NBER TECHNICAL WORKING PAPER SERIES

THE RAMSEY PROBLEM FOR CONGESTIBLE FACILITIES

Richard Arnott

Marvin Kraus

Technical Working Paper No. 84

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
February 1990

This paper is part of NBER's research program in Taxation. Any opinions
expressed are those of the authors not those of the National Bureau of Economic

Research.



Technical Working Paper #84
February 1990

THE RAMSEY PROBLEM FOR CONGESTIBLE FACILITIES

ABSTRACT
In recent years, a new set of models drawing on Vickrey [1969] has been developed to
analyze the economics of congestible facilities. These models are structural in that they derive the
cost function from consumers' time-of-use decisions and the congestion technology. Standard
models, in contrast, simply assume the general form of the cost function. We apply the new
approach to analyze the Ramsey problem for a congestible facility, and show that the solution
generally entails cost inefficiency. Standard models have failed to reveal this result because they

treat the cost function as completely determined by technology.

Richard Arnott Marvin Kraus
Department of Economics Department of Economics
Boston College Boston College

Chestnut Hill, MA 02167 Chestnut Hill, MA 02167



In recent years, a new set of models has been developed to analyze the economics of
congestible facilities. These models are structural in that they derive the cost function from
consumers' time-of-use decisions and the congestion technology. In contrast, standard models of
congestible facilities have started with semi-reduced-form specifications of the cost function that
are drawn from the public enterprise literature (e.g., Bos {1986], Crew and Kleindorfer [1986)).
It turns out, however, that in some contexts the properties of semi-reduced-form cost functions for
congestible facilities are qualitatively different from those for public enterprises, since the former
incorporate consumers’ time-of-use decisions while the latter are completely determined by
technology. Thus, depending on context, the standard models of congestible facilides may be
misspecified. This paper provides the first analysis of the Ramsey problem for congestible
facilities using the new approach, and finds, in contrast to the standard approach, that the Ramsey
optimum generally entails cost inefficiency. '

The standard formulation of the Ramsey public enterprise problem! is presented in Bracutigam
[1987, p. 43] (slightly modified):

Consider the case of the N product firm, where y; is the level of output of the ith service
produced by the firm, i = 1, ..., N. Let p; be the price of the ith output, y the vector of
outputs (y1, y2, ..., YN), and p the vector (py, p2, ..., PN). Let yi(p) be the demand
schedule for the ith service, i = 1, ..., N, and y(p) be the consumer surplus at the price
vector p. Let wj be the factor price of the jth input employed by the firm,j=1, ..., J, w
be the vector of factor prices (wj, Wz, ..., wy), and C(y, w) represent the firm's long run
cost function. Finally, note that & = py — C(y, w) corresponds to the economic profit of
the fim.

Formally one can represent the Ramsey pricing problem as follows. Ramsey
optimal (second best) prices will maximize the sum of consumer and producer surplus, T,

subject to a constraint on profits, & 2 %o, where 1, is a constant.



m;x T=wy(p) +py - C(y, W)

subjectto (1) n=py-C(y,w)2 7o
@) y=yp@)

Notevthat the cost function C(:) is determined by technology.

The standard models of congestible facilities employ the above formulation (e.g., Mohring
[1970], Berglas and Pines [1981]), but interpret y to be the vector of the number of users of the
facility (indexed by group and/or time period). We shall demonstrate that, with congestion, the
“cost" function is not completely technologically determined, but depends also on the vector of
output prices, i.e., C = C(y, w, p).2 We shall also demonstrate that the Ramsey optimum will in
general entail cost inefficiency, in the sense that, with y fixed at the vector of Ramsey optimal
outputs, the set of price vectors for which C(y, w, p) is at a minimum with respect to p does not
in general contain the vector of Ramsey prices.

The new approach to the economics of congestible facilities has been developed almost
completely in the context of morning rush-hour auto travel with bottleneck congestion on a point-
input, point-output road. The seminal paper was by Vickrey [1969] who solved for the no-toll
equilibrium, as well as for the optimal time-varying toll, with inelastic demand and linear costs.
The basic idea is that commuters choose when to depart from home to work so as to minimize trip
price. There are three components to trip price: travel time cost, the cost of arriving at work before
or after the desired arrival time, termed schedule delay cost, and the toll. With basic bottleneck
congestion, travel time is time spent in the queue behind the bottleneck. Suppose, to simplify, that
everyone has the same desired arrival time, and is identical in other respects as well.3 Then
equilibrium® requires that all commuters have the same trip price. This is achieved through
adjustment in the pattern of travel time over the rush hour, which depends on the evolution of the
queue length and in wrn on the distribution of departure times. For example, in the no-toll
equilibrium, the time early cost of the first commuter to depart equals the time late cost of the last

commuter to depart (since both encounter no queue), which equals the travel time (queuing) cost of
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the commuter who arrives on time.

Vickrey's model has been extended in many ways;> the present paper applies it to the Ramsey
problem for a congestible facility. More specifically, we retain the context of Vickrey's model
(bottleneck congestion for auto commuters on a single road in the morning rush hour) and consider
a situation in which there are scale economies in the provision of bottleneck capacity and two
groups of users who differ in their shadow values of time and elasticities of demand. We ask the
question: What are the equilibrium characteristics of facility usage when the highway authority
chooses optimal capacity and an optimal anonymous time-varying toll, subject to the constraint that
the deficit incurred (capacity costs less toll revenues) be no larger than a specified amount? Since
the only difference between the user groups is a subjective value of time, it is natural to assume that
the toll is anonymous. The assumption is consequential; if the toll were nonanonymous, the cost
inefficiency result would disappear.

