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I. Introduction

This paper considers the use of the polynomial distributed lag (PDL)
technique of Almon (1965) when the lag length is estimated rather than
fixed. We focus on the case where the degree of the polynomial is fixed,
the polynomial is constrained to be zero at a certain lag length q, and q is
estimated along with the other parameters. We extend the traditional PDL
setup by allowing q to be real-valued rather than integer-valued. This
extension plus a minor (and quite natural) modification of the PDL yields a
regression function that is differentiable in q. Consequently, the model is
simply a nonlinear regression model, and under standard assumptions the
least squares estimate of q and various functions of q and the other
parameters, such as the sum of the PDL coefficients, are consistent and
asymptotically normal. Furthermore, if the errors are iid and normally
distributed, these estimates are also asymptotically efficient. Estimates
of their asymptotic variances and covariances are provided.

The paper also considers the estimation of distributed leads rather
than lags. If expectations are rational and if the coefficients of the lead
variables are assumed to lie on a polynomial, the PDL technique can be
combined with Hansen's (1982) method of moments estimator to produce
consistent and asymptotically normal estimates of all the parameters,

including the lead length.
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Considerable attention has been paid in the literature to the adverse
effects of incorrectly specifying the lag length of PDLs, e.g., Schmidt and
Waud (1973), Trevedi and Pagan (1979), Hendry, Pagan, and Sargan (1984) and
references therein. For a fixed lag length the parameter estimates are
usually inconsistent if the lag length is misspecified. For example, if the
correct specification is for an explanatory variable to enter an equation
only contemporaneously and if the lag length is specified to be greater than
one, then the effect of the explanatory variable on the dependent variable
will not be estimated consistently.

This misspecification problem does not arise if the lag length is
estimated consistently. In consequence, several papers have considered
estimating the lag length, e.g., Schmidt and Waud (1973) and Pagano and
Hartley (198l1). 1In each of these papers, however, no estimated standard
error is obtained for the estimated lag length, and the estimated standard
errors for the other parameter estimates are computed as though the
estimated lag length is fixed. As has been recognized for some time -- see
Schmidt (1973) and Frost (1975) -- such estimated.standard errors understate
the true variability of the parameter estimates. In contrast, this paper
provides a standard error estimate for the lag length, and the estimated
standard errors for the other parameter estimates take into account the

estimation of the lag length.

IT. Estimation of Distributed lags
A_Simple Example
It will be useful to begin with a simple example. Assume that the

polynomial is linear and that there is one distributed lag variable:
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where X is a k-dimensional vector of explanatoxry variables other than X

1t 2t

and its lags, q is a real number greatey than or equal to 1, and [q] is the

integer part of q. Yt and the X2t-j are scalars. Equations (2) and (3)

imply that
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Given (4) and (5), equation (1) can be written as

lq]-1 )
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- X Qe towe
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An estimate of #, denoted 4§, can be obtained by minimizing the sum of
squared residuals u’u, where u’ = (ul, Ceay uT). One way this minimization
can be done in practice is by searching over values of q. Given a value of
q, Qlt can be computed, and given Qlt’ equation (6) is linear in parameters

and can thus be estimated by ordinary least squares. Thus, one can search
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over q by running least squares regressions to find the value that leads to
the smallest overall sum of squared residuals. Alternatively, a gradient
method can be used to compute the estimates, where the gradient is given in
(7) below.

By writing the nonlinear regression function g(Xt,G) in terms of an
integral, as in (1), it is easy to see that it is a differentiable function
of q and the other parameters. Thus, under standard conditions the
noenlinear least squares estimator ; is consistent and asymptotically normal
(e.g., see Hansen (1982), Gallant (1987, Chs. 1,2), or Andrews and Fair
(1988)). Note that q is identified only if q > 1, and it is an interior
point of its parameter space, as is required for asymptotic normality, only
if ¢ > 1.

