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ABSTRACT

This paper compares numerically the asymptotic distributions of parameter
estimates and test statistics associated with two estimation techniques: (a)a
limited information one, which uses instrumental variables to estimate a single
equation (Hansen and Singleton (1982)), and (b)a full information one, which
uses a procedure asymptotically equivalent to maximum likelihood to
simultaneously estimate multiple equations (Hansen and Sargent (1980)). The
paper compares the two with respect to both (1)asymptotic efficiency under the
null hypothesis of no misspecification, and (2)asymptotic bias and power in the
presence of certain local alternatives.

It is found that: (1)Full information standard errors are only moderately
smaller than limited information standard errors. (2)When the model is
misspecified, full information tests tend to be more powerful, and its
parameter estimates tend to be more biased.

This suggests that at least in the model considered here, the gains from
the use of the less robust and computationally more complex full information
technique are not particularly large.
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Woodrow Wilson School
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Princeton, NJ 08544




A variety of techniques have been proposed'to estimate rational
expectations models, with the development of new techniques still continuing.1
The number of empirical rational expectations studies applying one or more of
these techniques also is growing, as is evident from the pages of practically
any major journal. There does not, however, appear to be any intermediate
work comparing numerically the distributions of different estimators and test
statistics under various circumstances. It is therefore not clear how much
better in practice any 'best" estimation technique is likely to be, with
respect to either efficiency of parameter estimates or power of tests of
overidentifying restrictions.

This paper is a preliminary stép in filling this intermediate gap. For a
representative rational expectations model, it compares numerically some
asymptotic properties of what are probably the two most commonly used methods
of estimation of rational expectations models. One method works directly with
the first order conditions, or Euler equations, of the models, and may be
applied to both linear and non-linear models (Hansen and Singleton (1982)).
The other method works with the solution to the first order conditions, and
may be used only when those conditions are linear in the model's variables
(Chow (1975), Hansen and Sargent (1980)).

The major feature distinguishing the two methods qualitatively appears to
be well known (Hansen and Sargent (1982), Wallis (1980)). It is the same
feature that distinguishes single and multiple equation estimators in the
traditional linear simultaneous equations model: the method that works with
the first order conditions is a limited information (L1) technique, that which

works with the solution to those conditions a full information (FI) technique.
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The FI technique is valid only under certain auxiliary assumptions not
required for the LI technique to be valid. When these assumptions hold,
however, FI parameter estimates are more efficient.

While this basic LI-FI distinction appears to be well known, less well
understood is just how much more efficient is the FI method. And this is a
matter of considerable interest to any researcher considering estimation of a
linear model. The FI method not only requires additional assumptions but, in
contrast to three stage versus two stage least squares in the traditional
linear simultaneous equations model, also is substantially more difficult to
apply. Even for models linear in their variables, it is highly non~linear in
the parameters and in practice has tended to entail numerical problems
(Sargent (1978, p477nl13, pp. 483-84), Blanchard (1983, pp. 386-87)). The LI
method, by contrast, is often linear in the parameters for models limear in
their variables (West (1984, 1985a, 1986)). Unless the payoff in terms of
efficiency is substantial, the standard practice of using FI techniques to
estimate linear models2 may not be warranted.

This paper studies that payoff, for a representative linear rational
expectations model, borrowed from Hansen and Sargent (1980). It compares some
asymptotic properties of the FI and LI estimates. It first derives exact,
closed form expressions for the asymptotic distributions of parametef
estimates and of certain test statistics. For LI estimation it assumes that a
procedure asymptotically equivalent to the Hansen énd Singleton (1982)
instrumental variables technique is used, for LI tests a test asymptotically
equivalent té the Hansen (1982) test of residual~instrument orthogonality.
For FI estimation it assumes a procedure asymptotically equivalent to maximum
likelihood assuming normality is used, for FI tests a test asymptotically
equivalent to a likelihood ratio test of the model's cross-equation

restrictions.
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The paper writes these asymptotic distributions as functions of the
"deep" structural parameters representing technology and stochastic
characteristics of forcing variables. It then calculates the numerical values

- of these expressions, for a range of plausible values of the structural
parameters. Specifically, the distributions it considers are those needed to
compare full and limited estimation with respect to:

(1) the asymptotic efficiency of parameter estimates under the null hypothesis
of no misspecification, and (2) the asymptotic bias and power against two
local alternatives: (a) a certain adjustment cost has been omitted from the
model, and (b) a certain cost of deviating from a target level has been
omitted from the model.3

It is found that: (1)FI standard errors are only moderately smaller than
LI standard errofs, infrequently more than 20 percent smaller. (2)FI tests are
slightly more powerful against the adjustment cost alternative, notably more
powerful against the target level cost alternative. But FI parameter
estimates are usually somewhat more biased as well, often considerably more
so.

