), the bias introduced by using this estimator with the detrended statistics appears to be

ncgligible.

Discussion. Six aspects of these results are noteworthy. First, the confidence belts arc
nonlinear, exhibiting a sharp bend for c just above 0. For positive values of 77 or +¥ the

confidence intervals are tight, for large negative values they are wide. Large positive values of




T are likely to be

7 are unlikely to be realized unless ¢ is positive, but negative values of 1
realized whether c is positive or negative. A simple calculation demonstrates how different arc
the widths of the interval estimates for different realizations of the test statistic: if, for
example, 77 = 0, the sample must have T=75 for the 95% interval to have width 05, but if

T =35is observed, T must be 725 to produce this short an interval.

Second, the detrended belts do not increase monotonically, so for some values of 77 the
central confidence set will be disjoint. Cavanagh (1985) pointed out that disjoint sets are
theoretically possible in the local-to-unity setting, but his computations did not uncover any in
the non-demeaned first-order case. Sims (1988) found disjoint confidence sets for p in the
non-demecaned first order model using first-order asymptotic theory, which is discontinuous in
p, and conjectured that exact finite-sample distributions (which are continuous in p) also might
result in disjoint confidence sets. Using the asymptotic local-to-unity confidence intervals, the
Cavanagh - Sims conjecture is not borne out in the demeaned case, although it is in the
detrended case. This is, however, of little practical importance. The largest range of
discontinuities is for the 95% belt, in which case disjoint confidence sets obtain when 77 falls
between (-366, -369) and (-0.66, -0.71). In Table A-], this issue is addressed by reporting
only the outer bounds of the confidence intervals in these ranges, so that the intervals actually
have asymptotic confidence coefficient slightly greater than 1. Note that this results in a
discontinuous jump in the confidence interval (as a function of +7) in these regions.

Third, because the local-to-unity distribution of T(a(1) - 1) is skewed and moreover
depends on the nuisance parameters b(1), the relation between a(1) and the confidence interval
constructed by inverting the ADF t-statistic is complicated. The point estimate gencrally will
not be at the center of the confidence interval.

Fourth, the confidence intervals based on the detrended statistics are larger than for the
demeaned statistics. To be concrete, consider the median confidence interval, taken to be the

confidence interval computed for the median value of the ADF statistic for a given valuc of c.



For ¢ between -20 and 2, the median 90% interval based on +” is uniformly longer than the
median 90% interval based on +¥, assuming #1 = 0. For example, for ¢ = -5, the median #
is -2.06, with a 90% confidence interval for c of (136, 24), whereas the median 77 is -2.45,
with 90% confidence interval (-162, 34).

Fifth, the MSB confidence belts have the same general properties as the ADF confidence

T .
intervals,

belts. Intervals are wider for large negative values of the statistic. Like the 7
there is a small range of MSBB for which the confidence set is disjoint.
Sixth, an alternative to the asymptotic approach used here is to construct confidence
intervals and median-unbiased estimators for p using finite sample techniques. This approach
has recently been adopted by Andrews (1990), who used exact distribution theory to construct
confidence intervals and median-unbiased estimators in the Gaussian AR(1) model, and by
Rudebusch (1990), who used Monte Carlo techniques to construct median-unbiased estimators in
the Gaussian AR(k) model. The principal advantages of the asymptotic approach relative to the

finite-sample approaches are the simplifications that arise in handling the nuisance parameters

and its validity under a wide range of assumptions on the marginal distribution of I

3. Monte Carlo Analysis

The asymptotic analysis of Section 2 serves two main purposes: to show that in large
samples the local power functions of the ADF and MSB statistics depend only on ¢, so that they
can be used to construct asymptotic confidence intervals; and to provide large-sample
approximations to the finite-sample distributions of these statistics when p is necar one. It is
well known (Schwert [1989]) that unit root tests statistics can have finitc-sample distributions

that differ markedly from their asymptotic approximations under the unit root null when there

are nuisance parameters, specifically when there is a moving average error. A Monte Carlo




analysis of the focal-to-unity confidence intervals was thercfore performed to assess the finite
sample performance of these asymptotic approximations when p is near one. The probability

model examined was the nearly-integrated moving average model,

(1-pL)y, = (1 + 6L, € iid N, 1), t=1,....T (7

where p = 1+¢/T and y5 = 0. The ADF and MSB statistics were computed in both the
demeaned and detrended cases. For T = 100, k in (2) was set to 4, and for T = 200, k was set
to 5. The experiment examined ¢ = (2, 0, -2, -5, -10) and 4 = (0.5, 0, -0.5). Note that, for §
# 0, the finite order autoregressive approximation is misspecified so that in these cases the
experiment examines both specification error and the effect of having a finite sample.

Table 1 reports the fraction of times that the calculated central confidence interval contains
the true value of ¢ for different experiments. Because this is just the fraction of times that the
computed statistic falls outside the upper and lower % percentiles for that value of ¢, the
coverage rates in Table 1 were computed as the fraction of pscudo-random test statistics that
reject the null hypothesis that p = 1+¢/T in a two-sided level a test, where the critical valucs
for each c are those used to construct Figures 1 - 4.

Overall, the asymptotic approximations perform well. For example, for both 77 and ##
with T=100, in all cases the empirical coverage rates of the asymptotic 0% confidence interval
are between 82% and 91%. For -5 < ¢ < 2, the coverage rates for the 90% interval based on
MSBB range from 80% to 92%. The performance of both sets of intervals is insensitive to 4,
but it deteriorates as ¢ becomes large and negative. This dcterioration is greatest for the MSB
intervals. For ¢ =-10 and T = 100 (s0 p = 09), the MSBB coverage rates for the %% interval

fall to 72% to 77%.

At least for these values of 4, for Gaussian errors, and for moderate
values of ¢, the asymptotic confidence belts produce reliable interval estimates, with the ADF

intervals performing better than the MSB intervals for large negative values of c.
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4. Empirical Results

" Table 2 presents 90% and 80% confidence intervals for the largest autoregressive root p for
the fourteen annual series studied by Nelson and Plosser (1982). The intervals were computed
using the detrended ADF and MSB statistics. Panel A reports estimates based on Nelson and
Plosser’s choice of the number of lags (k) included in (2). The %% central confidence interval
for p (based on 77) is below 1 for the unemployment rate and above 1 for the bond yield,
while p = 1 is included in all the other intervals. The interval estimates constructed using
MSBB arc generally similar to those based on 77 with the exceptions of the unemployment rate
(the MSB interval is lower), the bond yield (the MSB interval includes 1), and the money stock
(the MSB intcrval falls below 1)

These calculations were repeated using k = 5 for each of the series; the results are reported
in panel B of Table 2. The primary qualitative conclusion from Panel A — the striking width
of the confidence intervals — remains unchanged, although several estimated intervals shift,
The main differences occur for the three GNP serics, the unemployment rate, real wagcs,
velocity, the S&P 500 and, for the MSB statistic, the moncy stock; cach of these intcrvals is
shifted up. For the money stock in particular, the lower MSBB interval in Pancl A appears to
be an artifact qf using too few lags in the autorcgressive spectral estimator.

As was noted in the introduction, the series with the tightest confidence intervals are the
bond yicld, industrial production, consumer priccs, and velocity. The confidence intervals for
the bond yicld are tight because the test statistics are relatively positive, indicating a root
greater than onc. As is evident from Figures 14, positive values of the test statistic produce
much tighter intervals than do large negative values. The relatively tight intervals for industrial
production, consumer prices, and velocity arise from the greater number of observations on

these serics.

Sil-




The width of the intervals in Table 2 raises the question of whether tighter intervals could
be obtained using more frequent observations over the same span of years, say quarterly rather
than annual data were they available. A simple calculation indicates that the answer is no.
Suppose that T years of data are used to compute the MSBB statistic, first using quarterly data,
then using the quarterly data aggregated to the annual level. Also suppose a sufficient number
of lags are included in the quarterly and annual regressions to yield consistent estimators of w.
With a root local to unity, the quarterly and annual MSI':’-B statistics will be equal asymptotically,
so the confidence intervals for ¢ will be the same, say (CO' ¢y The confidence interval for the
quarterly root computed using the quarterly data is (1+c/4T, 1+¢/4T). But this quarterly
interval converted to an annual basis is (I+cy/T, 1+¢y/T) to order O(T-z), the same as computed
using the annual data.

