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Practically every empirical study in accounting and finance nsing cross-sectional data must
in some way come to grips with the problem of contemporancons correlation across firms (or
portfolios). Such studies present special estimation problems beeanse they typically employ panel
data with a large number of firms, each with a less-than-desirable number of time series observations,
With data sets of these dimensions, it is often impractical to implement standard techniques for the
entire cross section and correct for contemporancous correlation. FEven Wlloxl these techniques can
be used, they often require homoskedasticity, a strong assumption in stock-based-return studies.
Indeed, in spite of a rapidly growing literature documenting the severity of and proposing alternative
solutions to these problems, there are no techniques designed for large cross-sections which address
both contemporaneous correlation and heteroskedasticity simultanconsly, and which effectively cope
with the relative paucity of time series data.

This paper attempts to provide two relatively simple estimators to account simultaneously for
contemporaneous correlation and heteroskedasticity in the cross section as well as hetcroskedasticity
over time. The first technique we develop, which combines clements of method-of-moments est;-
mation pioneered by Hansen (1982) and the treatment of heteroskedasticity introduced by Eicker
(1967) and White (1980a, b), is consistent and asymptotirnily efficient within the class of one-
step estimators. The second technique uses a two-step instrumental variable estimator, similar to
that in Cragg ( 1983). It can provide greater asymptotic oﬂicioury than the more straightforward
method-of-moments approach. Small-sample monte carlo simulations arc performed for each of the

estimators.




1. A Discussion of Alternative Estimation Techniques

It is worth stressing at the outset the very broad range of studies which must conduct inference
in the presence of contemporaneous correlation and heteroskedasticity. Contemporaneous correla-
tion appears most prominently in cross-sectional tests of the CAPM, going bhack to Black, Jensen
and Scholes (1972) and continuing on through Gibbons (1982) and Brown and Weinstein (1983).
These tests, which use generalized least-squares (GLS) or iterative (LS techniques, are extremely
constrained in the time series dimension (the putative interval over which parameters of the market
model are reasonably constant is five years).! Aggregation is also common in time-series, cross-
section studies which use GLS, such as French, Ruback and Schwert (1083). Here the problem is
not so much the lack of time series data as it is the computational difficuity of inverting very large
contemporaneous correlation matrixes. Both contemporancous correlation and heteroskedasticity
are significant problems in the rapidly growing “event study”™ and “cross-sectional-return study”
literatures. In these areas, the difficulty of accounting for both problems has resulted in some
authors using techniques which ignore contemporanconus correlation (Brown and Warner (1980,
1985), Christie (1985), and Malatesta and Thompson (1985)) and others using techniques which
ignore heteroskedasticity (Collins and Dent (1984), Shipper and Thompson (1982, 1983, 1985), and
Malatesta (1986)).?

In the absence of heteroskedasticity, it is well known that GLS techniques (such as seemingly
unrelated squares, SUR or multivariate regressions, MVRM) offer first-best solutions to problems’
of cross-sectional dependence. A researcher armed with a great deal of time series data may be
fairly confident that the asymptotic distribution of the GLS estimator is a good approximation to
the sample distribution. In practice, however, cven when the homoskedasticity assumption is met,
QLS is often infeasible, cither because it requires estimation of too many parameters in the error
covariance matrix, or because it involves the inversion of a very large matrix of contemporancous
correlations. When the cross section is small enough to make GLS feasible, inferences based on the

asymptotic distribution of the regression coefficients are appropriate only if the error covariance

1 This five year limit usually necessitates the use of a small cross section (less than 30 firms or portfolios). The number of
monthly time periods in five years is 60. Thus the error covariance matrix will he nonsingular only if the cross section {N) is
composed of fewer than 60 portfolies. GLS, however, uses the inverted error covariance matrix. The expectation of this matrix
exists only if N < 1}1, j.e. if N < 30. See Press {1972).

2See Bernard (1986b), who draws the distinction hetween event and cross-sectional-return studies, for additional references.




matrix is a function of a relatively small number of parameters.®

When the cross section is, for whatever reason, “too large.” resnlts are usually obtained by
aggregating individual firms into a small enongh number of portfolios to permit estimation by
GLS. Although this approach allows efficient cstimation in the subsample, the associated loss in
efficiency from aggregation removes any g priors argument for choosing GLS over less efficient
estimators. Thus, while the estimators below are less cfficient than GLS with an unlimited supply
of time series data, they may nevertheless have more power becanse they may be applied to data
sets for which GLS is infeasible, unreliable, or computationally too burdensome. As we shall see
below, greater disaggregation is possible under the method-of-moments approach because: (i) the
parameter estimates are linear functions of the residuals, so that one can have more confidence in
the validity of the finite-sample inferences, (ii) the size of the cross section is not limited to the
number of time series observations, and (iii) the estimators do not require formation or inversion
of the error covariance matrix.

In many empirical studies in finance, the problem is not so much that the cross section is “too
large,” but that the time series is “too short:” no amount of aggregation will make GLS a reasonable
procedure. This frequently occurs in what Bernard (1986h) terms “cross-sectional return” studies
that use firm-specific information available on an annual or quarterly basis only.* In these studies
it is clearly most difficult to correct for cross-sectional correlation. Yet, at the same time, they
seem to have a disproportionate need for such a correction. Bernard shows that the usual OLS
standard errors of the coefficient estimates, which are biascd i the presence of contemporaneous
correlation, may be extremely misleading for these cases, In addition. Bernard demonstrates that
this bias can only increase as the cross section is expanded. This finding dispels the notion that the
bias will be attenuated by choosing a well-diversified portfolin. Unfortunately, no general method
of accounting for cross-sectional dependence in these studies has previously cmerged.

In all of these situations, a richer characterization of cross-sectional dependencies can be
achieved only by imposing some restrictions on the data. We will make the assumption that

the researcher can identify groups of firms within the cross section that are likely to exhibit little

3The finite-sample bias in the variance of the regression coeficients is of the order of the mumber of ohservations. Rothenberg
(1984) notes that this bias may often he substantial; this will especially be the case when there are relatively many parameters
in the error covariance matrix to be estimated.

#A partial listing of these studies would include Beaver, Eger, Ryan and Wolfson (1985), Bernard (1986a), Rayburn (1986)
and Ricks (1986).




contemporaneous correlation in their residuals. That is, we assume that at any given time the cross-
sectional correlation matrix of the residuals has a block diagonal structure. While this assumption
is restrictive, it buys us considerable freedom in estimating intra-group (or intra-industry) correla-
tions using method-of-moments techniques. For example, cven with a single time series observation
it will be possible to account for unrestricted intra-industry correlations in each industry, provided
a reasonable number of industries are used. Indeed, for any given number of industries, there is no
fixed upper limit on the number of firms within each industry.