The estimation of the covariance matrix of ; is straightforward. Let
G be a Tx(k+2) matrix whose t-th row is

[q]-1

(7 2 g0 = (Xj 1 -Q, : - 11;2 Xoe-y ¥ 2@-laDX, 41

38 -0 2t-] q]

~

An estimate of the covariance matrix of ¢ is

A A

8) v = ooyt

A A A A

where 02 = u'u/T, u is the vector of estimated residuals from (6), and & is
G evaluated at § = ;. The estimate G is appropriate when the errors (ut:
t>1l} are independent, mean zero, variance 02 random variables conditional on
(Xt: t>1}. 6 is easy to compute in practice, since G is simply the matrix

of regressors expanded by one column to include the derivative of g(Xt,ﬂ)

with respect to q.
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In most PDL applications one is interested in the sum A of the lag

coefficients. In the present context A is given by

q q (q]-1 2
(9 A = Jardi o= -y f@@-lIDd] = - v @)+ @-laDD)
o ! 0 j=0
~ [q]-1a Ay
The least squares estimate of A, - 71( 2 (q-j) + (g9-{q})")}, has asymptotic
j=0

variance

(10) OZ(A) = (3X/8y; 38X/8q)V,(8X/8y, d8xr/8q)’

A A

where V2 is the 2x2 covariance matrix of (71 q)’' , i.e., the lower right

2x2 block of the covariance matrix of 4, and

an aey - -4 - @2+ alal - a2,

(12) ax/8q = - v4(2a-[q])

az(A) can be estimated using the lower right 2x2 block of V in (8) and

71-

We now consider various extensions of model (1).

evaluating (11) and (12) at q = q and 71 -

Endogenous Explanatory Variables

1f th or some of the variables in X1t are endogenous and if a matrix Z

of first stage regressors is available, equation (1) can be estimated by two
A

stage least squares (2SLS). ¢ is obtained by minimizing u’Z(Z'Z)_lz'u, and

the estimated covariance matrix is

A A

(13 v = oi@rzzzyt

z'G)'1

A

Again, 8 can be computed by searching over values of q. Given q, the
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problem is a standard 2SLS estimation problem. Alternatively, a gradient

method can be used.

Quadratic Polynomials

If the polynomial is quadratic:
(14) - + i o+ ;2 j =0,1 [q]
QJ- ‘YO ’YlJ '12J y J s .., 1GQ1,q
(15) aq = 0,
and so
. 2 .2
(16) aj = - 71(Q'J) = 72(q -] )

In this case, q > 2 is needed for identification, 4 contains an extra

element Ty i.e., 8" = (B’ T q), and equation (6) becomes

an Yo = X8 - Qe - 1 + Ye o

where Q1t is as in (6) and

lal-1, , 2 . 2
18 - = -j . - -
(18) Q,, j=o(q 3%+ @-lddD@ [aDXy 141
Equation (7) becomes
(19 _3 g, . 8) = ( Xlg t = Q¢ - Q,,
a8’
[q}-1
- 71§EOX2t'j + 2(q-[q])X2t_[q])
[q]-1

- 12(2?§0X2t_j + (3q+[q])(q-[q])X2t_[

q]))



Multiple Distributed Lag Variables

If model (1) contains a second distributed lag variable, say X3t-j’

two cases need to be considered, one in which the lag lengths for X2 and X3

are the same and the other in which they are not. If they are the same, the
new term in (1) is In[j]x3t-[j]dj , where (assuming a linear polynomial)
0

J
element 61, ie., 8' = (B8 T 61 q), and equation (6) becomes

n, = 60 + 61j, j=20,1,...,[q]l,9 , and Sq = 0. @ now contains an extra

(200 Yo = X - Qe - SRy v ou
where
{al-1 )
21 Ry = JEO(q-J)><3t_J. + (q-[a]) X3t-[q]
Equation (7) becomes
(22) _3 g(Xt,H) - <Xit Do- Qlt To- th :
a8’
(q]-1
-1 E X, o+ 2g-lghX, )
lj.G 2¢-j 2t-[q]
(q}-1
CAE Xy 2@ laK g))