In any equilibrium, all commuters in a given group face the same trip price, inclusive of the
toll, P; and P, respectively. The problem can be insightfully posed in P1-P; space -- see Figure 1.
With or without the deficit constraint, it is optimal, at any point in P1-P; space, to choose capacity
and the toll function so as to minimize total system costs. Thus, the problem can be decomposed.
In the first stage, minimize system costs for every (P1, Py), and in the second stage conduct the
analysis of equilibrium in P1-P; space, with and without the deficit constraint.

An important feature of the first-stage solution is that because the toll is anonymous, for any
P,, there is one and only one P; for which the solution entails cost efficiency. In Figure 1, label
the corresponding locus the cost-efficiency locus. At points along the locus, there is no queuing in
the first-stage solution. Everywhere off the locus, the first-stage solution involves queuing.

We shall show that the first-best (no deficit constraint) optimum, 0, in which the government
has full control over each group's departure pattern, can be decentralized with an anonymous time-
dependent toll. The decentralized optimum lies on the cost-efficiency locus. However, the
Ramsey optimum, R, will not in general lie on this locus. There are two sources of deadweight

loss, inefficiently high costs of production and the costs associated with setting the two groups'

~3-



Py

iso-deficit contours

R cost-efficiency locus
“
‘ D 0 - first-best optimum
’ Q R - Ramsey optimum
‘ D;<D,

iso-social-surplus
contours

Py
Figure 1. The Ramsey optimum may be characterized by cost inefficiency.

prices above their corresponding marginal social costs, and the Ramsey optimum will generally
entail trading off these two sources of deadweight loss.

As noted earlier, the reason this phenomenon has been neglected in the standard approach is
that there the user cost function is assumed to be technologically determined. In particular, user
costs for the above problem would be written as C = C(N, Na, s), where Ny and N are the
number of commuters in the two groups and s is capacity, without reference to prices.” However,
user costs change if Py and P are altered, holding Ny, N3 and s fixed. Thus, the user cost
function is in fact a semi-reduced-form function that captures both technology and demand.

Our resuit that the Ramsey optimum entails cost inefficiency is related to, but distinct from,
several other results in the literature:

1. The possibility that queuing may be a feature of a second-best optimum has been explicitly
considered by Bucovetsky [1984]. Furthermore, a number of papers (Weitzman [1977],
Guesnerie and Roberts {1984] and Sah [1987]) have shown that it may be desirable to supplement

the price system with nonprice rationing (of which queuing is a particular form) when distortions



are present. All these papers, however, demonstrate the possible desirability of nonprice allocation
on second-best equity grounds, while we present a second-best efficiency argument for the
desirability of queuing.
2. Our model is partial equilibrium, treating as exogenous all factor prices and all commodity
prices other than those of the commuter trips. The possible desirability of production inefficiency
is a general equilibrium phenomenon (see Guesnerie [1980] and Auerbach [1985]). Thus, the cost
inefficiency we identify is distinct from the production inefficiency discussed in the optimal
taxation literature.
3. Greenwald and Stiglitz [1986] have demonstrated that taxation is in general desirable in the
presence of adverse selection to relax self-selection constraints. Because the time-varying toll in
our model is anonymous, we encounter self-selection constraints. But endogenous queuing rather
than taxation serves to relax the constraints.?

Sections 1-3 take up a series of increasingly complex first-best problems that lead up to
the Ramsey problem. In Section 1, commuters are identical and demand is inelastic.% In Section
2, demand is still inelastic, but there are two commuter groups. Section 3 retains this
heterogeneity, while introducing elastic demand.!® The Ramsey problem is taken up in Section 4,

and Section 5 presents some concluding remarks.

1. Identical Commuters, Inelastic Demand

Initially, commuters are assumed to be identical, and their number, N, is given. Every day,
each makes a work trip (driving his own car) from his residence at A to his workplace at B. A and
B are connected by a single road which has a single bottleneck of capacity (the maximum rate at
which cars can pass through the bottleneck per hour) s. If arrivals at the bottleneck ever occur ata
rate exceeding s, then a queue forms.

For present purposes, nothing is lost by assuming that there are no travel costs other than
queuing time costs at the bottleneck. Thus, a commuter's departure time from home is his arrival

time at the bottleneck, and his arrival time at work is his departure time from the bottleneck.



Figure 2
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Let d(t) denote the length of the queue at time t, and let q(t) denote queuing time for an

individual who leaves home at time t. Then
q(t) =d(1)/s 10

Commuters have the same work start time t* and must be at work by t*.!1 An individual who
leaves home at time t is early for work by an amount t* - (t + d(t)/s), for which he incurs a
schedule delay cost-of B(t* - (t + d(1)/s)), where B is a parameter equal to the shadow value of time
early. Let o> P be the shadow value of queuing time.1? Total time costs for an individual who
leaves home at ime t are then

o(t) = ad(t)/s + B(t* — (¢ + d)/s)) @

The optimal departure pattern minimizes queuing plus schedule delay costs. In the optimal
configuration, individuals depart at a uniform rate of s over the interval [t* — N/s, t*]. This is
shown in Figure 2, where R(t) is cumulative departures by time t. To see that this pattern is
optimal, simply note that a queue never forms, and schedule delay costs cannot be made lower.

An increase in s permits a shorter departure interval and hence a reduction in schedule delay
costs. The tradeoff between this reduction in schedule delay costs and the added capacity costs
determines the optimal capacity.

We now consider the decentralized economy, in which there is a toll at the bottleneck at time t

equal to t(t). The price of a trip at departure time t is given by

P =c()) + (1) 3



Figure 3
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Taking q(t) as given, a consumer chooses a departure time t which minimizes p(t) subject to
t+q(t) £t*. Let T denote the set of all departure times that are chosen, and let T denote the
complement of T in & = (t: t+q(t) < t*}. The conditions for equilibrium are that, for some trip
price P,
py=P teT (4a)
pH2P teT (4b)
We now show that, if the toll gradient is that shown in Figure 3, then the equilibrium pattern
of departures coincides with the optimum. To see this, suppose that the toll gradient is as shown,
and that the pattern of departures is optimal. Let t; and t; be two departure times satisfying
t* = N/s €t <tp St*. T(t2) — T(t) = B(t2 — t1), which is exacdy the amount by which schedule
delay costs are lower at t;. As for (4b), the toll is the same to the left of t* — N/s as at t* — N/s, but

schedule delay costs are greater.

