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ABSTRACT

This paper introduces the concept of standard risk aversion.

A von Neumann-Morgenstern utility function has standard risk
aversion if any risk makes a small reduction in wealth more
painful (in the sense of an increased reduction in expected
utility) also makes any undesirable, independent risk more
painful. It is shown that, given monotonicity and concavity, the
combination of decreasing absolute risk aversion and decreasing
absolute prudence is necessary and sufficient for standard risk
aversion. Standard risk aversion is shown to imply not only
Pratt and Zeckhauser’s *"proper risk aversion®* (individually
undesirable, independent risks always being jointly undesirable),
but also that being forced to face an undesirable risk reduces
the optimal investment in a risky security with and independent
return. Similar results are established for the effect of broad
class of increases in one risk on the desirability of (or optimal
investment in) a second, independent risk.
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I. Introduction

The idea of John Pratt (1964) and Kenneth Arrow (1965) that “absolute risk aversion” should
decrease with wealth has turned out to be surprisingly powerful. It unifies such apparently diverse
magnitudes as the wealth elasticity of risky investment,} the effect of wealth on risk premia,? the
effect of compensated increases in risk on saving® and the strength of the precautionary saving mo-
tive relative to the strength of risk aversion.¥ The additional structure provided by the assumption
of decreasing absolute risk aversion often allows models that otherwise yield ambiguous results to
give clear predictions consistent with economic intuition.®

In view of the success of decreasing absolute risk aversion in imposing sensible structure on
the von Neumann-Morgenstern theory of expected utility maximization ¢ it is natural to ask if any
further structure can sensibly be imposed. Addressing this question—and cognizant of the potential
importance of background risk in influencing economic decisions—Pratt and Richard Zeckhauser
(1987) suggest in a pathbreaking paper that a utility function should exhibit “proper risk aversion.”
Simply stated, proper risk aversion means that an agent forced to accept an undesirable risk will
be less willing to accept other, statistically independent risks. Proper risk aversion is one way of
formalizing the notion that, aside from the effects of any statistical relationship, risks should tend
to crowd each other out. In their pathbreaking paper, Pratt and Zeckhauser prove that a sufficient
condition for proper risk aversion is for all odd derivatives of a utility function to be positive and
all even derivatives negative,” and that the much weaker condition a"(w) > a'(w)a{w), where a(w)
is absolute risk aversion, is necessary for proper risk aversion.

As I will show, the simpler and less restrictive assumption of decreasing absolute prudence—

1 See Arrow (1965) and Pratt (1964).

2 See Pratt (1964).

3 See Jacques Dréze and Franco Modigliani (1972).
4 See Kimball (1990a).

For example, the assumption of decreasing absolute risk aversion allows one to show that third-order stochastic
dominance guarantees that a distribution will be preferred (Jonathan E. Ingersoll, 1987, pp. 138-139) and that
any synchronization of stock market declines with large movements in consumption should raise the cquity
premium (N. Gregory Mankiw, 1986).

Though many recent articles (e.g., Machina (1982)) question expected utility maximization, expected utility
maximization is likely to remain important in applications and as a standard of comparison for non-expected-
utility theories, much as the often-questioned notion of perfect competition remains important in applications
and as a standard of comparison for theories of imperfect competition. Therefore, even if one discounts defenses
of expected utility maximization such as Samuelson (1988), it seems worthwhile to study the implications of
adding additional structure to the von Neumann-Morgenstern theory of expected utility maximization. Pratt
and Zeckhauser (1987) ably defend the approach we share of analyzing normatively attractive properties of
utility functions as an important complement to the approach of analyzing the “chronic violations of the
traditional axioms” that often show up in experiments.

"As they point out, this is equivalent to being able to construct the utility function as a positive linear combi-
nation of exponential utility functions.



:‘%';ﬂ being decreasing in w or In(—u"'(w)) being convex in w—added to the usual assumptions of
monotonicity, concavity, and decreasing absolute risk aversion, is a suflicient condition for proper
risk aversion.

Moreover, given monotonicity and concavity of the utility function, the combination of de-
creasing absolute risk aversion and decreasing absolute prudence is necessary and sufficient for
standard risk aversion.® By my definition, a utility function exhibits “standard risk aversion” or
“standardness” if any risk that makes a small reduction in wealth more painful also makes any
undesirable, statistically independent risk more painful—where I measure “pain” by the reduction
in expected utility associated with a change. This paper makes the case for standard risk aversion
as the most logical amplification of decreasing absolute risk aversion.

In the context of a two-period model with additive time-separability, Kimball {1990a) shows

s

that absolute prudence =

measures the strength of the precautionary saving motive, so that
decreasing absolute prudence can be interpreted as a precautionary saving motive that decreases
in intensity with wealth.® This paper shows that decreasing absolute prudence has important
implications for multiple risk bearing even in a timeless model—implications that carry over with
little alteration when that timeless model of risk bearing is embedded in the two-period model
of the joint saving-risky investment decision in the presence of background risk (Elmendor{ and
Kimball (1991)).

The arrangement of the paper is determined by the thread of the mathematical argument.
Section II continues the introduction by contrasting standardness and properness. Section III
presents formal definitions of properness and standardness and formal statements of threc central
propositions, leading into the argument of Sections IV-VI about necessity and the effect of back-
ground risks. Section VII establishes key lemmas about the comparative statics of risk, leading
into the sufficiency argument of Section VIII and its extension to increases in risk in Section IX.
Sections X and XI indicate in complementary ways that decreasing absolute prudence, rather than
decreasing absolute risk aversion, is the key property behind standard risk aversion. Section X
shows that—given monotonicity and concavity—decreasing absolute prudence over a semi-infinite
interval implies decreasing absolute risk aversion over that interval. Section XI shows that even
on a finite interval, decreasing absolute prudence alone goes most of the way toward guaranteeing

standard risk aversion. Section XII is a brief conclusion.

8 Throughout the paper, “decreasing” means “weakly decreasing,” except when otherwise noted.

% Kimball (1990b) presents a number of arguments for decreasing absolute prudence beyond those given here.
Most commonly used utility functions have decreasing absolute prudence.
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I1. Standard Risk Aversion versus Proper Risk Aversion

Though standard risk aversion and proper risk aversion are both about negative interactions
between statistically independent risks, the two concepts differ both mathematically and in the
economic behavior they imply.

Mathematically, one might hope that an amplification of decreasing absolute risk aversion
would share some of the virtues of decreasing absolute risk aversion as a theoretical construct. First,
there is a simple analytical condition that is a necessary and sufficient for decreasing absolute risk
aversion. The analytical condition makes it possible to establish many consequences of decreasing
absolute risk aversion that are not obvious from its definition. Second, decreasing absolute risk
aversion applies equally to risk premia and the optimal level of risky investment.!® Third, decreasing
absolute risk aversion is preserved under expectations, making propositions involving decreasing
absolute risk aversion valid even in the presence of independent background risk. (Pratt (1964)
establishes the first and second virtues of decreasing absolute risk aversion, while Kihlstrom, Romer
and Williams (1981) and Nachman (1982) establish the third.) Standard risk aversion shares these
virtues; Proper risk aversion does not.

As shown below, standard risk aversion has an analytical necessary and sufficient condition
that, beyond incorporating the condition for decreasing absolute risk aversion, is just as simple
as the condition for decreasing absolute risk aversion. The analytical condition for standardness
allows one to establish many consequences of standardness that are f\ot obvious from its definition.
For example, standard risk aversion applies equally to the effect of one risk on the risk premium of
another independent risk and to its effect on the optimal level of risky investment in an independent
risk. Standard risk aversion also has natural implications for behavior in reaction to a broad class
of increases in risk as well as to initiations of risk. Standardness is preserved under expectations,
and standardness is the same property whether defined in a way that assumes nonstochastic initial
wealth in a way that allows for independent background risk.

By contrast, for proper risk aversion, the analytical necessary and sufficient condition is quite
complex.}! It is unlikely to be useful in establishing many consequences of properness that are not
obvious from its definition. Proper risk aversion has no discernible implications about the cffect of

an undesirable risk on the optimal level of investment in a statistically independent risk. Finally,

10 Decreasing absolute risk aversion guarantees both that risk premia for discrete chunks of risk are decrcasing in
wealth and that the optimal level of risky investment is increasing in wealth.

11 For fixed-wealth properness, the analytical necessary and sufficient condition involves three universal quantifiers.
For (random-wealth) properness, the analytical necessary and sufficient condition would involve five universal
quantifiers.



two variant notions of properness—fixed-wealth properness, which depends on nonstochastic initial
wealth, and unqualified properness, which allows for independent background risk—do not seem
to be equivalent (though it is difficult to establish whether properness and fixed wealth properness
are equivalent or not).

Economically, the difference between proper risk aversion and standard risk aversion has to do
with the set of risks guaranteed to have a negative interaction with other statistically independent,
undesirable risks. Standard risk aversion guarantees that any risk that increases the pain of a small
reduction in wealth—or equivalently, any risk that raises ezpected marginal utility—will make an
agent less willing to accept another independent risk. Proper risk aversion guarantees that any
undesirable risk will make an agent less willing to accept another independent risk.