It is of course not clear whether these results will prove robust in this
model to choice of other parameters or alternatives, let alone to
consideration of other linear models, of non-linear models or of small sample
properties. That the results reported here have some general applicability is
perhaps indicated by the similarity of this paper's model to a number of
models actually estimated (e.g., Sargent (1978), Kennan (1979), Rotemberg
(1983), Blanchard (1983), West (1986)). In any case, it appears that at least
for the model and parameters used here, the asymptotic gains from full
information estimation are not enormous.

The plan of the paper is as follows. Part II briefly sets out the model

and derives the first order cohdition and full information solution. Part III
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first outlines the LI and FI estimation and test procedures and then describes
the two local alternatives described above. Part IV presents some numerical
values of the formulas derived in part III, for various values of the
structural parameters. Part V has conclusions. An Appendix outlines the
derivation of the necessary formulas, with full details in the Appendix to the

working paper version of this paper (West (1985b)).

II. The Model

The starting point for the analysis that follows is the dynamic labor

demand model of Hansen and Sargent (1980). A firm chooses its labor force n,

to minimize the expected present discounted value of costs:

s
, t 2 2
lim E0 E b [.Saont + .5a1(Ant) + n.w, + ntut] (1)
§=>0m t=0
where
Et mathematical expectations, conditional on information
known at time t
b fixed real discount rate, 0 < b <1
ays 2y positive parameters
n, labor demanded
v real wage
u, white noise technology shock

Deterministic terms in (1) are suppressed for notational simplicity.

The structural parameters of econmomic interest are b, a, and a, (see
Sargent (1979) for an economic discussion of the model); when efficiency of
parameter esﬁimates is analyzed below, the parameter vector of interest will

be a = (b, ay al).
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A first order condition, or Euler equation, for this model may be found
by differentiating the objective function (1) with respect to the choice
variable n :

Et[-balnt+1 + (a1+ ba1+ ao)nt - am + W + ut] =0 (2)

This may be written in estimable form:

1 -1 -1

=(L+b " +b al'a -1 1,01 1,01

0’8 - b n,_p*tbaw +b a;"u. (3)

=]
|

t+1

LI En )

1}

Yole ¥ Yleag oW * v,

t
Xor ¥ Vegy
XOt = (nt,nt_l,wt)', Yy = (yo,yl,yz)', and Vi1 is an MA (1) error:

The expectational error n l-E n clearly depends in part on u . Thus

t+ tt+l t+1

Vet1 depends on both u, and Upypo and of course on the innovations in other

forcing variables reflected in nt+1-Etnt+1’ and so is MA(1).

The limited information instrumental variables technique described
in part III estimates ; and then recovers & = (g’;o’;l) from ; . It tests
the model by checking whether the instruments are orthogonal to the estimated
residuals. Details are presented in the next section.

With two additional assumptions, one can use standard dynamic programming
techniques (Chow (1975)), or the algebraic techniques of Hansen and Sargent
(1980), to solve (1). The two assumptions are:

(1) the choice variable n, does not Granger cause the forcing variable we

relative to the firm's information set, and (2) a transversality condition

rules out explosive behavior in n, . The Hansen-Sargent (1980) technique for
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solving (1) is then as follows (the dynamic programming technique produces the

identical solution (Chow (1980)). Write the polynomial in n as

t+1

1 -1

1-a1+b e+ ‘1a0) L+b 2= (1-Ana - b A (4)

3y

It may be shown that 0 < A <1, so 1< b-lk-l (Hansen and Sargent (1980, p.
96)). Solve the stable root A backwards, the unstable root b-lh-l forwards.

This gives the dynamic programming solution:

m -
a = An, . - Aail £ ®MIEw, . + e (5)

- +
t t-1 i=0 t+j 1t

e is white noise, e = -Aa-lu . (5) may be estimated when a third
1t 1t 1 t

additional assumption is made, concerning the process used by agents to

forecast - Here we follow the bulk of the literature (e.g., Sargent (1978))

and assume that Ve is forecast from a univariate AR(p), p > = 2:

= - - 2 _ .. P _
¢(L)wt— (1 ¢1L ¢2 L ¢PL ) W, = e, (6)
P X
= w, =2 6w, tey
i=1
— yt
=X 0t ey

In this case, (5) becomes




p-1
o, =An ot 2 0V teg &)
i=0
p-1
=0m 2 6, v te,
i=0
=X 8 te,
Xpe = @ poWpseeopvy )Y, 6 = (As8yse..08))" = (50,51,...5p)‘, and
(Hansen and Sargent (1980, p- 99))
5. = -aa-l o)1 6. i1 (8)
J 1 Jj -
61 =1
~ P s
6, = 3 Ak J+1¢k i>2

k=j

A full information technique for retreiving the model's structural
pParameters estimates (7) jointly with (6), subject to the restrictions
written out in (8); it then recovers ; from 8 and ;. To test the model,
it checks whether the restrictions written out in (8) hold. 1In practice this
usually requires estimates of & and ¢ not subject to the restrictions (8),

although in principle one could use a Lagrange multiplier test on the

restricted estimates.