The assumption that the error covariance matrix is block diagonal is common in a variety of
contexts in finance. For example, several approximate arbitrage pricing models which allow the
pricing error covariance matrix to include contemporancous correlation across assets require that
the cross-sectional idiosyncratic covariances be “ponpervasive.” This slightly more general property
often comes down to assuming block diagonality in practice.® Also, empirical evidence on block
diagonality is supportive: Bernard (1986b) finds that while intra-industry correlations of market
model residuals are quite large in quarterly and annual data, the corresponding inter-industry
correlations are near zero (the correlation coefficient is on average 0.06) and have a small effect
on the standard errors in regression. Thus, our assumption appears natural for similar studies in
finance and accounting.

While the issue of cross-sectional correlation is a difficult one. a priority is to develop estimators,
quch as those below, which allow simultaneously for cross-sectional correlation as well as conditional
heteroskedasticity. In view of the large and predictable changes in variance frequently observed in
stock returns, conditional heteroskedasticity is likely to be important. It is particularly relevant
in event studies, in which the variance during event periods is likely to be systematically different
than the variance in nonevent periods. The ability to permit both contemporancous correlation
and unrestricted heteroskedasticity is an important shortcoming of feasible GLS estimators.

In sum, there are a number of advantages to the technigues presented below when applied to
financial data. First, they are feasible when GLS and related techniques are not. Because they
exploit the independence across industries and because they do not require the formation or in-

version of the error covariance matrix, larger cross sections may be used. Second, by permitting

5See, for example, Ingersol (1984) and Chamberlain and Rothschild (1983).
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more cross-sectional disaggregation than GLS, more independent information is incorporated in
estimation. Cdnsequently, these estixﬁators need not be less efficient in practice than GLS. Third,
the techniques are valid in the presence of stochastic regressors, and heteroskedastic and contem-
poraneously correlated residuals. (By comparison GLS is generally valid only in the presence of
contemporaneous correlation.) Finally, the estimators and their standard errors are both easy to
compute and dependable when the size of the cross section grows large relative to that of the
time-series dimension.

The remainder of the baper proceeds as follows. In section 2 below, we lay out the method-
of-moments covariance estimator and prove jts asymptotic cousistency. There we show that we
can use the independence across industries to increase multiplicatively the number of independent
observati’ons, thereby improving the approximation to the asymptotic standard errors. I the third
'section, we consider an alternative two-step estimator whicl, ean increase the asymptotic efficiency
of inifial estimator. Section 4 then presents monte carlo simulations of both estimators for a
variety of sample sizes, levels of contemporaneous correlation and conditiona) hoteroskedasticity.

Last, section 5 offers our conclusions.

2. The Heteroskedastic- and Contemporaneous-Correlation-Consistent

Covariance Estimator.

Consider the linear model
Ynt = znlﬂ + jiyy. ' (1)

where n = |1, «o N and ¢t =1, ...T index a particular industry and time period, respectively. Within

each industry group are P firms, so that Ynt is & Pxl vector and Tyt 18 4 PxK matrix:

Yine Tint

Yont Tont
Yt = . Tyt = .

yprnt - Tppt

We also make the following assumptions:



Assumption 1. (i) The pair (Tpnt, Mpnt) 18 independently (but not necessarily identically)
distributed over time, t, and industries, n. (ii) The regressors are taken to he uncorrelated with

their associated residual, so E(a:;'m,u,,,,t) = 0, where 1 = 1...K denotes the sth column of Zynt.
(iii) The Px1 residual vector, fine, has a conditional expectation of zero, E(pyt|nt) = 0, and PxP
conditional covariance matrix given by E([L,,,[I,:,,‘m,,[) = B, for all n and .

Assumption 2. (i). The second moments of the residuals are bounded, in the sense that there
exist positive constants, 6 and A such that E(p,?m,)l'H < A. Also. cach clement of the KxK outer
product of the regressors is bounded: E(z; rml {,,,,)IH < A for all 4,5 = 1,..K. (ii). The product
of the second moments is assumed to be hounded, E( up,,,a*,,",ff,,,,)““b < A, as is the square of the
sum of squared regressors, E(z223)**? < A. (iii). MnT = (NT) ' E(X)ypXNT) 18 assumed to be
nonsingular for sufficiently large NT, where XyT is a PNTxK vector of stacked regressors. (v).

We define the average covariance matrix,

@NT—— NT ZZ ,,lﬂnll’,,("nl (2)

n=1 =1

Note that for the case in which the z’s are nonstochastic, Assumption 2(i) implies 2(it).

We develop our estimation strategy allowing for stochastic regressors, which require a slightly
more complicated notation than the fixed regressor case. The added difficulty is nevertheless
worthwhile since it highlights the generality of the method: indeed. competing methods, such as
GLS, generally yield incorrect inferences when the regressors are atochastic or when conditional
heteroskedasticity is present.

Given our assumptions, it is straightforward to show that the OLS estimate of the unknown
coefficient vector, /}NT = (x'NTxNT)—lx'NTyNT, coverges almost surely as NT — 00 to the true
parameter vector in equation (1), A (for a proof under similar '\«umptimls sce Lemma 2 in White,
1980a). The usual asymptotic OLS covariance matrix. (PNT)” Z"_ E, —1 (u?,,,,)M;,»fp
however, will be incorrect since we allow for contemporancous correlation across firms in the same

industry and for heteroskedasticity. In gencral, this type of correlation may be accounted for by
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using a multivariate generalization of Whitc’s (1980a) estimator of the covariance matrix:
V(Bnr) = (NT) ™ My1OnrMys. (3)

Under the assumption that the inter-industry cross corrclations are zero (Assumption 1(i)), the
overall conditional error covariance matrix is Ont = E(pyriyp[Xnr) (where tnT is an PNTx1
vector of residuals). This matrix has a block diagonal structure. with each block measuring the

inter-firm contemporaneous correlations for a given industry at a given time:

(211 . 0 .0 . \
0 . S 0 . 0
Onr=| : + = . : (4)
0 ... 0 ... %Bn ... 0
L0 .. 0 .0 S

where X, is the PxP conditional covariance matrix given in Assumption 1(iii), with (,7)th
element:

a':z]t = E(l‘intl‘jnllznl) t.j=1..P. (5)

The difficulty clearly comes in estimating the error covariance matrix 0 ~t. With T large and
under homoskedasticity, there is no problem: the industry covariance matrixes, ¥, would then

independent of time and could be estimated consistently from the OLS residuals:
S
69 = Tz,zf,,,ﬁ,-,,, ©ohg=1...D (6)
=1

where the ji’s are the OLS residuals from equation (1).

