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the vector autoregressive dividend ratio model (Campbell and Shiller [1988
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In this paper, we evaluate the estimates and tests of the present value
model in the log linear vector autoregressive dividend ratio model
formulation of Campbell and Shiller [1988a,b]. The data generating
processes for the simulations are cointegrated vector autoregressive
processes that are consistent with the efficient markets model. An
estimated vector autoregressive model and an alternative model with an

imposed unit eigenvalue are both used.

I. The Dividend Ratio Model
The dividend ratio model (Campbell and Shiller [1988a,b]) states that
the log dividend-price ratio Gt (equal to dt-l - P, where dt-l is the log
dividends per share paid the period before time t and P, is the log price

per share at the beginning of time t) is given by:

*
2 5 = I p' T - ad -k 1-p
( ) t im0 [ tj tj] /( )

where T, is the one-period discount rate at time t. The model was derived
by linearizing the exact expression for St, and the constant k equals

In(l+exp(8)) - Sexp(6)/(1+exp(§)) where 6 is the point of linearization.

II. The Data Generating Processes
Two data generating processes were estimated. The first was estimated

subject to the constraint that the present value model holds with a constant



discount rate. The second was estimated subject to the constraint that the
present value model holds with discount rate varying through time with the
commercial paper rate.

Let us consider the first data generating process. The vector for the

vector autoregression was z, = [§ Ad e30t+1] where e30t is a log

t t+l’ t’
earnings price ratio based on a thirty year moving average of earnings, as
in campbell and Shiller [1988b]). Let us suppose that z, is a Gaussian

vector first-order autoregressive (AR1) process:

(3 z, = Az + v .

As was shown in Campbell and Shiller [1988a], the efficient markets model

(1) requires that:

(4) el’(I - pA) = -e2'A

where el’ = [1, 0, 0] and e2’ = [0, 1, 0]. Equation (4) may be interpreted

as requiring that the linearized one-period return ﬁt -§_ - pb +Adt be

t t+1

unforecastable. The restriction (4) can be written in another way:

) el’ = -e2'A(I - pA)'l.

It is a feature of the Wald test that the test statistic depends on the way
the restrictions are written. In our previous paper we referred to a Wald
test of the restriction (4') as a test that 6t - 6; where 6& = -e2'A(I-pA)"

1 s
Z, OT as a test that infinite-period returns are unforecastable. Here, we



refer to a Wald test using (4) as the linear Wald test of the model, since
(4) is linear in the parameter matrix A, and to a Wald test using (4') as a
nonlinear Wald test of the model.

An estim;te of the vector autoregression parameters was derived by
ordinary least squares subject to the restriction (A).2 The estimated A and
% using the full data set in Campbell and Shiller [1988b] (regressions

containing 86 observations, with £t from 1901 to 1986) were:

0.6101 -0.2103 .0862
A = -0.4289 -0.1969 .0806
0.0079 0.1041 0.8741

[N e]

0.0415 .0076 0.0338
T = 0.0076 0.0134 -0.0025
0.0338 -0.0025 0.0362

o

The (real) eigenvalues of A are 0.8681, 0.7254 and -0.3062. The largest is
fairly close to one, so that its half life is five years. Such eigenvalues
are to be expected, as the variables 6t and eBOt show some persistence
through time.3

The matrix Z is not terribly ill-conditioned, its condition number (the

ratio of largest to smallest eigenvalue) is 76.09. Thus, we are not in a

sz a change of variables, we define z, = Szt where S is the matrix:

1 0 0
S = p -1 0
- -- - 0 -0 1
Now, z, = Az_ + V where A = SAS . One imposes the restriction that-£_ is-

unforecastabfe on the coefficients of the second equation, estimates A and I
and then recovers A and Z.