Two caveats should be borne in mind when interpreting the width of these intervals. First,
no attempt has been made to construct optimal intervals; rather only central intervals are given.
Presumably, the reported intervals overstate somewhat the sampling variability relative to
optimal intervals. Second, the finite sample properties of these intervals have been studied only
in the rarefied cxperimental design of Section 3, and further simulation experiments are in

order.

5. Summary and Discussion

These procedures provide asymptotic confidence intervals for the largest autoregressive root
of a ncarly nonstationary time scries variable. Because of the nonstandard distribution theory,
the relation between the abscrved t-statistic (or p-value) and the confidence interval for p is
complicated. Thus substantial additional information beyond whether or not a unit root test

rejects is revealed by formally coastructing these interval estimates.
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The classical confidence intervals developed here can be contrasted to recent Bayesian
approaches to the unit root problem. In part in reaction to the‘discontinuity in the first order
asymptotic theory, Sims (1988) and Sims and Uhlig (1989) suggested computing Bayesian
interval estimates for p. This has been implemented empirically by DeJong and Whiteman
(1989) using “flat" priors and by Schotman and van Dijk (1989) and Phillips (1990) using
Jeffreys priors.

The classical analysis here has several advantages over these Bayesian approaches. First, it
sidesteps the debate over priors. As Phillips (1990) emphasizes, the flat and Jeffreys priors
differ most in their treatment of roots near and greater than one, and not surprisingly the
posteriors — and thus inferences about p — differ sharply depending on the choice of prior.

The choice of prior is further complicated in this problem because it must be specified over the
nuisance parameters as well as over the parameter of interest, p. Second, the classical approach
does not require the additional conceptual device of treating the unknown parameters as
random. Third, and mast important, the classical confidence intervals are precise expressions of
a common form of reasoning in the "unit roots” debate in empirical macroeconomics: if a
computed test statistic is a likely realization from some hypothesized model (value of p), then
that model ought to be treated as possibly true. Christiano and Eichenbaum (1990) can be
interpreted as using this logic to argue that specific models of interest are within classical
confidence scts of some reasonable but unspecified confidence cocfficient. In contrast, the )
Bayesian posteriors can be interpreted only with reference to the priors, the appropriatencss of
which are inherently difficult to judge. Were econometricians able to agree on the best priors
for reporting results to a general scientific readership, or were inferences on p framed as an
explicit decision problem, then the Bayesian approach would have more appeal; but neither
condition is satisfied here.

The main empirical message of Table 2 is that the confidence intervals for p arc wide. For

all series except unemployment and perhaps bond yields, the intervals contain onc, but they also
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contain values that could be substantially different from onc in terms of their implications for
quantities of interest to macrocconomists. This sampling uncertainty is large despite having
more than a century of observations on several of the series. A next step in this research is to
calculate confidence intervals for the several-year-ahead impulse response function analyzed by
Campbell and Mankiw (1987) and subsequent researchers, allowing for a root that is nearly, but
not exactly, one. Although that calculation is beyond the scope of this paper, the findings here
(and those in Christiano and Eichenbaum [1990] and Rudebusch [1990]) suggest that the
resulting confidence intervals would be wide relative to ones calculated under a maintained

unit-root assumption.
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Appendix

A. Derivation of equations (4), (5), and (6)

The results provided here apply to the "detrended” case. The results for the "demcaned”
statistics are obtained by dropping the deterministic time trend terms in these derivations. The
approach used to derive (4) - (6) is to rewrite the regression (1) in "canonical form" as defined
by Sims, Stock and Watson (1990), in which the regressors are transformed so that their limiting
moment matrix is nonsingular. The distribution of statistics from the canonical regression is
then used to obtain the distribution of the statistics of interest in the original regression (2).

Write the regression (2) as
Ye=BX 1t e (A1)

where Xig=0yp-- 0y o L Ye.p O and g= (ﬂl’, B2, B3, B4), where g =
(ai, ey ai)‘, By = [ao. B3 = o(l), and By= ;'4.1‘ Because a constant and t are included in
the regression, without loss of generality set py = 4y =0,50 sy = s = 0. Also set Xg=0.
The canonical regression is obtained by rewriting (A.l) so that all but thrce of the regressors
and

have mean zero and are stationary. Let & = (1-pL) and let up = b(L)'lety so that Z\yt =u,

E/Syt = (0. The canonical regression is,
- - k -
yt = K + I‘]t - zj=1bjAY(_j + Py(-l + €y (Az)
where b(L) is defined in (1) Written more compactly, this is

Yy =8Zq+ e, (A3)
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1.,2 .3 4, 1 o
where Z, 4 =(Zy (\, Z 1, Z{ 1, Z, 1), where Zi1=@Yppo- By
2 3 _ . 4 _
Zi1=12Z 1= y.pand Zig=t

The transformation from the original regressors X, to the canonical regressors Zqis

P o] s+« 0 0 1-p O Ay..1
-(1-p) p) « s+« 0 0 1-p 0 Ay, o
Z.o g = |-(1-p) -Q-p)« « + p 0 1-p 0O Ay, - DX_ . (A.4)
-1 0 0 -« «+ + 01 0 o0 fk et
0 0 + « « 00 1 o Ye-1
0 6 + « « 00 0 1 t

Let Tp= Diag(T}iIk, Tk, T, "[3/2), where I is the kxk identity matrix, and let § be the
OLS estimator of §, 8 = ():;I;lZt-lzt-ly)-l():’tl;-lzt-lyl)' The results of Bobkoski (1983),
Chan and Wei (1987, Lemma 2.1), and Phillips (1987, Lemma 1(a)) show that VT(-) => wl(«),
where w2 = az/b(l)2 = 2r times the spectral density of u, at frequency zero, VT(’\) = TJ’V[T/\]
and J(-) satisfies dJ(3) = cJ(3) + dW(}), where W(}) is a standard Brownian motion and J{0) = 0.

This result, combined with Sims, Stock and Watson (1990, Thcorem 1), yields
v el
T(é - ) => {14y Té))’, (AS5)

where Ty = EZ{Z{ (so that (Tyy)y; = Buyu, ;) 6y is distributed N(O, Tyyo°), ¢y is
independent of (I'y,, 4,), Ty, is a symmetric 3x3 matrix with elements (Tohy1 =1, (Tyip =
wf§IEXs, (Typly3 = % (Tyly = WS HHs)ds, (D = ufs)(e)ds, and (Typ)a = 13,

and where ¢, = o{W(1), ufpI(sXIW(s), [LsdW(s)}. Note that 3 = D', so (A5) implies

that p-pRo.

k g

Derivationof (4).  From B = D'é and the definition of D in (A4), By= (l'p)z;=l 1j

+ 83 Because B3 = &(1), T(&(1) - 1) = T(l-p)Z};l&lJ +T(85 - 1). Dircct calculation

216 -



shows that T( - 8) => (o) [17(s)2ds)y Y117 (s)dW(s)), where I” is defined in Section
3 0 0

2 From (A2) and (A3), 6= and 155, i };lb,. =1- 1) Thus,

}

| T -1) =- cxlk,__lslyj +T(83- 63)+ T(o - 1)

{ => (7)) LT ()aw(s) + ).
|

|

Derivation of (5). Using the device in Sims, Stock and Watson (1990, Theorem 2), onc obtains,
. 2, 2.-1,- -
= AT Lo TEW - v + 0 ) (A6)

i where y: is the residual from regressing yeon {1, t} Because Ee‘:< wand p-g R0, 52 B

} 02. The result (5) follows from (4), (A6), and V-;(-) => w]"(+), where V;—(,\) = T'ky[f»“}

- , k _ vk k /.
Derivation of (6). From 3 = D'§ and (A4), Xj=l‘91,j = pzj=1£1,j - (1-p)zjgl(]-l)8l’j
B1-b(1). Thus,

| =520 Z}llﬂl,j)z R oZp)? = u? . (A7)
Let VB = T“’yffm Then VE(+) => w1B(.), where 1B(3) = 3(3) - ()3(1) - Josxds

(this follows from V.{+) => wl(+) and by straightforward calculations). The desired expression (6)

obtains from these results and the definition of the MSBB statistic in (3).