When T is not large in comparison with P, however, it would seem that there are far too
many parameters in the error covariance matrix (P2 elements for each Tnt, or P2NT elements
altogether) relative to the number of residuals (PNT) to allow the asymptotics to apply. Due to the

independence of the regressors and disturbances across T' and N . the number of parameters in the
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error covariance matrix is irrelevant. We need be concerned only with the parameters in the average
covariance matrix, Oyr, and not the estimation of each of the intra-industry contemporaneous
correlation matrixes, Xpn¢. Thus, we must estimate only K 2 parameters.® This intuition for handling
contemporaneous correlation within a segment of the cross section is precisely analogous to the
treatment of heteroskedasticity in White (1980a). To sec this reasoning, note that the average

covariance matrix can be written:

Onr = %f 3 [% Z[Z ZP: E(mim-"'f',-,,,ltinrltjm)]]- (7)

Equation (7) says that we average over the N industries and T time periods the outer products
of the sums of intra-industry regressors weighted by the appropriate covariance. Thus, the average
error covariance matrix depends only on the number of regressors K, instead of on the number of
elements in Q7 or X,, or the number of time serics observations. For the special case in which
cross-sectional dependence does not occur, T = P = 1, equation (7) is the estimate of the average
covariance matrix proposed by White (1980a) to handle conditional heteroskedasticity.

We can now state two propositions:

Lemma 1. Under assumptions 1 and 2, the standardized distribution of the OLS estimate,
BN, is:

VNT 91—#2 Myr(fnt = P) s N0, Tg).

Theorem 1. The OLS estimate of the cocfficient covariance matrix converges almost surely to

the coefficient covariance matrix in equation (3):

XSVTXNT -1, x;\rTxNT =1 g 1 -1
(—~NT ) ®NT(-——-——~NT ) = MyrOnTMyr.

% The symmetry of 3yy and Dn¢ implies the usnal reduction in the numher of independent clements to -(l'j,-l)—m-, where m

is the number of rows or columns.




The appendix contains the proofs of these propositions.” Note that the asymptotics are con-
ducted over NT. By allowing the number of industries and/or the mmber of time series observa-
tions to become large while holding fixed the number of firms within an indnustry, we get precise
approximations to the asymptotic standard errors, even though the number of clements in the error
covariance matrix increases with N and T. Note also that while P cannot grow with the sample
size, there is no fixed upper limit to the number of firms per industry. As long as one can iso-
late a reasonable number of groups of firms for which the maintained hypothesis of no inter-group
correlation is appropriate, consistent inferences may be drawn in the presence of contemporaneous
correlation and heteroskedasticity, and large cross sections of data may be used. Indeed, when
the size of the cross section is increased by raising the number of industry groups, the asymptotic

approximation to the standard errors improves,

7 After writing this paper, I became aware of important. results in White (1984) which have recejved inadequate attention, -
and which are closely related to those here. See White (1984, Chapter 7).
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3. More Efficient Estimation

A drawback of the estimator above is that it gives cqual weight to cach data point. Ideally
we would like to form a more efficient estimator, one which weights data according to its precision.
A more precise data point, i.e., an observation with a relatively small squarcd residual, deserves
greater than equal weight. The problem, of course, is that we have only a single estimate of the true
squared residual for each observation, ﬂ:n,, and this is a biased and inconsistent estimate of ;Lfm,.
An instrumental variables solution to this problem in the presence of heteroskedasticity alone has
been proposed by Cragg (1983). Here we show that Cragg’s basic insight may be directly applied
to improve asymptotic efficiency in the presence of contemporancous correlation as well.

Consider a PNTxR matrix of instruments (where K <R <N T) for the regressors in equation
(1),q=1[x p), where q includes the regressors, x, in addition to other variables, p. We make the

following assumption concerning q:

Assumption 8. Let Assumptions 1, 2(i) and 2(ii) hold when x is replace by g, and define
Ryt = (NT) ' E(q'x), which is of rank K for sufficiently large NT. Py = (NT) ' E(p'x) which
is of rank R — K, and

N T
Qﬁ,T = (NT)—I Z Z Z Z E(minlpg'nll"inlll'jnf)-

r
n=11=1 =1 j=1

which is of rank K for sufficiently large NT.

Next consider the following transformation of equation (1):
y =x"f+n (8)

where y* = q'y, x* = ¢'x, and p* = q'p. (Where it will not create confusion, we drop the NT
subscript for the remainder of the text.) The error covariance matrix for cquation (8) is now the

RxR matrix E(p*p*") = E(d'pi'q) = ©, which has uniformly bounded elements by Assumption
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3 and has full rank. Given our boundedness and continnity assnmptions, we can make the usual

GLS transformation by premultiplying equation (8) hy (0*)~Y2 which then yields:

*

YU =x"p4pt (9)

where y** = (0*)"2¢'y, x** = (@) 12¢q'x, p** = (0*)~12¢'y. and E(p”*p*') = Iz. By
running OLS on equation (9), we obtain the standard formula for the Two-Step Two-Stage Least

Squares (25TSLS) estimator due to Cumby, Huizinga and Obstfeld ( 1983):
B = (x) Xy = (xXg(0%) %) I x'q(0°) Ly, (10)

Given that x™ and p** satisfy the boundedness conditions in Assumptions 2(i) and 2(ii), we

can apply Lemma 1 to get the asymptotic distribution of /}“:
*y— YT d
VNT (0*)2Pyr(p** — ) - N(0.1). (11)

The 2STSLS estimator, f**, employs the average error covariance of the instruments, ©*, which
can be estimated consistently from the data. To see this, note that we can use the estimated OLS

residuals from equation (1) to form:

N T P P

é}‘\VT = (NT)—I Z Z Z Z qinlq;‘"lﬂ'fnlﬁjnh (12)

n=1I=1 {=1 j=1

The assumption of independence across N and T implies that, for NT sufficiently large, (:')’I'VT is of
full rank for R < NT.

This leads to a third proposition:

Theorem 2. The OLS estimate of the coefficient covariance matrix in cquation (9), f’(ﬂ"‘)

converges almost surely to the true 2STSLS covariance matrix:

x'q Ak — Q'X .8, *y—
(ﬁ)(e INT ﬁ;) =% Ryr(®") 5 Ry
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See the appendix for the proof, which follows directly from Assumption 3 and Theorem 1. The
important intuition is that we can use the independence of the gp,¢’s and fpnt’s over T and N to
estimate consistently the average error covariance matrix of the instrumental variables.

Now that we have established that the 2STSLS estimator, A**, will be feasible and provide
consistent inferences, we consider the conditions for #** to be asymptotically more efficient than the
equally weighted OLS estimator from equation (1), fi. In other words, we ask when the difference

between the asymptotic covariance matrixes,
—1 -1 ] * -1 -1
MyrOnTMyr — (Ryp(®On1) ™ Bar) ™, (13)

will be positive semi-definite. Cragg (1983) and White (1984, proposition 4.49) show that, as long
as q contains x and is of greater rank than x, the asymptotic cfficiency of A** is at least as great

as that of ﬁ , and strictly greater if and only if:
ONrONr # MyrPnr. (14)
The intuition behind this result can best be seen by rewriting equation (14) as:
1o -1 1ot ' -1 '
(B uuix))” B ua'p) # (E(x'x))  E(xp). (15)

The left-hand side of equation (15) is roughly the cocficient in a regression of p'p on p'x, and
the right-hand side is the coefficient in a regression of p on X. The interpretation is that we seek
instruments p which tell us something about the interaction of the regressors with the error terms.
A “good” instrument is not judged by its high correlation with the regressors themselves, instead,
it provides information about the true underlying residuals and their interaction with the regressors
_ information which cannot be obtained by looking at the correlations between the regressors and
instruments alone.