2. Two Commuter Groups, Inelastic Demand

Consider the same model as above, but with two distinct commuter groups. Type i
commuters (i = 1, 2) have a shadow value of time early equal to B;. The only difference between a
type 1 and type 2 commuter is that B; < .13 We also assume that o > B,.

There are given numbers of type 1 and type 2 commuters, which we denote by N; and N,
and N=Nj; + Na.

The optimal departure pattern is for type 2's to depart at a uniform rate of s over an interval
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from
tU'=t"-Ny/s (5)

to t*, and 1's to depart at the same uniform rate over an interval from
to=t*—N/s (6)
to t’. The reason why the 1's depart first is simply that B; < B. As in the case of a single group,
there is never a queue, and schedule delay costs are minimized.
In the decentralized economy, a type i commuter faces a trip price at departure time t given by
Pi(t) = ad(t)/s + Bi(t* — (t + d(1)/s)) + 1(®) Q)

The economy's equilibrium conditions are that, for some pair of trip prices P; and P,

pM=P teTh (8a)
PI®2P;  teTy (8b)
pM=P teT; (8¢)
PO 2P, teTy (8d)

where T; is the set of departure times chosen by commuters of type i, and T; is the complement of
Tjin Q.
It follows that, for any value of the parameter k, the toll gradient defined by

)=k t<ty (9a)
=k+Bit-to) te [to, t'] (9b)
=k +Bi1(t" —to) + Pa(t-1") teft), t*] 9¢)

results in decentralization of the optimal departure pattern. The proof is similar to that given in
Section 1 for the single group case and is therefore omitted. The nature of the toll gradient defined
by (9a)-(9c) is shown in Figure 4.

A couple of additional results are needed for later sections of the paper. One is that, when

departures are cost-minimizing,14 aggregate time costs as a function of Ny, N and s are given by

C(N1, Ny, 5) = (B1NT +2B1NiNp + BoN2)/2s (10)
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Figurc 4
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To see this, note that, when departures are cost-minimizing, the average schedule delay costs of
type 1 and type 2 commuters are respectively B (t* — (to +t)/2) and B2(t* —t)/2. Using (5) and
(6) in these expressions then yields (10).
The second result concerns the equilibrium trip prices Py and P under the toll gradient defined

by (9a)-(9¢). The easiest way to determine P, is as p;(to). The toll at tyis k,and a type 1
individual's schedule delay costs are By (t* - to) = BiN/s. Thus

Py =BiNis+k an
An easy way to determine P is as pa(t*). Since p2t*) =(t*),

P =PB1Ny/s + B2N2 /s + k 12)
Finally, we note that

P2 —P;=(B2- PNz /s 13)

3. Two Commuter Groups, Elastic Demand

Consider the same model as in Section 2, but with demand given by
Nj = Ni(P) (14)
We assume that N;’(P;) < 0, which ensures the existence of the inverse demand functions P;(Nj).

Society's problem is now one of maximizing the difference between the benefits and costs of

trips,15 where costs include capacity costs and benefits are given by



N; N
j Py(n;)dn; + j P2(nz)dn; (15)
0 0

Benefits depend on N; and Ny, but not on departure times. The optimal departure pattern is thus
the cost-minimizing pattern of Section 2.

Given this departure pattern, we can write the objective function

Ny N2
J’ Pi(n1)dn; + j Py(nz)dn; — C(Ny, Ny, ) — K(s) (16)
0 0

where K(s) is the cost of providing a capacity of s, and C(Ny, Ng, s) is given by (10). From (16),

we obtain the marginal cost pricing conditions

Py = aC/oN, an

P2 = dC/oN, (18)
and the optimal capacity nile

dC/Is +K(s) =0 19

In the decentralized economy, how are the marginal cost pricing conditions to be fulfilled?

From (10),

9C/oN; = B1N/s (20)
while

dC/oN; = BiNy/s + BaNa /s _ Q@n

Comparing (20) with (11) and (21) with (12), we see that both of the marginal cost pricing
conditions are fulfilled when the toll gradient parameter k is set at zero.

To demonstrate this result more heuristically, we first note that, if a marginal type 1 trip is
made, there is no effect on t’, but a decrease in t;. The marginal cost of a type 1 trip is therefore
the schedule delay cost of a type 1 individual who initially departs at the start of the rush hour. As
previously noted, P; can be determined as pj(ty). When k =0, the toll at t, is zero, and P1{to)
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consists of this same schedule delay cost. If a marginal type 2 trip is made, reductions occur in
both t” and t,. The marginal cost of a type 2 trip is therefore the schedule delay cost of the type 2
individual who is initally first to depart plus the difference between the schedule delay costs of the
type 1 individuals who are initially first and last to depart. One need only now observe that, when
k =0, this schedule delay cost difference for type 1 individuals is the toll paid by the first type 2
individual to depart.

We assume that there are scale economies in providing capacity, by which we mean that the
elasticity of K(s) with respect to s is less than unity. 16 Under this assumption, what will be the
relationship between toll receipts and capacity costs, assuming optimal pricing and investment?
From (10), the user cost function C(Nj, Ny, s) is homogeneous of degree one in Nj, Np, and s.
Together with scale economies in capacity costs, this implies that the joint production process of
producing type 1 and type 2 trips is characterized by declining long-mn ray average costs. Itis
well known (e.g., Strotz [1965]) that, under this condition, the toll receipts from long-run
marginal cost pricing are less than the capacity costs. A formal proof that the public authority
incurs a deficit is provided in the Appendix.