If the lag lengths are not equal, the new term in (1) is

r
g”[j]XBt-[j]dJ , where (assuming a linear polynomial) "j - 60 + Slj s

j=0cL,...,.[c},r, and;&r‘-Oh ¢ mew contains two extra elements 61 and r,

i.e., @™ = (8 yf.&l g r). Equation (6) becomes equation (20) except that r

replaces q in the deffmition of R given in (21). Equation (7) becomes

1t




(23) 8 8(X,8) = (Xy¢ i - Q¢ - Ry
” [q]-1
T MENey v 2@l gy
[r]-1
. 5l§§0x3t + 20 [xDXy ) )

With two lag lengths the computational burden of searching becomes more
burdensome, and a gradient method is likely to be much faster.

The extension to models with quadratic polynomials and more than two
lagged variables is straightforward. In addition, the extension is
straightforward to models with a PDL on both the dependent variable and
various independent variables, as in the class of autoregressive distributed

lag models considered in Hendry, Pagan, and Sargan (1984).

Nonlinearity

Finally, equation (1) -- and thus g(Xt,ﬂ) in (6) -- can be nonlinear
in parameters other than just q. Given g, the minimization of u’u need not
be an ordinary least squares problem, and the derivatives of g(Xt,ﬁ) with
respect to § can be more involved than those in (7). This means, among
other things, that the case in which u is n-th order autoregressive can be
handled easily. Equation (1) can be quasi differenced using the
autoregressive parameters in order to eliminate the autoregressive part of
the error, and the autoregressive coefficients can be incorporated into 4.
This merely converts the problem into one in which g(Xt,G) is more nonlinear

in parameters than otherwise.
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Estimation and Testing of the Degree of the Polynomial

Thus far we have considgred the case where the degree of the polynomial
is fixed. It is possible, however, to estimate both the lag length and the
degree of the polynomial and to test the adequacy of a specified polynomial
degree. With the lag length g treated as a real-valued parameter to be
estimated, a sequence of models with PDLs of increasing degrees is a
sequence of nested nonlinear regression models. Therefore, any of a number
of standard consistent model selection procedures can be applied to estimate
the polynomial degree. For example, one can use 'a downward sequential t-
or F-testing procedure, as in Pagano and Hartley (1981), or ome can use
Akaike’s information criteriop, Schwartz's criterion, Mallow's Cp criterion,
cross validation, or generalized cross-validation, etc. With a consistent
model selection procedure, the asymptotic variances given above are still
valid (because the correct model is selected with probability that goes to
one as T goes to infinity), but the accuracy of the asymptotic approximation
is likely to suffer.

The adequacy of a given choice of polynomial degree can be tested using
an asymptotic t- or F-test as in Pagano and Hartley (1981). A RESET or
RASET specification test can be used to test whether the degree of the
polynomial is correct and whether the PDL restriction itself is appropriate

-- see Harper (1977).

This completes the discussion of distributed lags. The cases
considered in this section can be easily extended and combined, and in each
case it is straightforward to treat the lag length or lengths as parameters

to be estimated and to estimate their standard errors.
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III. Estimation of Distributed leads

Suppose that X e

in (1) is replaced by X2t+j'

where the latter is the
2¢t-j

expected value of x2t+j and all expectations are assumed to be formed at the
end of period t-1, before information for period t is available. Let the
e

i To r be
expectation error fo X2t+j

e
t-let+j - X2t+j - x2t+j ,» J=0,1,...,[q]

Equation (1) in this case is

q
e .
(25) Y. - X, 8 + ga{j]xhﬂj]dj + u o, t=1,....T,
[q]-1
TR T E e Y @lDeg e gt e
where
q z
(26) v, = {a[j] ELIEIL L

Given (2) and (3), a new equation (6) can be derived:

[q]-1
) , 2
QD Y, = g(X,8) = X B - vl§§o<q-3>x2t+j @ aD Ry )+ v,

=X MY v

where Xt now denotes (X1t th X2t+1 . X2t+£q1)'