Additional insight can be gained from considering more clogely the case of fixed regressors,
as in Cragg (1983). The assumption of nonstochastic regressors is sufficient to imply that GLS
is asymptotically efficient. Cragg shows that the preferred instruments are those that explain
the greatest amount of variation in the (inverted) GLS covariance matrix, x'0x. Ideally, the

instruments would be chosen to minimize the mean squared residual in the OLS regression:

Q2% = ?qy+ ¢ (16)
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The estimated sum of square residuals from this regression, '¢, is a dircct measure of the efficienc
2 y

of the instrumental variable estimator since:
V(AT —v(5) ! = x'07!x — x'q(q'0q) q'x = E(&'7). (17)
Equation (16) may be rewritten,
020 %) = 0Y2qy + 1. (18)

Equation (18) says that good instruments are those that will cxplain the variation in Q~!'x. To
address the problem of heteroskedasticity in the p’s, Cragg treats 0~ 1x as an arbitrary function of
x and suggests using a polynominal approximation. That is, the ith row of q. or g;, would contain
the instruments z;, 7,2}, etc.® (see Cragg (1983) for more detail).

Our foremost concern in this paper is with the additional problems posed by the presence
of contemporaneous correlétion in financial data. Fortunately. additional information on cross-
sectional dependence is relatively easy to find. In many finance aud accounting studies, the depen-
dent variable, y, is an asset return or a suitably defined cxcess return. For this variable, there is
usually a large amount of data available prior to the period of estimation. So we might include in
p the variables (27)~'x, where 2 is the (historical) correlation matrix of the dependent vari-
able calculated during an earlier period. Indeed, one frequently hears informal recommendations
in support of using 0 to form the OLS covariance matrix in equation (3). Of course, there is
little basis in theory for such a substitution. There is no reason why the covariance matrix of the
dependent variable should be similar to the covariance matrix of the true residnals, even with con-
temporaneous data. Nevertheless, these informal recommendations reflect an implicit frustration
about the inability to use such an obvious source of information. Thus, the 28TSLS technique has
the important advantage of incorporating the information contained in historical correlations in a
systematic way, so that the asymptotic efficiency of the standard errors may be improved.

Bernard (1986b), for example, presents evidence on inter- and intra-industry contemporaneous
correlations of market model residuals from stock market data. While he finds that inter-industry
correlations are on average small, ranging from 0.01 (daily data) to 0.06 (annual data), he reports

intra-industry correlations which average from 0.04 to 0.30. The markedly higher correlations

$If a constant, is included in the columns of x, we assume that it exchided in the higher powers, so that q'q is not singular.
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within industries corresponds closely with what we might cxpect to find in the error covariances
themselves. Market model residuals may thus contain potent information about the true error

covariance structure, which could be exploited using our 2STSLS technique.

4. Simulation Experiments

Now that the theoretical propertics of our estimators are clear, we wish to obtain some evidence
about their performance in finite samples under a variety of circumstances. The simulations below
are designed to address three issues regarding the estimators we have proposed. First, suppose
we were to circumvent the problem of cross-sectional correlation by aggregating the cross section
over intra-industry observations (so that the cross scction would consist of only N aggregated
industries). We would like to know how much can be gained by using the method-of-moments
estimator on the entire cross section in comparison with a niaive OLS cstimator on the aggregated
sample. Second, how efficient are the estimators presented in sections 2 and 3 in comparison with
GLS, and how sensitive is the efficiency differential to different levels of N, T and P?7 Third, can
we hope to improve efficiency in small samples by using the 28TSLS cstimator in section 3 instead
of the simpler method-of-moments estimator in scction 27 Finally, since all of our results are
based on asymptotic distribution theory, we also wish to determine whether there are systematic
finite-sample biases in either of these estimators.

A linear model with a single exogenous regressor was chosen for the simulations:

Ypnt = ﬂ() + ﬂmpnl + Ppnr. (19)

The #,,; were drawn randomly from a log-normal distribution. and are independent across p, n
pr . D,

and ¢t. In the simulation and the notation that follows, we treat the regressors as fixed. A set
of independently distributed primitive disturbance terms. n,,;. were drawn from a standardized
normal distribution, then modified to generate contemporancons correlation and heteroskedasticity
in the residuals, pyn. Contemporaneous intra-industry corrclation was assumed to be identical

across industries, and was introduced by transforming the PNTx1 column vector, n:

= (Inr ® A)n, (20)
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where Iy is a kxk identity matrix, and A is a nonstochastic PxP matrix:

12 ... )
Al A
a=|"7" ,
AoA 1

and A is a function of the correlation coefficient between firms in a given industry, p, and the

number of firms per industry, P:

1= ((1=p)(1+p(P - 1)))1/2
. (P—1(p—1)+1 ' (21)

Note that this specification of the residuals implies homoskedasticity both over time and across
the panel. Since the error in estimating the parameters is not a function of the parameters them-
selves, By and B can be chosen arbitrarily without affecting the results. We selected fy = 0 and
B = 1. For each experiment, 1000 draws of n were used to compute 1000 sets of dependent vari-
ables and, using a single set of regressors, 1000 sets parameter estimates were obtained. Only the
estimates for the slope parameter are reported in order to conserve space.

Table 1 reports the results for the method-of-moments cstimator in section 2 for a variety of
sample sizes when the correlation coefficient in equation (21). p, is set to one-half. For purposes of
comparison, the variance estimates are reported as proportions of the OLS asymptot:ic variance for

the data set aggregated up to the industry level:

V(BoLs) = ipyr(Int ® A)ipyr(ip(X'%)ip) " (22)

where X is a NTxP matrix containing the elements of x, and iy is a kx1 vector of ones.? The column
labeled “asymptotic” is the appropriate diagonal element of the asymptotic method-of-moments
variance divided by the corresponding element of the aggregated OLS asymptotic variance:!?

(x'x)"1x'(Iny ® A)x(x'x)™*
ipyr(Int ® A)ipnr(ip(X'R)ip)—!

(23)

9 Under our extreme assum)etion that the regressors are independent across p, the usual OLS variance of the parameters using
the disaggregated data, E:;IT pi(x'x)~1, will be asymptotically consistent. We nse the OLS variance on the intraindustry
aggregation of the data for comparison, however, since in practice this assumption is not likely to hold.