;
|




B. Numerical Issues in the Tabulation and Computation of the Confidence Belts

Table A-1 summarizes the central confidence intervals obtained by inyer!ing the ADF and
MSB statistics as discussed in Section 2. The tables report the minimal and maximal limits of the
confidence set, so in the small ranges for which the confidence set is disjoint, the tabulated
interval joins the outer limits of the set. Confidence intervals for observed values of the statistics
can be obtained by linear interpolation. (This introduces some numerical inaccuracy in the
neighborhood of 7™ or MSBB’s for which the confidence sets are disjoint) In some cases
bounds are omitted because the lower bound falls outside the range of ¢ used for the calculations.
If so, the confidence interval constructed from the table is a 1 - 4« open interval.

Various procedures are available for the evaluation of the limiting distribution of the ADF and
p statistics. The literature has focused on the case with no deterministic regressors (with By =4y
= 0). Dickey and Fuller (1979) provide representations in terms of infinite sums of indepcndent
normal variates when ¢=0; Cavanagh (1985) and Chan (1988) generalize these to nonzero c.
Bobkoski (1983) and Perron (1989) numerically invert moment generating functions, and Nabeya
and Tanaka (1990) compute limiting distributions using the thcory of Fredholm determinants.
Results in Chan (1988), Nabcya and Tanaka (1990), and Perron (1989) suggest that the asymptotic
approximations work well for Gaussian AR(1) models in finite samplcs, even for T = 50 and
certainly for T = 500. Thesc latter results imply that suitable approximations to the limiting
distribution can be obtained by Monte Carlo simulation with T = 500, where the number of
replications is sufficiently large to provide the desired numerical accuracy. Indeed, Chan’s (1988)
comparison of scveral numerical procedurcs in the non-demeaned ;g = py = 0 case led him to
conciude that direct Monte Carlo simulation with T large produced the most reliable
approximations.

Chan’s (1988) recommendation is adopted here, and the limiting distributions were evaluated

by Monte Carlo simulation for T = 500 with 20,000 replications. The pseudo-data were gencrated

-18 -



according to y, = py, 1+e,, €, iid N(0]), with p = 1+c/T and Yo = 0. The distributions were
evaluated on a grid of 87 values of c for -38 < ¢ < 6, with the grid most dense on (-5, 6). For

cach ¢, the percentiles of +#, 77, MSB¥, and MSBB (computed with k=0) were recorded. The

025, 05, 10, .15, .50, 85, .90, 95, and 975 percentiles are plotted in Figures 14. The

intervals in Table A-1 were computed by linear interpolation of the resulting confidence belt as a
function of the statistic, using the outer bounds of the belt in the disjoint cases. Computer
procedures in RATS and GAUSS to calculate these intervals are available from the author on

request.
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Footnoltes

1. An alternative nesting for p, used by Phillips (1987), is p=exp{(c/T). Because exp{c¢/T) =
l+c/T+O(T'2), the asymptotic representations obtained in this section are the same for either

nesting.

2. The #+# and 77 statistics used here are centered around one rather than p (the conventional
approach). The reason for centering around one is to eliminate the dependence of the
distribution of the t-statistic on the nuisance parameters in the higher order case. Cavanagh
(1985), who focused on the first-order case (so that b(l) = 1), described the construction of
confidence intervals based on the t-statistic centered around of1) = p, that is, based on r(p) =
(a(1) - p)/SE(a(1)), where a(1) and SE(a(1)) are computed using (2). In general the

distribution of 7(p) depends not only on ¢ but also on b(1), so its critical values cannot be

inverted to obtain confidence intervals without adjusting for b(1).

3. Additional Monte Carlo experiments (not reported) suggest that the poor performance of the
MSB intervals for large negative c arises from the imprecision of a*(1), which is used to
construct w. This suggests investigating alternative spectral density estimators in the local-to-

unity model, a topic left for future research.
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Table 1

Monte Carlo Results:
Finite sample coverage probabilities for local-to-unity asymptotic confidence
intervals with asymptotic confidence coefficients .95, .90, .80, and .70.

Model: (1-pL)yt - (1+0L)(t, € i.1.d. N(0,1), e=1,...,T, p=l+c/T
e B A T | T s omse -
[) c .85 .80 .80 .70 .95 .80 .80 .70 85 .80 .80 .70 85 .80 .80 .70
4. T=100
00 2 9S4 .906 .803 681 933 878 .766 .663 .803 634 720 .63k 829 .880 .786 691
0.0 0 837 .BB3 .776 .677 831 .874 .771 665 877,808 .700 .604 843 898 808 713
0.0 -2 926 867 .764 .665 926 .870 .767 .667 .867 .803 .698 601 909 .854 758 .657
0.0 -5 018 .857 748 .656 822 .B67 .763 .64 832 .765 .657 .559 866 .803 .695 593
0.0 -10 .896 B34 722 .625 813,848 734 .628 775 608 .586 .502 808,728 .624 525
0.5 2 958,008 804 691 833 875 .766 .660 885,830 .722 .624 926 .878 785 691
0.5 o 828 868 .764 .664 826 .869 .770 .662 876 .805 .694 508 946,800 805 703
0.5 -2 924,870 .765 .64 922 867 768 .674 863 .800 693 .§01 816,861 .762 662
0.s -5 013 860 .755 659 .923 .867 .762 665 840,770 .661 .560 875 .810 .700 .600
0.5 -10 .885 820 .698 .601 904 .837 719 619 770,695 .582 499 800 .722 614 .524
0.5 2 048 .89 .805 .703 93¢ 873 .765 .656 822 869 .764 671 948,906 826 745
-0.s 0 838,881 .775 .675 926 870,767 662 814 .855 .750 .651 960 .922 839 751
0.5 -2 925 .868 .763 661 822 .B60 .758 .653 804,845 747 648 036 .889 .797 .70z
-0.5 -5 025 866 .752 .652 024 870 .764 661 .880 .814 711 608 805 .847 748 652
-0.5 -10 815,852 .741 .646 914 B35 746 641 828 .757 .640 .535 840 769 .656 564
. 2 960 .91z 810 .701 844 .887 783 .677 822,868 .762 .662 947 .896 .788 684
. 0 L840 .B63 .781 862 940 .886 786 680 903 .836 731 632 953,907 808 .712
-2 L840 ,B83 .779 682 836,877 .778 .679 903 .840 .733 .633 836 880 777 674
0 -5 927 .B72 .765 .64 830 .876 .775 .673 .885 .821 .707 .608 807 846 .731 628
.0 -10 819 860 .748 650 826 .B72 .762 651 .855 780 .665 .S564 875 797 684 581
0s 2 956 .908 .804 695 942 885 775 669 818 .B61 .753 655 042 B9 794 690
05 ¢ 841 .888 778 .62 036 .880 780 .678 903 L840 .731 .633 849 .904 810 .703
0.5 -2 939 885 .762 .680 937 882 784 .680 898 ,839 .731 629 932 .877 176 668
0.5 -5 929 875 .772 .670 932 .883 .780 .678 874 .808 .695 .S591 .896 832 .719 616
0.5 -10 815 855 .743 645 925 .866 754 .650 831 .762 .657 365 853 .778 669 .575
0.5 2 951 .905 .806 703 941 .883 .776 666 830 .881 .771 672 955 915 .828 .728
0.5 0 (841 891 .787 687 938 887 781 .667 933,873 775 672 965 928 .84 .74k
0.5 -2 840 .886 .785 681 939 865 783 679 827 870 .767 .668 954 .908 .812 712
-0.5 -5 920 .675 .773 .678 936 879 .778 681 913 .86z .762 .662 933 .881 .783 681
-0.5 -10 830 .874 771 .669 833,881 .772 .668 .888 .82 .712 .616 .806 834 ,730 .60




Notes to Table 1:

The entries are the fraction of Monte Carlo replications for which the
asymptotic local-to-unity confidence intervals contained the true value of p,
where p=l+c/T. The ADF statistics were computed using k=4 for T=100 and k=5
for T=200. The MSB statistics were computed using 62-&2/(1-&*(1))2, where

o and a*(l) were estimated from (2) (excluding t as a regressor), with k=4 for

T=100 and k=5 for T=200. The coverage rates are based on 10,000 Monte Carlo

replications for each (T, 8, c) experiment.