ITI. Asymptotic Distributions

A. Efficiency of Parameter Estimates

A variety of techniques have been suggested to estimate equations (3),
(6) and (7) (see footnote 1). But in practice, two estimation techniques are

most commonly used. The most common LI estimation technique is an optimal
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instrumental variables estimator (used in, e.g., Hansen and Singleton (1982)).
The most common FI estimation technique is maximum likelihood assuming normal
disturbances (used in, e.g., Sargent (1978)). Our asymptotic results
therefore assume that techniques asymptotically equivalent to these are used.
See Hansen and Sargent (1982) for a theoretical comparison of the asymptotic
properties of these two techniques, including an explanation of why the FI
procedure is more efficient.

An outline of the two techniques now follows. Algebraic and econometric
details are in the Appendix to the working paper version of this paper (West
(1985b)).

The (p+1) x 1 vector of instruments Zt that may be used in the LI
technique is easily determined by inspection of (6) and (7): one lag of labor
demand n and p lags of the real wage W, - Stack these into a T x (p+1)

t-1

vector Z, where T is the sample size. Define XO as a similarly stacked matrix

of XOt’ n as a column vector of 01 and S as T times an

t
estimate of E % Zt (Evtvt-j)zt-J The two step LI estimator suggested by
j=-1 |
Hansen and Singleton first gets S, obtaining Evtvt-j from the moments of two

~

stage least squares residuals and S from the obvious moments of instrument -

residual cross products.4 In a second step this estimator sets Y = (XO'Z s~
-1 ' <1 '
o) XO ZS X0

is described by Hayashi and Sims (1983).) The standard formula for the

1

Z'X n. (An alternative, asymptotically equivalent technique

asymptotic covariance matrix of ¥, and thus of @, may be calculated

w. and disturbances. Given

numerically, given own and cross moments of n, W

the parameters b, a, and as and the moments of v (equivalently, elt)’ the

required n, and w_ moments may be recovered from (6) and (7), in a fashion

t

analogous to that used to obtain moments from the Yule-Walker equations

(Anderson (1971, pp. 181--182)).5
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The LI test suggested by Hansen and Singleton (1982) sees whether the

instruments are orthogonal to the disturbances:

(T *z Ztvt+1) (T °s) "(r 2%z Ztvt+1) (9
t=1 t=1
Vi+1 are residuals (actual D41 minus D fitted from an estimate of equation

(3)). This statistic converges to a central xz (p-2) random variable under
the null, to a noncentrgl x2 (p-2) random variable under the local
alternatives described below.

The FI technique, again, was assumed to be asymptotically equivalent to
maximum likelihood. Maximum likelihood estimation entails minimizing the log
of the determinant of the two by two variance covariance matrix of the
residuals to (6) and (7), subject to the cross equation constraint written out
in (8) (Sargent (1978)). (An alternative, asymptotically equivalent
technique, is nonlinear three stage least squares.6) Again, the standard
formula for the asymptotic covariance matrix of the parameter vector and thus
of @ may be calculated, given values of b, 3y, 2p, and of own and cross
moments of the disturbances €l¢ and €y An FI test of the model is obtained
by estimating an unrestricted version of (6) and (7) and performing a

likelihood ratio test. Wald and Lagrange multiplier tests of course are

asymptotically equivalent.

B. Asymptotic Bias and Power of Tests

We consider asymptotic bias and power under two local alternatives: (1)
presence of second order costs of adjustment, and (2) the presence of a cost
of having labor demand deviate from an exogenous target level.

It wiil be convenient to formulate each alternative as adding an extra
component to the residuals of the regression equations (3) and (7), although

each such component will depend at least in part on observable random
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variables. Each component goes to zero in the usual way as the sample size T
goes to infinity. That is, under each alternative, the residual in the Euler

-1
equation is Vsl + T ﬁclt’ and the residual to the full information equation

-1
(7) is e ‘ + T % for suitably defined <y and ¢, .

t 2t
The asymptotic bias of the LI estimator is calculated as the mean of the

1 2t’

asymptotic distribution of the estimator. The asymptotic bias of the

nonlinear FI estimator is calculated as in Kiefer and Skoog {(1984) as the

derivative of this bias with respect to Cop See the Appendix for details.
The two alternatives to be considered are:

1. Costs of adjustment of order two

This alternative has been chosen because there is often little
theoretical guidance as to the number and precise form of adjustment costs to
be included in a cost of adjustment model (Sargent (1978, p. 479), Taylor
(1980, p. 30)). Misspecification of adjustment costs therefore seems possible
in empirical studies using models like (1).

