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that same feature of a data set is cammwon to several variables. A feature is
detected in a single series by a hypothesis test where the null is that it is
absent, and the alternative is that it is present. Examples are serial
correlation, trends, seasonality, heteroskedasticity, ARCH, excess kurtosis
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1. Introduction

Economic time series have many distinctive characteristics. Generally, they exhibit
serial correlation, trends, seasonality, often heteroskedasticity, skewness, kurtosis and
various other features. In order to detect each of these features in a data set, a variety of
tests are available each of which takes the particular feature in question as the alternative
to a simpler representation under the null.

In this paper tests will be proposed to investigate such characteristics in
multivariate data sets. In particular, tests will be presented to examine whether such
features are shared in common in sets of time series. More specifically, tests will be
developed for the hypothesis that there exists a linear combination of economic time series
which does not exhibit the feature.

For example, consider US and Canadian real GNP growth rates. The Box Pierce
test for serial correlation using 12 autocorrelations for 126 quarterly data points from 1957
IIT to 1988 IV is 24.3 for the US and 15.0 for Canada. However the linear combination of
Canadian growth minus US growth, is only 7.7 which is well below the 5% critical value
for such a test. In fact, the minimum statistic over all linear combinations is 6.1 which is
achieved with a coefficient of 1.4. The distribution of such a test statistic will be studied
below and its properties obviously depend upon how the linear combination is chosen. But
even this simple illustration shows the reduction in the value of a test statistic which is
possible.

Both of these series have only moderate amounts of serial correlation so that a
better test is a test for zero coefficients in a low order vector autoregression. When the real
growth rate in US GNP is regressed on lagged US and Canadian growth rates with one lag,
the F—statistic is 6.52 which is significant with a p value of .002. When Canada is

regressed on the same variables, the F—statistic is 5.83 which has a p value of .0038. In
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both cases, there is strong evidence of serial correlation relative to this bivariate
information set. However, the minimized value of this F statistic over all linear
combinations of growth rates is merely .297 which is far from significant at reasonable
levels. The coefficient at which this minimum occurs is 1.02 which suggests real cycles in
the US and Canada are common and of the same amplitude.

In contrast, the US and UK real growth rates do not appear to have cycles in
common. The F test for no serial correlation against the bivariate US,UK information set
is 8.25 for the US and 5.74 for the UK. The minimized value of this statistic over all linear
combinations is however only 5.71, slightly below the UK itself. This occurs with a
coefficient of —.20 indicating that cycles may even be out of phase.

The statistical model which motivates these tests is the unobserved components

model. Two economic time series, y; and y»; might be generated by the model:
= Bl
(1) ¥at 1) ¢ €2t

where v is serially correlated but the ¢’s are not. In this case, y;; — A ya will be serially
uncorrelated. Notice that no assumption need be made about the contemporaneous
covariances among the components. In (1) it is clear that the dynamics of the two series
are common. In the US/Canada example, we might think of v as the business cycle
component which is then common to both countries.

The statistical model in (1) does not contain a statement about the process of v. If
it has any detectable feature, such as trends, seasonality, etc. then this feature will be
common and can be eliminated by taking a particular linear combination. Thus the same
general statistical model can be used to describe the null distribution on many of the

common feature tests discussed in this paper.
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II. A Simple Testing Procedure

Let s(y) be a test statistic which can be used to detect a particular feature. That is,
Hy: No Feature
H,: Feature
can be tested with s(y) for a data series {y;}. Fors and a particular choice of size such as

5%, the decision rule will be defined by a critical region {s(y)>c} where ¢ is defined by
©) Py [s(3)>cl<5%

We reject the null hypothesis of no feature or "find a feature" if s(y)>c.

Now consider applying this procedure to the variable u = y, — § y, for various
values of §. The coefficient of y, has been normalized to be one which is computationally
and notationally convenient although presents difficulties if it should be zero. In the
bivariate case this is impossible although in more complicated cases the normalization
could be important. The use of general linear combinations could everywhere be
substituted in the rest of the paper.

The distribution of the minimand of s(u) over § when the null hypothesis in (1) is

true satisfies a simple inequality:.

(3) s(u) = S(yl—By'_y) = mgn s(y—8y2) <s(yi—Ay2) = s(er~heq).
Hence,
(4) pHo[s({l)x] < Pls(e-hen)>c] ¢ 5%
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By minimizing the test statistic over § we get a new statistic which again has a size less
than or equal to the nominal size. Thus one can simply apply the same test to the
minimized value of the statistic and be confident that the null will be rejected less than or
equal to 5% of the time when it is true. Of course, this inequality could be very strict, in
which case the test might have no power. Thus we must now turn to a discussion of the
power of this procedure.