Standard risk aversion differs from proper risk aversion because the set of risks that raise
expected marginal utility is not the same as the set of undesirable risks. Dréze and Modigliani
(1972) and Kimball (1990a) demonstrate that the decreasing absolute risk aversion entailed by both
standard risk aversion and proper risk aversion implies that any undesirable risk raises erpected
maryinal utility. However, the reverse is not true. When absolute risk aversion is decreasing, there
are many desirable risks that raise ezpected marginal utility and thereby increase the pain of a
small reduction in wealth. The main issue between properness and standardness is whether the
destrability of a risk z, or the effect of  on the pain of a small reduction in wealth is a better guide
to the effect of Z on the pain of another independent risk #.

It seems sensible to argue that the effect of a risk, £, on the pain of a small reduction in wealth
is a better guide than the desirability of # to its effect on the pain of a second risk, . The effect
of Z on the pain of facing § is an interaction between two changes. The effect of # on the pain of a
small reduction in wealth is also an interaction between two changes, while the desirability of z is

a property of one change in isolation.!?

'? When the timeless model of this paper is embedded in a two-period model (with additively timeseparable
utility) as in Elmendorf and Kimball (1991), an increase in expected marginal utility in the second period
corresponds to a reduction in first-period consumption. Therefore, one can speak heuristically of risks that
raise expected marginal utility as risks that canse an agent to cut back on consumption. (Similarly, one can
speak heuristically of risks that increase the pain of other independent risks as risks that make an agent reduce
exposure Lo other independent risks.) Decreasing absolute risk aversion allows one to rank three types of risks
from most negative to most positive: risks that reduce both total expected utility and consumption, risks
that raise total expected utility but reduce consumption, and risks that raise both total expecled utility and
consumption. To be more pointed, on the bottom there are risks that make an agent feel poorer and act poorer;
on the top there are risks that make an agent feel richer and act richer; in the middle, there are risks that make
an agent feel richer, but act poorer. The main issue between properness and standardness is whether the eflect
of a risk on total expected utility or its effect on consumption is a better guide to its eflect on exposure to other
independent risks. Standard risk aversion guarantees that an agent will act poorer by reducing exposure to
independent risks whenever the agent acts poorer by reducing consumption. Proper risk aversion requires that
an agent feel poorer as well as act poorer by reducing consumption before guaranteeing that she will reduce
her exposure to independent risks. It seems sensible to argue that the effect of a risk on consumption should
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II1. Formalities

Standard risk aversion can be defined formally as follows:

Definition of Standardness: The utility function u(-) is standard iff for any triple of mutually

independent random variables ¥, £ and §,

Ev'(# +2) > Ev'(w) )]
and
E u(t + §) < E u() (2)
imply
Euw+z)~Euw(w+Z+§)>Eu()-Eu(w+ 7). (3)

Replacing (1) with the inequality E u(w + £) < E u() yields the corresponding definition of
proper risk aversion.
Given monotonicity and concavity, there are two ways of characterizing decreasing absolute

risk aversion:

A. Any undesirable change in wealth makes any undestrable risk more painful.
B. Any change in wealth that makes a small reduction in wealth more painful also makes any

undesirable risk more painful.1®

Substituting “statistically independent risk” for “change in wealth™ in A yields a'* verbal
definition of proper risk aversion:

A'. Any undesirable statistically independent risk makes any undesirable risk more painful.

The same substitution in B yields a verbal definition of standard risk aversion:
B'. Any statistically independent risk that makes a small reduction in wealth more painful also

makes any undesirable risk more painful.

be a better guide than its effect on total expected utility to its effect on exposure to other risks. Standard risk
aversion predicts the cross-effect of a risk on one decision variable (the level of exposure to an independent
risk) from the cross-effect of a risk on another decision variable {(consumption). Proper risk aversion predicts
the cross-eflect of a risk on one decision variable (exposure to independent risk) from the direct effect of the
risk on expected utility.

13 Appendices A and D show that A and B are equivalent to other, more familiar definitions of decreasing absolute
risk aversion.

14 Appendix G shows that A’ is equivalent to Pratt and Zeckhauser's definitions of proper risk aversion.
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Since a certain change in wealth is a risk with a degenerate probability distribution which is
(trivially) independent of all other risks, A’ implies A and B’ implies B; both proper risk aver-
sion and standard risk aversion entail decreasing absolute risk aversion. Given monotonicity and
concavity, the two characterizations of decreasing absolute risk aversion, A and B, are equivalent,
since the set of undesirable changes in wealth is the same as the set of changes in wealth that
make a small reduction in wealth more painful. It is shown in Appendix G that each of the four
statements above is equivalent to the corresponding statement in which “makes any undesirable
risk more painful” is replaced by “makes any undesirable risk remain undesirable.”

As discussed above, the definition of proper risk aversion, .4’, is not equivalent to the definition
of standard risk aversion, B’, because the set of undesirable risks is not the same as the set of risks
that make a small reduction in wealth more painful. The decreasing absolute risk aversion entailed
by both properness and standardness implies that the set of undesirable risks is a subset of the
set of risks that increase the pain of a small reduction in wealth, so that B’ implies A’. Thus,
standardness is stronger than properness.

It may not be obvious that (1) can be interpreted as saying that £ makes a small reduction in
wealth more painful. Appendix F shows that the definition of standardness above is equivalent to
a definition in which (1) is replaced by the statement that for the particular risk z, there is some
h for which

Euw+E)-Eu(w+%—¢)2Eu(w)— Eu(d - ¢) (4)
for all € € [0, A].
One way to read (4) and (1) is “Z increases the pain of a small (or infinitesimal) reduction in

wealth.” Another way to read (4) and (1) is “a small (or infinitesimal) reduction in wealth increases

the pain (or reduces the pleasantness) of the risk Z. To see this, rewrite (4) as

Eu(i—¢) - Eu(i+5 — ) > Eu(w) - Eu(io + £) (5)
and (1) as
-g—(—(u(u'; —9-u@+i-g)| >0 (6)

Similarly, (3) can be read to say that “f makes § more painful,” or to say that § makes Z more

painful, as can be seen by rearranging the terms in (3) to get
Eu(d+ §) - Eu(t + § + ) > Eu(d) — Eu(ib + §). (7)

Thus, the following is an alternative statement characterizing standardness:
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C'. Any risk that is made more painful (or less pleasant) by a small reduction in wealth is also
made more painful (or less pleasant) by any statistically independent, undesirable risk.!®
Rephrasing the argument for standardness as opposed to mere properness one more time in

terms of the C' may make the case clearer. Once one accepts the fact that (assuming decreasing

absolute risk aversion) there are many desirable risks Z that are made less pleasant by a small
reduction in wealth, it seems sensible to argue that the effect of a small reduction in wealth on the
pleasantness of a risk £ is a better guide than the desirability of Z to the effect of a second risk §

on the pleasantness of Z.

The main analytic proposition of the paper is Proposition 1:

Proposition 1: If u'(w) > 0 and uv"(w) < 0 over the entire domain of u, then u is standard if

e

and absolute prudence =

and oaly if both absolute risk aversion = = w‘;‘

:(w) are monotonically

decreasing over the entire domain of u.

Proposition 2 is a corollary of Proposition 1:

Proposition 2: If u'(-} > 0 and v”(-) £ 0 and both absolute risk aversion = and absolute

ull .
wi(-)
prudence -'%,,(-()-)- are monotonically decreasing over the entire domain of u, then u is proper.

Proposition 3 broadens the message of Proposition 1:

Proposition 3: If v/(w) > 0 and u"”(w) < 0 over the entire domain of u, then any expected-
marginal-utility-increasing risk (that is, a risk satisfying (11)) always lowers the absolute value of
the optimal level of investment in any other independent risk if and only if v is standard—that is,

if and only if it has decreasing absolute risk aversion and decreasing absolute prudence.

As shown in Appendix D, decreasing absolute risk aversion, monotonicity and concavity guar-
antee that u is once-differentiable. These three properties plus decreasing absolute prudence guar-

antee that u is twice-differentiable.}® When u is not thrice-differentiable, re-express monotonically

P ! “’1

decreasing = )

in the above propositions as convez In(—u"(w)).

15 Statement C’ parallels the following verbal characterization of decreasing absolute risk aversion:

C Any change in wealth that is made more painful by a small reduction in wealth is also made more painful by
any undesirable risk. (Once stated mathematically, it is clear that C is equivalent to B, just as C' is equivalent
to B'.)

16 Both of these guarantees of differentiability have an exception at the lower limit of the domain of .
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IV. Standardness and Fixed-Wealth Standardness

Replacing the arbitrary stochastic initial wealth © in the definitions of properness and stan-
dardness by certain, but otherwise arbitrary initial wealth w yields the definitions of fixed-wealth
properness and fixed-wealth standardness.

Clearly, properness implies fixed-wealth properness and standardness implies fixed-wealth stan-
dardness.

It is not known whether properness and fixed-wealth properness are equivalent or whether
fixed-wealth properness is strictly weaker than properness. Pratt and Zeckhauser (1987) were
unable either to prove that fixed-wealth properness implies properness or to find an example of a
utility function that was fixed-wealth proper without being fully proper.

On the other hand, it will be shown that (given monotonicity and concavity) the combination
of decreasing absolute risk aversion and decreasing absolute prudence is necessary for fixed-wealth
standardness and sufficient for unqualified standardness. Therefore, standardness and fixed-wealth

standardness are equivalent.