Table 2

Asymptotic confidence intervals for p for the Nelson-Plosser data set

- Tost mtat’s - - - - 90% Intervals - - - - - - 80X Intervals - - -
Series N ok aF+ mse ADF MsB ADF MSB

A. Nelson-Plosser lag lengths

REAL GNP 62 1 -2.884 ~1.726 ( .604, 1.042) ( .580, 1,037) ( .646, 1.031) { .637, .967)
NQMINAL GRP €2 1 -2.321 -1.578 { 757, 1.060) { .697, 1.050) ( .793, 1.048) ( .738, 1.040)
REAL PER CAPITA GNP 62 1 -3.045 -1.736 ( .581, 1.041) ¢ .582, 1.035) ( .634, 1.029) { .630, .961)
INDUSTRIAL PRODUCTION 111 5 ~2.529 ~1.304 ( .836, 1.031) { .905, 1,038) ( .857, 1.026) ( .823, 1.032)
EMPLOYMENT 81 2 -2.655 ~1.597 ( .757, 1.039) ¢ 757, 1.037) ¢ .767, 1,032) ( .790, 1.029)
UNEMPLOYMENT RATE a1 3 -3.552 -2.185 ( .577, .950) ( .227*%, .689) (¢ .615, ,883) ¢ .283%, ,6489)
GNF DEFLATOR 82 1 -2.516 -1.572 ( ,787, 1.041) ( .776, 1,038) { .815, 1.034) ( 806, 1.030)
CONSUMER FPRICES 111 3 -1.972 -1.1860 { .801, 1.037) ( .935, 1.041) ( .922, 1,031) ( .952, 1.035)
WAGES 71 2 -2.236 ~1.496 ( .800, 1.054) ( .775, 1.050) ( .B33, 1.045) ( .BO7, 1.040)
REAL WAGES 71 1 -3,049 -1.510 ( .644, 1.035) € .771, 1,048) ( .681, 1,025) ( .804, 1.038)
MONEY STOCK 82 1 -3.078 -1.815 ( .687, 1.030) ¢ .631, .976) ¢ .719, 1.020) ¢ .871, ,820)
VELOCITY 102 0 -1.683 -1.284 ( .829, 1.042) ( .906, 1.041) ( .950, 1.035) ( .924, 1,034)
BOND YIELD 71 2 .686 -1.196 €1.032, 1.075) ( .888, 1.064) (1.034, 1.067) (¢ .915, 1.053)
S&P 500 100 2 -2.122 1,462 ( .873, 1.039) ( .853, 1,036) ( .886, 1,033) ( .876, 1,028)
B, Uniform lag lengths

REAL GNP 62 5 -2.120 -1.272 ( .780, 1.068) ( .835, 1.074) ( .820, 1.057) ( .868, 1.061)
NOMINAL GNP 62 5 -1.788 -1.367 { .B47, 1.074) ¢ .783, 1.069) ( .886, 1,062) ( .828, 1,057)
REAL PER CAPITA GNP 62 5 -2.222 -1.324 ( .760, 1.066) ( .813, 1.072) ( .800, 1.055) ( .847, 1.059)
INDUSTRIAL PRODUCTION 111 5 -2.529 -1.304 { .836, 1.031) ( .05, 1.039) ( .857, 1.026) ( .923, 1.032)
EMPLOYMENT 81 5 -2,565 -1,308 ( .764, 1,043) { .866, 1.054) ( .794, 1,035) ( .8D1, 1.044)
UNEMPLOYMENT RATE 81 5 -2.835 -2.049 { .715, 1.037) ¢ .368+%, .B21) ( .746, 1.028) ( .426%, .776)
GNP DEFLATOR 82 5 -2.466 -1.585 ( .784, 1.044) (¢ .757, 1.03%) ( 813, 1,036) ( .790, 1.031)
CONSUMER PRICES 111 S -2,369 -1.286 ( .855, 1.033) ¢ .808, 1.039) ( .876, 1.028) ¢ .927, 1.032)
WAGES 71 5 ~2.124 -1.447 ( .811, 1.059) ( .787, 1.055) ( .845, 1.049) ( .821, 1.045)
REAL WAGES 7 5 ~2.584 -1.169 ( .728, 1.049) ( .891, 1.067) ( .762, 1.041) ( .919, 1.057)
MOKEY STOCK 82 5 -3.005 -1.622 ( .685, 1.033) ( .738, 1.037) ¢ .718, 1,024) ( .772, 1.028)
VELOCITY 102 5 =741 -.822 (1.015, 1.049) ( .974, 1.050) (1.018, 1.042) (1,013, 1.042)
HOND YIELD 71 5 .597 -1.649 (1.033, 1.078) ( .677, 1.041) (1.035, 1.068) ( .716, 1.031)
S&P 500 100 5 -1.062 -1.005 { .982, 1.048) ( .857, 1.050) (1.016, 1,042) 4 1.042)

Notes: The detrended ADF statistic (?T) was obtained by estimating the
regression (2}, including a constant, a time trend, and k lags of Ayt. The
detrended MSB statistic (MSBB) was computed using the autoregressive estimator
©° based on (2) (excluding t as a regressor) with the indicated value of k.
The data are annual, with all series ending in 1970. N denotes the total number
of observations on each series, including observations used for initial
conditions, so that, in the notation of the paper, T=N-k-1. The 90% and 80%
asymptotic confidence intervals were computed using Appendix Table A-1, linearly
interpolated, as described in Section 2.

These values are based on linear extrapolation below c=-38 (the limit of the
confidence bands summarized in Table A-1), which might introduce substantial
numerical inaccuracy for these entries.




Table A-1
Confidence Belts for p based on ADF and MSB statistics

«

- - 95% - - - - 90% - - - - 80% - - - - 70% - -
Statistic <9 cy g cy o c; <o . Median
A. Based on Demeaned ADF t-tatistic t*

-5.70 - -37.12 - - - - - - -
-5.60 - -35.41 - - - - - - -
-5.50 - -33.70 - -37.17 - - - - -
-5.40 - -32.04 - -35.50 - - - - B
-5.30 - -30.47 - -33.84 - -37.57 - - -
-5.20 - -28.88 - -32.17 - -35.87 - - -
-5.10 - -27.30 - -30.60 - -34.17 - -36.73 -
-5.00 - -25.81 - -28.98 - -32.52 - -35.05 -
-4.90 - -24.32 - -27.41 - ~30.88 - -33.42 -
-4.80 - -22.87 - -25.94 - -29.26 - -31.77 -
~4.70Q - -21.35 - ~-24.46 - -27.70 - -30.15 -
-4,60 - -19.93 - -22.97 - -26.19 - -28.58 -
-4.50 - -18.56 - -21.53 - -24.71 - -27,02 -36.49
-4.40 - -17.21 - -20.11 - -23.26 - -25.55 -34.82
-4.30 - -15.88 - -18.72 - -21.84 - -24.08 -33.21
-4.20 - -14.51 - -17.35 - -20.44 - -22.62 -31.63
-4.10 - -13.23 - -15.98 - -19.09 - -21.19 -30.05
-4.00 - -11.96 - -14.68° - -17.78 -37.07 -19.83 -28.52
-3.90 - -10.70 - -13.39 -37.43 -16.48 -35.38 -18.49 -27.02
-3.80 - -9.45 - -12.10 -35.72 -15.19 -33.74 -17.17 -25.53
-3.70 - -8.19 -36.79 -10.89 -34.06 -13.97 -32.13 -15.89 -24.09