As we have not fully described the joint density of the ¥’s, it is not possible to
establish that this class of tests is optimal in any sense. In fact, relative to procedures
which have access to this specification, the present test is bound to be inefficient.
Nevertheless, we can expect it to have substantial power. Notice that for large samples or
very strong features in v, the test statistic s(u) will diverge to infinity for all values of §
except §=1 under the null. The question now is how it will behave under the alternative.

Suppose the alternative is that there are two common features:

0 o = (el [

with A # ¢ and with v, not perfectly correlated with #,. Then every linear combination will
contain some v and the test statistic will diverge with sample size and with non—centrality.
This heuristic discussion suggests that the test statistic will be consistent against all
alternatives of the form in (5). A more precise discussion will follow the presentation of

the most useful version of the tests where asymptotic distributions can be determined.
Il Regression Based Tests for Common Features

Many of the interesting features in economic data can be defined in terms of

regression hypotheses. In the model:
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(6) yo=xf + 21 + €
we can define a feature in terms of whether 7 is equal to zero. That is:

Hy 7 = 0, No Feature
Hy: 7#0, Feature

provides a hypothesis testing basis for detecting a feature in the series {y;}. In order to
form a test of this hypothesis, we typically will need to add assumptions on the joint
distribution of {y,x,z} which insure that an F type of statistic has at least a limiting chi
squared distribution.

What are some of the examples of this set—up? To test for serial correlation,{z}
would be lags of y; and possibly other variables, while {x} could be simply a constant and
relevant trends or could be other weakly exogenous variables. To test for seasonality, {z}
could include seasonal dummies and seasonal lagged dependent variables, while {x} could
be other lags as well as trends and other important variables. To test for flexible
deterministic trends, {z} would include polynomials in time or a set of piecewise linear
trends, and {x} would include the relevant lagged dependent variables. We could even
specify the feature as a particular correlation with some other variables. For example, we
might be interested in whether a particular stock return has a non—zero coefficient on a set
of observable state variables. If so, we might ask whether linear combinations (portfolios)
of such stocks can be found which are uncorrelated with all of these state variables. Here
{z} would simply be the observed state variables and {x} would be the riskless rate.

If we assume that {x,z} are weakly exogenous or lagged dependent variables with
respect to {#,7} and have conditional expectation with respect to {x,z;,F;-;} given by (6)
where 7y is the sigma field generated by past values of y, and that {y,x,z} are jointly

stationary, then the estimate and covariance matrix of y can be written, using the notation
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x= [xl’,,..,xT}’, and the projection matrix My = I-x{x'x)x’, as
(1) 7= (2'My2) " 2Myy
(®) V(7) = o2 (2 My 2)
so that the test statistic is given by
(©) 5(y) = ¥'Myz (2Mx2) " 2 Moy | o2
where ;2 is a consistent estimate of the variance of ¢. Typically,

(10) 2= e'e/T,

where ey = yi — xuff — z;y for a Wald type of test and e, = ¥y — an for an LM version
where § is the least squares fit of y on x. Notice the simplification if there are no {x} in

the model. Then the test is simply
(11) s(y) = ya(zz)wy/ o2

which is TR? of the regression of y on z using the LM version of the residuals.

Now suppose that two series y; and y, are each tested for this feature using

(12) Yie =X+ 2o+ €y

Yot = Xeffs + 272 + €2t
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where {x,z} are assumed the same for both series. To test whether such a feature is
common to these data series, one tests whether there is a 6 such that u; = y;; — ya, which

does not have the feature. As before, minimize s(u) with respect to § to get:

(13) s(u) = min s(y~6y2) = Myz(2’My 2) -2’ Myu/ 02
§

where wy= y;1— 6ya, and from straight forward evaluation of the first order conditions, one

obtains the closed form solution for § to be:
(14) 6 = [y2'Myz(2'Mxz) 12’ Myy2] ! 2’ Mx2(2'Mx2) 12’ Myy .