V. Necessity of Decreasing Absolute Risk Aversion and Decreasing Absolute Prudence
The proof that, given u’(-) > 0 and u"’(-) < 0, decreasing absolute risk aversion and decreasing
absolute prudence are necessary for fixed-wealth standardness is relatively straightforward.
To prove that decreasing absolute risk aversion is necessary for u to be fixed-wealth standard,
specialize the first risk £ in the definition of fixed-wealth standardness to a certain negative quantity,
—¢, where ¢ > 0. Concavity of u ensures that £ = —¢ will satisfy (1) when & is replaced by w. It

is obvious that w, —e and § are mutually independent. Then
Eu(w+7) < u(w) (8)
implies
Euw-ec+§) <u(w-¢) (9)
for any € > 0. This statement is itself one definition of decreasing absolute risk aversion. Appendix
D shows that it implies the familiar analytical definition of decreasing absolute risk aversion.!?

Appendix G shows that it is equivalent to the characterizations A, B and C of decreasing absolute

risk aversion.

'7 If u is already known to be twice-differentiable, one can argue following Pratt (1964) that if § is small, (8)
implies

—w(w) o? N

R G (a)
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To prove that decreasing absolute prudence is necessary, specialize the second risk j to a
certain negative quantity, —¢, where ¢ > 0. Monotonicity ensures that § = —e will satisfly (2) with
# replaced by w. It is obvious that w, Z and —e¢ are mutually independent. Therefore, if u is

fixed-wealth standard,
Euv(w+Z)-Eu(w+ % —¢) 2 u(w) - w(w-—¢) (10)

for all w, € > 0 and z satisfving

Eu'(w+ %) > v'(w). (1y

Equivalently, for all w, € > 0 and Z satisfying (11),

/w [Ev'(w+2)-u'(w))dw. 20 (12)

r—€

This means among other things that there cannot be an interval [w—e¢, w] on which E v/(w+Z)~u{w)
is monotonically increasing from a negative value to zero.

The decreasing absolute risk aversion proved first implies that u'(w) is continuous, except
perhaps at some lower boundary below which utility is —oc.!® As long as the support of w+ Z — ¢
is bounded strictly away from such a lower boundary, Eu'(«w + Z) — u'(w) is continuous as well.
Therefore, since there is no interval on which E v'{w + ) — v/(w) is monotonically increasing from
a negative value to zero, Eu'(w + £) — '(w) cannot increase from a negative value to zero or a

positive value at all. In other words,

Eu'(v + 1) 2> v'(w) (13)

where 4 is the mean of § and ¢? is the variance of §; while (5) implies

—el - 2
< —:(fp‘%)‘)%— +o(0?). (6

Combining (a) and (b) and dividing by ¢2/2, one finds that

—w'{w—¢) _ —w'(v)  ofc?)
w(w—¢) — w(w) o?

(c)

. - 02
If one chooses smaller and smaller risks § so that ¢ — 0, then 5;72 — 0 as well. Therefore

—u''(w—¢) —u''(uw)

(d)

w(w—¢) = wiw)

13 A proof can be found toward the end of Appendix D.
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implies
Evw+z-¢)2>2u'(w-¢) (14)

for all € > 0. The statement that {13) implies (14) attests to decreasing absolute prudence just as

the analogous statement that (8) implies (9) attests to decreasing absolute risk aversion.!®

VI. Handling Random Initial Wealth

The proof that decreasing absolute risk aversion and decreasing absolute prudence (along with
monotonicity and concavity) are sufficient to ensure standardness is more involved. To show that
these properties are sufficient to ensure standardness instead of only fixed-wealth standardness,
1 will borrow a technique from Kihlstrom, Romer and Williams {1981) and consider the utility

function v derived by taking an expectation over t:
v(z) = Eu(w + 7). (15)
As long as  is independent of w,
Eu(@w+ %)= E; (B, u(® + £)) = Ev(2). (16)

A statement corresponding to (16) can be made about any combination of Z, § and € that is
independent of . Therefore, the definition of standardness can be restated as follows in terms of
the derived utility function v: the original utility function u is standard if for any two mutually

independent random variables Z and 7,

Ev'(2) 2 v'(0) (17)
and
Ev(y) < v(0) (18)
imply
Ev(z)-Ev(i+y) > Ev(0) - v(g). (19)

Clearly, the original utility function u is standard if the derived utility function v is fixed-wealth
standard.
Given the objective of showing that v is fixed-wealth standard, it is helpful that v inherits

every important property assumed for u: monotonicity, concavity, decreasing absolute risk aversion

19 The details of the proof are in Appendix D. If u is already known to be thrice-differentiable, one can use the
argument of footnote 17 with u replaced by —u'.

10



and decreasing absolute prudence. That v inherits monotonicity and concavity from u is easy to
verify. Kihlstrom, Romer and Williams (1981) and Nachman (1980) prove that v inherits decreasing
absolute risk aversion from u as well.?® Since decreasing absolute prudence of a utility function is
decreasing absolute risk aversion of the negative of marginal utility,?! the same proof shows that
—v'—which satisfies the equation —v'(z) = E[—u'(® + z)]—inherits decreasing absolute prudence
from —u’ and therefore that v inherits decreasing absolute prudence from u. The inheritance of
monotonicity, concavity, decreasing absolute risk aversion and decreasing absolute prudence by v
means that proving these four properties are enough to ensure fixed-wealth standardness proves

they are enough to ensure standardness.

VII. Diffidence and Central Risk Aversion

Properness and standardness can be seen as setting forth conditions on £ under which the

doubly-derived utility function © defined by
Hy)=Ev(Z+y)=Eu(w+1+y). {20)

is—in some sense—more risk averse than v for risks that are undesirable under v. Of course,
distinguishing between desirable and undesirable risks gives a special status to the level of utility
at the initial wealth, which the definition of the derived utility function v allows one to assume
is zero. Therefore, | prefer the statement that the definitions of properness and standardness set
forth conditions under which ¢ is—in some sense—more risk averse than v around rero.

I will define two notions of being more risk averse around a specific initial wealth: being more

diffident and being centrally more risk averse.”?

Definition of Greater Diffidence: v, is more diffident around s than vy iTE v2(§) < Eva(k)
whenever Ev1(§) £ Evi(k).

20 The preservation of decreasing absolute risk aversion under expectations can be seen as a consequence of Pratt’s
(1964) theorem that a positive linear combination of functions with decreasing absolute risk aversion also has
decreasing absolute risk aversion. Appendix E gives a proof of the preservation of decreasing absolute risk
aversion under expectations that assumes for differentiability anly the once-differentiability of u that Appendix
D shows is implied by decreasing absolute risk aversion.

2L This is apparent from straightforward calculation.

22 These two notions of being more risk averse around a specific point are of some independent interest, beyond

their application in this paper. For example, in a two-good model with ordinary consumption and leisure,
being forced to precommit to a certain labar supply before the resolution of uncertainty about wealth makes
the indirect utility of wealth more diffident—but not always centrally more risk averse—around the level of
wealth that would lead an agent to choose that labor supply ex postif he or she were not precommitted (Kimball
(1990¢)).
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Definition of Greater Central Risk Aversion: v, is centrally more risk averse around x than
v, iff for any pair of nonnegative real numbers a and €, Evy(x + (a + €)Z) < Evy(x + aZ) whencver

Evi(sk+ (a+€)2) <Ev(s+ai).

(In these definitions, § and Z represent any random variable.)

Since one can choose a = 0 and ¢ = 1, greater central risk aversion implies greater diffidence.
Greater diffidence means that starting from the initial wealth x, any risk that is undesirable under
v, is also undesirable under v;. Greater central risk aversion means that starting from the initial
wealth k, any increase in the scale of @ risk (including an increase in scale from zero to one) that
is undesirable under v, is also undesirable under v,. Lemma 1 states that, given concavity, greater
central risk aversion is necessary and sufficient for optimal level of investment in any risky asset to

be lower (in absolute value) when starting from the initial wealth x.

Lemma 1: If both v, and v, are concave, then argmaxy E v,(x + 62) is closer to zero than
argmaxg E vy (x + 6%) for any random variable 2 if and only if vy is centrally more risk averse

around k than vy.

Lemma 1 is proved in Appendix C.

Lemma 2 offers a simple criterion for judging when one utility function is more diffident around

a given point than another.

Lemma 2: v, is more diffident around x than v, on the domain D if and only if either (i) kK is a
misery point of vy (i.e., v1(£) > vy(x) for all £ € D) and v9(€) < vo(k) whenever v1(§) = v,(x) or

(ii) there is an m > 0 such that

02(§) — va(k) S m (i (§) — vi(k)) forall{€D. (21)

Condition (i) can be seen as a variant of condition (ii) with m = +oc.

Lemma 2 has the following corollary:
Lemma 3: When both v{(x) and vj(x) exist and are strictly greater than zero, vz is more diffident
around x than vy on the domain D if and only if

v2(§) — va(x) _ n1(§) ~ ni(x)
T O for all € € D. (22)

Lemma 3 says that v, is more diffident than v, around k if and only if v; is always below v, once

vy and vy have been normalized to be tangent to each other at x.
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Proof of Lemma 2. The sufficiency of condition (i) in Lemma 2 for v; to be more diffident
around & than v(x) is obvious. Condition (ii) is sufficient for v; to be more diffident around «

since if E v;(§) € Ev;(x) then by condition (ii),
E [v2(§) - v2(5)] £ mE [v1(§) — vi(x)] < 0. (23)

Necessity of one or the other of the conditions in Lemma 2 for vy to be more diflident around
x than v(x) is established in Appendix A.a

Proof of Lemma 3. The condition in Lemma 3 is an instance of condition (ii) and so by
Lemma 2 is sufficient for v, to be more diffident around x. To see the necessity of the condition in
Lemma 3, note that when both v}(x) and vj(x) exist and are strictly greater than zero, condition
(i) is impossible, making condition (ii) necessary. Inequality (21) of condition (ii) indicates that
the function

(v2(€) = v2(x)) =~ m (v1(§) — v1(~))

reaches its maximum when £ = x, implying that its derivative with respect to £ is zero at w:
vy (k) = mui(x). (24)

Substituting ::(:) for m in (21) leads to (22).
1
Lemma 4 offers a simple criterion for judging when one utility function is centrally more risk

averse around a given point than another.