10 To simplify the notation, we assume that the mean of both « and ¥ are zero, so that the variance matrix of the parameters
can be treated as a scaler. ’
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Clearly, when the number of firms per industry, P, is equal to one, there is no asymptotic gain
from the method-of-moments approach, since the two estimators are identical. Here the method-of-
moments estimator is precisely that of White (1980a). For completeness, the last column in Table

1 reports the asymptotic GLS variance as a proportion of the aggregated OLS variance:

(x'(Iny ® A7 )x)~!
ipnr(Int ® A)ipyr(ip(R%)ip) !

(24)

With P = 1 there is also no gain from using GLS since there is no cross-sectional correlation or
heteroskedasticity to exploit.

When P is increased to 5, however, substantial improvements in efficiency from the method-
of-moments estimator appear. For N = 12 and T = !, the relative asymptotic efficiency of the
method-of-moments estimator falls to 0.037 and that of the GLS estimator falls to 0.025. This gain
in efficiency over OLS comes from two separate cffects. The first effect is a result of aggregating the
data before running OLS. Since the cross section for OLS contains only 1/5th of the total number of
observations, we would expect the disaggregated data to improve the relative asymptotic efficiency
by a factor of about 5.!! The second effect, which explains the increase in efficiency from .20
to .037, is that the method-of-moments variance exploits the cross-sectional dependence within
industries. This second source of efficiency gain is positively related to the degree of cross-sectional
correlation, with no gains occurring in the complete absence of cross-sectional correlation. It also
becomes increasingly important relative to the aggregation cffect as P becomes larger. The degree
of reduction in the relative variance of the method-of-moments estimator attributable solely to
contemporaneous correlation increases from a factor of approximately 5 (.20/.0364) when P = §,
to a factor of approximately 25 (.05/.00193) when P = 20. Finally, while GLS is most efficient
in all cases, its additional efficiency is not much greater when the industry groups are larger.
Unfortunately, the gains in efficiency from GLS are not generally feasible with so few time series
observations.

The second column for each set of simulation results in Table 1, marked “simple”, gives the

mean squared deviation of the estimated method-of-moments parameter (obtained by running OLS

11 This improvement in efficiency is a function of the cross-sectional correlation of the regressors. If there is positive correlation
across the regressors, the improvement factor will be less than 5, and if there is negative correlation, the factor will be greater
than 5.
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on the disaggregated cross section) from the true valne, scaled by the asymptotic OLS variance:

(B - 1)

ipyr(Int ® A)ipyr (it (XR)ip)~ 1

(25)

On average the method-of-moments estimator appears to achieve asymptotic efficiency in our small
samples, regardless of the relative sizes of P, N and T'. All of the estimates of the simple variance
measure are easily within two standard deviations of the asymptotic variances.

Finally, the third column in Table 1 reports “estimated” variance measures, which are calcu-
lated as the mean estimated method-of-moments variance relative to the asymptotic OLS variance:

(x'x)7'x'(Ir ® A)x(x'x)™!

. 26
inr(InT ® A)inr(ip(X'%)ip)~! (26)

-~ ———
where A is the estimate of the NPxNP contemporancons correlation matrix. (In ® A).1?
In the simulations with the smallest samples, the estimated variance measure is significantly

. . . . . NT «
downward biased. Such finite sample bias occurs hecanse the average covariance matrix, ) ;0 zia::;;l,fl

is a biased estimator of Ef\g E(u?) f\g; zixy, even when the residnals are homoskedastic. It may
be corrected using Rao’s MINQUE procedure. Several anthors have noted the presence of bias in
estimated method-of-moments covariance matrices when the residuals are heteroskedastic. The fact
that the bias persists even under homoskedasticity reveals a hidden danger in the practice of re-
porting heteroskedasticity-consistent covariance estimators without prior evidence that conditional
heteroskedasticity is present in the data. Thus, the White (1980a) correction for heteroskedasticity
should be applied only in those cases where the null hypothesis of no conditional heteroskedasticity
is rejected. When the null hypothesis cannot be rejected, only the usual OLS standard errors are
both asymptotically valid and free of finite-sample hias.

The results in Table 1 suggest, however, that for any given mmmber of independent observations,
the bias of the method-of-moments estimated variance is a('f.ua.lly smaller when P is larger. Indeed,
the bias is more severe for the case in which T = 10, N = 25 and P = 1 (with a total of 250
independent observations), than in the case in which T = 1. N = (2 and P = § (with a total of only
12 independent observations)! The bias contracts when P is larger because of the averaging over

P of each of the NT independent observations used to construct the estimated average covariance

12 In computing equation (26), we do not impose the restriction that the A matrix s equal across industries.
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matrix. When P is raised to 20, the small-sample bias can no longer be detected in the simulations,

‘even with a very low number of independent observations (T = 1, N = 12). These results suggest
that there is no reason to limit the number of firms per industry through aggregation or pre-
selection. The estimated method-of-moments variance seems to become more reliable when it is
most needed: in data sets with very large cross-sections, but not many industry groups or time
series observations.

Of course, the results reported in Table 1 are for the ideal case in which the data contain no
conditional heteroskedasticity across industry groups or over time. While these assumptions may be
a reasonable first approximation, in many data sets they are likely to be rejected. We therefore relax
these assumptions in Table 2, where the simulated data contain cross-sectional hetcroskedasticity.
Only this type of heteroskedasticity is analyzed here hecause its presence is éxactly analogous to
heteroskedasticity in the time domain, under onr assumptions of independence across industries
and over time. We add heteroskedasticity by assuming that the residual variances are linearly

related to the sum of squared regressors in each industry group:

P
02 = E(uly) =00+ 6 by . ¥i=L..P Vi=1,,T (27)

n —
=1
In the simulations of Table 2, 8 is set equal to 1, and & = 0.2. Thus the asymptotic covariance

matrix of the residuals becomes:

A 0 0

- 0 A, ... 0
ped=e| . . . .| (27')

0 0 ... An

where A is NPxNP, and A,, is the PxP contemporancous correlation matrix for the nth group.
Since the asymptotic OLS variance employced in Table I is not appropriate under these conditions,
we use instead the White (1980a) asymptotic correction for heteroskedasticity on the aggregated
data as a scaling measure for the method-of-moments variances.

Turning to the results in Table 2, note first that the asymptoti(' variances yield similar improve-
ments in efficiency over the White technique when they arc compared with the relative asymptotic
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variances reported in Table 1. Second, in contrast with the homoskedastic case, GLS provides larger
improvements in efficiency in Table 2. Third, the simple variance measnre in the second column is
consistently within two standard deviations of the asymptotic variances in all of the simulations.
Even in small samples, the method-of-moments estimator exploits much of the information about
the residuals. Fourth, the actual estimated variance still contains a distinet downward bias. The
heteroskedasticity makes this bias somewhat more severe than that reported in Table 1. In the sim-
ulations with larger data sets, a statistically significant bias of between 3 and 10 percent remains,
The bias is inversely related to the size of P. Once again. the MINQUE technique of Rao could be
applied to eliminate the bias in the estimated variance measure.