4. The Ramsey Problem

Consider the same model as in Section 3, but with a binding constraint on the allowable
deficit. We assume a fixed rather than proportionate deficit constraint.

It appears that the (second-best) optimal departure pattern may be inefficient (whenever we use
the term "efficient,” we mean "cost-minimizing"). If departures were efficient, (20) and (21)
would hold, as well as (11) and (12). From these relationships, P; — dC/dN; and P; — 9C/ON;
would both be equal to k. The amount by which price is raised over marginal cost for one group
would have to be exactly the same as for the other. There is therefore a tradeoff between efficiency
in departures and price over marginal cost markups that better reflect demand elasticities.

In Section 2, we found that an efficient departure pattern has the characteristic that all type 1

departures occur prior to the time at which type 2 departures commence. In our treatment of the
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Ramsey problem, departure patterns that do not have this characteristic will not be considered.!”?

We will see shortly that there is an important role in the problem for departure patterns in
which a number of individuals depart in mass at a certain prescribed time. For a departure time that
is a mass time, queuing time is assumed to be that of the middle person in the mass. The only
change this requires is that we now define d(t) by

d() =D(t.) + (D(t,) = D(t.))/2 @2)
where D(t_) and D(t.) are respectively the limiting values from the left and the right of the actual
queue length at time t and D(t.) — D(t) is therefore the size of the departure mass at time t.

The approach to the Ramsey problem that we have found to be most successful involves first
solving what we will refer to as the feasibility problem. In the feasibility problem, N, N2 and s
are all exogenous. There are two parts to the problem. One is to find all price combinations
(Py, Py) for which the equilibrium conditions (8a)-(8d) hold for some toll gradient .18 Such price
combinations will be referred to as feasible. A given price combination might be sustainable by
alternative toll gradients, having different departure patterns in equilibrium. The second part of the

problem is to determine the minimum user costs consistent with a given feasible price combination.

4.1. The Feasibility Problem

We shall first set out the formal derivations, and subsequently provide the intuition.

Our work on the feasibility problem begins with two pieces of groundwork. First, we
introduce a new variable 8 defined by

P—P1=8(B2-PuN2 /s 23)

(23) maps each point (Py, P») in price space into a specific value of 8. Since efficient price
combinations are characterized by (13), they are mapped into 6 = 1.

Second, we establish a pair of inequalities implied by (8a)-(8d) that will prove to be useful.
From (8a), (8d) and (7),

P2 — Py < (B2 - By)(t* - (t + d(1)/s)) teTy (24)
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Similarily, from (8b), (8¢) and (7),
Py-Pr2 B2-P(t* - (t+d()s)  teT @5

Using (23), (24) and (25) can be rewritten

d(t) < s(t* -t) — 6N, teTy (26)
d(t) 2 s(t* —t) — 6N, te Ty Q27
which are the desired inequalities.

The solution to the feasibility problem is contained in a set of four feasibility properties.
Property 1. A necessary condition for feasibility is 6 2 1/2.

Proof. Lett, denote the time at which type 2 departures commence. Imposing (27) at t; and
using (22),
D(t.) + ON2/2 2 5(1° — 1) — 8N (28)

where ¢ is the fraction of type 2 individuals who depart in mass at t. In order for all arrivals to

occur by t*,

s -1)2D(t) + N; (29)
From (28) and (29),

021-072 30)
(30) together with 0 < ¢ < 1 implies that 6 2 1/2. Q.E.D.

Properties 2-4 are proved using the following lemma.

Lemma 1. Given a price combination (P;, P2) and a departure pattern satisfying (26) and

(27), there exists a toll gradient T for which the given prices and departure pattern are sustainable.

Proof. The proof is by construction of the toll gradient. At times in Tj, tolls are set to satisfy
(8a), while at times in Ty, they are set to satisfy (8c). Along with (8a), (26) implies that (8d) holds
over ToT). Similarily, (27) along with (8c) implies that (8b) holds over T;T,. It remains to
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satisfy (8b) and (8d) over TiNT,. This is accomplished by setting sufficiently high tolls at such
times. Q.E.D.

Property 2. Price combinations for which 1/2 <8 <1 are feasible. For any such price
combination
(A) The pattern of departures that results in minimum user costs is defined by
(1) Type 1 individuals depart at a uniform rate of s over [ty, t°).
(2) A fraction 2(1 —8) of type 2 individuals depart in a mass at t”.
(3) Type 2 individuals who do not depart at t” depart at a uniform rate of s over

[t”+2(1 — 8)Na/s, t*].
(B) Minimum user costs are given by
T(Ny, N2, 8, 5) = (B1NZ + 2B, NNy + BoNZ + da(1 - 8)’N2)/2s 31

Proof. We first show that the departure pattern defined in (A) satisfies (26) and (27).
Together with Lemma 1, this implies feasibility.

The right-hand side of (26) and (27) is a linear decreasing function of t that we denote by £(t),
ie.,

f(t) = s(t* - 1) - 6N, (32)
When 8 < 1, f(t) has its root to the right of t” at t” + (1 — O)Ny/s. The value of f att” is (1 — 8)N,.
Now consider the departure pattern defined in (A). Everywhere in Ty, d is zero while f is positive.
The given departure pattern thus satisfies (26). Att” € Ty, d and f are both equal to (1 — 8)Na.
Everywhere else in T», f is negative. The given departure pattern thus satisfies (27).

The departure pattern defined in (A) will now be referred to as the reference solution to (26)
and (27). We next show that it is the most efficient solution to (26) and (27), thereby establishing
(A).

From the fact that departures in the reference solution begin at t, no departure pattern for

which all arrivals occur by t* can have lower schedule delay costs. We therefore proceed by
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showing that there is no solution to (26) and (27) that has lower queuing costs than the reference
solution.