Consider, then, the alternative that a per period cost of the form
.ST-%az(Aznt)2 is present in the objective function, Aznt =
(nl-nt_l)-(nt_l-nt_z). Under this alternative, the Euler equation for a

sample of size T is

-3 -1 -1 2,2 2 2
-~ 1 -
D= XOtY + Viel + T a2b a, Et(b A 4y 2bA 041 + A nt) (10)
The corresponding FI solution 1is
- : ; ) ) -1
e = (Mg + Ayp) By = Mg Agp By = Mg Agp(bAyp - DAyp) Tx (an

(1" az)-l (bA, ) + e

m - m 3
J - J
2 (bAlT) E w bAZT E (bAZT) Etw 1t

Iy +i
§=0 t tt] =0 tt+)
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AlT and AZT are the roots to a certain fourth order polynomial whose

1
coefficients are functions of b, ag, a3y and T 2 a,. As T --> o

AZT ==> 0 and AlT --> A. See the Appendix. The regression equation for a

sample of size T is thus

n, = 6+e + 7% ¥, (12)
Ty, = (A + Ay = MBy - App Agny o * Aa jZO(bA)JE “ers
At A1 (PAyg bsz)-l (T-%az)-lx
(bA JZO(bAIT)J bA Jz (b)\ZT)J EWees)

2. Cost of deviating from a target level

This alternative has been chosen for two reasons. The first is that
there is often little theoretical guidance as to whether a cost of deviating
from a target level should be included in a model with costs of adjustment.
(Compare, for example, fhe labor demand models in Kennan (1979) and Sargent
(1978), or compare the two inventory models in West (1986).) Omission of a
target level cost that in fact is present therefore seems possible in
empirical studies using models like (1). The second reason for considering
this target-level alternative is that such a cost rationalizes serial
correlation in the disturbances to equations (3) and (7), at least in the
plausible case where the target level itself is serially correlated. Such
serial correlation is sometimes found in cost of adjustment models (e.g.,
Sargent (1978)) but is not always tested for. Misspecification of the
stochastic properties of the disturbances to (3) and (7) therefore seems

possible in empirical studies using models like (1).
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Consider, then, the alternative that a per period cost of the form

.ST_%a:B(nt-st)2 has been omitted from the model. ag is a strictly positive

parameter. The firm is thus penalized in proportion to how far its labor
demand is from a target level Sy We assume that S is covariance stationmary,

and expand the firms information set to include lags of S¢- We also assume
that s, as well as w, are univariate AR(p) with respect to this information
set.8 Thus, (6) continues to describe the w, process and (17) describes the

s, process.
= (1-0 I-. . -p IP = .
p(L)st = (1 plL .. pPL )st e3¢ (13)
Ee3t €, OF Ee3t e,, are nonzero. (Otherwise the presence of the target level
cost would not lead to inconsistent parameter estimates.)

The Euler equation for a sample of size T is then

1 -%

_ -1 -1,
= XOtY + v + T a,b a, (nt St) (14)

n t+1 3

t+l
The corresponding full information solution is

[« -}
- - -1 = h|
ne = Apie_y T M3y jingEtwt+j T AT z(b}‘T) Egseej ¥ o (13)

AT is the smaller of two roots to a certain quadratic equation. As

T, AT+A. See the Appendix. The regression equation for a sample of size T

is thus
o x % v
ng =X 6 te v T UK
21
T * K = (Ap-Mn_, + Aa 13 (bA)JE w (16)

1 t tt+]j

J—O

-1 ] % ig
A2y jio(bAT) Evieg ¥ T 3AT Z(b)\T) t5t+j
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Against both this and the adjustment cost alternative, both the LI and FI
tests have power, and both techniques estimate all parameters inconsistently.
For any given set of structural parameters, either technique may be less
biased. The following section determines which technique dominates in these

and other respects, for a variety of parameter values.

IV. Numerical Results

A. Efficiency of Parameter Estimates

The formulas derived in the Appendix were used to calculate the
asymptotic LI and FI variances of b, a, and a, for a variety of different

values for the structural parameters

2 _ 2 _ 2 _ 2
b, aps 35, Eelt =0, EelteZt = 015s Ee2t =0, and
¢1,...,¢p. These values are listed in Table 1. One value of b,

, . . 2 2
six of a,, six of as five of 01, 012, 02, and four of

¢1,...,¢p. The total number of covariance matrices calculated for each
estimation technique was thus 720=6x6x5x4. The logic underlying the choices
of structural parameter values_is as follows.

