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ABSTRACT

New results on the exact small sample distribution of the instrumental
variable estimator are presented by studying an important special case. The
exact closed forms for the probability density and cumulative distribution
functions are given. There are a number of surprising findings. The small
sample distribution is bimodal, with a point of zero probability mass. As
the asymptotic variance grows large, the true distribution becomes concen-
trated around this point of zero mass. The central tendency of the estimator
may be closer to the biased least squares estimator than it is to the true
parameter value. The first and second moments of the IV estimator are both
infinite. In the case in which least squares is biased upwards, and most
of the mass of the IV estimator lies to the right of the true parameter, the
mean of the IV estimator is infinitely negative. The difference between the
true distribution and the normal asymptotic approximation depends on the
ratio of the asymptotic variance to a parameter related to the correlation
between the regressor and the regression error. In particular, when the

\

instrument is poorly correlated with the regressor, the asymptotic approx-
imation to the distribution of the instrumental variable estimator will not

be very accurate.
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In this paper we present new results on the exact small sample distri-
bution of the instrumental variable estimator. In particular, we compare
the small sample distribution to the asymptotic distribution.

Among our findings are:

e The central tendency of the instrumental variable estimator is biased
away from the true value.

e The central tendency is biased in the direction of the probability limit
of the ordinary least squares estimator.

e The distribution is bimodal.

e The distribution has a point of zero probability weight between the
modes.

e When the asymptotic variance is large, the distribution is concentrated
around the point of zero probability weight.

e The distribution does not have finite first or second moments.

e When the right—~hand side variable and the regression error are uncorre-
lated, that is when ordinary least squares is the appropriate estimator,
then the asymptotic approximation to the distribution of the instru-
mental variable gives the exact distribution.

e The asymptotic distribution will be a poor approximation to the true
distribution when the instruments are poor, in the sense of not being
highly correlated with the regressor, and when the number of observa-

tions 1s small.

While we prove each of these claims for the case of one independent
variable and one instrument, we see no reason why the intuition should not

be of more general applicability.



The Model

Consider the model of n observations on y; = fz; 4+ u;, where x; and u;
are joint normal and in general correlated. Assume that the marginal distri-
bution of u is i.i.d. normal. Assume further that there exists an instrument
vector z such that z is a nonstochastic sequence, that plim (12'u) = 0,
and that plim (%z'z) exists and is nonsingular. The instrumental vari-
able estimator of 8 is B = (2'z)~'2'y. The asymptotic distribution of 8 is
N(B,02 plim ((z'z)712'2(2'2)"1).

The small sample properties of the instrumental variable estimator for
this particular problem have been considered by, among others, Basmann
(1974), who summarizes a large body of work with particular respect to
Haavelmo’s model of the marginal propensity to consume, by Mariano and
McDonald (1979), who give the pdf for 8, and by Anderson (1982). who
discusses approximations to the ¢df. Basmann and Mariano and McDonald
point out that £ is the ratio of two correlated normal random variables and
so that its distribution may be studied using Fieller’s (1932) results. (See
also Johnson and Kotz (1972), pp. 123-124, Hinkley (1969) and Marsaglia
(1965)). This paper extends the work just cited by characterizing the pdf
and cdf of instrumental variables, and comparing them to the asymptotic
approximations, as the “quality” of the instruments varies. In addition, we
present an intuitive explanation of why the instrumental variable estimator

may be a very poor one in small samples.

The body of the paper consists of two sections. In the first, we present
a useful parameterization of the model just described and then, since it is
both straightforward and instructive, we derive directly the exact density
function and cumulative distribution function of the instrumental variable
estimator. In the second, we consider the behavior of the distribution

for various parameter values and prove the propositions stated above. To
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facilitate discussion, consider the following model describing generation of

the data matrix:

y=pr+u
zg=ec+ 2" lu
z=v+ ¢

where without loss of generality 8 = 0. Think of the triple {u;, €;,v;} as

2 2

being ii.d. normal with zero means and variances oy, o¢,

and o2, respec-
tively. The sequence {€;,v;}, fori = 1...n, is taken to be fixed in repeated
samples and, as a mathematical convenience, to be generated such that the
sample second moments achieve their population values. (The assumption
that the sample second moments achieve their population values simplifies
notation and is of no importance for any of the results). Therefore, within
a sample there is only a single random variable, u, which accounts for the

stochastic behavior of both y and z. Given the assumptions on the sequence

{é;,v:}, z is fixed in repeated samples and the sequence of sample second
n
moments of z, 02, equals %Z 22 =l 4470k
i=1
Note that

1 1
plim (=7'z) = vl and plim (=2'z) = o?
n n

If we write

22
V:Uu JZ
= n 4ot
€

then



B~ AN(0,V).