From the proof of Property 1, any solution to (26) and (27) must satisfy (30), which we now
write as

022(1-6) (33)
The right-hand side of (33) is the fraction of type 2 individuals who are in the reference solution
departure mass. The reference solution therefore involves minimum queuing costs among
solutions to (26) and (27).

The simplest way to establish (B) is to use the fact that the departure pattern defined in (A)
involves the same schedule delay costs as an efficient departure paﬁcm. T can therefore be written
as the sum of C(Nj, Ny, s) and queuing costs for the departure pattern defined in (A). Queuing is
limited to those in the mass, because the second round of type 2 departures begins just as the
length of the queue generated by the mass falls to zero. There are 2(1 — 8)N; individuals in the
mass, each of whom incurs a queuing cost of a(l — 8)Na/s. Q.E.D.

Property 3. Price combinations for which 1 €6 < 1 + y are feasible, where y= B;Ny/4aN;.
For any such price combination

(A) The pattern of departures that results in minimum user costs is defined by
(1) A fraction 2(8 — 1)N2/N; of type 1 individuals depart in a mass at time
tm=t"—2(0 - 1)Na/s.
(2) Type 1 individuals who do not depart at t, depart at a uniform rate of s over
[to, tm).
.(3) Type 2 individuals depart at a uniform rate of s over [t’, t*].

(B) Minimum user costs are given by (31).

Proof. See the Appendix.
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Remark 1. To take the cases covered by Properties 2 and 3, suppose that either 1/2<8<1
or 1 <6 <1 +Y. Properties 2 and 3 establish that, in both cases, the optimal time for departures to
begin is t5. This has the interesting implication that the optimal departure pattern involves the same
schedule delay costs as for the case 8 = 1. The inefficiency thus comes about solely through

queuing.

Property 4. Price combinations for which 8 2 1 + v are feasible. For any such price
combination
(A) The pattern of departures that results in minimum user costs is defined by
(1) A fraction B;/2a of type 1 individuals depart in a mass at time
tm=t"—(0—-1+Y)Na/s.
(2) Type 1 individuals who do not depart at ty, depart at a uniform rate of s over
[to— (6 -1 -7)N2/s, tm).
(3) Type 2 individuals depart at a uniform rate of s over [t’, t*].
(B) Minimum user costs are given by
T(Ny, Na, 6, 5) = (1 - B1/4c)BN2 + 26,N 1N, + B,N2)/2s (34)
Proof. See the Appendix.

Remark 2. Suppose that 6 2 1 + 7. Property 4 establishes that the optimal time for
departures to begin in this case is before t,. The inefficiency thus comes about partly through
queuing and partly through inefficiently high schedule delay costs.

Some intuition can be gained concerning the qualitative properties of the departure pattern for
various intervals of 6 from Figures 5 and 6. Turn first to Figure 6b which portrays the equilibrium
for 0 = 1, a useful reference case. Recall that with 6 = 1, the departure pattern is efficient and
there is no queue. The slope of the toll gradient is P, for t € (to, t") and By for t€ (¢, t*]. And the
slope of the schedule delay cost function is —B; for individuals of type i. Since there is no
queuing, the price function lfor group 1is P forte [to, tTand Py + (B2~ B)(t—t) forte [t', t*];
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Figure 5. The queuing pattern for various intervals of 6.
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and for group 2, P2 + (B2 — B)(t" 1) fort € [to, t'] and P, for te [t', t*]. Thus, type 1 individuals
travel in [t,, t] and type 2 in [, t*].

Turn next to Figures 5a and 6a which portray the case 6 € [1/2, 1). Recall that
P; - P; = 6(B; - B1)N; /s. Thus, for 8 € [1/2, 1), the amount by which P; exceeds P is less than
that for which the departure pattern is efficient. To achieve this, the toll must be set so as to
discourage type 1 individuals from departing in [t", t*]. This is done by having a discontinuous
decrease in the toll at t”. Let the magnitude of the toll decrease be p and the size of the queue it
induces be D(t}). Now consider the choice of type 1 and type 2 individuals as to whether to depart
just before the queue formg or in the queue. An individual who departs in the queue will
experience an expected increase in travel time, and an expected decrease in schedule delay, of

D(t3)/2s. Thus,

p1(t2) = 1)) + Brt* - 1) (352)
Pt =1() + Bit* —t) + (- B)D()/2s ~p (35b)
P2(t2) = T(t2) + Po(t* - 1) (35¢)
P2(t) = T(t) + Bot* —t) + (&~ P)D(/2s - p (35d)

Comparison of (35a)-(35d) indicates that type 2 individuals are willing to pay a higher premium to
join the queue since they value the expected decrease in schedule delay more highly. At the
Ramsey optimum, the constraint that type 1 individuals not wish to depart in [t’, t*] must bind.
Also, for type 2 individuals to travel in {t’, t*], arrivals must be continuous. These conditions
imply:

) =p(tD =P (36a)

p2(t) =p2(t” + D(t3)/s) =P, (36b)
Solving these equations along with P, — P = 8(B; — B1)N2 /s yields

D(t}) =21 -O)N; . (372)

p=(a-ByDI)2s (379)

The resulting equilibrium is depicted in Figure 6a.
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Next we consider 8 > 1. The amount by which P, exceeds P; is now greater than that for
which the departure pattern is efficient. Thus, the toll must be set so as to discourage type 2
individuals from departing prior to t”. There are two qualitatively different ways to discourage type
2 individuals. First,a 6 > 1 can be sustained by an increase in schedule delay costs without
queuing. The toll would be set prohibitively high over an interval (t”, t") such that no individuals
of either type depart during this period; and so that P, = po(t”) and P; = p;(t™). Then

P2-P1=p2(t”) - p1t™) = (B2 - B)(t* ~t) > (B2 - B1N2 /s (38)
Since P; - P, = 8(B2 - B1)Nz2/s and t* —t" =Ny/s,

t'—t"=(8-1)Ny/s 39
With N; and Nj fixed, the increase in the schedule delay costs of type 1 individuals rises linearly
with (8 —1).