-3.60 -37.46 -7.00 -35.11 -9.74 -32.44 -12.77 -30.55 -14.63 -22.67
-3.50 -35.79 -5.87 -33.47 -8.57 -30.86 -11.58 -28.99 -13.43 -21.28
-3.40 -34.13 -4.74 -31.86 -7.45 -29.31 -10.42 -27.48 -12.25 -19.93
-3.30 -32.51 -3.48 -30.27 -6.31 -27.78 -9.30 -26.01 -11.06 ~-18.63
-3.20 -30.93 -1.57 -28.72 -5.19 -26.29 -8.15 -24.56 -9.96 -17.35

-3.10 -29.39 0.32 -27.20 -3.98 -24.83 -7.03 -23.15 -8.86 -l6.11
-3.00 -27.86 0.80 -25.71 -2.55 -23.39 -5.91 -21.77 -7.78 -14.90
-2.90 -26.39 1.09 -24.25 -0.71 -22.00 -4.77  -20.45 -6.67 -13.72
-2.80 -24.86 1.39 -22.85 0.43 -20.64 -3.59 -19.13 -5.61 -12.57
-2.70 -23.41 1.7 -21.54 0.88 -19.32 -2.39 -17.85 -4.54 -11.46
-2.60 -22.03 1.97 -20.19 1.16 -18.03 -0.56 -16.61 -3.36 -10.39
-2.50 -20.69 2.26 -18.86 l.44 -16.79 0.40 -15.41 -2.10 -9.33
-2.40 -19.41 2.55 -17.60 1.69 -15.60 0.81 -14.26 -0.30 -8.29
-2.30 -18.13 2.75 -16.38 1.94 -14.43 1.12 -13.12 0.43 -7.29
-2.20 -16.93 2.91 -15.23 2.16 -13.30 1.35 -12.05 0.79 -6.32
-2.10 -15.76 3.08 -14.08 2.35 -12.21 1.55 -11.00 1.06 -5.35
-2.00 -14.65 3.28 -13.00 2.56 -11.15 1.74 -9.99 1.30 -4.38
-1.90 -13.52 3.51 -11.96 2.72 -10.15 1.92 -9.02 1.49 -3.37
-1.80 -12.43 3.67 -10.91 2.87 -9.19 2.09 -8.06 1.64 -2.29
-1.70 -11.37 3.80 -9.91 3.02 -8.24 2.24 -7.14 1.80 ~1.15
-1.60 -10.36 3.93 -8.96 3.13 -7.33 2.38 -6.25 1.92 -0.24
-1.50 -9.41 4.06 -8.05 3.25 -6.46 2.49 -5.38 2.05 0.26
-1.40 -8.53 4.18 -7.21 3.36 -5.60 2.61 -4.,55 2.17 0.59
-1.30 -7.71 4.28 -6.38 3.45 -4.82 2.71 -3.71 2.26 0.80
-1.20 -6.91 4.35 -5.61 3.54 -4.03 2.80 -2.86 2.35 0.96
-1.10 -6.13 4,42 -4.90 3.62 -3.30 2.87 -2.06 2.43 1.09



Table A-1, continued

- - 95% - - - - 90% - - - - 80% - - - - 70% - -
Statistie o cq <y ey o cy <o ¢y Median
-1.00 -5.43 4.49 -4.17 3.69 -2.61 2.94 -1.37 2.51 1.21
-0.90 -4.81 4.55 -3.52 3.75 -1.93 3.00 -0.78 2.58 1.29
-0.80 -4.22 4.61 -2.90 3.81 -1.31 3.06 -0.35 2.64 1.38
-0.70 -3.66 4.68 -2.35 3.87 -0.78 3.12 -0.05 2.70 1.46
-0.60 -3.12 4.74 -1.81 3.92 ~0.42 3.18 0.19 2.76 1.53
-0.50 -2.61 4.77 -1.32 3.98 -0.13 3.24 0.38 2.82 1.61
-0.40 -2.16 4.80 -0.89 4.03 0.10 3.28 0.54 2.87 1.67
-0.30 -1.59 4.83 -0.55 4.07 0.29 3.33 0.68 2.92 1.73
-0.20 -1.18 4.86 -0.28 4.12 0.44 3.38 0.80 2.98 1.79
-0.10 -0.85 4.89 -0.05 4.17 0.58 3.43 0.89 3.02 1.84

0.00 -0.54 4.92 0.15 4.21 0.70 3.47 0.98 3.07 1.89
0.10 -0.28 4.95 0.32 4.26 0.81 3.51 1.06 3.11 1.94
0.20 -0.06 4.98 0.46 4.30 0.90 3.56 1.14 3.16 1.99
0.30 0.12 5.01 0.59 4.34 1.00 3.60 1.22 3.20 2.03
0.40 0.28 5.04 0.71 4,38 1.07 3.64 1.28 3.24 2.07
0.50 0.42 5.07 0.82 4.41 1.18 3.68 1.34 3.27 2.12
0.60 0.56 5.10 0.91 4.45 1.22 3.72 1.40 3.31 2.16
0.70 0.68 5.13 1.00 4.49 1.28 3.76 1.45 3.35 2.20
0.80 0.79 5.16 1.07 4,52 1.34 3.80 1.50 3.38 2.24
0.90 0.87 5.19 1.14 4 .55 1.40 3.84 1.56 3.42 2.27
1.00 0.96 5.22 1.21 4.58 1.44 3.87 1.61 3.45 2.31
1.10 1.03 5.25 1.27 4.61 1.49 3.91 1.65 3.49 2.35
1.20 1.10 5.28 1.32 4.64 1.54 3.94 1.69 3.52 2.38
1.30 1.16 5.31 1.38 4.67 1.59 3.98 1.72 3.56 2.42
1.40 1.22 5.34 1.43 4.70 1.63 4.01 1.76 3.59 2.45
1.50 1.28 5.36 1.47 4.73 1.66 4.04 1.80 3.62 2.48
1.60 1.33 5.39 1.51 4.76 1.70 4.07 1.84 3.65 2.51
1.70 1.38 5.42 1.56 4.78 1.74 4.09 1.87 3.69 2.54
1.80 1.43 5.45 1.60 4.81 1.78 4,12 1.90 3.72 2.57
1.90 1.47 5.48 1.63 4.83 1.81 4.15 1.93 3.75 2.60
2.00 1.51 5.50 1.67 4.86 1.84 4.18 1.97 3.78 2.63
B Based on Detrended ADF t-statistic 7'
-5.90 - -37.94 - - - - -
-5.80 - -36.20 - - - - -
-5.70 - -34.42 - - - - -
-5.60 - -32.70 -36.30 - - - -
-5.50 - -31.00 -34.56 - - - -
-5.40 - -29.25 -32.80 - -37.01 - -
-5.30 - ~27.55 -31.08 - -35.25 -37.89 -
-5.20 - -25.86 -29.36 - -33.51 -36.09 -
-5.10 - -24.24 -27.72 - -31.78 -34.36 -
-5.00 - -22.62 -26.07 - -30.10 -32.64 -
-4.90 - -21.02 -24.53 - -28.45 -30.91 -
-4.80 - -19.44 -22.95 - -26.77 -29.24 -
-4.70 - ~17.91 -21.38 - -25.15 -27.57 -37.84
-4.60 - -16.34 -19.81 - -23.59 -25.99 -36.07
-4.50 - -14.87 -18.29 - -22.02 -24.41 -34.39
-4.40 - -13.31 -16.75 - -20.49 -22.89 -32.70
-4.30 - -11.73 -15.22 - -18.97 -21.37 -31.05