Table 3 is intended to help gauge the semsitivity of the results given in Tables 1 and 2 to
alternative assumptions regarding both the severity of the contemporaneous correlation within in-
dustries and the degree of heteroskedasticity. Three different levels of contemporaneous correlation
are considered, with correlation coefficient, p, set to 0.1, 0.5 and 0.9. The degree of conditional
heteroskedasticity is adjusted by allowing 6; in equation (27) to take on the values 0.0, 0.2, 1.0
and 4.0 indicated by heteroskedasticity levels 1 through 4, respectively, in Table 3. For purposes
of comparison, a single sample size (T = 1, N = 25 and P = 5) is chosen.

Table 3 shows that the asymptotic gains in efficiency from the method-of-moments approach
do not increase substantially as the heteroskedasticity becomes more extreme, but that they do
increase with the level of contemporaneous correlation. In contrast, the relative GLS asymptotic
variance noticeably improveé when either contemporancons correlation or the level conditional
heteroskedasticity increases. The amount of bias in the cstimated method-of-moment variance
also displays a clear positive response to higher levels of heteroskedasticity and cross-sectional
correlation. When the level of heteroskedasticity is 4 and p = 0.9. the average estimated variance is
only slightly more than 50 percent of its asymptotic value. Once again, this bias is less pronounced
when either the number of industries or the number of firms per industry is increased.

We turn next to simulations of the 2STSLS estimator. Here there is a preliminary step in which
instruments for 27 1x are constructed. Since in many financial studies, additional observations
of the dependent variable are usually available, for each simulation we construct a fake set of

“historical” observations on yun, according to equation (19). As in the earlier simulations, the
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contemporaneous correlation in the historical disturbances is induced by using equation (20), and
cross-sectional heteroskedasticity is induced by using equation (27). We then form the historical

covariance matrix of the dependent variable for each of the industry groups:

TH

a 1

$H - T Ey,,y:, Vn=1 ..N. (28)
t=1

where TH is the number of previous time series observations on the dependent variable, and yy, is a
Px1 vector. To be conservative, we assumed relatively few past observations are available, setting

TH = 2p + 1. The entire historical covariance matrix is then:

B2 0 0
n 0 3H 0
O = Ir® .2 . (29)
0 0 SH
The PNTx2 estimated matrix of instruments becomes:
=[x (OF)'x. (30)

Table 4 reports measures of the relative performance of the 28TSLS cstimator. We use the
same levels of cross-sectional correlation (p = 0.5) and conditional heteroskedasticity (6; = 0.2) as
in Table 2. All variance measures are reported relative to the asymptotic variance of the method-
of-moments estimator. Thus the column marked asymptotic gives the ratio:

x'4(q'(Ir ® A)a)'a'x
(x'x)~1x'(Ir ® A)x(x'x)~t

(31)

Note that the asymptotic variance uses the estimated instruments (i.c. the estimated historical
covariance matrix of the dependent variables), denoted by §. The results in Table 4 suggest that
gains in efficiency may be obtained by using 28TSLS even with relatively few indnstry groups and
time series observations. For example, With T = 1, N = 12 and P = 10, the asymptotic 2STSLS

estimator is 11 (1/.1109) times more efficient than the method-of-moments cstimator. Indeed, these
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gains seem to be a substantial portion of the asymptotic efficiency gains from using GLS, which
are reported in the fourth column.

The “simple” variance measure is the mean squared deviation of the cstimated 2STSLS coef-
ficient from its true value, (/9” — 1)2 divided by the asymptotic method-of-moments variance. A

two-step procedure is required to calculate #**. Consistent estimates of the residuals in equation

~
~

(19) are obtained by rnning OLS. A consistent estimate of the average covariance matrix, A, is
formed, and then used to as a weighting matrix to compute #**. In about half of the simulations
in Table 4, simple variances are significantly greater than the asymptotic variances.

The “estimated” variances in the third columns are given by:

x'q(§'(Ir ® A)§) 'q'x

(x'x)~1x!(I7 ® A)x(x'x)~ (32)

In the smaller data sets, the reported values are significantly less than both the simple and the
asymptotic variance measures. It is worth pointing out that when there is no contemporaneous
correlation in the cross section (i.e., when P = 1), we have the univariate case of the 2STSLS
estimator investigated by Cragg (1983). Cragg also reports that the estimated variances of the
2STSLS estimator were significantly less than their asymptotic values. However, Table 4 shows
that when P is greater than 1, this downward bias is again reduced. The results suggest that
systematic downward bias is not a serious problem when the cross section is expanded to allow for
5 or 10 firms per industry,

To see whether any of the conclusions one might draw from Table 4 arc sensitive to alternative
parameter values, we report simulations for a single data set in Table § (with T =1, N = 25 and
P = 5), using the same levels of contemporancous correlation and conditional heteroskedasticity as
in Table 3. The gains in efficiency provided by 2STSLS grow with hoth the degree of cross-sectional
correlation and heteroskedasticity. The estimated variances arc often significantly less than the
simple variance measures for lower cross-sectional correlation, but greater than the simple variance
measures when p = 0.9. Also, when more heteroskedasticity is present in the data, the estimated
variances increase relative to the asymptotic and simple variances. Table 5 therefore suggests not
only that 25TSLS can provide efficiency gains over method-of-moments in small samples where
both heteroskedasticity and cross sectional dependence are present, but also that the estimates of
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the parameter covariance matrix will on average be reliable estimates of the asymptotic covariance

matrix.
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5. Conclusions

We have presented two method-of-moments estimators uscful for conducting inference in fi-
nance and accounting studies with relatively large cross scctions and few time-series observations.
The important insight is that we can exploit cross-sectional dependence in the regression residuals
without depending on a great deal of time-series data relative to the size of the cross section. Instead
we derive asymptotic results by letting the number of industrics times the number of time-series
observations, NT, become large while holding fixed the number of firms within an industry, P. Un-
der the assumption that the correlations across industry groups are zero, completely unrestricted
cross-sectional dependence and conditional heteroskedasticity is permitted within cach industry.

One obvious difficulty is that, in practice, our results may rely on the existence of a large
enough number of industries or groups which do not exhibit contemporaneons correlation. There is
some empirical evidence in stock market data that market model residuals across industry groups
are in fact uncorrelated. Nevertheless, analysis on a case by case basis is needed, because more
pervasive contemporaneous correlation in the residuals can vitiate the validity of approach above.
Clearly, the need to find uncorrelated industry groups is reduced in cases where sufficient time-series
data are available.