Second, a 8 > 1 can be sustained by inducing a queue with no increase in schedule delay.
This entails a mass, m, of type 1 individuals departing at t; =t —m/s. Since the constraint that

type 2 individuals not depart before t” must bind at the Ramsey optimum,

p2(tm) = T(tm) + B2(t* — tm) + (@ - BI)m2s = P, (40)

Pi(tm) = Ttm) + P1(t* — tm) + (@~ Py)m/2s =Py “n
Then a 6 > 1 can be sustained by a mass of type 1 individuals of size m = 2(8 ~ 1)N; departing at
tm =t —m/s. Queuing costs increase as the square of m and therefore, with N; fixed, as the
square of (6 - 1).
Considering both cases suggests the cost-minimizing means of sustaining a given 8 > 1. For
0 below some critical value, which turns out to be 1 + ¥, the desired separation is achieved by
inducing a queue, but no increase in type 1 schedule delay costs. For 6 > 1 + v, cost-minimizing

separation is obtained by inducing both a queue and an increase in type 1 schedule delay costs.
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4.2. The Ramsey Problem
We will now see the advantage of first solving the feasibility problem. It permits the
following formulation of the Ramsey problem, which has a purely static structure.

The problem is to maximize the social surplus function

N, N,
j Pi(n;)dn; + j Py(n)dnz — [(Ny, Nz, 8(Ny, Ny, s), s) - K(s) (42)
0 0

subject to the deficit constraint

K(s) — (Py(N1N; + P2(N2)N2 —=T'(Ny, N2, 8(Ny, Na, 5), 5)) Sz “3)
and the feasibility constraint

O(N1, N2, 5) 2 172 44)
where z is the maximum allowable deficit,

8(N1, N, 5) = (P2(N2) - Py(Ny))s/(B2 ~ BNz (45)

and

T(Ny, N3, 8(Ny, N, 5), s) = (B;N 7+ 2BN| Nz + B;N3 + da(l - 6(Ny, Na, 5))’N3)/2s
for 1/2<8(Nj, Ny, 5) € 1+ B;Ny/4aN, (46a)
= (1 - Bu/4c)ByNT + 28(Ny, Np, $)BININ + BoN2)/2s

for O(Nj, Nz, s) 21 + BiNy/4aN, (46b)

The choice variables are N, N2 and s.
Tt is easily checked that I is smooth, even at points where @ =1and 6 =1 +y. We can

therefore apply Kuhn-Tucker theory. From the Lagrangean function
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N N,
j Pi(n)dn; + j Pa(nz)dny — T(Ny, Np, 8(Ny, Ny, 5), 5) - K(s)
0 0

+ 1(z + Pi(N1)N; + P2(N2)N2 — T(N1, Np, 8(N3, N, ), 5) -K(s))
+ V(B8(Ny, Na, s) -~ 1/2) (C¥))]
we obtain first order conditions for N, N2 and s that we write

Pi - dI/dN; _ g1 v d8/oN;

- - _ i=1,2 (48)
P l+um 1+p P
dT/ds + K'(s) = —— 90/0s (49)
1+p
where n; = (PyN)dN;/dP;. In (48),
dI/dN; = 9T'/oN; + oI /08 96/0N; (50)

where 9I/0N; is the partial derivative of I with respect to its ith argument. Similarily,

dI'/ds = oI'/9s + oI'/08- 36/0s 51
where 0I'/0s is the partial derivative of I" with respect to its last argument.
In what follows, it will be useful to distinguish between two cases according to whether the
feasibility constraint is nonbinding (v = 0) or binding (v > 0).

Casel. v =0. In this case, (48) and (49) reduce to

Pi—dl/dN; _ 1 i=1.2 (52)
Pi . l+pnm '
dI/ds +K(s)=0 ¢

(52) is the basic Ramsey rule, while (53) is the first-best capacity rule.}9
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Case II. v > 0. In order for (48) to hold, we must now have

Py - dI‘/le «_ 3 1

- (54)
P l+pum
Pp=dl/dN; _ _p 1 (55)
P, l+pum

since, from (45), d68/0N; > 0, while 08/0N; < 0. (54) states that the percentage markup of price
over marginal cost for group 1 is less than the markup implied by the basic Ramsey rule (52).
(55) requires the opposite relationship to hold in the case of group 2.

Equation (45) also implies that 98/ds > 0. Thus, where (49) holds,

dl/ds + K (s)> 0 (56)

The optimal level of capacity is thus greater than that which minimizes cost.

We stated above that the cost function I is everywhere smooth. Particularily noteworthy is
the fact that it is not kinked at points where 6 = 1. This suggests that, for any specification of the
capacity cost and demand functions, it would only be over a set having zero measure in parameter
space that the solution to the Ramsey problem did not involve some degree of departure
inefficiency.

In what follows, the smoothness of I where 6 = 1 is used to prove a proposition that will lead
to a particularization of the Ramsey problem for which the optimal departure pattern is definitely

inefficient.

Proposition 1. In order for a solution to the Ramsey problem to involve departure efficiency,

it must meet the condition

Py/Py =ma/my 7))

Proof. If a solution 1o the Ramsey problem involves 8 = I, then v = 0, so that (52) holds.

Using (52) forbothi=1andi=2,
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P, Pp-dl/dN; i

= (58)

Pl 'P] - dI'/le mn .
From (50) and the fact that 9T/00 = 0 when 8 =1,

dI'/dN; = 9T/oN; = 0C/oNj (59)
From (58) and (59),

P, P,-0C/ON

Py Tam g2 (60)

P; P;-0C/ON1 M
(57) then follows from the fact (proved at the beginning of this section) that, for8 =1,

P; - 9C/oN; = P, —9C/oN2 =k Q.E.D.