The value of b was chosen to accord with economic theory. The annual
discount rate corresponding to b=.99 is about & percent, assuming data are
quarterly. Only one value of b was used because an earlier version of this
paper tried various values of b and found that results were virtually
identical for the various values.

The values of a, and a, were chosen to accord with results of some
empirical linear rational expectations studies of labo: and of other
variables. These suggested a wide range of possible values for the ratio of
to quadratic costs a,. Sargent (1978, pp. 483,

1 0
485-487) found 100:1 and 1000:1; Blanchard's ((1983) pp. 386, 387-88) ratios

costs of adjustment a

varied from 100:1 to 1:4, West's (1986, Tables III and IV) from 100:1 to 1:30.

The values chosen thus span the range of values empirically found, and mimic
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the tendency for the cost of adjustment a, to be larger than the quadratic

1

cost aO.

The order of the AR was set to four, which accords with some previous
studies (Sargent (1978), Blanchard (1983)). The first three polynomials have
roots chosen so that the forcing variable displays hump-shaped responses to
shocks. The first of the three has four real roots, and factors as (1 - 1.34L

2 . .
+ .42L°) (1-.2L) (1-.1L) (Blanchard's (1981) autoregression for aggregate GNP
is the source for the second order polynomial). The second of the four
polynomials has two real and two complex roots, and factors as a -
[.8+.5i]L)(1-[.8-.5iL]) (1-.2L) (1-.1L). The third has four complex roots,
and factors as (1 - [.8+.5i]L)(1 - [.8-.5i]L)(1 - [.1+.2i]L)(1 - [.1-.2i]L).
The fourth and final polynomial was taken directly from Sargent's empirical

study of aggregate U.S. labor demand (1978, p. 481).

The values of 0%, 019> and Ug were assigned somewhat arbitrarily.
They allow either €1y OF €5 to have larger variance, and allow a positive or

negative covariance between the two shocks.

Table 2 has a summary comparison of the asymptotic LI and FI standard
errors in estimation of b, a, and a; - As may be seen, the improvement in
efficiency from using FI is moderate. Standard errors (s.e.s) tend to drop by
less than 20 percent when estimated by FI rather than LI. The improvement can
be dramatic--in at least ome case, the standard error dropped by over 90
percent. But about three-fourths of the FI s.e.s were at best 40 per cent
smaller than the corresponding LI s.e.s. A quarter of them were at best 7 per
cent smaller.

To get a feeling for the implications of such a reduction in standard
errors, consider the following. A 20 per cent reduction in the standard error

of a given estimate corresponds to a 25 percent increase in its z-stat (ratio

of estimate to standard error, distributed as a standard normal random
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variable). This will turn a z-stat significant at the 90 per cent level into
. one significant at the 96 per cent level. It will turn a z-stat significant
at the 95 per cent level into one significant at the 98 per cent level. This
improvement does not seem enormous.

There was suprisingly little variation in the ratios of LI/FI s.e.s
across parameter values. The distribution of these ratios were calculated
holding each parameter value in turn constant. That is, distributions were
studied for 21=6+6+5+4 overlapping subsets of the parameters. In general,
these'distributions were very similar to the aggregate distribution reported
in Table 2. For example, the median ratio of s.e.é was in general within .10
of the corresponding overall figures reported in Table 2. The only exceptions
were for the extreme values of ag- FI performed relatively well when a0=.1,

relatively poorly when a0=50. When ao=.1, the median values of the ratios of

FI to LI s.e.s were .77 for b, .60 for a, and .61 for a The corresponding

1
figures for a0=50 were .97, .96 and .92.

B. Asymptotic bias and power of tests

| Calculations of bias and power were performed for all 720 sets of
structural parameters using only one value of the parameters basic to each
alternative. We set a2=1 in the adjustment cost misspecification alternative;
a3=1, p1=.95, p2=p3=p4=0, Eelte3t=Ee2te3t=.1, Ee3§=1 in the target level
misspecification alternative. After calculating the LI and FI bias in the
three paramet?rs b, a, and a, for a given one of the 720 sets, we computed the
ratios of the absolute value of the LI to FI bias in each of the three. It is
a summary of thesé ratios that we\present.10

The power of the LI test (9) was compared to the power of the FI

likelihood ratio test for a given alternative and a given one of the 720 sets

by first computing the ratio of the two relevant noncentrality parameters.
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This ratio was then used to calculate the probability that the LI test would
reject the null given that (1) the researcher has set the size of the test to
.05 (i.e., has decided to reject the null only if the probability of seeing
the statistic under the null is less than .05), and (2)the probability that
the FI test would reject the null was (a)50 per cent, or (b)95 per cent.