Several conclusions emerge from the simulations presented in section 4. First, aggregating
the data in an-attempt to avoid the issue of cross-sectional correlation can be costly in terms of
a loss in asymptotic efficiency. By conmtrast, the costs of employing onc of the above techniques
is low, both in terms of additional computational requirements and in terms of the reliability of
the approximation to the asymptotic standard errors. Second, additional efficiency gains can be
achieved in small samples using the 25TSLS estimator. Third. in the smaller samples (N=12or
25, P =1 and T = 1) the univariate estimated variances of White (1980a) and Cragg (1983) are
consistently biased downward. The multivariate extensions considered above actually mitigate the
bias by taking averages of disaggregated cross sections. Thus our approach kills three birds with
one stone. By using some of the data which under other cstimation strategics would be discarded
or aggregated together we: i) allow for contemporaneous correlation; ii) improve the asymptotic
approximation to the standard errors; and iii) obtain nonnegligible gains in asymptotic efficiency.

Finally, there is a caveat. When correlation patterns across the N groups are highly dizsimilar, we
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would expect the all of these gains to materialize, but more slowly, as P is increased.

A topic left for future study is the determination of the relative performance of the foregoing
estimators versus GLS when the data are aggregated just enough to make GLS feasible. The
potential for greater disaggregation of the data and the attraction of a linear estimator in small
samples, may offset the greater asymptotic efficiency of GLS over a comparable cross section,
making the method-of-moments technique above more desirable. Alzo, larger cross sections may be
used because the estimators above do not require inversion of the crror covariance matrix. All the
offsetting advantages and disadvantages must be addressed on a case-by-case basis in simulation
and bootstrap studies. From such work, we might hope that rules of thumb will emerge to guide

the choice of alternative estimation strategies.
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6. Appendix

Lemma 1. Under Assumptions 1 and 2:

VNT 61:117{2 Myt (Bt — f) -5 N(0.Ix).

Proof. By the Holder inequality, Assumption 2(ii) implies that for cvery 4,7 = 1,..K,
E(!mim‘,’;uaml)”& < A (where a and b are as given in the text) and thus, for sufficiently large
NT, @yt will be positive definite. Given the boundedness conditions in Assumptions 1 and 2,

White’s (1980a) Lemma 2 may be applied directly, yielding our result.

Theorem 1. Assumptions 1 and 2 also imply:

! !
xNTxNT -1, XNTXNT -1 .8, —1 —1
(____ﬁT_) 6 NT(T> 2 MytOnrMyk.

Proof. This proof is similar to that of White (1980b, Theorem 1.). We first show that @ yp —2

OnT.
For each element f* of the vector A, there exists A’ within a finite compact neighborhood of #*

given by ¥, and there exists a finite element ', such that (A - A2 < (ﬁ' A2 for all f' € .
Note that for all 7,k =1,..K, and for all a,b = 1,.... PNT:

(Vo ~ 2aB)(ys — TiB)whay = (1o — (B — B — 74(A — F))z)cf

is finite for all # € ¥. By the Holder inequality,

K
I(Il'a - Z:,(ﬁ - ﬂ))(llb s ﬂ'b(ﬂ ﬂ T $b| < Z' ”, + ”’b + ( :l'") +( ) )(ﬂ, _ ﬂi)Z)mf;z{’cl
i=1
X . . .. . .
< Y IRE + pE + ((25)2 + () WA — )Vl af] = may
=1 .
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where the second inequality is given by the above assumption about A'. From the fundamental

inequality |¢ + d|" < 27~ Ye|" + 27~1|d|", we have that:

E(ma)'t? < ko B((|p2 5)))' ) + by B((|ndal=f]) ')

(lll

K+1

+ 3 BE((|(s1)? + (h)) 7ok ) (B — g+

=2

K+1
< koB((|p2zhz; ) +0) + b E( Imcr’-'r:'fl)”" ka (21)? + (=4)2)2V2 (' — ph)2+2

where the second inequality is given by the Holder inequality. By the fundamental inequality above,
ko, ky and k; are constants, and (/§' — fA%)? is finite by assumption. In addition, Assumptions 1
and 2 in the text guarantee that E((|p2zlzk|)'+*), B((|pd=i=F])!**). and E((=))? + (z}) 2)2+2 are
bounded. Therefore E(mq;)'t? must be bounded. Since m,p weakly dominates |((ya. — z48)((ys —

z},ﬁ))zf;a:{f |, and is independent over ¢ and n, we can apply the strong law of large numbers, so that:

N T P P

N T Y (30 e — B — )zl )

n=1 =1 ¢=1 ]:1

—N~ IZT—I Z(ZZL‘ —z ﬂ (ws — 'r,,ﬂ):r" ,,)) 200,

n=1 =1 =1 j=1

Given that fiN 2% 4, the above equation and Lemma 2.6 of White (1980h) imply:

N T
N1y T E(ZZ — 2 ) — 'r,,ﬂj\,):r":r,,f)
n=1 t=1 ¢=1 j=1
N T
—N*‘ZT IZ(ZZE pomszhzf)) 255 0
=1 I=1 i=1 j=1
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A a.8.
or ®NT - ®NT — 0.
By the boundedness of the regressors given in assnmption 1, and their independence over NT',
we then have that:

(ZNZXNTY a2 0

The continuity of the matrix inverse therefore implies:

x;VTxNT)_l —1 a.s.
——— T — M, —> 0.

By continuity and the boundedness of each term, we have that:

! !
XNTXNT -1, XNTXNT 1 4. 1 —1

This proves Theorem 1.

Theorem 2. The OLS estimate of the coefficient covariance matrix in equation (9), V(f**),

converges almost surely to the true coefficient covariance matrix:

(B5) (63r) " (BET) 25 mycoitRvy

Part 1 of Theorem 1 implies that Onr =2 Oprp. By Assumption 3, the second moments of
q and its cross products with the p’s are bounded in the sense of Assumption 2. Part 1 of Theorem
1 therefore also implies that:
Onr =5 Or
Since O}y is of full rank, the matrix (@}5)~Y/? is defined such that ((@}7)~12)? = (O¢) L.
Thus,
(Onr) ™2 =5 (@)

The boundedness of the instruments and their independence over N and T imply that:

(]
( ANTXNT

NT )—RNT 25 0.
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Thus, by continuity and the uniform boundedness of each term we have that:

(o) (63r) ™ (ET) =2 mipoi i

which proves Theorem 2.
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Table 1

Simulation Results: Variance of Method-of-
Moments Estimator as a Percentage of Asymptotic
OLS Variance with Cross-Sectional Homoskedasticity

1.0000

1.0000

+03337

03935

«00233

00212

lusber of
Tise Series
Ghservations: T=1 T=10
Variance Measure: fsymptetic  Sisple Estisated 6LS Asysptotic  Sisple  Estimated
§of §of
obsv./ | groups
group
N=12 1.0000 97359 79635 1.0000 1.0000 1.00438 .87800
{.04328) (.02029) {.04885) (.01190)
psi
N=pS 1.0000 99973 92384 1.0000 1.0000 1.00984 96258
(.04424)  (.01457) (.0A3B5)  (.00968)
N=12 03654 03489 03604 02473 05313 05391 05213
: (.00169)  (.00060) {.00228)  (.00051)
P=3
N=as 03912 09786 05504 03434 06573 06265 06284
(.00243) (.00087) (.00269)  (.00060)
H=1p 00193 .00193 0019 00129 00431 00421 100420
{.00009)  (.00003) {.00019) (.00003)
Ps@o
R=8 00242 00243 00244 00133 00377 00366 00374
(.00012)  (.00003) _ (.00015)  {.00002)
MDTES: Asymptotic OLS variance is constructed using data aggregated

over the cross-section into N groups. Cross—sectional

correlation is homogeneous across groups, and cross-sectional
and time-series homoskedasticity is assumed. Standard errors

are in parenthesis. All data reported are constructed using

1000 replications for given regrossors. Intra-group
correlation coefficient = 0.5.