In any equilibrium, the price ratio P2/P; in (57) is greater than one. Thus, if both groups had
constant elasticity demand functions withmz 2 M (so that 2l < iy )), then there could not be an

equilibrium for which (57) holds. This proves

Corollary 1. Suppose that the demand functions N1(P) and Na(Py) are constant elasticity
demand functions satisfying 12 21;. Then the solution to the Ramsey problem involves an

inefficient departure pattern.

Corollary 1 is the main result of the paper. It establishes that, at least for a subclass of the

Ramsey problem, the optimal departure pattern is inefficient.

5. Concluding Comments

In this paper, we have investigated the Ramsey problem for a congestible facility employing a
structural model which derives the cost function from consumers' time-of-use decisions and the
congestion technology. The standard approach, in contrast, assumes the form of the cost function
without deriving it.

We cmploycd a stylized model of a particular congestible facility — bottleneck congestion on a

road in the morning rush hour — to illustrate our approach. We showed that, at least in this
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context, the standard approach is misspecified because it assumes that the congestion cost function
is fully determined by technology, whereas in fact it depends on both technology and the pricing
scheme. We also showed that the Ramsey optimum for a congestible facility generally entails cost
inefficiency (manifested in our simple model as a queue behind the bottleneck or inefficiently high
schedule delay costs). This phenomenon has not been identified by the standard approach because
of its misspecification.

We conjecture that our main qualitative result, that the Ramsey optimum for a congestible
facility generally entails cost inefficiency, is general. In our example, we took social surplus as
our maximand, but the result should hold whatever social welfare function is employed. Also, we
examined a particular congestible facility which has a particular form of cost inefficiency. The
result should also apply to other congestible facilities, though the form of cost inefficiency will
differ depending on context; for example, with telephone traffic, more calls will be blocked than is
consistent with cost minimization.

Finally, we examined a particular second-best problem — Ramsey pricing for a congestible
facility. But the cost inefficiency result should hold for any second-best problem for a congestible
facility with heterogeneous users and anonymous pricing.

The general implication of our paper is that, in second-best analyses of congestible facilities,
the form of the congestion cost function should be derived rather than assumed, which requires the
use of structural models that explicitly treat consumers’ time-of-use decisions and the congestion

technology.
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Appendix
Proof of the negative profit result of Section 3. Applying Euler's Theorem to the function

C(Ny, Ny, s) gives

N;9C/oN; + N,9C/oN; + saC/as =C 61)
(61) together with (17)-(19) imply

PiN; + PoN; - C=sK(s) ©62)
Letting A denote the elasticity of K(s) with respect to s, we can rewrite (62)

PiN; + PoN; - C = AK(s) (63)
The left hand side of (63) is the public authority's toll receipts. Thus, when A < 1, the public

authority incurs a deficit. Q.E.D.

Proof of Properties 3 and 4. Suppose that 0 2 1, in which case f(t) (recall (32)) has its root
to the left of t” at T =1t" + (1 — 8)N2/s. Then (26) and (27) are satisfied by a pattern of departures
in which type 2 individuals depart at a uniform rate of s over [t’, t'], while type 1 individuals
depart at the same rate s over [T ~ Ni/s, T]. We will refer to this departure pattern as the reference
solution to (26) and (27). In what follows, the reference solution is used to identify the most
efficient solution to (26) and (27).

A departure pattern will be said to be cost-improving if and only if (a) it satisfies (26) and (27)
and (b) it results in lower user costs than the reference solution. From (b), the only way that a
departure pattern can be cost-improving is if it satisfies

(C1) Type 1 arrivals are not completed until after T.
From (C1) and (26),

(C2) At some time tp < T, there is a mass of departures by type 1 individuals which
makes D(tm+) > f(tm).

From (C2) and the fact that the rate at which f(t) decreases is s,

(C3) d(v) > f(t) for all t > t,.

~26-



Together with (26), (C3) implies that there are no type 1 departures after tg.

We next show that, for any cost-improving departure pattern for which D(tg,_) > 0, there is a
dominant cost-improving departure pattern for which D(t-) = 0. Let x be a cost-improving
departure pattern for which D(tm.) =1 > 0 and the size of the departure mass at tm'is m. Letybe
the departure pattern in which (1) there is a type 1 mass of size m + r at the same time tp, (2) type
1 individuals who do not depart at ty, depart at a uniform rate of s over [ty — (N} — m - 1)/s, t),
and (3) the pattern of type 2 departures is the same as in x. y satisfies (26) and (27) (from the fact
that x does) as well as D(t;.) = 0. Queuing costs are lower for y than for x, while schedule delay
costs are not greater. y thus dominates x and is cost-improving.

It follows immediately that any cost-improving departure pattern that does not satisfy

(C4) Type | individuals who do not depart at t depart at a uniform rate of s over

[tm = (N7 —m)/s, tm), where m denotes the size of the departure mass at tp,.

is dominated by a cost-improving departure pattern for which (C4) holds. The same is true for

cost-improving departure patterns that do not satisfy
(C5) Type 2 individuals depart at a uniform rate of s over [t’, t*].

‘We now consider the class of departure patterns defined by

(1) Atsome time tm < T, there is a mass of departures by type 1 individuals whose size
we denote by m.

(2) Type 1 individuals who do not depart at t, depart at a uniform rate of s over
[tm — (N1 —m)/s, tm).

(3) Type 2 individuals depart at a uniform rate of s over [t, t*].

(4) tm+m/s<St” (type 1 arrivals completed by t°).

(5) m/2 <s(t*—tm) — 6N, ((26) imposed at tg).
The reference solution is the member of this class for which t; =T and m = 0. This and the
preceding results imply that the most efficient solution to (26) and (27) is contained in this class.