Notice that the estimate in (14) is simply the two stage least squares estimate of § in the

model:
(15) Ye=0yn+xf+ €

where the instrument list is {x,z}. The test in (13) will be called the regression common
feature test or regression cofeature test. This test is however simply
Sargan’s(1958)(1959),0r Bassman’s (1960) test for the validity of instruments, and also
Hansen and Singleton’s(1983) test for the validity of a rational expectations restriction in a
GMM framework. A further interpretation is that (15) and the second equation of (12)
describe a structural equation system which incorporates the common feature. The test is
then a test for a reduced form restriction which has been called reduced form
€NCcompassing.

Here, Zﬂ is a consistent estimate of the residual variance which is typically given by

s2=e’e/T where e is the vector of residuals either under the null (ylz—é}’n—xtb ) or under
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the alternative (yn—yzté—xﬁ - z;:r). Using the residuals under the null, Myu=Mye and the
test statistic (13) can be computed as TR2 of the regression of e on {x,2}. The degrees of
freedom of the test will be the number of new regressors introduced which is the number of
overidentifying restrictions given by the number of variables in {z} (call this K) minus the
number of right hand side endogenous variables,(one). This is easily seen in (15) since in
25LS, ya: is replaced by a linear combination of x;,z; 50 a test of whether z has zero
coefficients is only a test that variables 2 through K are significant in explaining y, or
equivalently e.

The statistic s(u) will be asymptotically distributed as Chi Square(K—1) when the
feature is common, a non—central Chi square otherwise. The tests in section II were shown
to have a distribution with critical value less than or equal to Chi Square(K). The
regression tests in this section have an exact asymptotic critical value which of course
satisfies this inequality.

From the distribution of the test statistic it is clear that the test will have no power
if only one instrument is used as every such feature will always appear to be common. This
is particularly apparent if the feature is very simple such as a linear time trend where it is

well known that a linear combination of two series can always remove such a trend.

IV. Multivariate Regression Tests

The procedures of the previous section will here be generalized to apply to a vector

time series, {Y,} where Y, is Nx1. The multivariate model can be written as:
(16) Yt = BXt’ + th’-{" gg

where T is now a NxK matrix which defines the features to be found in the individual

series. If any row of T is zero, the corresponding variable is said to not show the feature. If
90—
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there is a vector § such that &Y does not have the feature, then § will be called a common
feature vector or a cofeature vector. Any vector with the property that §T = 0 will
therefore be a cofeature vector. Linear combinations of cofeature vectors will still be
cofeéture vectors. If the left null space of T' has rank r, then-there will be r linearly
independent cofeature vectors and 1 will be called the common feature,or cofeature rank.
Conversely if there are r linearly independent cofeature vectors, then the rank of I' must be
N—r1. Since I is NxX, the reduced rank of T is only a restriction if K>N.

These naming conventions and analytics are obviously and intentionally very similar
to those used in cointegration by Engle and Granger(1987). This analogy can be carried
even further. If [ has rank N—r, then it can be written as the product of two matrices of

rank N—r with the following dimensions:

(17) P o= A 3
(NxK) ( NxN—r1) (N-rxK)

and defining ¢ z¢’ = T}, a N—rx1 vector, each element of which is a linear combination of

z¢’, equation (16) can be rewritten as:
(18) Yt—th’=AI:+E|;

which is a components model with N—r common components which exhibit the feature and
a factor or maybe "feature" loading matrix A which has rank r. This representation is
exactly analogous to the common trends representation of Stock and Watson(1988).
Estimation and testing however differ because T no longer has infinite variance, but is
assumed to be a linear combination of observable instruments.

When testing for a common feature in a multivariate setting, the natural

generalization of (13) and (14) can be used when the null hypothesis is N—1 common
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features or a cofeature rank of 1 against the alternative of N common features or a
completely unrestricted I' matrix. In particular, one simply regresses y; on the remaining
y's(say Y), and x treating Y\ as endogenous with a set of instruments {x,z}. If there are

fewer than N—1 common features, then the 25LS regressor matrix will be asymptotically

singular since Y will have only rank N—r but dimension N—1. Although the regression
program may rebel, the residuals will be well defined and the test statistic can be
computed. It will as usual have the degrees of freedom of overidentification, however this
will be K—(N—r) rather than the apparent K—(N-1). A more natural approach at this point
is presumably to apply the methods and test statistics of reduced rank regression which
tests the rank of the I' matrix by testing for zero cannonical correlation coefficients between
Y and z. See for example Reinsol(19 ) or Johansen(1988) and in particular, Tiao and