The two LI probabilities of rejecting the null were calculated as
follows. Since the test statistic has two degrees of freedom, assumption (1)
in the preceding paragraph implies that the investigator rejects the null only
if the test statistic is above 5.99. With a noncentrality parameter of 4.95,
the probability is .50 that a noncentral chi-square variable with two degrees
of freedom is greater than 5.99; with a noncentrality parameter of 15.45 the
probability is .95. Suppose, for example, that the ratio of the LI to FI
noncentrality parameter is .3. The probability that the LI test would reject
under the previous paragraph's assuﬁption 2(a) is then .17, since .17 is the
probability that a chi-squared variable with two degrees of freedom and a
noncentrality parameter of 1.49 (=4.95 x .3) will be greater than 5.99.
Similarly, the probability that the LI test would reject under assumption 2(b)
is .47. We calculated such probabilities of LI rejection for each alternative
for all 720 sets‘of parameters, and report the median of the resulting values.

Information on comparative LI and FI performance in the presence of
adjustment cost misspecification is reported in Table 3. The LI and FI biases
are of roughly comparable magnitude for all three parameters. The median bias
ratio was about one for all three parameters, see the column labelled "50" in
the upper half of Table 3. There was, however, a considerable spread in each
of the three ratios of biases. For each parameter, each technique was in
certain cases at least a couple of orders of magnitude less biased than the

other technique.
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The distributions of the bias ratios were calculated for the twenty one
overlapping subsets of the parameters defined above. The results were similar
to those reported in the upper half of Table 3. There was in each subset
quite a spread of ratios of absolute bias, for each of the three parameters.
The median ratio of biases was usually about one. The relative LI bias in all
three parameters tended to be least when a, was big. Otherwise no pattern was
evident.

The median probabilities of LI rejection under this alternative are given
in the bottom half of Table 3. The median probability is .35 when the
probability of FI rejection is .50. The median probability is .83 when the FI
probability is .95. The LI test procedure therefore does not appear to be
much less powerful than the FI test procedure in the presence of this
alternative. There was no particular pattern to the median LI probabilities
for the twenty one overlapping sets of parameters (not reported in Table 3).

Information on the comparative LI and FI performance when a target level
cost has been omitted from the objective function is reported in Table 4. LI
is notably less biased than FI in its estimates of b and a, having a smaller
bias in about three fourths of the cases. See the "25" column in the upper
half of Table 4. LI is also somewhat less biased in its estimation of ag- As
was the case for the adjustment cost alternative, there was quite a spread in
the bias ratio. Calculations were also performed for the twenty one
overlapping subsets (not reported in Table 4). Unlike the adjustment cost
alternative, the relative LI bias in b tended to be least when a, was small.
Otherwise no pattern was evident.

Finally, the median probability of LI rejection given a .50 or .95
probability of FI rejection is reported in the lower half of Table 5. The
median LI probability is .09 when the FI probability is .50; the median value

'is .12 when the FI probability is .95. The LI test therefore appears to be
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substantially less powerful than the FI test in this case. Once again, there
was no particular pattern to the median LI probabilities for the twenty one

overlapping sets of parameters (not reported in Table 4).

V.Conclusions

In the model and parameters considered here, limited information
estimation of a single first order condition compares asymptotically to full
information estimation of a pair of equations subject to cross equation
constraints as follows.

Under the null hypothesis of no missspecification, FI estimation is in
general only slightly more efficient than LI estimation. FI standard errors
typically are no more than twenty per cent smaller than LI standard errors.
There are, however, some cases in which the gains from FI estimation were much
larger. Such cases tend to occur when the quadratic cost 2, is small. This
suggests the following strategy for estimation of a linear rational
expectations model with costs of adjustment. Begin with simple limited
information estimation of the relevant Euler equation. Then undertake the
substantially more complex full information estimation only if the LI estimate
of quadratic costs is small--say, less than one.

Since rational expectations models have a marked tendency to reject tests
of overidentifying restrictions (e.g., Sargent (1978)), it is also important
to decide on an estimation strategy when the investigator suspects that the
null hypothesis of no misspecification is false. Here the results of this
paper argue for FI estimation, although such an inference is not clearcut. FI
tests tend to be considerably more powerful than LI tests. But FI parameter
estimates are also somewhat more biased. The case for using FI estimation
does not seem to be especially strong for any particular values of quadratic

costs a or, for that matter, of any other parameter.

o’
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We close by stating that a desirable direction for further research is to
use Monte Carlo techniques to establish the small sample Properties of the LI
and FI estimators. This Paper's results should help limit the burdensome
calculations required by such research. These results indicate, for example,
that it is probably not necessary to try a large variety of stochastic
processes for forcing variables, since an asymptotic comparison of the two
estimators does not appear to depend on the properties of the process. It
does, however, appear necessary to consider a range of technology parameters
and, if studying the properties of the estimators when the model is
misspecified, a variety of alternatives. As detailed above, the relative

performance of the two estimators depends quite sensitively on these.
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1. A partial list of recent contributions includes Hansen and Sargent
(1982), Hansen and Singleton (1982), Hayashi and Sims (1983), Chow (1983)
and Fair and Taylor (1983).