Note that A~! is the (population value of) the regression coefficient of
z on u. When the regressor and the error term are uncorrelated, A=! =
0, ordinary least squares is asymptotically unbiased. It may be useful in
thinking about this parameterization to look at the relation between X\ and
the asymptotic bias of ordinary least squares.

2
Oy

b= plim (Bous =) =X i
Thus 0 < plim (,@OLS) < A. Note that as 2 grows large, V grows

large and the asymptotic bias of ordinary least équares converges to A.

I. The Exact Density and Distribution Functions of Instrumen-
tal Variables

The instrumental variable estimator can be written as the ratio of two

normal random variables, z'u and z’z. For convenience, write the sample

moment of z'u as

1 n
Myy = ; Zz,-u,-.
i=1
Note that

2
Mau ~ N (0, %az) = N(0y203V).

Since 2’z = z’¢ + A~ 1z'u we can write the instrumental variable estimator

as

My
yo2+ A~lm,,

w»
]



Figure 1 displays a graph of 3 as a function of m,,. Note that while Bis
neither continuous nor monotonic in m,,, there is nonetheless a one~to—one
and onto correspondence and that the function is differentiable everywhere
except at the single discontinuity.

Since m,, follows a normal density, it is straightforward to derive

the density of 3 by change of variables. If m,, has the density func-

tion fm(Mzy), then 3 has the density function f,(m,y) %’-”5#, where %n,@' =

-(1—:%77%7;. The density function for m,,, is given by

fmaw) = (27y°02V) " Zeap [—Wmfu]
Therefore, the exact density of 8 is given by:
. 1 1 1 8

£(8) eap [ (—)’] &

T (=B VeV 1-4/X

as compared to the asymptotic approximation given by:

N 1 1 .,
PB) == o ogph) @

Note, while the asymptotic distribution depends only on the asymp-
totic variance, V, the true distribution depends on two parameters, V' and
X. In fact, the true distribution is homogeneous of degree one in A, V, and
8. We call A the “point of concentration,” for reasons that will become
apparent shortly.

Turn now to the derivation of the cumulative distribution function for
3. Since the mapping between B and m,, Is one—to—one and onto, the
probability of 8 Iying‘in a given interval is just the probability of m,y
lying in the corresponding interval of the normal. The edf of 3 is defined
piecewise according to whether B lies to the right of the singularity in

Figure 1 (B > M) or to the left (B < A). If we write 8= g(m,y), then, for
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B < A, prob (8 < 0) = prob (m,u < g~1(8)) — prob (mzu < —Ayo?). For
B> X, prob (8 < 8) = prob (mzy > —Ay02) + prob (m,y < g~*(#)). The

edf of my,, is

m
@ ZU
()
where @ is the standard normal cdf. Making the appropriate substitutions,

the cdf of the instrumental variables estimator is as given in (3).

For B< )\ F(B) = (1_ﬁ/A\/L_,) (:\/%)

— 8 1
o)+ B )

In comparison, the edf of the asymptotic distribution is F A(,@) =

(3)
For 8> )\F(@)=1-

o(L).

I1. Characterization of the Distribution of the Instrumental Vari-
ables Estimator

Tn this section we characterize the shape of the distribution of the in-
strumental variable estimator. The characterization takes two forms. We
compare the actual distribution to the familiar centered—around-zero bell
curve of the asymptotic distribution. We also prove a number of propo-
sitions which describe how the instrumental variable distribution changes
when the parameters A and V change.

Figure 2 shows a representative sample of the density of 8, with the
corresponding asymptotic approximation drawn for comparison. The pa-
rameter values are A = 1 and V = 4. The region shown is +2 asymptotic
standard deviations around A. For the particular parameter values, this
region includes 62.47 percent of the mass of the asymptotic distribution

and 82.52 percent of the mass of the true distribution.
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The first striking characteristic about the picture of the true distribu-
tion is that it is bimodal and has a minimum at A.
The derivative of the density of 3 is given in (4).

f8) 2 8

L
A G S — 7 4
8 has three critical points. There are two maxima, so the distribution is

bimodal. The modes are given by setting f’ = 0 and applying the quadratic

formula

modes (

8. 1 1 7
X)_1+Z‘7:}: (HW)Z_l (5)

Note, from inspection of (5), that one mode occurs between zero and
) and the other to the right of \. As V goes to oo, the right-side of (5)
goes to one, so both modes approach A. As V — 0, the modes go to zero
and oo respectively.