Tsay(1988).
V. Testing for a Serial Correlation Common Feature

One of the most interesting features to test for is serial correlation. In the
introduction, a test was formulated using the Box Pierce test statistic to define the serial
correlation feature. This test essentially checks to see whether a series is an innovation
relative to its own past. A more useful definition for the common feature test is to check
whether a series is an innovation relative to a multivariate information set. A series yiis

said to show serial correlation relative to {y1y2}, if a test for the the hypothesis v=0 is

rejected in the model:

Yo =fo+ Y-+ vu Vet .+ Tip Yit-p + T2p Yor-p + €1t

=xif+ 27+ ey
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The variables in x; would typically be just an intercept or perhaps a trend and the
variables in z; would depend on the multivariate information set and the lag length. The
test statistic is given by (9). The version in (11) can be used for demeaned or detrended
series.

The estimator of the cofeature vector is given by 25LS of y,; on y, after
normalizing §,=1, and the test for a common feature is (13) which is simply computed as
TR? of the regression of the 2SLS residuals on {z} which is the past of both variables. This
will again be asymptotically Chi squared(2p—1) under the null that the feature is common.

Applying this technique to the growth of GNP in the US and Canada with p=1,
gives an estimate of:

§=0.99 , s(u) = .610 ~ Chi—square(1)
(.303)

The coefficient is similar to that obtained by minimizing the Box Pierce even though here
only one lag of a bivariate information set is used while the Box Pierce used 12 univariate
lags. The test is again unable to reject that the serial correlation is common for these two
countries. Applying the same technique to US and UK, the coefficient of the US growth
rate is .003 with a standard error of .4, and a test statistic of 10.8 which is highly
significant as a Chi—square(1). There does not appear to be a common serial correlation

feature between US and UK.
VI. Vector Autoregressions, Causality Tests, and Cointegration

It is useful to investigate the relation between this test procedure, vector
autoregressions, and other time series tests such as Granger causality and cointegration. If

a multivariate time series Y is generated by a finite order vector autoregression, then it
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can be represented by:
(19) Yi=A Yo + .+ A Y o+

If § is a cofeature vector, then §7Y, is orthogonal to all past Y. Projecting §"Y, on

{z}={Y1.,...,Yip}, gives:
(20) E(&’Yglzt) = 67A1Yt-l -+ .4.+§’Ath_p

which will be zero if and only if #’A,; =0 for all i=1,...,p. That is, all the autoregressive
matrices have a null space which includes 4. In terms of matrix polynomials in the
backshift operator, B, (19) can be concisely expressed as A(B)Y, = ¢;. The condition for a

common feature becomes:
(21) §A(B) = £A(0) =&

so that § is a left eigenvector for every value of B. If a different normalization were chosen
for the VAR, then only the first equalty of (21) would hold; this is sufficient for the
common feature restriction.

The vector autoregression in (19) can be rewritten in unobserved components form.
Suppose the common feature rank is r and that & is a Nxr matrix which is a basis for the
null space of each of the Aj. Let 6* be the NxN—r orthonormal matrix which completes the
basis so that (6,6%) is an orthonormal basis which spans IRN. Each of the A’s can then be

written as the product of Aj = §* aj’ where a; is an NxN—r matrix. Now defining

P
Tt =3 aj’Yt_j, giVES
=1

—13—
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Y;=6LTt+ (43

which is the unobserved components form in (18). If in addition, a; = agj where § is an xr

matrix and a is an Nxr vector, then

p
Ty=a | % $i Yi-
=1

which is an example of the observable index model of Sargent and Sims(198 ).

It is now easy to establish that in a vector autoregression with no Granger causality,
there cannot be a serial correlation common feature. The assumption of no causality,
means that all of the Aj matrices must be diagonal, possibly with zeroes on the diagonal.
The only diagonal matrix which gives zero when premultiplied by a non—zero vector § is
the null matrix. However, if all of the Aj’s are null, then the individual series will not
exhibit the feature. Thus common serial correlation implies at least one way causality.