Lemma 4: If v; and v, are piecewise differentiable on the domain D, and D* is the set of points
at which both v, and v, are differentiable, then vy is centrally more risk averse around x than v,
if and only if either (i) for all £ € D~, (£ - x)v}(€) > 0 (making » a misery point of v;), and
(€ — k)v5(€) < 0 wherever v{(£) = 0 for an interval of positive length or (ii) therc is an m 2> 0 such

that for € € D~,
v3(€) 2 mvi(§) when { <& (25)

and

oh(€) < muj(€) when £ > . (26)

As was the case for Lemma 2. condition (i) can be seen as a variant of condition (ii) with m = +oc.

Lemma 4 has the following corollary:
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Lemma 5: If vy and vy are continuous and piecewise differentiable on the domain D, and the set
of points D* at which both v, and v; are differentiable includes &, with vi(x) > 0 and vi(x) > 0,

then v, is centrally more risk averse around x than vy if and only if for £ € D*,

v(é) | vl

oh(x) > ) when £ < & (27)
and

v(§) o m(f) ] R

w(x) < (%) when £ > k. (28)

Lemma 5 says that v; is centrally more risk averse than v; around « if and only if v} is always
above v} to the left of x and aiways below v{ to the right of x once v{ and v} have been normalized
so that they cross at k.

Proof of Lemma 4. The sufficiency of condition (ii) in Lemma 4 for v, to be centrally more

risk averse around x than v) can be established as follows. First, {25) and (26) imply
2vy(x + 0z) < mzv{(x + 62) (29)

for any z and any # > 0 except at isolated points where the derivatives fail to exist. Since

d - . -
6—0Ev(n+a‘.)— Ezv'(x + a2), (30)
(25) and (26) imply that
ate
Evg(rc+(a+e)z')-Ev2(l~:+a:2)=E/ [Zvy(x + 63)) db (31)

ote
< mE / [Zv](k + 02)] db
=m(Ev(s+(a+€¢i)—- Ev(x+a3)).

The sufficiency of condition (i) in Lemma 4 for v, to be centrally more risk averse around
than v; follows because Evi(k + (@ + €)2) < Ev;(k + aZ) and condition (i) together imply that
Zui(k + 02) = 0 on the interval 8 € (a, a + €), except on a set of measure zero—and therefore that
3vy(Kk + 82) < 0 except on a set of measure zero, ensuring that Evj{k + (& + €)) < Evi(k + ai).

The necessity of the conditions in Lemma 4 for v5 to be centrally more risk averse around «
than v, is established in Appendix B.s

Proof of Lemma 5. The condition in Lemma 5 is a particular instance of condition (ii});
therefore sufficiency of the condition in Lemma 5 is guaranteed by Lemma 4. As for the necessity

of the condition in Lemma 5, continuity of v} and v} at & together with (25) and (26) implies that
vy(k) = myy (k). (32)
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Substituting 5%%:—; for m in (25) and (26) leads to (27) and (28).a

Although it is defined in terms of increases in the scale of risks around «, greater central risk
aversion implies that any increase in risk that only moves probability mass away from ~ will be
undesirable under the centrally more risk averse utility function vy if it is undesirable under the

centrally less risk averse utility function v;. Formally, define a central stretch around « as follows:

Definition of a Central Stretch: Y is a central stretch of § around « iff Y =% §+ & where the
distribution of ¥ conditional on the realization of §, ¥(y,), satisfies o(y;) > 0 with probability one

whenever y; > & and (y;) < 0 with probability one whenever y; < &.
Then one can state the following proposition:

Lemma 6: Given two piecewise differentiable utility functions v; and va, if vy is centrally more
risk averse than v, around x and Y is a central stretch of § around k, then Evy(Y) < Evy(3)

whenever E v1(Y) < E v;(§).

The proof relies on the necessary conditions for greater central risk aversion, Suppose first

that condition (ii) of Lemma 4 is satisfied. Then
1
w(F) = 0a(@) = mn(P) = w(@)] = [ Bolui(s+07) - moi(q +69)] a0 (33)

1
= [ BB T + 090 - mot (7 + 053]

<0
If instead, condition (i) of Lemma 4 is satisfied, a similar proof using these integral expressions for

v2(¥") = v2(§) and v, (¥") — v1(§) establishes the desired result.a

VIII. Sufficiency of Decreasing Absolute Risk Aversion and Decreasing Absolute Pru-
dence

The machinery is now in place to prove that—given monotonicity and concavity—the combi-
nation of decreasing absolute risk aversion and decreasing absolute prudence is sufficient to ensure
standardness. The proof Linges on showing that if Ev'(£) > v/(0), then ©(§) = Ev(z + §) is
centrally more risk averse around zero than v(§).

First, since decreasing absolute risk aversion guarantees that v’ is continuous and concavity
guarantees that ¢’ is monotonically decreasing, one can define the precautionary premium #(Z,{)

(where Z represents the entire distribution of Z rather than a specific realization) implidtly by

v'(§ - ¥(£,§)) = Ev'({ + 2). (34)
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Then
(&) = V(£ - ¥(&,§)) (35)

For the same reason that a risk premium is decreasing in initial wealth if absolute risk aversion is
decreasing, the precautionary premium ¥(Z, £) is decreasing in £ if absolute prudence is decreasing.?3
The hypothesis Ev/(#) > 0 in the definition of standardness, together with the fact that v’ is

monotonically decreasing, ensures that (Z,0) > 0. Therefore, when £ < 0,

(E) _ v'(€ - 9(3,0) § v(§ - ¥(2,0)) , v(§)

9(0) ~ v(=$(,0)) T v'(-¥(£,0)) T v'(0)’

(36)

where the first inequality is a consequence of decreasing absolute prudence and the fact that v'is
monotonically decreasing, and the second inequality is a consequence of decreasing absolute risk
aversion. 24 Similarly, when £ > 0,

(&) _ v'(€-¥(E,8)

_ V(£ = $(3,0)) _ v'(6)
¥(0) T v(=$(z.0))

(= 9(2,0) — (0)

IN

(37)

Inequalities (36) and (37) together imply, by Lemma 4, that # is centrally more risk averse around
zero than v.
Being centrally more risk averse, ¢ is also more diffident than v around zero. By Lemma 5%

greater central risk aversion means that

E#(g) - #(0) < (—%) (Ex(3) - Ev(0)). (38)

Since ¥'(0) = Ev'(£) > v/(0) by the hypothesis in the definition of standardness, (38) implies that

E#(§) - #(0) < Ev(j) - Ev(0) (39)

for any risk §. Inequality {39) directly establishes that the derived utility function v is fixed-
wealth standard, and establishes indirectly that the origina! utility function u is standard without

qualificationa

23 See Kimball {1990a).

34 Using a(w) for absolute risk aversion as before,

< ¢ ¢
V€~ 9(2,0) _ . _ _ ()
i) exp (-—/; a(w — v{:(z,O))d...v) < exp( /o a(w)d..;) = 200y

Note that monotonicity and decreasing absolute risk aversion rule out v’(0) = 0 or #'(0} = 0.

2% Lemma 5 is applicable since decreasing absolute risk aversion ensures that v and © are both differentiable.

16



Proof of Proposition 3. Moreover, the fact that ¢ is centrally more risk averse around
zero than v (and the fact that both are concave) implies that the absolute value of the optimal
level of risky investment under # is less than the optimal level of risky investment under v, when
starting from an initial position of zero. Thus, given monotonicity and concavity, the combina-
tion of decreasing absolute risk aversion and decreasing absolute prudence which is equivalent to
standardness is sufficient to ensure that any expected-marginal-utility-increasing risk lowers the
absolute value of the optimal level of risky investment in any other independent risk, establishing
sufficiency in Proposition 3. Conversely, if any expected-marginal-utility-increasing risk z lowers
the absolute value of the optimal level of risky investment in any other independent risk, then by
Lemma 1, # must be centrally more risk averse than v around zero, which in turn?® implies (39)
and the standardness of the original utility function u. This establishes necessity in Proposition 3,
completing the proof of Proposition 3. Proposition 3 confirms that though standardness is defined
in terms of the interaction of discrete risks, its consequences extend to the continuous choice of the

optimal level of risky investment.s

IX. The Effect of Increases in One Risk on the Pain of Another

In many of the applications in which one is concerned about the effect of one risk on another
one is not concerned as much with the effect of the presence or absence of one risk on the desirability
of another as with a greater or lesser amount of one risk on the desirability of another. For example,
Elmendorf and Kimball (1991) are concerned with the effect of labor income taxes—which alter
the amount of unmarketable human capital risk agents face—on investment in freely traded risky
assets. I will show that standardness implies that a wide range of increases in one risk will make a
second, statistically independent risk more painful.