3If we were using similar methods to evaluate a VAR-p model with p
greater than 1, using the first order autoregressive companion form z, =
Azt_ + v_, then the restrictions (2) would imply that there is a zero
eigenivalue for A. This is so because one of the rows of A would be el’.
However, in the first order case the matrix A need not be singular.
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situation in which there is a linear dependence among the rows of z,, as
would happen in the case of "no superior information.” The no superior
information case occurs when the log real price carries only information
which is in the other variables in the regression. In that case the only
information relevant to forecasting the future comes from dividend changes
(Adt_l), the spread between the current log real dividend and the 30-year
moving average of log real earnings (5c - s30t), and their lagged values, so
that log real price is linear in these and its-innovations therefore linear
in their innovations. The "no-superior information" case has figured
prominently in monte carlo evaluations of volatility tests (see for example
Kleidon [1986], Mattey and Meese [1986], Fama and French [1988]). 1In the
present case, a component of innovations in 6t uncorrelated with the other
innovations feeds into future movements in dividends. (The moving average
representation of the system would give weight to this component in the
determination of future dividend changes). The example here can therefore
be interpreted as one in which economic agents have some information
relevant to predicting future dividends beyond dividends and earnings.

The second data generating process, which assumes that the present
value model (1) holds where discount rates move through time with the
commercial paper rate, was estimated in the same way, except that the vector

z_ = [§ Ad_ - 1 €30

€ el . ¢ t+1] (all variables demeaned) where r, is the

prime commercial paper rate. In this vector, Adt is measured in nominal
terms; in effect the interest rate is used to deflate the change in
dividends. With this change in data, the same constraints (4) or (4') apply

here. The least squares estimates of A and 3 were:



0.5840 -0.2735 0.1068
A = -0.4539 -0.2560 0.1000
L 0.0087 0.0824 0.8743

[ )
0.0410 3.0072 0.0338

z = 0.0072 0.0129 -0.0025
0.0338 -0.0025 0.0363

which are fairly similar to those of the constant discount rate case.

II1. The Present Value Model Tests

The methods used in Campbell and Shiller {1988a,b] are to estimate the
vector autoregression for zt and to test the restrictions (4) or (4') by an
ordinary Wald test. The theoretical log ratio Sé = -e2’A(I-pA)-1zt is
computed and compared with the actual dividend-price log ratio 6t. Finally,
the theoretical linearized return Eé - p6£+1 + Adt - 8& is computed and
compared with the actual linearized return ét.

The Campbell-Shiller results [1988b] for the constant discount rate
case are reproduced in Table 1, Panel A. The linear Wald test rejects the
restrictions (4) at the 4.1% level, the nonlinear Wald test rejects at a
much higher significance level (with a Wald statistic of 104.424 and three
degrees of freedom, the computed significance level is 1.5&5x10-9). The
egation determining 6é in terms of the vector z, does not put a coefficient

of 1.000 on 6t and zero on the other two variables, as the efficient markets

model requires. The equation determining 6& may be interpreted as an
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equation determining pé (equal to dt-l - 6&): pé - .776e30t + 0.256pt +

0.046dt_1 - 0'078dt-2 where e30t is a thirty-year moving average of real
earnings. This equation does not put all of the weight in determining pé on
P, as efficient markets would require; rather it puts roughly three-quarters
of the weight on e30t and only one quarter of the weight on the price P

We see that 5& is somewhat less variable than 5t and has little correlation
with it. The variable Eé is much less variable than Et but is highly
correlated with it. These results were interpreted as indicating a
substantial failure of the efficient markets médel (1), in the direction of
excess volatility for stock returns.

The stochastic simulation results, Table 1 Panel B, are generally
supportive of this interpretation of the results. While the size cf the 5%
linear Wald test is really 8.6%, the rejection of the hypothesis with the
actual data occurred at a significance level of 4.1%, and such a rejection
occurred in 7.2% of the iterations. Thus, we can say in light of the
stochastic simulations that the linear Wald test with our data rejects at
roughly the 7% level. The size of the nonlinear Wald test is more
problematic: the 5% nonlinear Wald test rejected 23.4% of the time. But the
‘ rejection of the nonlinear Wald test with the actual data was so dramatic,
that in none of the 1000 iterations was the significance level of the Panel
A results achieved. While there is a bias that puts some weight on the
extraneous variable e30t in determining pé, the average weight put on e30t
in the stochastic simulations is only 0.215, not, as in the estimated
equation, 0.776. There is also a downward bias in the standard deviation of
EE: the procedure tends to conclude that returns ought to be less variable