Table A-1, continued

-~ - 95% - - - - 90% - - - - 80% - - - - 708 - -
Statistic <o ¢ <4 ° <o ° <g e Median
-4.20 - -10.25 - -13.75 - -17.51 - -19.86 -29.41
-4.10 - -8.81 - -12.26 - -16.07 -36.82 -18.41 -27.81
-4.00 - -7.17 - -10.81 -37.08 -14.62 -35.10 -16.97 -26.25
-3.90 - -5.57 - -9.29 -35.36 -13.18 -33.40 -15.56 -24.72
-3.80 - -3.60 -36.83 -7.79 -33.67 -11.73 -31.74 -14.12 -23.23
-3.70 -37.63 1.42 -35.11 -6.31 -32.03 -10.32 -30.11 -12.72 -21.73
-3.60 -35.87 1.80 -33.39 -4.65 -30.40 -8.86 -28,49 -11.36 -20.27
-3.50 -34.13 2.07 -31.71 -2.85 -28.81 -7.39 -26.90 -9.99 -18.87
-3.40 -32.44 2,32 -30.08 1.49 -27.25 -5.89 -25.37 -8.58 -17.50
-3.30 -30.76 2.53 -28.48 1.87 -25.75 -4.34 -23.88 -7.17 -16.14
-3.20 -29.15 2.72 -26.90 2,11 -24.26 -2,37 -22.44 -5.70 -14.78
-3.10 -27.55 2.91 -25.35 2.34 -22.77 1.51 -21.00 -4.11 -13.44
-3.00 -26.05 3.11 -23.86 2.53 -21.34 1.84 -19.60 -2.28 -12.13
-2.90 -24.54 3.36 -22.35 2.69 -19.94 2.07 -18.24 1.50 -10.83
-2.80 -23.04 3.57 -20.90 2.85 -18.59 2.26 -16.90 1.83 -9.56
-2,70 -21.64 3.73 -19.53 3.01 -17.24 2.44 -15.56 2.03 -8.30
-2.60 -20.29 3.87 -18.18 3.16 -15.93 2.59 -14.30 2.20 -7.01
-2,50 -18.93 4.01 -16.87 3,31 -14.62 2,73 -13.04 2.36 -5.70
-2.40 -17.58 4,15 -15.59 3.46 -13.38 2.8 -11.78 2.50 -4.35
-2.30 -16.26 4.27 -14.36 3.61 -12.15 2,99 -10.60 2.63 -2.87
-2.20 -15.01 4,38 -13.18 3.73 -10.97 3.10 -9.43 2.74 -0.97
-2.10 -13.79 4,49 -12.03 3.85 -9.82 3.20 -8.29 2.84 1.53
-2.00 -12.61 4.57 -10.91 3.96 -8.67 3.30 -7.17 2.94 1.75
-1.90 -11.49 4,65 -9.77 4.05 -7.56 3.40 -6.07 3.03 1.89
-1.80. -10.44 4.74 -8.67 4.13 -6.51 3.47 -5.02 3.11 2.01
-1.70 -9.41 4.80 -7.61 4.20 -5.48 3.55 -3.86 3.19 2.09
-1.60 -8.38 4.85 -6.58 4,27 -4.44 3.62 -2.73 3.25 2.18
-1.50 -7.38 4.90 -5.61 4.32 -3.44 3.68 -1.47 3.30 2.24
-1.40 -6.42 4.96 -4.66 4.37 -2.39 3.74 1.27 3.36 2.30
-1.30 -5.50 5.01 -3.78 4,42 -1.14 3.80 1.47 3.41 2.36
-1.20 -4.68 5.05 -2.85 4.47 1.27 3.85 1.61 3.46 2.42
-1.10 -3.85 5.09 -2.00 4,51 1.44 3.90 1.69 3.51 2.46
-1.00 -3.10 5.14 -1.18 4.56 1.55 3.95 1.77 3.55 2.51
-0.90 -2.36 5.18 1.22 4,60 1.64 3.99 1.83 3.60 2.55
-0.80 -1.60 5.22 1.40 4.64 1.71 4,03 1.88 3.64 2.60
-0.70 -0.64 5.26 1.50 4.68 1.78 4,07 1.9 3.68 2.63
-0.60 1.26 5.30 1.60 4.72 1.83 4,11 1.99 3.72 2.67
-0.50 1.41 5.34 1.66 4.76 1.88 4,14 2.03 3.76 2.71
-0.40 1.50 5.38 1.71 4.79 1.93 4.18 2.07 3.80 2.75
-0.30 1.58 5.43 1.77 4.83 1.98 4.22 2.12 3.83 2.79
-0.20 1.64 5.47 1.82 4.86 2.02 4,25 2.16 3.87 2.82
-0.10 1.69 5.51 1.86 4.89 2.06 4.29 2.20 3.90 2.85

0.00 1.74 5.54 1.90 4,92 2.10 4.32 2.23 3.94 2.88
0.10 1.79 5.58 1.95 4.96 2,13 4.35 2.27 3.97 2.91
0.20 1.83 5.61 1.99 4.99 2.17 4.38 2.30 4.01 2.95
0.30 1.87 5.65 2.02 5.02 2.21 4.41 2.33 4.04 2.98
0.40 1.91 5.68 2.06 5.04 2.24 4. 44 2.37 4.07 3.01
0.50 1.95 5.72 2.09 5.07 2.27 4.47 2.40 4.10 3.04
0.60 1.99 5.75 2.13 5.09 2.30 4.50 2.43 4.13 3.07
0.70 2.02 5.78 2.16 5.12 2.34 4.53 2.46 4.16 3.09



Table A-1, continued

- - 95% - - - - 90% - - - - 80% - - - - 70% - -
Statistic co ¢y <o <y <o € <o cy Median
0.80 2.05 5.81 2.20 5.15 2.37 4.56 2.49 4.19 3.12
0.90 2.08 5.84 2.23 5.17 2.40 4.58 2.52 4.22 3.15
1.00 2.12 5.86 2.26 5.20 2.43 4.61 2.55 4.25 3.18
1.10 2.15 5.89 2.28 5.23 2.46 4.64 2.57 4.27 3.21
1.20 2.18 5.92 2.31 5.25 2.48 4.66 2.60 4.30 3.23
1.30 2.21 5.95 2.34 5.28 2.51 4.69 2.63 4.32 3.25
1.40 2.24 5.98 2.37 5.30 2.54 4.72 2.65 4.35 3.28
1.50 2.27 - 2.40 5.32 2.57 4.74 2.68 4.37 3.30
1.60 2.29 - 2.43 5.34 2.59 4.77 2,70 4.39 3.33
1.70 2.32 - 2.45 5.37 2.62 4.79 2.73 4.42 3.35
1.80 2.35 - 2.48 5.39 2.64 4.81 2.75 4.44 3.38
1.90 2.38 - 2.50 5.41 2.66 4.83 2.78 4.47 3.40
2.00 2.40 - 2.53 5.43 2.69 4.85 2.80 4.49 3.42

C. Based on Demeaned MSB statistic MSB*

-2.40 - -37.71 - - - - - - -
-2.35 - -32.45 - -36.00 - - - - -
-2.30 - -27.71 - -31.14 - -35.13 - -37.83 -
-2.25 - -23.49 - -26.77 - -30.54 - -33.05 -
-2.20 - -19.72 - -22.94 - -26.50 - -28.80 -
-2.15 - -16.22 - -19.48 - -22.79 - -25.02 -34.78
-2.10 - -13.26 - -16.32 - -19.55 - -21.67 -30.98
-2.05 - -10.64 - -13.53 - -16.61 -36.16 -18.65 -27.54
-2.00 - -8.36 -37.62 -11.04 -34.63 -14.06 -32.64 -15.95 -24.47
-1.95 -36.78 -6.29 -34.19 -8.74 -31.39 -11.71 -29.50 -13.56 -21.69
-1.90 -33.51 -4.40 -31.12 -6.72 -28.45 -9.59 -26.65 -11.42 -19.17
-1.85 -30.60 -2.75 -28.31 -5.00 -25.83 -7.65 -24.06 -9.48 -16.88
-1.80 -27.89 -1.30 -25.76 -3.42 -23.41 -5.94 -21.73 -7.76  -14.82
-1.75 -25.51 -0.13 -23.43 -2.00 -21.17 -4.49 -19.62 -6.17 -12.96
-1.70 -23.29 0.65 -21.29 -0.95 -19.13 -3.11 -17.69 -4.71 -11.27
-1.65 -21.27 1.34 -19.40 -0.06 -17.29 -1.90 -15.90 -3.40 -9.72
-1.60 -19.46 1.93 -17.66 0.64 -15.59 -0.94 -14.28 -2.31 -8.34
-1.55 -17.79 2.57 -16.02 1.21 -14.06 -0.18 -12.79 -1.30 -7.09
-1.50 -16.23 2.88 -14.54 1.72 -12.66 0.42 -11.44 -0.51 -5.93
-1.45 -14.79 3.23 -13.17 2.19 -11.38 0.89 -10.18 0.05 -4.87
-1.40 -13.46 3.53 -11.91 2.53 -10.20 1.31 -9.03 0.54 -3.90
-1.35 -12.27 3.75 -10.76 2.78 -9.10 1.66 -7.99 0.96 -3.01
-1.30 -11.12 4.00 -9.68 3.01 -8.09 1.94 -7.03 1.26 -2.24
-1.25 -10.08 4.20 -8.70 3.24 -7.19 2.19 -6.11 1.53 -1.59
-1.20 -9.09 4.35 -7.79 3.43 -6.35 2.40 -5.28 1.79 -1.04
-1.15 -8.19 4.47 -6.93 3.56 -5.55 2.58 -4 .49 1.99 -0.59
-1.10 -7.39 4.58 -6.11 3.69 -4.79 2.74 -3.78 2.15 -0.22
-1.05 -6.61 4.68 -5.36 3.83 -4.07 2.88 -3.12 2.31 0.09
-1.00 -5.86 4.77 -4.67 3.94 -3.39 3.00 -2.51 2.45 0.35
-0.95 -5.15 4.86 -3.99 4,05 -2.76 3.11 -1.96 2.57 0.56
-0.90 -4.47 4.95 -3.40 4.14 -2.21 3.21 -1.50 2.68 0.74
-0.85 -3.85 5.03 -2.84 4.24 -1.72 3.31 -1.09 2.79 0.90
-0.80 -3.30 5.10 -2.32 4,32 -1.31 3.41 -0.75 2.88 1.04
-0.75 -2.74 5.17 -1.86 4.41 -0.98 3.49 -0.48 2.97 1.18
-0.70 -2.25 5.24 -1.45 4.49 -0.70 3.58 -0.26 3.06 1.29