Ross (1981) shows that it is difficult to establish seemingly reasonable comparative statics
results involving globally greater risk aversion that will hold for all mean-preserving spreads. Ross
sees this as a problem with the Pratt-Arrow idea of “globally more risk averse,” but Pratt (1990)
argues convincingly that this is a problem with mean-preserving spreads as a way of modeling
increases in risk. Ross defines “strongly more risk averse” in such a way that ;Lppealing comparative
statics properties will hold. Unfortunately this notion of “strongly more risk averse” is so strong

that it is seldom applicable. The alternative is to define a stronger notion of riskier. I will define

26 Decreasing absolute risk aversion again guarantees the differentiability required to apply Lemma 5: the proof
in Section V of the necessity of decreasing absolute risk aversion for standardness can easily be adapted to show
that u—and therefore v and »—must have decreasing absolute risk aversion if any expected-marginal-utility-
increasing risk lowers the absolute value of the optimal level of risky investment in any other independent
risk.
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“patently more risky” as follows:

Definition of Patently Greater Risk: X is patently more risky than % iff for any two monotonic,
concave utility functions of which at least one has decreasing absolute risk aversion, v, being globally

more risk averse than v, implies that for any initial wealth w,
(X, 2, w)> (X, 2,w), (40)
where I1;(X, £, w) is the solution to
Evj(w+ X)=Ev(w+i-1;(X,z,wv)) (41)
forj=1, 2.

Note that saying X is patently more risky than # says nothing about the relative desirability of X
and #; in fact, being patently more risky is a relationship that is invariant to any alteration of the
difference in means between # and X by the addition of different constants to the two distributions.

A full characterization of patently greater risk must be left to the future, but the results
of Pratt (1988) make it clear that X is patently more risky than Z if X can be obtained from
% by adding to Z a random variable v that is positively related to £ in the sense of having a
distribution conditional on # which improves according to third-order stochastic dominance for
higher realizations of Z. This sufficient condition for patently greater risk includes as polar special
cases v perfectly correlated with #—which makes the movement from Z to X a simple change of
location and increase in scale—and v statistically independent of z.

One obvious consequence of the definition of patently greater risk is that the risk premium
II(X,%,w) will be decreasing in w if the utility function exhibits monotonicity, concavity and
decreasing absolute risk aversion and X is patently more risky than Z. Less obvious is the following

proposition.

Proposition 4: If the monotonically increasing, concave utility function v is standard and X is
patently more risky than z, then #,{w) = Ev(w + X) is centrally more risk averse than #;(w) =

E v(w + ) around any point w at which Evi(w + X) > Evj(w + ).

Proof of Proposition 4. The result of Proposition 4 follows from the decreasing absolute
risk aversion and decreasing absolute prudence that are jointly equivalent to standardness in much
the same way that standardness itself follows from these properties. Defining the three-argument
precautionary premium ¥(X, Z,£) implicitly by

Ev'(£ + X) = Evi(£+ £ - ¥(X,2,6)), (42)
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the fact that decreasing absolute prudence of v is decreasing absolute risk aversion of —v', that
concavity of v is monotonicity of —v, and that decreasing absolute risk aversion guarantees con-
cavity of —v’, means that the precautionary premium V(X ,z,£) will be decreasing in £ when v has
monotonicity, concavity, decreasing absolute risk aversion and decreasing absolute prudence and X

is patently more risky than Z. By the definitions of 9;, 2 and ¥(X,z,6),
#(€) = Ev'(£+ X) = Ev'(£ + £ — ¥(X,,6)) = §1(€ - ¥(X,£,6)). (43)

Therefore, when § < w,

06 _ E-W(X,£8) | - ¥X.Fw)

=20 = . >
v(w)  H(w - ¥(X,Zw)

3

3

=0
1
= Tt
1

o (w— ¥(X,£,w)) ~ ¢

When £ > w, the incqualities in (44) are reversed. Thus, by Lemma 4, #; is centrally more risk
averse then ¢;.a

Proposition 4 has several obvious corollaries. First, since decreasing absolute risk aversion

guarantees that —v' is globally more risk averse than v, one can see that
¥(X,z,w) > (X, 2, w), (45)

which means that Ev'(w 4+ X) > Ev'(w + £) whenever Ev(w + X) € Ev(w + ). Therefore t,
will be centrally more risk averse than #; around any point w at which X is less desirable than z.

Second, #; being centrally more risk averse than #; plus the fact that
th(w)=Ev'(w+ X) > Ev'(w+Z) = tj(w) (46)

has all the previously established consequences of greater risk premia, lower risky investment and

central spreads being less desirable under #; than under #;. Third, since the inequality
El(fw+ X +V)-v(w+i+V)-v(w+ X+ +v(w+i+3)] <0 (47)

is svmmetric for an interchange of £ with § and X and ¥, the fact that an expected-marginal-
utility-increasing patent increase in risk makes any undesirable, independent central stretch more
painful coincides with the fact that an undesirable central stretch will make any expected-marginal-

utility-increasing, independent patent increase in risk more painful.
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X. Proof that Decreasing Absolute Prudence Begets Decreasing Absolute Risk Aver-
sion

It is shown above that—given monotonicity and concavity—decreasing absolute prudence and
decreasing absolute prudence are together sufficient to guarantee standard risk aversion. In this
section I will show that—given monotonicity and concavity-—decreasing absolute prudence on a
semi-infinite interval (wg, +00) implies decreasing absolute risk aversion on that same interval, and
therefore that monotonicity. concavity and decreasing absolute prudence on a semi-infinite interval

(wo, +00) is enough to guarantee standard risk aversion on that interval.

Proposition 5: If the von Neumann-Morgenstern utility function u has decreasing absolute pru-
dence over the interval {wy, +00)—that is, if In(—u") is convex over that interval—and () >0
and u"(-) < 0 over the interval (wg,+oc), then u has decreasing absolute risk aversion (convex

Inu') over the interval (wp, +00).

Proof of Proposition 5. The proof that decreasing absolute prudence begets decreasing
absolute risk aversion is an adaptation of a proof by Mark Bagnoli and Ted Bergstrom (1991) about
log-concave probability. Mathematically, I must show that if In(—u") is convex (decreasing absolute
prudence), then In(u') is convex (decreasing absolute risk aversion), which is similar to showing

that the probability distribution function is log-concave if the density function is log-concave.

u"(w+Q < —u"!u')

To show that u has decreasing absolute risk aversion, I must show that —=; < =
u (w4 e) u'(w)

for any € > 0, or equivalently, that
(w4 )u'(w) — v'(wu'(w+€) 20 (48)
for any € > 0. But

N
u(w + Ou'(w) - v (w)u'(w+ ¢) = u(w + €) {u'(w +N)- / u(w + 5)45} (49)
0

N
- u'(w) {u’(w+g+1\')—/ u"(w+e+§)df}
0

1

N
| W+ 4 € - '+ Ou(w + )€
0
+u'(w+ NY[u"(w + €) - v'(w)]
- u"(w)u'(w+ e+ N)—u'(w+ N}

In the end, I will let N go to infinity, but allowing N to be any positive number for now will help

make it clear how the semi-infinite interval figures into the proof.
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For any £ > 0 and ¢ > 0, decreasing absolute prudence guarantees that u"(w)u"(w + ¢ + £) -

u'(w + €)u"(w + £) is positive, since convexity of In(—u"(w)) implies that
In(—u"(w)) + In(—u"(w + € + €)) 2 In(—u"(w + €)) + In(—u"(w + £)). (50)

Therefore, decreasing absolute prudence over the interval (w, w+ N +¢) guarantees that the integral
on the first line of the lower right-kand side of (49) is positive.

The sccond term on the lower right-hand side of (49) is positive if u'(w + ¢) — u'(w) > 0.
Decreasing absolute prudence on the interval (w, +00) guarantees that u'(w + €) — u"(w) > 0,
since if u”(w+ €) < v"(w), then In(—v"(w + €)) 2 In(—u"(w)), and concavity of In(—u"), would
guarantee that In{-u"(()) > In{—u"(w)) for all { > w+e¢. But then v"({) < v”(w) forall £ > w4«
and u itself would be asymptotically bounded above by a quadratic utility function. and v’ could
not be positive on the entire semi-infinite interval.

The third term on the lower right-hand side of (49) is negative for finite N, since —t''(v) > 0
and W'(w+ e+ N)—-v'(w+ N) <0 But t{(w+e+ N)—-u(w+N)—0as N — +oosince a
decreasing function bounded below by zero like ¥’ must have a limit as its argument goes to +oc.

Combining the foregoing arguments yields the result that if v'(w) > 0, v"(w) < 0 and absolute
prudence is decreasing on the interval (wg,+00), then (48) is satisfied for any w > wq, so that

absolute risk aversion is decreasing on the interval (wg, +00).=

XI. The Consequences of Decreasing Absolute Prudence Alone

In order to more clearly distinguish the contribution of decreasing absolute prudence to stan-
dardness from the contribution of decreasing absolute risk aversion on a finite interval over which
decreasing absolute prudence does not guarantee decreasing ebsolute risk aversion, onc can ask to
what extent decreasing absolute prudence alone implies a negative interaction between different

risks. The answer is given by Proposition 6.
Proposition 6: If the utility function u is twice-differentiable and u'"(w) < 0 for any w, then
E [v'(@+ %)~ o(@)] [v'(& + §) = «'(2)] 2 0 (51)
implies
Elw(t4+z+§) -u(@+§)—u(d+z)+u(x)) <0 (52)

for any w independent of the joint distribution of Z and j if and only if u has decreasing absolute

prudence.
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Treating the two risks symmetrically, Proposition 6 indicates that (given the stipulation that u”
exists and is strictly negative), decreasing absolute prudence alone guarantees a negative interaction
between any two independent risks which individually raise expected marginal utility. Thus (other
than helping to prove differentiability) the only contribution of decreasing absolute risk aversion to
standardness is in ensuring that any undesirable risk raises expected marginal utility.