Given a departure pattern in this class, user costs are given by
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BINI(t* — tm + Ny/2s — m/s) + am?2s + B,N%/2s (64)

Initially, we will ignore the constraint

tm+m/s<t’ (65)
Minimizing (64) subject to
m/2 € s(t* ~ tm) — 0N, © (66)

requires that (66) hold with equality ((64) is monotonically decreasing in ty, and (66) imposes an
upper bound on tm for any given value of m). The optimal values of ty, and m are given by

tm = t* — (BN; + B Nv/4a)/s 67)
and

m = B;N;/2c (68)
(67) and (68) are consistent with (65) if and only if 8 2 1 + v, where y= $;N;/4aN,. This and
Lemma 1 imply (A) of Property 4. (B) of Property 4 follows from substituting (67) and (68) into
(64).

What remains is to complete the analysis for the case 1 <8 < 1 +v. The analysis is facilitated

by the following diagram.

Figure 7

> 0 tm
T\E t\G

(66) constrains a (i, m) combination to lie on or below ABCDE, the slope of which is —2s.
(65) constrains a (tm, m) combination to lie on or below FCG, the slope of which is —s. When

6 < 1+, (67) and (68) define a point like B. Since (64) is monotonically decreasing in tr,, an
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optimal (tm, m) combination must lie on FCD. Attention can further be restricted to CD, since any
movement along FC towards C lowers queuing costs without affecting schedule delay costs.
When 6 < 1 +7, (64) increases monotonically as one moves along BD towards D. Costs are thus
lowest over CD at C.
The optimal values of ty, and m are now

tm=1t"—2(8 - 1)N2/s (69)
and

m=2(6-1)N; (70)
(69) and (70) imply (A) of Property 3. (B) of Property 3 follows from substituting (69) and (70)
into (64). Q.E.D.
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Footnotes

. Ramsey [1927], Boiteux [1956) and Baumol and Bradford [1970] are seminal papers related
to this topic.

. This is similar to the result in Arnott, de Palma and Lindsey [1989a] that the cost function
depends on the form of pricing (e.g., uniform vs. optimal time-varying toll).

. Vickrey allowed for a distribution of desired arrival times; in other respects, commuters were
identical.

. A pure strategy Nash equilibrium, with departure time as the strategy variable.

. Heterogeneous users (Newell [1987], Cohen [1987], Arnott, de Palma and Lindsey
[1989b]), elastic demand (Braid [1989], Amott, de Palma and Lindsey [1989a]), stochastic
capacity and demand (Arnott, de Palma and Lindsey [1988]), nonlinear costs (Smith [1983],
Braid [1989)), simple networks (Arnott, de Palma and Lindsey [1990a]), intermediate toll
regimes (Braid [1989], Amott, dc Palma and Lindsey [1990b, 1989a]), other congestible
facilities (de Palma and Amott [1989] on congestion in telephone traffic), and optimal
capacity (Amott, de Palma and Lindsey [1988, 1989a, 1989b, 1990a, 1990b]).

. This is obvious without the deficit constraint. With the deficit constraint: Expenditure = user
costs + toll revenues = P;N1(P;) + PaNy(P;), where N1(P;) and No(P5) are the demand
functions of the two groups, while system costs = user costs + capacity costs. Since
expenditure is fixed, minimizing system costs is equivalent to minimizing the deficit.

. In the standard approach, the period of congestion is often divided into time intervals. Where
t € T indexes these intervals, the cost function would then be written as

CUnt) e (nf)ieTs 5), where nit is the number of commuters in group i who use the
congestible facility in interval t. Note that since the use of a congestible facility almost
always takes time, there is ambiguity as to how the number of users in a time interval should
be measured.

. Ourresult on cost inefficiency at the Ramsey optimum is not altogether surprising. Consider

a situation in which there are two groups who desire access to scarce medical facilities, the

-32-



10.

11.

12.
13.

14.

15.

16.
17.

provision of which is characterized by increasing returns. The two groups differ only in
terms of an unobservable shadow value of waiting time, 8; and 8, respectively, with §, > &,.
If group 2's demand is more elastic than group 1's, then the Ramsey optimum will entail a
pricing scheme whereby an individual has the choice of paying 2 higher price and incurring
no wait (which group 1 would choose), or a lower price and incurring a wait (which group 2
would choose) -- cost inefficiency. The analogous phenomenon for traffic would be two
parallel roads. Self selection would manifest itself in route choice -- spatial separation. In
our model, with a single road and both travel time and schedule delay costs, the self selection
manifests itself as temporal separation.

This is the problem solved in Amott, de Palma and Lindsey [1990b].

This section extends to two consumer groups the elastic demand model in Arnott, de Palma
and Lindsey [1989a].

This is equivalent to assuming that the shadow value of time late is infinite. This assumption
is made to simplify the analysis, and does not alter the qualitative results.

There is strong evidence that a > B (see Small [1982)).

Allowing for different shadow values of queuing time or more than two commuter g'mﬁps
does not affect our basic result, but complicates the analysis.

In Sections 1-3, the optimal departure pattern is cost-minimizing. But in the Ramsey
problem, the (second-best) optimal departure pattern is in general not cost-minimizing.

We employ this objective function since it is the standard one in the literature and since we
wish to abstract from equity considerations.

We do not restrict this elasticity to be constant.

A slightly weaker assumption is that there are no type 1 departures after the time at which
type 2 departures commence. This allows type 2 departures to begin with a mass of
departures which includes type 1 as well as type 2 individuals. Allowing for this possibility
does not affect the results, but greatly complicates the proofs. We therefore decided to

employ the stronger assumption described in the text.
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18. Any toll gradient having an equilibrium departure pattern that satisfies the "1's before the 2's
condition” is admissible.

19. Note, however, that the marginal cost term dI'/dN; in (52) and the cost derivative dI'/ds in
(53) are generally associated with inefficiently high user costs for a given set of output levels

-Nj and N7 and a given capacity s.