than they are even when the model is correct. Both of these biasses might



be interpreted as manifestations of the same general phenomenon reported by
Flavin [1983], Kleidon [1986], Marsh and Merton [1986] and others. However,
the extent of the bias is not enough to give a likely reconciliation between
the model and the estimated regression. Not once in the 1000 iterations was
an estimated standard deviation of fé less than 0.3 times the standard
deviation of actual Et'

Another aspect of Table 1 is well worth noting. The stochastic
simulations uniformly put a high correlation between 6t and 6&: the average
correlation was 0.946 with a standard deviation of only 0.063. The actual
correlation, at 0.175, was dramatically below this.

Table 2 shows the same results for the time-varying discount rate case.
The results are very similar to those shown in Table 1. The rejection of the
efficient markets model with the actual data was somewhat less dramatic than
in the constant discount rate case: with the actual data the standard
deviation of Eé was almost half that of ft. In only 1.7% of the simulation
iterations was the standard deviation of fé less than half that of Et.

While these results are quite favorable to the interpretation of
results in Campbell and Shiller [1988b], it should be noted that alternative
data generating processes are available that give substantially worse small
sample performance to the estimators and tests. To show this, we altered
the A matrix so that the largest eigenvalue equaled 1.000. This was dome by
increasing the single element A(3,3), a parameter that is not involved in
the restrictions (4). To achieve a unit eigenvalue, the parameter A(3,3)
had to be increased by 1.413 standard errors in the constant discount rate
case, not an implausible amount. Note that the small sample properties of

the tests diverge even more from those suggested by our asymptotic



distribution theory that assumed stationarity for z, . Most strikingly, the
nonlinear Wald test rejects more than half the time at the 5% level. Still,
rejections of the efficient markets model in the constant discount rate case
at the significance level found in the actual data occurred less than one
percent of the time. In none of the 1000 iterations was the the estimated
standard deviation of Eé less than .3 times the actual standard deviation,
as observed with the actual data in Table 1 Panel A.

With the time-varying discount rate case (table 4), the unit eigenvalue
process small sample properties show about as much discrepancy from the
asymptotic properties as we saw in Table 3. In some respects, the
situation looks somewhat worse: 13.4% of the time the nonlinear Wald test
rejects at the significance level we observed with the actual data, and
23.8% of the time the estimated standard deviation of Eé is less than half
that of Et. Here, we do not have a very significant rejection of the
efficient markets model.

The unit eigenvalue case that was the basis of Tables 3 and 4 is an
extreme one. It implies that dividend-price ratios, earnings-price ratios,
and dividend growth rates are all nons:zationary stochastic processes.

It has not been suggested in the literature that these are nonstationary.
We believe that the encouraging results in tables 1 and 2 are more likely to

be relevant to the actual data, which appear to be stationary.



Table 1
Vector Autoregression Results - Constant Discount Rate (Real Returns)
A. Actual Results (from Campbell and Shiller Table 2 Panel A)

Linear Wald Test (Test of Unpredictability of 1-Period Returms):
Significance Level = 0.041

Nonlinear Wald Test (Test that §_= §_'):

Significance Level = 0.00 t
30
6. -1.032 6 -0.078 Ad_ -0.776¢

(0.076) (0.046) (0.101§
o(61)/a(8,) = 0.672, corr(6.,6,) = 0.175
(0.074) (0.146)
o(§1)/0(€,) = 0.269, corr(€l,€,) = 0.915
(0.067) (0.064)

Note: figures in parentheses are standard errors.