\When absolute risk aversion is decreasing, Proposition 6 extends the main result of section
VI by allowing an independent second risk § to satisfy the weaker condition of raising expected
marginal utility rather than the condition of being undesirable, and by allowing § to be statistically
related to & as long as inequality (51) is satisfied.

Proof of Proposition 8. The necessity of decreasing absolute prudence for (51) to imply
(52) can be shown in essentially the same way as the necessity of decreasing absolute prudence
for standardness, after specializing 7 to the negative constant —¢ and specializing to nonstochastic
initial wealth.

The sufficiency of decreasing absolute prudence for (51) to imply (52) can be shown as follows.
First, to handle the stochastic, but independent initial wealth, define v(z) = E u(w@ + z) as above.
The derived utility function v inherits decreasing absolute prudence from u. The convexity of

In{—v") which is one way of expressing decreasing absolute prudence guarantees that
In(—v"(z + y)) - In(—v"()) 2 In(~v"(z)) - In(-v"(0)) (53)
if zy > 0, with the inequality reversed if zy < 0. Equivalently,
v'(z +y) (v"(z) (v“(y))
S .
w(0) = \7(0)) \#7(0) (34)

if zy > 0, with the inequality reversed if zy < 0. Since the direction of integration cancels out the

direction of the inequality, (54) can be integrated to yield

[ [ =t ([ 5520 ([ 50 ) )

for any pair of z and y. Performing the integration in (55) yields

v(z + y) — v(z) — v(y) + v(0) v’(z) — v'(0) v'(y) - v'(0)
v(0) 2 ( o) ("5 )

(56)

for any pair of z and y. Taking expectations of both sides of (56) and multiplying both sides by
v"(0) (which changes the direction of the inequality),

 ELF®) - H) - v0)]
II(O)

E [v(2 + §) - v(2) - v(2) + v(0)] (57)
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for any pair of random variables # and §. This means that
E [v(Z + §) — v(2) - v(2) + v(0)] < 0 (58)

whenever
E [(v/(2) - v'(0)) (v'(§) - ¢'(0))] > 0. (59)

Given the definition of v and the independence of 1 from the joint distribution of £ and §, (58) is

equivalent to (52) and (59) is equivalent to (51).=

XI. Conclusion

The empirical content of an economic theory is in its ability to connect two or more different
observable phenomena. In this paper, expected utility theory—with the notion of additive time-
separability in the background to help lend meaning to changes in marginal utility—is used to
establish an unsuspected connection between a negative interaction of independent risks and a pre-
cautionary saving motive decreasing in intensity with wealth. I have also established a connection
between a negative interaction of risks and a negative interaction of increases in risk.

One important task necessary to round out the account of standard risk aversion is to place the
interaction between various risks in an explicitly intertemporal context. This is a task taken up in
Kimball (1990b) and Elmendorf and Kimball (1991). Other important tasks are to relate the results
here to non-expected-utility theories of choice under uncertainty and to study the interaction of
risks in two or more qualitatively different variables.

The primary mode of proof used above to show that decreasing absolute prudence, in conjunc-
tion with decreasing absolute risk aversion, implies various types of negative interaction between
risks is a mode of proof that promises to be easily adaptable to other conditions that might arise
in applications.?” The notion of the precautionary premium is the key to this mode of proof. In-
tuitively, a decreasing precautionary premium indicates that a risk is causing expected marginal
utility conditionalon the outcome of another risk to decline more rapidly, thereby making an agent
act more risk averse toward that other risk.2® The mode of proof used in Section XI. making direct
use of the concavity of In(—v") that is equivalent to decreasing absolute prudence, is also casily

adaptable to other circumstances.

27 See for example the proof in Elmendor{ and Kimball (1991) that a risk which increases expecied marginal
utility in the presence of an optimal amount of a risky asset will lower the optimal level of investment of that
risky asset.

28 This intuition is also discussed in Eeckhoudt and Kimball (forthcoming) and Kimball (forthcoming}.
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What may seem a weakness of the concept of standard risk aversion—that it deals with the
properties of higher derivatives of the utility function—may be one of its great strengths. The
concept of standard risk aversion clarifies the economic meaning of the curvature of the second
derivative of the utility function allowing one tointerpret the fourth derivative of the utility function.
when it exists. On finding that a key comparative statics result depends on the fourth derivative
of the utility function one need no longer give up the problem as insoluble. This territory has been

claimed.
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Appendix A

Conditions necessary for v; to be more diffident around « than v, on D

I will prove that one or the other of conditions (i) or condition (ii) of Lemma 2 is necessary for
v; to be more diffident around « than v; by assuming that Evy(§) € E v2(«) whenever E vy (§) <

E v;(x) and then showing that if condition (i) is not satisfied, then there is an m > 0 such that

v2(€) — va(x) < m(un(€) — vi(x)). (A1)

First, define the following four sets:

2" = {£ € Dlui(€) < wi(x)), (4.2)
Z* = {£ € Dlei(€) > wi(x)), (4.3)
M~ = {m € R*| v(€) - ra(x) S m(vi(§) - vi(k)) VE €T, (A.4)

and
M* = {me R v(f) - va(k)  m(n(f) - u(k)) VE € Z¥}, (4.5)

where R* is the set of nonnegative reals. The set =~ is the set of points indifferent to or worse
than k under v; while =+ is the set of points strictly better than « under v;. The set M~ is
the set of values for m that satisfy (A.1) when £ € =~ while Af* is the set of values for m that
satisfy (A.2) when £ € =*. I need to prove that given the hypothesis that undesirable risks under
v; are undesirable risks under vy, then if (i) is not satisfied, A~ and M ¥ will have a nonempty
intersection.

If m* € M~ and m* > m** > 0 then m** € M~ since if v;{&) — v1{x) < 0 and v2{§) = v2(x) <

m* (v1(€) — v1(x)) then
m** (v1(€) — vi(k)) 2 m” (v () = vi(K)) 2 v2(€) — valk). (4.6

Therefore, if nonempty, M~ must be an interval with zero included as its lower limit. By similar

reasoning, if nonempty, M* must be a semi-infinite interval with oc as its upper limit.
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By specializing the hypothesis that Evz(§) < Ewvz(x) whenever Ev(3) € Euv(x) to de
generate random variables § equal to £ almost surely, one finds that v,(£) < vy(k) whenever
v1(€) < vy(x). This has two consequences. First, it means that 0 € M~, so that M~ is nonempty.
Second, it means that if condition (i) is not satisfied, it cannot be because there is a point that
is indifferent to x under v; but strictly preferred to x under vz; instead there must be a point 7
at which v;(r) < v;(x). This implies in turn that m ¢ M~ if m > %%(L:)L}ﬁf‘f‘%» so that A~ is an

interval with a finite upper limit.

Writing out the definitions of the complements of M~ and M™* in the nonnegative reals Rt,
M~ =RN\M™ = {meR¥IE€E" st. v2(§) — vo(r) > m(na(§) - v (x))} (A7)

and
Mt =RNM* = {meRHIE € =Y st v2(€) — va(x) > m(ni(€) - v(x)}, (A.8)

reveals that both of the complementary sets M~ and M* are open, since if v2{&) — va(K) >
m*(v1(€) — v1(x)) then for small enough & > 0, v2(£) — v2(x) > m=*(v1(£) — vi(x)) for any m™" €
(m® — 6,m" + 6). If the complementary sets }~ and M are open, then Af~ and A+ must be
closed. Therefore, since it is nonempty and has a finite upper limit, M~ = {0, p] for some ¢ > 0,
and either M+ is empty or M+ = [g, 0).

To see that M~ and M* must have a nonempty intersection, think of what would happen if
they were disjoint. For M~ and M* to be disjoint would require p < ¢, which in turn would mean
that any m strictly between p and ¢ would be outside both M~ and M* and therefore in both M-
and M*+. From the definitions of M/~ and AM* ((A.7) and (A.8)) there would therefore be an m,

af~ €Z" and a £t € =% for which

v2(€7) = va(k) > m (v1(§7) — v1(x)) (A.9)

and
v(€) — va(k) > m (n () - ni(x)) . (A.10)
vi(£*)~vi(x)

£4)—vni (s +(vitx)=vi(€7))

and equal to £* with probability (v;({*s-::(‘:))):-"(lv(f(:;—ul({')) reveals the contradiction, since then

E v1(§) € Ev1(x) by construction but (A.9) and (A.10) would imply that E vi(§) > E vi().