2. The earlier practice of using LI techniques (e.g., McCallum (1976))
appears to be less common in recent work. Some recent examples of LI
estimation of linear rational expectations models occurs in my own work
(West (1984 , 1985a, 1986 )).

3. The working paper version of this paper (West (1985b)) considered a
third alternative as well, that expectatioms were static. This was

removed from the present paper to save space.

4. TFor simplicity we assume that the researcher makes no correction for

conditional heteroskedasticity.

5. Note that under the conditions used to derive (5) from (3), if v,
is covariance stationary (roots of ¢ (L) within the unit circle), then
n, alone and n. and w, jointly are covariance stationary (see Hansen

t t
and Sargent (1980)).

6. Nonllnear three stage least squares is asymptotically equivalent
because the variance covariance matrix of (6) and (7) is unrestricted and

the model is linear in the variables (Amemiya (1977, p. 365)).




7. Strictly speaking, the error terms in (10) and (11) should be sub-
scripted by the sample size T, By using the algebra outlined in the

Appendix, it is easy to show that the error term in the FI solution is

) ) -1,.-% -1
AITAZT(bA bA,. ) (T a2) u

1T 2T t

The error in the LI solution (10) may be constructed from the above

Ver1 T u, + (nt+1 - Etnt+1)'

eérror terms on sample size is ignored in the text for the following

equation since This dependence of the
reason. Estimates of the moments of the residuals in both (10) and (11)
converge in probability to the moments of the error terms under the

null. That is, as the sample size T » o, T-IZe2 > Eeft. Similar re-

1tT

lations hold for the residual in the Euler equation (10), for not only

the
Evi but for Evtvt+1 as well. It therefore follows that the asymptotic

distribution of the estimators under the alternative is the same whether
Or not we take care to note the dependence of the residuals on the sample
size T. We have chosen to ignore this dependence, since it is

notationally simpler.

8. The assumption that the univariate autoregressive representations of
S¢ and w, are of the same order is not restrictive. Our notation
allows suitable p; or ¢i to be zero if the order of the two processes

is different.

9. Again, the error term in (15), strictly speaking, should be
subscripted by the sample size T. See footnote (7).




10. The LI bias in y and the FI bias in 6 and ¢ are linear in a, and as.
But since O is a nonlinear function of y (LI) and § and ¢ (F1), the bias
in @ is a nonlinear function of a, and ag- Ideally one might therefore
want to try a range of a, and ag in comparing the relative LI and FI
bias. This was not done for two reasons. The first is that the values
chosen, a, = 1 and ag = 1, suffice to yield inference about the effects
of small misspecifications, which would seem to be the misspecifications
of greatest interest. They yield such an inference because with the
sample size T used in practice being around 100, T-% is about .1. So in
sample sizes typically observed, each omitted cost parameter has a value
of about .1 and so is small relative to most of the Table 1 values of
included costs. The second reason a range of a, and a, were not tried is

3

that such experimentation would be quite burdensome computationally.
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Appendix

This outlines the derivation of the formulas necessary to calculate
the distribution of the LI and FI estimates. Details may be found in the
Appendix to the working paper version of this paper (West (1985)).

The basic source for the distribution of the LI estimator under the
null was Hansen (1982), with the heterocedasticity Correction suppressed.
The basic source for the FI estimator under the null was the nonlinear
three stage least squares formulas in Amemiya (1977).

The LI bias under an alternative was calculated using

A_. toa=1,, -1, , =1,,0-% :
Y=Y+ (X0 ZSz Z XO) Xo ZSz Z'T Cy» ¢, 2 stacked vector of ¢ _, with

1t
the bias calculated as the plim of T% times the second term. The FI bias

was obtained from the nonlinear first order condition need to estimate

-~

the (p+3) x 1 parameter vector = 6. This first order condition was

implicitly differentiated with respect to Sy and 38/3c2t was calculated.
As in Kiefer and Skoog (1984), the .bias in the FI estiméte was
approximated as (86/3c2t) Cop-

The noncentrality parameter for each estimate was calculated as a
suitable quadratic form in its bias. Hansen (1982) and Rao (1973) were
the basic references consulted.

Application of the above was routine for LI. Some work was
required for FI under the alternatives. A brief description follows for
each of these two.