If the position of the modes relative to A depends on V, what does V
depend on? First, for any fixed parameters, as the sample size grows, V
goes to zero. If one envisions watching the modes spreading towards zero
and oo as the sample size grows, then one sees the process of convergence
in distribution of f(ﬁ) to the asymptotic distribution. Second, in a finite
sample, if the instrument is poorly correlated with the regressor, then V
will be large. For example, in our parameterization as 7 becomes smaller
in absolute value, V grows without limit. The conventional wisdom is that
with poor instruments V is large so that the asymptotic distribution of Bis
dispersed, as illustrated in Figure 2. However, with large V', the asymptotic
approximation is a poor approximation. The distribution of 3 may be quite
concentrated, though it has fat tails, around a point away from the true

parameter value.



Figure 3 shows the distribution of 3 for a case in which V is large
relative to A. V is set to 16 in Figure 3, as compared to 4 in Figure 2. The
region of B shown is the same in Figures 2 and 3. Asymptotic distribution
theory suggests that the fraction of the probability mass shown in Figures
2 and 3 falls from .62 to .37. In fact, the fraction rises from .82 to .90.
The small sample distribution is becoming more concentrated, not less, as

V rises.

We can turn the question around and ask how much of the mass lies
within £ 1.96 asymptotic standard deviations of zero. For the asymptotic
distribution, the answer is always .95. The correct answer depends on both
A and V. In Figure 2 the true mass is .91, while in Figure 3 the true mass
is .97.

Figure 4 shows the distribution of 2 for a small asymptotic variance
(V= %) Here, the asymptotic approximation is better than in Figure 2.
According to asymptotic distfibution theory, the fraction of the probability
mass shown rises from .62 to .92. In fact, the fraction falls from .82 to .78.
In Figure 4, .79 of the true mass lies within 4 1.96 asymptotic standard
deviations of zero.

In general, the accuracy of “confidence intervals” based on the asymp-
totic distribution depends on A, V, and the location of the region under

consideration.

We turn now to several lemmas which more precisely characterize the
distribution of 3.
Lemma 1: When the regressor and the regression error are uncorrelated,
so that ordinary least squares is the best linear asymptotically unbiased
estimator, the asymptotic approximation is actually the true density.

Proof: This is the case where A= = 0. The proof is by inspection of

(1) and (2).



Lemma 2: The point of concentration, A, is a point of zero mass.
Proof: As 8 — /\,f(ﬁA) — 0, by I’Hopital’s rule.
Note, by inspection of (4), that a minimum occurs at A,where f/() =

0.

Lemma 3: At the point of concentration, the actual and true cdfs are
equal, F(A) = FA()).
Proof: Consider the first line of (3). As 8 — X from the left,

g ®(—=
1—B/A \/_ VvV
Corollary 3.1: 0 < Median(8) < \.

Proof: From the first line of (3), F(0) = ®(0)( _C) < 5 and, by the

) B(00) = B(2L) =

(7)) - Wi

@(%)

[

preceding lemma, F(A) = @(%) > 1
Corollary 3.2: As V — oo, the median of 3 — A.

Proof: By the preceding lemma, as V — coF(}) = @(ﬁ) —¢(0) =
. .

5.

Lemma 4: As V — oo, the distribution of 8 becomes concentrated around

A in the sense that Vlim Prob(A—6 < B <X+0)=1,for all § > 0.
Proof:

Prob(A—0 < f < A+0) = Fsy,(A+0) = F5, (A —6)

A—1 1
WTM(T”

= 1+ oG+ V) - 2 - N )

But as V' — oo, the values of each of the cdfs in the last expression go

—{%(

to one-half, cancelling one another, so the probability goes to one.
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Lemma 5: The first and second moments of the distribution of ,3 are
infinite. In particular, the mean is infinitely negative.

Proof: We present the proof for the first moment first. Some intuition
may be gained by looking at Figure 1. Just to the left of the discontinuity,
B takes on infinite positive values. Just to the right of the discontinuity, B
takes on infinite negative values. Since there is more mass of m,, closer to
zero, the negative values outweigh the positive ones.