A rank 1 cointegrated system generated by a vector autoregression can be
represented using the Engle—Granger(1987) notation as:

(22) A(B)Y, = A(1)Y, + A*(B)(1-B)Y;
=72'Y; + A¥B)4 Y,

where a is the cointegrating vector and —7v is the vector of coefficients of the error
correction term in each equation. A*(B) is an autoregressive polynomial with A*(0)=

I—ye’. Premultiplying by §' gives

(23) §'A(B) = &1+ §SA*(B)A
= 670+ §[As + A\B + A3B2 + ...+ Ay Bp-)(1-B)

14—
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which will in general be a function of B. For § to be cofeature vector, it is necessary that
the highest power of B be zero which means that 5’A;.1=0 as this is the coefficient of B”.
By the same argument 6’A}‘ =0V j=0,.,p—1. Because A(0)— 72’ = Az, this condition
becomes §'A(0) = §'7a’. Under the normalization A(0)=1, only if a’y=1 is there a solution
which is 6= e. It has been shown that only very special cointegrated systems will have a
common feature; and if such a system is found, the common feature vector and the
cointegrating vector will be the same( when A(0)=I).

To illustrate this case, consider the simple bivariate cointegrating system:

(24) Yu=7yn-+ €y

Yot = Y1+ €n

so the cointegrating vector is (1,~) and the error correction term (¥1t-1— 7y2t-y) enters
into only the first equation and has a coefficient of 1. This is a special cointegrating system
since the error correction term is not only stationary, it is whité noise. This additional
criterion imposes further restrictions on the system. An example where one might expect
such a finding is in modelling forward and spot asset prices which might satisfy equation
(24) with y, the spot rate and y, the forward rate.

An integrated vector autoregressive system which does not have cointegration can
still be analyzed for common features, and in fact this is one of the most appealing
applications. In such a case A(1)=0 so the vector autoregression is simply computed in the

differences. Rewriting the unobserved components structure gives
(25) AYy=6"Ty + ¢

where all series are stationary but T is serially correlated. Now integrating AY} gives the

common feature representation of Stock and Watson(1988) in terms of T but it also gives
15—
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integrated ideosyncratic components from the curnulation of the ¢;. The variables in Y,
are not cointegrated because the ¢; are not zero. This interpretation shows that common
features provide a measure of the comovement of sets of time series which is weaker than
cointegration. Frequently time series which one expects to find are cointegrated, turn out
not to be and the current procedure is an alternative measure which may reveal the
importance of the common component.

Applying these ideas to the US and Canadian GDP series, the log of Canadian GDP
is regressed on log US GDP and a constant getting a coefficient of .806. When a trend is
included in this cointegrating regression, the coefficient drops to .664 which is very close to
the numbers from the common feature test (.664 1 = 1.50). The Engle Granger(1987) test
for cointegration is based on the residuals of these regressions. Regressing the change in
the residuals on the lagged level and higher order lagged changes, no changes were ever
significant. The t—statistic on the lagged levels was —2.2 when there was no trend, and
—2.1 with trend included. Neither of these are significant at the 5% level according to the
Engle and Yoo(1988) tables or more accurate tables by MacKinnon(1990), hence the null
hypothesis of non—ointegration cannot be rejected. These tests find no cointegration even

though there appears to be a common feature.
VII Testing for Factor ARCH

Thus far, all of the tests have been linear in the dependent variable; however the
general approach extends beyond this case. For example, if heteroskedasticity is found in
each of two series, one might ask whether it will be found in every linear combination of
the series. A particular casc is testing for ARCH in a multivariate setting. The FACTOR
ARCH formulation specifies a simple covariance matrix which has the property that there
will be linear combinations with no ARCH.

The FACTOR ARCH model was proposed in Engle(1987) and used in Engle Ng and
16—
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Rothschild(1990)(1989) in examining Treasury Bills and stock portfolios and by Lin(1989)
in modelling exchange rate volatility. In its simplest form, a set of random variables Y,
with a FACTOR ARCH structure with K factors has a conditional covariance matrix given

by

k
(26) E(Yepe)(Yimpe)' [ Fea] 2 Hy = 0 + T gjgjwse
i1

where E[Y: |7t )=g: and g; are linearly independent vectors. In this case, the ith element
of Y will have time varying variances as long as not all the gj; are zero. If the uj; are
serially correlated, then a simple ARCH test on the ith element of Y will reveal the
heteroskedasticity. This would generally be accomplished by regressing yi,2 on a constant
and a series of its own lags and computing the TR? of the regression. This is the test
developed by Engle(1982). An alternative is the Box Pierce test on the squares of y;. A test
which is attractive in this multivariate setting is to regress y4;? on an intercept and

{¥it-m ¥jt-m 12j=1,...,.N, m=1,... p}. Defining this potentially lérge set of regressors as {z.},

and denoting yi’=[yil2,---YiT7]’, and z=[zl’,...,zT’]’, the test can be expressed as
(27) s(y1) = yi¥Mxz(z Mxz) 12’ Myyi?/ o2

where My = I — ¢(2’¢) 12 with ¢ a column of ones, and o2 a consistent estimate of the
variance. This is just TR? of y;2 on Z and an intercept.