Consider the alternative that a cost of adjustment of order two was

left out of the model. Let a = T-%a . If we differentiate (1) with

2T
the term aZT(AZnt+2)2 in the objective function, and divide the result by

b2a2T, we obtain




~A.2-

-2 -1 2
- A.
Ec(l b “a o ((Zb‘+2b)aZT + alb]L + (A.1)
-2 -1 2 ‘ 2
b "a,o [(b H-b*-l)az.r + (14»!:)31 JL
=2 -1 3, -2 4 -2 -1
b "a o ((2b+2)a2.r + al“‘ +b L Moy " " b 351 (uL-‘-\jt)
F
actor the lag polynomial ié Ny 35
-1, - -1,-1
Y - - -
(1-3, 1) (1-3, L) (=61 "hy (-6 7w (A.2)
-1,-1 -1l.-1
-1 - + +
L= Ottt "11' b Xz'r)
-2,-1,-1 -1 -1 2
+ (b ALTAZT + 2b + Az b~ kl + A b AZT ITAZT)
-1 -1 -2,-1 ,  -2,-1,.3 , -2.4
(b A1T+b A2T+b Xu_-o-b AZT)L +b L
-1,-1

The roots to the polynomial come in pairs AjT’ b AjT,lAjTI<1
lim AlT = A, lim AZT = 0. (The limits are taken as the sample size T®.)
Equation (11) in the text comes from solving the unstable roots forwards,
the stable roots backwards.

As is evident from equation (12), calculation of the asymptotic
distribution of the FI estimate requires calculation of functions like

lim T%(A -A). This can be done by equating the coefficients on the

1T 2T
polynomial in (A.1) and (A.2) and then taking limits. For example,

lim T%AZT may be calculated by equating the coefficients on L to obtain




-A.3-

R e TS -1, -1
alb 3, b AlT +b AZT + A + )

->X a 1 - -1 -1 -1 -l
21721 T % T Agh A + A
=>1im A1 _ -1

2t%21 T 9

=S 131 % - . . .
=> 1lim T AZT = az/a1 since lim AZT =0, lim AlT = A, lim Taa =

2T = 3

Other required limits may be calculated analogously.

The target cost alternative involves similar algebra. Let

agp = T°¥a3. The Euler equAtion for a sample of size T is:
_ -1.-1 -1, -1 -1 -1,2
Et ({1 - (1+b “+b a, “a+b a, aJT) L+b LY B4
-1 -1
b a, (vt- aJTst+ ut)}

The lag polynomial in nc+1 may be factored as

1

-1, -1
(1-A.L) (1-b7"A."'L)

We have 0 < AT <1 (Hansen and Sargent (1980)).
The full information solution for a sample of size T is thus
‘equation (15). Equating the coefficients on the two lag polynomials in

(A.4) and (A.5) and taking limits again yields the formulas needed to

calculate the asymptotic distribution of the FI estimates.

(A.])

(A.4)

(A.5)
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Table 1

Parameter Values

.1; 5; 1; 2; 10; 50

1; 2; 10; 100; 250; 500

1, .5, 1
10, 2, 1
10, -3, 1
1, 2, 10
1, -3, 10
.64, -.842, .152, -.,0084

.90, -1.39, .299, -.0178
.80, -1.26, .258, -.0445

.9554, .0033, .0754, ~-.1849




Table 2

Ratios of FI o LI Standard Errors

Ratio
Parameter
Min Percentile Max
10 ] 25 50 75 90
b .26 1,59 .73 .88 | .96 .99 1.00
aO .08 |[.46 .64 .83 .93 .97 1.00
al .10 (.43 .62 .83 .97 .99 1.00




Table 3

ADJUSTMENT COST MISSPECIFICATION ALTERNATIVE

Ratio of Absolute LI Bias to Absolute FI Bias

Ratio
Parameter Min Percentile Max
10 25 50 75 90
b . .005 .13 .41 1.02 2.41 6.53 867
a, .003 .07 .25 .89 2.31 7.49 666
a; .002 .18 .67 1.10 2.20 6.86 967

Median Probability of LI Rejecting Null Conditional
on a Given FI Probability of Rejection

Given FI Probability

LI Probability . .35 l .83




Table 4

TARGET LEVEL COST MISSPECIFICK;}ON ALTERNATIVE

Ratio of Absolute LI Bias to Absolute FI Bias

Ratio
Parameter I Min ! Percentile Max
i | 10 [ 25 | 5o [ 75 90
I ] i 1
b i -0006 | o1 | .09 19 | g 1.18 72
| ] |
a, i .002 ’ .10 / .30 86 | 1.86 5.02 331
a, I oo3 ,! .05 ! .15 I 237 | 1.05 2.60 314
| l

Median Probability of LI Rejecting Null Conditional
on a Given FI Probability of Rejection

Given FI Probability
| .50 | .95

LI Probability I .07 l .12