Table A-1, continued

- - 95% - - - -~ 90% - - - - 80% - - - - 70% - -
Statistic A ¢y cq < <g °y <o cy Median
-0.65 -1.82 5.32 -1.11 4.56 -0.46 3.66 -0.06 3.15 1.40
-0.60 -1.45 5.40 -0.84 4 64 -0.24 3.74 0.10 3.23 1.51
-0.55 -1.13 5.48 -0.59 4.71 -0.06é 3.83 0.25 3.30 1.61
-0.50 -0.85 5.55 -0.38 4.77 0.10 3.91 0.40 3.37 1.70
-0.45 -0.63 5.62 -0.19 4.83 0.24 3.99 0.52 3.45 1.79
-0.40 -0.42 5.68 -0.03 4.90 0.37 4.07 0.64 3.52 1.87
-0.35 -0.24 5.74 0.11 4.96 0.50 4.14 0.76 3.60 1.95
-0.30 -0.08 5.81 0.25 5.02 0.62 4,21 0.86 3.67 2.03
-0.25 0.06 5.87 0.37 5.08 0.72 4,28 0.96 3.75 2.11
-0.20 0.20 5.93 0.49 5.14 0.83 4.34 1.06 3.82 2.19
-0.15 0.32 5.99 0.60 5.20 0.92 4,41 1.15 3.88 2.26
-0.10 0.44 - 0.70 5.26 1.02 4.47 1.24 3.94 2.33
-0.05 0.55 - 0.80 5.31 1.11 4.54 1.32 4.01 2.41
0.00 0.66 - 0.90 5.37 1.20 4,60 1.41 4.08 2.48
0.05 0.76 - 0.99 5.42 1.28 4.66 1.49 4.15 2.55
0.10 0.85 - 1.08 5.47 1.37 4,72 1.57 4.22 2.61
0.15 0.94 - 1.17 5.53 1.45 4.78 1.65 4.28 2.68
0.20 1.03 - 1.25 5.60 1.53 4.84 1.73 4.34 2.75
0.25 1.12 - 1.33 5.66 1.61 4,90 1.80 4.40 2.81
0.30 1.21 - 1.41 5.72 1.68 4.96 1.88 4.46 2.88
0.35 1.29 - 1.49 5.79 1.76 5.02 1.95 4.53 2.94
0.40 1.37 - 1.57 5.84 1.83 5.08 2.02 4.59 3.01
0.45 1.44 - 1.64 5.90 1.90 5.14 2.09 4.64 3.07
0.50 1.52 - 1.72 5.96 1.98 5.19 2.16 4.70 3.14
0.55 1.60 - 1.79 - 2.05 5.25 2.22 4.76 3.20
0.60 1.67 - 1.86 - 2.12 5.31 2.29 4. 82 3.26
0.65 1.74 - 1.93 - 2.19 5.37 2.36 4,88 3.32
0.70 1.82 - 2,00 - 2.25 5.43 2.42 4.94 3.39
0.75 1.89 - 2.07 - 2.32 5.48 2.49 5.00 3.45
0.80 1.96 - 2.14 - 2.38 5.54 2.55 5.06 3.51

0.85 2.03 - 2.21 - 2.45 5.60 2.62 5.12 3.58
0.90 2.09 - 2.27 - 2.51 5.66 2.69 5.18 3.64
0.95 2.16 - 2.34 - 2.58 5.72 2.75 5.25 3.70
1.00 2.23 - 2.41 - 2.64 5.78 2.82 5.31 3.76
1.05 2.30 - 2.47 - 2,71 5.84 2.88 5.37 3.82
1.10 2.37 - 2.54 - 2.77 5.90 2.94 5.43 3.88
1.15 2.43 - 2.60 - 2.84 5.96 3.01 5.49 3.94
1.20 2.50 - 2.67 - 2.90 - 3.07 5.55 4.00
1.25 2.56 - 2.74 - 2.96 - 3.13 5.60 4.06
1.30 2.63 - 2.80 - 3.03 - 3.19 5.66 4,12
1.35 2.69 - 2.86 - 3.09 - 3.25 5.72 4.18
1.40 2.76 - 2.92 - 3.15 - 3.32 5.78 4.24
1.45 2.82 - 2.99 - 3.21 - 3.38 5.84 4.30
1.50 2.88 - 3.05 - 3.27 - 3.44 5.89 4.36
1.55 2.95 - 3.11 - 3.34 - 3.50 5.95 4.42
1.60 3.01 - 3.18 - 3.40 - 3.56 - 4.48
1.65 3.08 - 3.24 - 3.46 - 3.62 - 4.54
1.70 3.14 - 3.30 - 3.52 - 3.69 - 4.60
1.75 3.20 - 3.36 - 3.58 - 3.75 - 4,66
1.80 3.26 - 3.43 - 3.64 - 3.81 - 4.72



Table A-1, continued

- - 95% - - - - 90% - - - - 80% - - - - 70% - -
Statistic <y c <o c1 <y ¢ <g ey Median
1.85 3.32 - 3.49 - 3.70 - 3.87 - 4.78
1.90 3.39 - 3.55 - 3.76 - 3.93 - 4.84
1.95 3.45 - 3.61 - 3.82 - 3.99 - 4.90
2.00 3.51 - 3.67 - 3.89 - 4.05 - 4.96