The mean of § is foo ,@f B)dﬁ Define § = 7?377\- Noting that
G = }\+5, that dg = [/\+6]2d6 and appropriately rearranging the limits
of integration, we can make the change of variables to find the mean of 8

equals

IR e L (6
oo VARV A1 5 Py

Divide definite integral in {6) into three regions: (—oco, —2X),(—24,0),
and (0,00). Over the first and third region, the integrand is everywhere
positive and exp[—széz] goes to zero rapidly, so the integral in these regions
is positive and finite. Subdivide the middle region into the subregions
(=2X, =) and (=A,0). Over the first subregion perform the change of
variable s = —X — § and over the second subregion perform the change of

variable s = —X + §. The integral becomes

0 S
/ 217rV -)\(—:/-\lea:p[——l—(s + X)7)(~1)ds

1
\/271'V s 2V

m/ ELIWER SR
+ (s = < )ea:p[——;v(s— N?ds

(7

The first term in the integrand of (7) is positive within the limits of
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integration and the second term is negative. The first term is less than
iifs—*exp[—ﬁ)\z], while the second term is greater in absolute value than
=2 egp[— %] Thus, the second, negative, integrand dominates. The defi-

nite integral of —% is
[ log s}y = —Allog A = log 0] = —oo.
q.e.d.

The proof for the second moment is somewhat easier. The t** moment

of § is

[ mey di

where
; 3 1 -1, B
m(t) = 812 ﬁA 2 ez [—a( 32
(t)=25 (1—ﬁ//\) — p[2V(1—ﬂ/,\‘)]
Yor t = 2, m is everywhere positive and approaches a constant as

B8 — co. Therefore, the integral is infinite. (The argument holds for higher—

order even moments, a fortiori.)

Intuition

We have, with regard to the location of the probability mass of 8,
three sets of results which appear to be at odds with one another. First,
asymptotic distribution theory asserts that the distribution of ﬁ is approxi-
mately bell-shaped and centered around zero. Second, the absence of finite
moments of 3 suggests that the distribution is fat-tailed. Third, we have
shown that as V — oo, the mass concentrates around A. How can these

three statements be reconciled?
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Return to Figure 1, which shows the correspondence between m;, and
B . Since m,y is normal, its mass is bell-shaped and centered around zero.
Suppose V is small, so the variance of m, is small, then most of the mass
will be close to zero, say in the region marked AA. In this region, the map-
ping from m,,, to B is approximately linear, so a normal distribution on m,,
induces a normal distribution, centered around zero, on ﬁ . Thus for a small
asymptotic variance, the asymptotic distribution is a good approximation.

Suppose that V is somewhat larger, so that most of the mass of m,y
falls in the region marked BB. In this case, a significant portion of the
mass of m,, lies near the singularity, inducing values of 8 lying far out in
the tails. This explains why the moments do not exist.

Finally, suppose that V is larger still, so that most of the mass of m,.,
falls in the region marked CC. In this case, B is almost always close to the
point of concentration, A. Thus as V grows large, most of the mass of

concentrates around A.

Conclusion

We have shown that the true distribution of the instrumental variable
estimator looks very little like the asymptotic approximation. In the case
we study, the distribution is bimodal, fat-tailed, and may be heavily con-
centrated around a point closer to the probability limit of least squares
than to the true parameter estimate. In a companion paper, we use some
of the analytical results presented here together with Monte Carlo studies
to look at the distribution of test statistics based on instrumental variable

estimation.

12



REFERENCES

Anderson, T'W. “Some Recent Developments on the Distributions of
Single-Equation Estimators.” In Advances in Econometrics, W. Hilde-
brand, ed., pp. 109-121, 1982.

Basmann, R.L., “Exact Finite Sample Distributions for Some Econometric
Estimators and Test Statistics: A Survey and Appraisal,” in Fron-
tiers of Quantitative Economics, Vol. II, M.D. Intrilligator and D.A.
Kendrick, eds., pp. 209-288.

Fieller, E.C., “The Distribution of the Index in a Normal Bivariate Popu-
lation,” Biometrica 24, 428-440, 1932.

Hinkley, D.V., “On the Ratio of Two Correlated Normal Random Vari-
ables,” Biometrika 56, 3, pp. 635-639, 1969.

Johnson, N.L. and S. Kotz, Distributions in Statlistics: Conlinvous Multi-
variate Distributions, John Wiley and Sons, Inc., New York, 1972.
Mariano, R.S. and J.B. McDonald, “A Note on the Distribution Func-
tions of LIML and 2SLS Structural Coefficient in the Exactly Identi-
fied Case,” Journal of the American Statistical Association, No. 368,

Vol. 74, pp. 847-848.

Marsaglia, G., “Ratios of Normal Variables and Ratios of Sums of Uniform
Variables,” Journal of the American Stalistical Association 60, pp.
193-204, 1965.

Nelson, C.R. and R. Startz, “The Distribution of the Instrumental Vari-
able Estimator and Its t—~Ratio When the Instrument is a Poor One,”

mimeo, University of Washington, 1988.

13



Figure 1

B,y as a Function of m,,
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