Consider first 2SLS estimationm of (27). Eet’ZE:BQ a vector of first
stage regressors.. A necessary condition for consistency is that ZE:and‘v:
be uncorrelated. This will be true if both u ard the t-1€t+j are meam zZero
and uncorrelated with Zt. The assumption that u, is mean zero and

uncorrelated with Zt is the usual 2SLS assumption. The assumption that the
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t-1€t+j are mean zero and uncorrelated with Zt is the rational expectations

assumption. If expectations are formed rationally and if the variables in
Zt are used (perhaps along with others) in forming the expectations of the

then Zt and the are uncorrelated. Therefore, given this

Xotej t-1%t+]

assumption (and the other standard assumptions that are necessary for
consistency), the 2SLS estimator of § is consistent. It minimizes
2 2 '11
v'Z(Z'Z) "Z'v.
A problem with the 2SLS estimator in this context is that it ignores

the m-dependent property of Veo Because of the v_ will in general

t-1%e+j’ Ve
be m-dependent with m = [q]-1 if q is not an integer and m = [q]-2 if q is
an integer. The 2SLS estimates are consistent, but the standard formula for
their covariance matrix in (8) is incorrect and the estimates are not
efficient within the class of limited information estimators. Hansen's
(1982) method of moments estimator takes account of the m-dependent
character of Ve It is based on minimizing v’ZM-lZ'v, where M is some
consistent estimate of lim T'IE(Z'vv'Z). In order to estimate M one needs
an estimate of v, in (27), such as the 2SLS estimate ;t'

A

A general way of computing M is as follows. Let ft - tht. Let R,
- T—lzz_j+1ftfé_j . 3=0,1, ..., m M isthen (Rj+R +Rf + ... +R_
+ R&), In many cases computing M 1in this way does not yield a positive
definite matrix, and something else must be done. Hansen (1982), Cumby,
Huizinga, and Obstfeld (1983), and Andrews (1988), among others, discuss the
computation of M based on an estimate of the spectral density matrix of

Zt':vt evaluated at frequency zero. A third approach is to compute M under

the following homoskedasticity assumption:

(28) E(vv |z, 2.y, ... 1 = Elvyy,] for t>s,
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which says that the contemporaneous and serial correlations in v do not
depend on Z : This assumption is implied by the assumption that

E[thS] =0 for t > s 1if normality is also assumed. Under this assump-

: -1.T oo
tion M can be computed as follows. Let a, = T Et=j+lvtvt-j and
~1.T , s : ,
Bj =T zt—j+1ztzt—j j 0,1, ..., m. M is then (aOBO + alBl + alB1
+ ... +aB + aB’)
m m m m

The complete estimation procedure in the case of polynomial distributed
leads can now be summarized. 1) Estimate 8, 71, and q in (27) by 2SLS,
"which minimizes v’Z(Z‘Z)-IZ'v. This requires searching over values of q or
using a gradient method. 2) Given these estimates, compute ;t from (27).

Then compute M in one of the above ways. 3) Estimate g, vy and q in (27)

by minimizing v’ZM-lz'v. This again requires searching over values of q or

using a ‘gradient method. These are the final parameter estimates. The
estimated covariance matrix of these estimates is

A

(29) Vv = T(G’ZM_]'

V2 Rl

where the elements of G are as in (7) except that X2t+' replaces X and

2t-j

] replaces X

Xotelq 2t-[q]"

The various extensions discussed in Section II can also be applied
here. The modifications needed for the case of leads rather than lags are

slight, and they will not be discussed further.