D. Based on Detrended MSB statistic (Bhargava [1986] detrending) HSBB

-2.35 - -33.57 - -37.59 - - - - -
-2.30 - -28.33 - -32.36 - -36.81 - - -
-2.25 - -23.78 - -27.74 - -31.84 - -34.63 -
-2.20 - -19.79 - -23.56 - -27.43 - -30.09 -
-2.15 - -16.19 - -19.78 - -23.51 - -26.06 -37.22
-2.10 - -13.03 - -16.40 - -20.01 - -22.41 -33.04
-2.05 - -10.04 - -13.44 - -16.80 - -19.15 -29.27
-2.00 - -7.48 - -10.61 - -14.00 -35.99 -16.24 -25.91
-1.95 - -5.00 - -8.13 -34.96 -11.45 -32.34 -13.62 -22.87
-1.90 - -2.25 -35.16 -5.85 -31.50 -9.09 -29.04 -11.27 -20.07
-1.85 -35.10 1.92 -31.73 -3.63 -28.33 -6.99 -26.11 -9.13 -17.55
-1.80 -31.75 2.36 -28.66 1.52 -25.51 -4.99 -23.45 -7.12 -15.30
-1.75 -28.69 2.68 -25.85 1.99 -22.91 ~3.00 -21.02 -5.28 -13.26
-1.70 -26.00 2.99 -23.32 2.40 -20.59 1.48 -18.81 -3.47 -11.37
-1.65 -23.55 3.30 -21.05 2.65 -18.47 1.97 -16.80 -1.47 -9.68
-1.60 -21.42 3.59 -19.03 2.90 -16.52 2.27 -14.98 1.80 -8.11
-1.55 -19.41 3.87 -17.16 3.14 -14.80 2.50 -13.29 2.10 -6.67
-1.50 -17.59 4.08 -15.45 3.37 -13.21 2,70 -11.76 2.32 -5.31
-1.45 -15.88 4,27 -13.90 3.58 -11.73 2.88 -10.34 2.52 -4.05
-1.40 -14.33 4.45 -12.46 3.75 -10.41 3.06 -9.00 2.69 -2.79
-1.35 -12.92 4.61 -11.13 3.93 -9.17 3.22 -7.82 2.84 -1.30
-1.30 -1l1.69 4.77 -9.89 4.07 -8.00 3.36 -6.70 2.98 1.66
-1.25 -10.48 4 .86 -8.77 4.20 -6.90 3.49 -5.65 3.11 1.89
-1.20 -9.32 4.96 -7.72 4.32 -5.89 3.62 -4.62 3.23 2.05
-1.15 -8.25 5.05 -6.71 4.43 -4.92 3.73 -3.65 3.33 2.17
-1.10 -7.23 5.14 -5.77 4.53 -3.97 3.83 -2.66 3.42 2.28
-1.05 -6.27 5.23 -4.88 4.60 -3.01 3.92 -1.53 3.51 2.38
-1.00 -5.41 5.32 -3.98 4.68 -2.01 4.00 1.48 3.60 2.46
-0.95 -4.,52 5.40 -3.07 4.75 -0.62 4.08 1.71 3.67 2.54
-0.90 -3.62 5.48 -2.07 4.82 1.61 4.16 1.84 3.74 2.62
-0.85 ~-2.67 5.55 -0.81 4.88 1.76 4.23 1.95 3.82 2.68
-0.80 -1.65 5.62 1.57 4.95 1.87 4.30 2.04 3.89 2.75
-0.75 1.33 5.69 1.73 5.01 1.97 4.36 2.11 3.96 2.81
-0.70 1.61 5.75 1.84 5.07 2.05 4.42 2.19 4.02 2.86
-0.65 1.75 5.82 1.93 5.13 2.11 4.49 2.25 4.08 2.92
-0.60 1.85 5.88 2.01 5.19 2.18 4.54 2.30 4.14 2.97
-0.55 1.93 5.94 2.07 5.25 2.24 4.60 2.36 4.19 3.03
-0.50 2.00 - 2.13 5.30 2.29 4.66 2.42 4.25 3.08
-0.45 2.06 - 2.19 5.35 2.34 4.71 2.47 4.30 3.13
-0.40 2.12 - 2.24 5.41 2.40 4.77 2.52 4.36 3.18
-0.35 2.17 - 2.30 5.46 2.45 4 .82 2.57 4.41 3.23
-0.30 2.23 - 2.35 5.51 2.50 4.87 2.61 4.46 3.27
-0.25 2.27 - 2.40 5.57 2.54 4,92 2.66 4.52 3.32
-0.20 2.32 - 2.44 5.63 2.59 4.97 2.71 4.57 3.37




Table A-1, continued

- - 95% - - - - 9% - - - - 80% - - - - 70% - -
Statistic <y c cg <y L) ¢y <o ¢y Median
-0.15 2.37 - 2.49 5.69 2.64 5.02 2.75 4.62 3.42
-0.10 2.42 - 2.53 5.75 2.68 5.07 2.80 4.67 3.46
-0.05 2.46 - 2.58 5.80 2.73 5.12 2.85 4.72 3.51

0.00 2.51 - 2.62 5.84 2.77 5.17 2.89 4.77 3.56
0.05 2.55 - 2.67 5.89 2.82 5.23 2.94 4.82 3.61
0.10 2,60 - 2.71 5.94 2.86 5.28 2.98 4.87 3.65
0.15 2.64 - 2.76 5.99 2.91 5.33 3.03 4,92 3.70
0.20 2.69 - 2.80 - 2.96 5.38 3.07 4.97 3.75
0.25 2.73 - 2.85 - 3.00 5.43 3.12 5.02 3.79
0.30 2.78 - 2.89 - 3.05 5.48 3.16 5.07 3.84
0.35 2.82 - 2.93 - 3.09 5.53 3.21 5.12 3.89
0.40 2.86 - 2.98 - 3.13 5.58 3.25 5.17 3.94
0.45 2.91 - 3.02 - 3.18 5.63 3.29 5.23 3.98
0.50 2.95 - 3.07 - 3.22 5.68 3.34 5.28 4.03
0.55 2.99 - 3.11 - 3.27 5.73 3.38 5.33 4.08
0.60 3.04 - 3.15 - 3.31 5.78 3.43 5.38 4.12
0.65 3.08 - 3.20 - 3.36 5.84 3.47 5.43 4.17
0.70 3.13 - 3.24 - 3.40 5.89 3.52 5.48 4,22
0.75 3.17 - 3.29 - 3.45 5.94 3.56 5.53 4.27
0.80 3.21 - 3.33 - 3.49 5.99 3.61 5.58 4.32
0.85 3.26 - 3.38 - 3.54 - 3.65 5.63 4.36
0.90 3.30 - 3.42 - 3.58 - 3.70 5.68 4.41
0.95 3.35 - 3.47 - 3.63 - 3.75 5.73 4.46
1.00 3.39 - 3.51 - 3.67 - 3.79 5.78 4.51
1.05 3.44 - 3.56 - 3.72 - 3.84 5.82 4.56
1.10 3.48 - 3.60 - 3.77 - 3.88 5.87 4.60
1.15 3.53 - 3.65 - 3.81 - 3.93 5.92 4,65
1.20 3.57 - 3.69 - 3.86 - 3.98 5.97 4.70
1.25 3.62 - 3.74 - 3.90 - 4,02 - 4.75
1.30 3.66 - 3.78 - 3.95 - 4.07 - 4.79
1.35 3.71 - 3.83 - 4.00 - 4.12 - 4.84
1.40 3.75 - 3.87 - 4.04 - 4.16 - 4 89
1.45 3.80 - 3.92 - 4.09 - 4,21 - 4.94
1.50 3.84 - 3.97 - 4.14 - 4.26 - 4.99
1.55 3.89 - 4,01 - 4.18 - 4.30 - 5.04
1.60 3.94 - 4.06 - 4,23 - 4.35 - 5.09
1.65 3.98 - 4,11 - 4.28 - 4.40 - 5.13
1.70 4.03 - 4.15 - 4,32 - 4,45 - 5.18
1.75 4.08 - 4.20 - 4.37 - 4.50 - 5.23
1.80 4.12 - 4.25 - 4,42 - 4.54 - 5.28
1.85 4,17 - 4,29 - 4.46 - 4.59 - 5.33
1.90 4,22 - 4 .34 - 4,51 - 4,64 - 5.38
1.95 4.26 - 4.39 - 4.56 - 4.69 - 5.43
2.00 4.31 - 4.44 - 4,61 - 4.74 - 5.48
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Figure 1

Confidence belt for local-to-unity parameter ¢
based on demeaned ADF t-statistic

Bands in order of decreasing width: 95%, 90%, 80%, 70%; central line: median
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Bands in order of decreasing width: 95%, 90%, 80%, 70%; central line: median
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Figure 2

Confidence belt for local-to-unity parameter ¢

based on detrended ADF t-statistic
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Figure 4

Confidence belt for local-to-unity parameter ¢

based on detrended modified Sargan-Bhargava statistic

Bands in order of decreasing width: 95%, 90%, 80%, 70%; central line: median
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