Table 2

Simulation Results: Variance of Method-of-
Moments Estimator as a Percentage of Asymptotic
OLS Variance with Cross-Sectional Homoskedasticity

Nuaber of
Tiae Series
Observations: T=1 T=10
Variance Neasure: fsysptetic  Sisple Estisated BLS Asysptotic  Sisple Estisaled GLS
§ of §of
obsv./ | groups
group
N=12 1.0000 1.01094 57817 30301 1.0000 1.06510 63808  .09349
(.04737) {.01949) (.04748) (.01927)
P=i
Ns=g§ 1.0000 1.03579 .846988 .69589 1.0000 1.01401 06700  .1%9553
{.04838) (.01867) {.04699) {.01702)
N=12 .03928 .04295 03642 01672 05615 09731 L04950 00952
(.00189) {.00085) {.00266) (.00103)
P=bd
N=2d 05714 06077 035635 00276 06745 06650 05432 00518
{.00273) (.00143) {.00292) (.00118)
Ns= {2 00181 00176 00159 00042 00438 00459 00821 00142
(.00007)  (.00004) (.00020)  (.00005)
Ps2
Ns=gj 00314 .00333 »00301 00073 00388 00349 ,00380  .00099
{.00015)  (,00005) {.00017)  (.00004)

NOTES: Asymptotic OLS variance is constructed using data aggregated
over the cross-section into N groups. Cross-sectional
correlation is homogeneous, and time-series homoskedasticity
is assumed. Cross-sectional heteroskedasticity is given by
equation (27). Standard errors are in parenthesis. All data
reported are constructed using 1000 replications for given
regressors. Intra-group correlation coefficient = 0.5.




Intra-Group
Correlation:

Level of Cross-
Sectional Hetero-
skedasticity

Table 3

Simulation Results: Sensitivity of Method-
of Moments Estimator to Alternative Levels of
Intra-Group Correlation and Cross-Sectional Heteroskedasticity

P=0.1 P=0.3 | P=0.9
fsysp. Sisple Estia. _BLS fsysp. Sisple Estis.  6LS Asyap. Siaple Estia.

1308 1831 .1234 .1270 0391 L0566 L0546 .0363 0373 0363  .0338
(,0059) (.0018) (,0025) {.0008) {.0016) (.0035)

4231 4197 L0769 L0088 0571 0587 .0339 .0028 0371 .0363 .0211
(.0051) (.0028) (.0024) (.0013) (,0016) (.0008)

1223 .28 J07T%  .0034 0569 L0348 .0362 .00{! 0370 0349 .0208
(.0033) {.0029) {.0024) {.0013) (.0016) {.0008)

22t 1248 0706  .0024 0569 0566 L0326 .0008 0370 .0358 .0197
(.0052) (.0028) (.002¢) (.0013) {.0013) (.0008)

Variance measures are expressed as a percentage of OLS
asymptotic variance. All assume N =25, P=5, and T = 1.
All data reported are constructed using 1000 replications for
a single set of randoamly chosen regressors.

6LS

0049

0004

0002

.0001




Table &

Simulation Results: Variance of 25TS5LS Estimator
as a Percentage of Asymptotic Method—of-Moments Variance

Nusber of
Tise Series
gbservations: T=1 T=10
Variance Measure: Asyeptotic  Sisple  Estimated BLS fsyaptotic  Siaple  Estimated G6LS
¥ of § of
obsv./ { groups
group
Ns= 12 95602 1.0748 «9500 .9030 1173 2003 1361 0933
(.0678) {.0153) {.0091) (.0018)
P=1
N=23 9682 1.0753 <7523 4959 3357 4538 3162 1959
{.0682) {.0164) {.0198) (.0031)
Ns=i2 8166 8746 5842 4255 3081 3386 2911 1699
{.0404) (.0145) {.0148) {.0033)
p=j
N=g5 .1082 1808 1360 0484 15666 1561 1673 0769
{.0080) {.0032) {.0074) (.0014)
N=i2 1109 2499 J7587 0415 3360 3599 3283 1830
{.0111) (.0067) {.0154) (.0028)
P=i0
Ns=2% 1962 2319 2090 0882 AT 4954 6432 B8
(.0099) {.0033) (.0230) (.0038)

NDTES: PSTSLS estimator is constructed using the historical
covariance matrix of the dependent variable, as in equation
{29). Cross-sectional correlation is homogeneous, and time—
series homoskedasticity is assused. Cross—sectional
heteroskedasticity is given by equation (27), with Jo = 1 and
d, = 0.2. Standard errors are in parenthesis. All data
reported are constructed using 1000 replications for given
regressors. Intra-group correlation coefficient is set to 0.5.
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Simulation Results:

Table S

Sensitivity of 25TSLS

Estimator to Alternative Levels of Intra-6roup

oy
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E"
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E o

- s

bt [pmn
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1.1000 .7908
(.0307) (.012M)

3646 2702
(.0162) (.0078)

J743 1529
(,0082) (.0049)

Jd242 1082
(,0057) (.0032)

9710

0718

0279

0199

~Sectional Heteroskedasticity

P=40.5 P=0.9

Asymp. Siaple Estis. 6L Asysp. Siaple Estia LS

9532 (9546 7795 .64 4226 5812 4321 L1312
(.0812) (.0124) (.0278) (,0064)

1299 2240 .1506 .0484 0892 L0764 .098¢ ,0104
(.0098) (.0037) (.0048) (.0034)

0618 L1116 1196 L0194 009 .0600 .0798 .0042
(.0055) (.0037) (.0036) (.0034)

0262 .0820 .0873 .0140 0076 0405 0718 .0030
(.0045) (.0030) (.0024) (.0029)

Variance measures are expressed as a percentage of Asymptotic

Method-of-Moments variance.
All data reported are constructed using 1000

T=1.

All assume N = 25, P = S, and

replications for given regressors.