But then considering the two point distribution § equal to £~ with probability o
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Appendix B

Conditions necessary for v; to be centrally more risk averse around « than vionD

Define the sets

=T = {£e DI (£ - &)vi(€) < 0}, (B.1)
=t = {£ € D7| (€ - w)vi(€) > 0}, (B.2)
M= = {meR*| (£~ r)vy(§) S m(€ ~ K)ei(E) VE€ =7}, (B.3)
and
M* = {m e R¥| vj(€) S m(E - k)vj(E) VE€ =}, (B.4)

With these definitions, the proof that either (i) or (ii) in Lemma 4 is necessary for v to be
centrally more risk averse around & than vy is essentially identical to the proof of Appendix A
that either (i) or (ii) in Lemma 2 is necessary for v; to be more diffident around » than v;. By
virtually identical arguments, if they are nonempty, M~ must be an interval with zero as its lower
limit and M* must be an interval with oo as its upper limit. By specializing the hypotliesis that
Evi(r + (e + €)2) £ Evy(k + aZ) whenever Evj(k + (a4 €)Z) < Evi{k + aZ) by choosinga =1
and Z equal to { — k with probability one, it can be shown that 0 € A~ and that if condition (i)
fails it cannot be because there is a point £ € D* around which v{(£) = 0 on an interval of positive
length but (£ — k)v3(€) > 0, but must be because there is a point 7 € D~ at which (7 —&)r{(r) < 0.

T

This in turn means that m ¢ M~ if m > %:"-%;%,
1

reasoning as in Appendix A shows that A~ and M must be closed so that if they were disjoint

so that M~ has a finite upper limit. The same

there would be a point outside both sets. But this is impossible. since if there were an m € R¥ a
£~ €Z and a £t € =t for which

(€7 - &)va(€7) > m(€™ — k)v(£7) (B.5}
and

(€F = K)vp(€%) > m(€* - w)ri(€Y) (B.6)
(€ —m)vi (EM)+¢

V(€ )+6-{E" =)y (£7)
then for small enough § and € and a = 1. one would have

and £t — & with prob-

then if Z were equal to £~ — k with probability =0

. —(Em —r)ul(e*)
ability N et =R e

Evik+(a+€¢:)<Ev(r+ai)but Evg(s+ (a+ €):) > Evo(n + al).

27



Appendix C

Proof of Lemma 1

Sufficiency of greater central risk aversion for the optimal level of risky investment

to be lower in absolute value for any risk. Concavity of v; and v; guarantees concavity of
$1(8) = Evi(s + 8%) (C.1)

and

$2(8) = Eva(x + 63) (C.2)

as functions of 8. Consider the graph of $;(8) and $;(6). The definition of v2 being centrally more
risk averse around & than v; guarantees that, to the right of zero, ¢2 is nonincreasing wherever ¢,
is nonincreasing. The same definition with Z replaced by —2 guarantees that, to the left of zero,
¢, is nondecreasing wherever ¢, is nondecreasing.

If ¢, is always strictly increasing, arg maxg ¢1(8) is equal to —oo (or some other boundary value)
and arg maxy ¢5(0) is obviously closer to zero. If ¢; is always strictly decreasing, arg maxg ¢, () is
equal to +0o (or some other boundary value) and arg maxy ¢2(6) is obviously closer to zero.

If ¢, is not always strictly increasing or strictly decreasing, its graph consists, from left to right,
of a (possibly empty) increasing section, a (possibly single point) constant section, then a (possibly
empty) decreasing section. The constant section of ¢; is argmaxy ¢1(8). If the constant section
of ¢, includes zero, the constant section of ¢, (which is arg maxy ¢,(4)) must also include zero, so
that the distance of both arg maxs ¢;(8) and arg maxs ¢2(6) to zero is zero. If the constant section
of ¢, is on an interval [a;, b;] entirely to the right of zero, ¢; must be nonincreasing on {a1,0:] and
nondecreasing to the left of zero. Therefore arg maxy ¢2(8) must include a point somewhere in the
interval [0,a,] as close or closer to zero as any point in argmax, ¢;(6). Similarly, if the constant
section of ¢;, is on an interval [a;, b;] entirely to the left of zero, #; must be nondecreasing on [a1.51]
and nonincreasing to the right of zero. Therefore arg max, ¢;(f#) must include a point somewhere
in the interval [b;,0), as close or closer to zero as any point in arg maxg ¢1(6).

Necessity of greater central risk aversion for the optimal level of risky investment
to be lower in absolute value for any risk. The optimal level of risky investment being lower in
absolute value for any risk can be shown to imply the analytical necessary and sufficient condition
for greater central risk aversion given in Lemma 4 using almost exactly the same proof as the proof

in Appendix B that greater central risk aversion implies that analytical condition. The only change
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is the way in which one proves that 0 € M~ and that if condition (i) fails it cannot be because there
is 2 point { € D* around which v{{{) = 0 on an interval of positive length but (£ — &)uvj(£) > 0,
but must be because there is a point 7 € D* at which (7 — x)vj(7) < 0. Namely, the function v,
cannot go strictly up when moving away from x while v, stays the same or goes down since that
would unavoidably put the point of arg maxg ¢,(#) nearest to zero further away from zero than the

point of arg maxy ¢,(f) nearest to zero.

Appendix D

Proof that if E w(w+£) < u(w) implies Eu(w—¢+2) < u(w—¢) for any ¢ > 0 then In(u'(w))

is convex.

i. Proof that if Ev(w+ £) < u(w) implies Eu(w -~ ¢+ £) < u(w - ¢) for any ¢ > 0 then

u(w — €) is a concave function of u(w) for any ¢ > 0.

As long as the agent is not totally indiflerent to everything, one can choose a w that is not a
misery point of u. Then by the results of Appendix A, with v)(w) = u(w) and v (w) = v(w - €),

there is an m such that for every w and £ and every € > 0,
u(w - €+ €) - u(w — €) < m (u(w + £) - u(w)) (D.1)

whenever all quantities are well defined.

Continuing to use the notation v;(w) = u(w) and va(w) = u{w — ¢}, what I need to show is
that if v,(w) is more diffident than v;(w) around any point, then the function va(vy () is concave,
implying that v, is globally more concave than v;. Formally, I must show! that for any (* and any

¢*" in the range of vy, and any A € [0, 1],

Ava(v7H(C)) + (1= Nwa(v71(€™)) € w2 (o7 (AL + (1= A)C™7)). (D.2)

To that purpose, let

= o7 () {D.3)
=7 (™) (D-4)

and
k= oA+ (1= A)™). (D.5)

! Note that continuity of v; (which is implied by concavity) and restriction to a common domain of v; and ¢
on which both are defined ensures that o] “HACT 4 (1 = A)¢"°) and v;(u;l(,\c' (1 = X)¢**)) will exist if ¢*
and ¢** are in the range of v;.
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Then by construction

Avi(€7) + (1 = An(€77) = n(x), (D.6)

or

AMri(€7) = (k) + (1 = M) (11(€77) — ni(x)) < 0. (D.7)

Inequality (D.7), together with (D.1), implies

Av2(€7) = va(s)) + (1 = A)(v2(§77) — v2(#)) £ 0, (D.8)

which is equivalent to the desired (D.2).
ii. Proof that monotonicity, concavity and decreasing absolute prudence of u together
imply differentiability of u, except perhaps at the lower limit of the domain of u

Let §(w) be the set of slopes of tangents to u at w:

S(w) = {s|u(§) - u(w) < s(§ - w) VE}. (D.9)

Concavity guarantees that S(w) is a nonempty interval. Since globally greater risk aversion implies
greater diffidence around every point, decreasing absolute risk aversion and the monotonicity of u
which prevents the existence of a misery point, guarantee that for every w there is an m > 0 for

which
u(€ — €) — u(w — €) < m(u(§) - v(w)) < ms(§ - w) (D.10)

for any £, any s € S(w) and any € > 0. Therefore,
mS(w) C S(w - ¢). (D.11)

Also, min §(w — €) > max S{w)if ¢ > 0 since s* € §(w — ¢), s™* € S(w) and s*° > 5" implies the
contradiction u(w) — u(w — €} < s"¢ and v(w) - uv(w —€) > s™"¢.

Now suppose that §{w) is an interval with positive length. Monotonicity then guarantees that
max S(w) > 0 and therefore that 0 ¢ S(w — ¢) for any ¢ > 0. As a consequence, the value of m
in (D.10) and (D.11) cannot be zero. Thus, for any € > 0, S{(w — ¢) must have positive length
whenever S(w) does. Combined with the fact that for any € > 0, S(w) and S(w — €) cannot overlap
at more than a single point, this implies that if ${(w) has positive length, S(w — €) = —co for any
€>0.

iii. Proof that Inu'(w) is convex.

30



Since u(w — ¢) is globally more risk averse as a function of w than u(w), u(w — €) is centrally

more risk averse around every point than u(w), and if £** > £* then

ey Y (5F)

v (ege) 5 T vE)

(D.12)

whenever v'(£°) > 0 and v/ (5355:) > 0. Inequality (D.12) means first, that either v'(w) is zero
everywhere above the lower limit of the domain of u(w) or that v'(w) is never zero. If v'(w) is zero
everywhere above the lower limit of the domain of u(w}, it is obvious that In u'(w) is convex, even
if ' is considered to have a value of +o00 below the lower limit of the domain of u{w). If v'(w) is

never zero, then one can take logarithms of both sides of (D.12) and rearrange to find that

e (5' +f") < Inv(€) + Invi(e™) (D13)
2 2
for any £ and £**. By iterative application of (D.13), it is clear
Inv (A" 4+ (1 = Q)™)Y < Alnv'(€7) + (1 = A Ine'(€7) (D.14)

for any A = n2~7 € [0,1] where n and j are nonnegative integers. By the continuity of In u'(w)
induced by the continuity of u'(w) when u'(w) is always strictly positive, if (D.14) is true for any
A =n2"7 € [0,1] where n and j are nonnegative integers, (D.14) must be true for any A € [0,1].
Therefore, u'(w) is convex.

iv. Proof that if Ev/(w+ ) > v'(w) implies Ev'(w — e+ %) > v'{w - ¢) for any ¢ > 0 then

In{-v'"(w)) is convex.