IV. Monte Carlo Results

It is of interest to see how good an approximation the asymptotic
standard errors of the estimates of q and X are in finite samples. We

consider three examples in this section, which are taken from equations
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estimated in Fair (1989). The equations are price equations for fairly
disaggregate commodities, with distributed lag or lead values of an
aggregate price variable added to pick up aggregate expectational effects on
individual price setting behavior. The data are monthly. The first two
equations were estimated for the period August 1958 - April 1989, a total of
359 observations, and the third equation was estimated for the period July
1958 - August 1983, a total of 302 observations. The first equation
includes 20 explanatory variables plus lags of the aggregate price
variable. The second equation has three fewer explanatory variables, and
the third equation has one fewer. Elean of the explanatory variables in
each equation are seasonal dummy variables. The polynomial was taken to be
linear, and the aggregate price variable was the only variable to which the
polynomial lag distribution was applied. Given the lag length q, each
equation is linear in parameters.

The Monte Carlo experiments were run as follows. Each equation was
estimated first using the historical data. The estimated parameters were
used as the true parameters for purposes of the Monte Carlo experiments,
The error term in the equation was assumed to be normal with mean zero and
variance ;2, where the latter is the estimated variance of the equation.
For each repetition a new data set was generated by drawing error terms
from this distribution and using these error terms plus the estimated
parameters to compute new values of the dependent variable. The equation
was then reestimated using the new data, and the parameter estimates were
recorded (including the estimate of q). One thousand repetitions were made

for each equation. The largest value of q allowed was 72. (The smallest

value of q allowed was 1.)
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The means and variances of the parameter estimates over the 1000
repetitions were calculated. Of particular interest is the comparison of
the Monte'Carlo and asymptotic estimates of the standard errors of ; and a.
For the first equation the estimates of A and q from the historical data
were .1256 and 27.34, with asymptotic standard errors of .0307 and 6.46.
The average estimates of A and q from the 1000 repetitions were .1259 and
27.00, with Monte Carlo standard errors of .0305 and 7.72. The biases in
the estimates are thﬁs fairly small, as are the differences in the standard
errors. The range of the estimates of q over the 1000 repetitions was 1 to
72. There were 6 occurrences of an estimate of 1 and 2 occurrences of an
estimate of 72.

The resﬁlts were similar for the second equation. The estimates of A
Vand q from the historical data were .1184 and 12.56, with asymptotic
standard erroré of .0286 and 5.72. The average estimates from the 1000
repetitions were .1209 and 12.53, with Monte Carlo standard errors of .0270
and 5.82. The range of the estimates of q was 1 to 35.78. There were 30
occurrences éf an estimate of 1. The estimates of q are in units of months,
and so the estimated standard errors of the lag length for these two cases
are around 6 or 7 months.

The third equation is one in which the asymptotic standard error of ;
is larger than a. The estimates of X and q from the historical data were
-1860 and 11.09, with asymptotic standard errors of .0442 and 14.01. The
average estimates from the 1000 repetitions were .1925 and 14.29, with Monte
Carlo standard errors of .0429 and 13.12. The range of the estimates of gq

was 1 to 72. There were 118 occurrences of an estimate of 1 and 8

occurrences of an estimate of 72. 1In this case the Monte Carlo estimate of
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q is noticeably larger than the estimate from the historical data (14.29
versus 11.,09). Also, the Monte Carlo standard error of ; is smaller than
the asymptotic standard error of ; (13.12 versus 14.01). These two results
are explained by the fact that the distribution of ; is truncated at 1. 1In
tﬁis third case, where the standard error of ; is large relative to ;
itself, there 1s considerable probability mass at 1. This leads ; to be
biased upward. It also leads to the Monte Carlo standard error being
smaller than the asymptotic standard error. The asymptotic formula thus
overstates the standard error of ; for large values of the standard error.

The results for the third equation are fairly typical of the overall
results in Fair (1989), where q is generally not estimated with precision.
In many of the estimated equations the standard error of ; is at least as
large as ;. This imprecision does not, however, carry over to the
estimates of A. The latter generally are fairly precise. In other words,

the data seem fairly good at tacking down the sum of the lag coefficients,

but not the lag length itself.

V. Conclusion

Since it is quite rare that lag and lead lengths are known with
certainty, the ability to estimate them and the standard errors of their
estimates should prove useful in practice. The estimated standard errors
should help one in deciding how much confidence to place on the overall

estimated lag or lead distributions.
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