In the FACTOR ARCH expression in (26), there are linear combinations of Y which
have no time varying components. Any linear combination § with the property that
6'gj=0 for all j, will have constant conditional variance. Hence the test in (27) for the

appropriate linear combination will have no ARCH relative to either a multivariate or

univariate information set.
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To test for FACTOR ARCH, one simply needs to minimize s{u) in (27) where
wi= (Y )2, (6Yp)7)

(28) s(1) = min uPMyz(z'Myz) 12’ Mxu2/ o2
5

While the solution to (28) requires non—linear optimization, the objective function is

simple. In terms of the derivative of u;? with respect to § which can be written as:
(29) du2/d &= U, [Ugi = 2uYi

the first order conditions can be written as:

(30) U'Myz(z'Myz) '2’Myu? =0

with a simple iteration procedure being:

(31) fatt = 51 4 [U'Mya(2'Myz) "2 My U] U My Myz) 2 Myu?

where U and u? are computed from iteration n and used to obtain the change in 5 for
iteration n-+1. As usual, the variance covariance matrix of the last step will give standard
errors for 6.

Under the null that the data are generated by a Gaussian FACTOR ARCH model,
(28) will have a limiting chi square distribution with degrees of freedom equal to the
number of overidentifying restrictions. This follows generally from the standard theory of
ARCH tests which recognize that under the null, the squared residuals are iid. The result

however will be established in a more general setup in the next section.
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VII Asymptotic Distribution

A general formulation of the problem includes each of the regression tests described
above and many left undescribed. Let a = (&’,/’) and consider general non—linear
instrumental variables estimators of a in a single equation with true value ag:

F(Yt,Xt,aD) = Ut.

Assume that there are instrumental variables Z; including X;, which satisfy:
(32) E[u‘|7t— 1=0
for 7., is the sigma field generated by {Z:,(Y;.,,Z¢.1),(Ys-2,Z¢-2),...}. Further, assume that

there exists a sequence, VT, of uniformly positive definite O(1) matrices with the property

that

(33) T2y 2 gy 2 N(0,1).

Suppose P is a sequence of uniformly positive definite O(1) weighting matrices. Then a is

the non—linear instrumental variables or GMM estimator if

(34) ¢ = argmin w7 P,
a €A

where A is a compact parameter set containing the true value a,. Any interior soluticn will

satisfy the first order conditions

—19—
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(35) UZPpZu =0, Uziu/de

Under the assumptions in Hansen(1982) or Burguete, Gallant and Souza(1982), or Bates

and White(1988) the limiting distribution of the estimator is given by

N . A
(36) Dy M2/ T (a-a0) T N(O)
- ] r 2\—1 » » ) ) 2\-1
(87) DT:(UZPTZU/T Y UzZ/T PT Vi PTZU/T (UZPTZU/T )
To optimize this procedure, one must choose both an optimal weighting matrix PT

and optimal instruments. The optimal choice of Ppis Vip~tso that expression (37)

simplifies to
N ) ~15 =1
(38) Dy = (Uz Vp Z U)

which is the smallest covariance matrix of all matrices of the form (37). In some cases

optimal instruments can be found following Bates and White(1988). If there exists a

possibly stochastic diagonal TxT matrix BT such that

E[u*%[ F,_y] =1 where uv* = Bpu,

then the efficient instrumental variables are given by Z* = (2%}, 2* ) where
(39) Z*, = E[U%,|F..).

Often only an estimator of Z* is available, as it may depend upon unknown parameters.
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Using consistent but inefficient estimates of these parameters, it is typically possible to
find Z* with the property that plim(Z*'a/T] = 0.
Finally, the validity of the overidentifying restrictions (32) can be tested by

observing that

) . A
40 w(a)'Z V! Zou(a)/T - Chi Square (rank Z — rank U
T

VIII. Conclusions

This paper has developed the theory and implementation of methods for testing for
common features in a multivariate data set. Obviously, it has only scratched the surface as
there are many extensions and applications to be developed. Perhaps the most important
future development is to identify important economic problems which fall conveniently into

this structure and examine the usefulness of the test results.,
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