B. Simulated Results where Efficient Markets Model is True Using Estimated
Constrained VAR Model:

1000 1Iterations

Linear Wald Test. Rejections at:
5% Level: 0.086, 1% Level: 0.021, Sig. Level Obtained Panel A: 0.072

Nonlinear Wald Test. Rejections at:
5% Level: 0.234, 1% Level: 0.147, Sig. Level Obtained in Panel A: 0.000

6{ = 1.066 §_ -0.034 ad_, -0.215¢2°
(0.564) ©  (0.250) (0.6345
o(8)/a(6.) = 0.926, corr(s],6,) = 0.946

(0.251) (0.063)
o(€1)/a(£,) = 0.878, corr(€7,€,) = 0.950
(0.211) (0.049)

Note: Ratios and coefficients are means across iterations; figures in
parentheses are standard deviations across iterations.



Table 2
Vector Autoregression Results - Time-Varying Discount Rate (Excess Returns)
A. Actual Results (from Campbell and Shiller Table 2 Panel B)

Linear Wald Test (Test of Unpredictability of 1-Period Returns):
Significance Level = 0.028

Nonlinear Wald Test (Test that § = St'):
Significance Level = 0.0

30
§' = 0.927 §_ +0.046 Ad_ . -r -0.634¢
t o(0.144) T (0.086) S F Tl (g.o1n®
a(81)/0(5) = 0.580, corr(s,6,) = 0.309
(0.136) (0.341)
o(€)/0(8,) = 0.485, corr(g €)= 0.733
(0.044) (0.188)

Note: figures in parentheses are standard errors.
B. Simulated Results where Efficient Markets Model is True Using Estimated
Constrained VAR Model:

1000 Iterations

Linear Wald Test. Rejections at:
5% Level: 0.079, 1% Level: 0.019, Sig. Level Obtained Panel A: 0.046

Nonlinear Wald Test. Rejections at:
5% Level: 0.214, 1% Level: 0.133, Sig. Level Obtained in Panel A: 0.009

30
' = 1.045 §_ -0.026 Ad, .- -0.187¢
(0.571) © (0.254) ©b &1 (0.641)°
a(81)/a(6,) = 0.922, corr(s],s,) = 0.948
(0.262) (0.065)
a(€1)/a(€,) = 0.882, | corr(g[,€,) = 0.952
(0.216) (0.046)

Note: Ratios and coefficients are means across iterations; figures in
parentheses are standard deviations across iterations.
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Table 3
Stochastic Simulation - Unit Eigenvalue Imposed
Constant Discount Rate (Real Returns):
1000 Iterations

Linear Wald Test. Rejections at:
5% Level: 0.210, 1% Level: 0.071, Sig. Level of Table 1 Panel A: 0.189

Nonlinear Wald Test. Rejections at:
5% Level: 0.603, 1% Level: 0.493, Sig. Level of Table 1 Panel A: 0.009

5. = 1.060 6 -0.049 ad_ -r_ | -0.459¢°
(0.256) © (0.141) (0.378)
0(67)/0(6,) = 0.886, corr(s,6,) = 0.533
(0.361) (0.297)
o(€L)/0(E,) = 0.658, corr(g:,£,) = 0.914
(0.212) (0.088)

Note: Ratios and coefficients are means across .iterations; figures in
parentheses are standard deviations across iterations.
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Table 4
Stochastic Simulation - Unit Eigenvalue Imposed
Time Varying Discount Rate (Excess Returns)
1000 TIterations

Linear Wald Test. Rejections at:
5% Level: 0.195, 1% Level: 0.071, Sig. Level of Table 2 Panel A: 0.136

Nonlinear Wald Test. Rejections at:
5% Level: 0.589, 1% Level: 0.484, Sig. Level of Table 2 Panel A: 0.134

5= 1.043 6§ -0.036 ad_ -1, -0.437510
(0.246) - (0.122) . (0.345)
a(8¢)/a(6 ) = 0.828, corr(s{,5 ) = 0.533
(0.272) (0.318)
a(§])/a(€,) = 0.660, corr(¢[,£) = 0.919
(0.206) (0.081)

Note: Ratios and coefficients are means across iterations; figures in
parentheses are standard deviations across iterations.
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