The proof is the same as the proof above that In(u'{(w)) is convex under analogous conditions,
but with u replaced by —t’ and u’ replaced by —u" throughout. Concavity of u{w) implies that
u'(w) is decreasing, while the convexity of In u'(w) implied by decreasing absolute risk aversion

implies that —u'(w) is concave.

Appendix E
Proof that Convexity of Inu'(w) is Preserved Under Expectations.
If one defines
4i(£) = u(wi +§) (E.1)
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for various initial wealth levels indexed by a (possibly continuous) index i, then the objective is
to show that if Inu!(£) is convex in £ for all ¢, then In(E; u{(£)) is convex in £, where E; is an

expectation over the index i; or formally that
In(E; uj( A"+ (1 = A)E™)) < Aln(E; u(€%)) + (1 = M) In(E; ui(£77)) (E.2)

for any £ and £°* and any A € [0,1].

The concavity of u; for all i implies that

In(E; u}(A™ + (1 = A)¢™)) = In(E; exp(lnui(A£™ + (1 - A)E™7))) (E.3)
< In(E; exp(Aui(€7) + (1 - A)Inui(£77))).

To complete the proof of (E.2), note that
In(E; exp(Awi(€7) + (1 — A)Inwi(€7"))) € Aln(E; uj(€7) + (1 - A In(E; wi(€™)) (E.4)
because of the concavity of
£() = In(E; exp(eui(€7) + (1 = @) Inw)(€))(E.5)

in o0 straightforward differentiation shows that

1"(2) = {Ei exp(evi(€*) + (1 = @)wl(€N} ™ (E.6)
B [(W(67) — vl(€7"))? exp(vi{€7) + (1 — @)vi(€"")|Ei [exp(vl(€7) + (1 — @)vi(€™)]
~ (E: [(04(€7) = viE™)] exp(wl(€7) + (1 = @)ui(€™))* }

20

by the Cauchy-Schwartz inequality and (E.4) can be written in terms of the function f(-) as

J(AY S AS(0) + (1= A)f(1). (E.T

|
~—

Appendix F

Proof that two different definitions of standardness are equivalent
Let the statement that (4) and (5) imply (6) (the main definition of standardness) be S;. Let
the statement that (7) and (5) imply (6) (the alternative definition of standardness be S;. It is
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easy to show that S; as well as §; implies decreasing absolute risk aversion, which in turn ensures
that the utility function u will be differentiable.

Since (7) implies (4) (by continuity as ¢ — 0), §; implies §,.

Conversely, assume S; and suppose that g satisfies (6). The set of Z that satisfy (4) is the
closure (by convergence in distribution) of the set of Z that satisfy (7). Given any o that satisfies
(4) one can find a sequence of random variables {Z,}3%,, all satisfying (7), which converge to ,.
By construction, § and £, satisfy (7) for every n. By continuity, this means that § and #; must

satisfy (7). Therefore, S, implies 5.
Appendix G

Equivalence of statements of decreasing absolute risk aversion, proper risk aversion
and standard risk aversion with either the clause “makes any undesirable risk more
painful” or the clause “makes any undesirable risk remain undesirable.”
Let an asterisk (*) denote statements in which the clause “makes any undesirable risk more
painful” has been replaced by “makes any undesirable risk remain undesirable™:
A*. Any undesirable change in wealth makes any undesirable risk more painful.
B". Any change in wealth that makes a small reduction in wealth more painful also makes any
undesirable risk remain undesirable.
A'™. Any undesirable statistically independent risk makes any undesirable risk remain undesirable.
B'". Any statistically independent risk that makes a small reduction in wealth more painful also

makes any undesirable risk remain undesirable.

Since “undesirable™ means “positively painful,” making an undesirable risk more painful always
makes it remain undesirable. Therefore the clause “makes any undesirable risk more painful” alwayvs
implies “makes any undesirable risk remain undesirable.” But the clause “makes any undesirable
risk remain undesirable” does not in general imply “makes any undesirable risk more painful,” since
an injtially undesirable risk could be made less painful but still remain undesirable. Individualized
proofs are needed to show that 4" and B imply A and B, A’ implies A’, and B'* implies B'.
The proofs below are written with nonstochastic initial wealth, but each is valid in the presence
of independent background risk since they can be applied to the Kihlstrom-Romer-Williams derived
utility function defined by v(z) = E u(w + z), which inherits any of the four properties of mono-

tonicity, concavity, decreasing absolute risk aversion or decreasing absolute prudence exhibited by
u(-).
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Proof that A* and B imply A and B. Both A and B reduce to the statement that
ww-e¢)-Eu(w—-e+§) > u(w)- Eu(w+§) (G.1)
whenever € > 0 and u{w + §) < u(w). Both A* and B* reduce to the statement that
u(w— e+ §) < u(w—¢€) (G.2)
in the same circumstances. Inequality (G.1) is equivalent to

E[u(w - ¢+ 7) — v(w + §) — v(w — €) + y(w)] (G.3)
=E[u(w—c+§)-u(w+§)—u(w—c+§+1r‘)+u(w+§+1r')]
+Eu(w-e+g+7")—u(w+§+77) - u(w - €) + u(w))

20,

where 7* > 0 is the compensating risk premium satisfying Eu(w + § + 7*) = u(w). (Concavity
guarantees that u(-) is continuous, except possibly at the lower limit of its domain, so x* will exist
for all risks § with finite support as long as the domain of u(-) not bounded above and E u(w + §)
is defined.) The first line on the right-hand side of (G.3) is negative as a consequence of concavity
since, given concavity, it is an expectation of a random variable that is always negative. Either A"
or B" implies that the second line is negative since Eu(w +  + 7*)] = u(w) by construction and

therefore Eu(w — e + § + #°) < u(w — ¢€) by A® or B*.

Proof that A" implies A’. An undesirable risk f increases the pain of another statistically

independent, undesirable risk § in accordance with A’ if and only if

Efu(w+ 2 +§) - u(w+ §) — w(w + ) + u(w) (G.4)
=Eu(w+i+§)-uvw+§)-uw(w+Z+i+77)+u(w+§+r7°))
+E[w(w+i+§+r)—w(w+§+77) - u(w+Z) + uw(w)

20,

where x* > is the compensating risk premium satisfying Eu(w + § + 7*) = u(w), as above.
To see that A’" guarantees that the first line on the right-hand side of (G.4) is negative, note
first that A’* implies decreasing absolute risk aversion for u(-) (because it implies .A”) and therefore

decreasing absolute risk aversion for the function #(-) defined by

i(w)=Eu(w+§+7") (G.5)
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(Kihlstrom, Romer and Williams (1981) and Nachman (1982})). Statement A’" and the hiypotheses
Eu(w + £) < u(w) and Eu(w + § 4+ 7*) = u(w) imply that

Eww+i+j§+r)<Eu(w+§+77), (G.7)
or that
Ei(w+ £) < @(w). (G.7)

By (G.3), the decreasing absolute risk aversion of #(-) implies that

Efi(w+-7%)— (w—-x%) - i(w + %) + u(w)) (G.8)
=E{u(w+z+§)-vlw+§-u(w+I+§+7)+u(w+i+r))

<40.

Statement A’" implies that the second line on the right-hand side of (G.4) is negative since

Eu(w+ § + 7°) = u(w) by construction and
Euw+z+j§+7")<Eu(w+1) (G.9)

as a direct consequence of A'*, together with the hypotheses E u(w+%) < u(w) and Ew(w+§+7") =
u{w).

Note that A" corresponds closely to Pratt and Zeckhauser’s (1987) primary definition of
properness. Statement A’ represents an addition to Pratt and Zeckhauser’s list of equivalent defi-

nitions of properness.

Proof that B implies B'.

Statement B'* clearly implies decreasing absolute risk aversion (which in turn implies that the
utility function is continuously differentiable). I will show here that B'* also implics decreasing
absolute prudence. The combination of decreasing absolute risk aversion and decreasing absolute
prudence implies B’ (as shown in Section VII).

Define
i(w) = Eu(w + £). (G.10)

Let # be any risk satis{ying

Eu'(w+ ) = #'(w) > v'(w). (G.11)
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Then B'™ and (G.11) imply that @(-) is more diffident than u(-) around w. By the results of

Appendix A, this means that

i(w+y) - d(w)  w(w+y) - u(w)

<
' {w) - u'(w) (G.12)
for any y. Subtracting y from both sides of (G.12) yields
i(w +y) = iw) - #(wly  ww+y) - u(w) - v'(w)y G13)

a'(w) - u'(w)
Concavity of u(-) guarantees that u(w + y) — u(w) — v'(w)y < 0. Multiplying both sides by #'(w)
reveals therefore that

iw+9) - iw) - )y S (S utw +) - u(w) - ()] (G.14)

< u(w+y) - w(w) - v'(w)y.

Specializing y to —¢, where ¢ > 0, (G.14) implies that
a{w - €) — #(w) < u(w - €) - u(w), (G.15)

since '(w) > u(w). But (G.14) is equivalent to (10), and it is shown in section V that (10) being

true whenever E v/(w + ) > u/{w) implies decreasing absolute prudence.
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