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1. INTRODUCTION

The purpdse of this paper is two-fold. First, it explores an econometric esti-
mation technique for dynamic_linear mbdels. Secondly, a hypothesis of interest‘
to international and financial economists is represented in the férm of cross-
equation restrictions and tested under the technique. This paper employs data
on Jﬁpanese yen- and‘U.S. dollar-denominated interest rates and yen/dollar
exchange rate . to examine the hypothesis of uncovered interest parity under

rational expectations.

Linear models form a convenient framework to examine the explicit dynam-
ics of various macroeconomic and expectational hypotheses. Time domain vec-
tor autoregressioﬁ models, in particular, have been widely used to obtain expli-
cit empirical representations of the dynamics implied by distinct economic
bypotheses. (See, among others, Sims (1980a,b, 1982).) This paper explores
similar ideas using a frequency domain technique to articulate and examine
cross-equation restrictions. These are often the intere#ting observable implica-

tions of hypotheses regarding market behavior and expectations formation.

Sargent (1979) and Ito (1984) used the vector autoregression representa-
tion as a framework for testing hypotheses. The former examinéd the rational
expectations hypothesis with regard to the térm structure of interest rates; tﬁe
latter tested the hypothesis of uncovered interest parity relevant to open econ-
omy finance. In both of those earlier papers, the testable réstrictions implied
by the hypotheses of interest took the form of cross-equation restrictions on a
system of stochastic difference equations. Since reasonable theories imply con-
straints on the interdependence of different variables, and rarely on the
dynamic properties of any single variable, it is almost always the case that sys-

temm methods are desirable for examihing the validity of these hypotheses.
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Further, the optimal predictor of a process is explicitly calculable when the
model takes a linear form. As expectations formation remains an issue in many
different research areas, this is an attractive property of any empirical imple-
mentatidn. For t.heée reasons and others, we believe a strong case can be made

for the usefulness of adopting the approach we have taken here.

The procedure used in this paper has certain ﬁdvantages over conventional
time domain vector autoregression methodé. The lag structures that are feasi-
ble in estimation are somewhat rﬁore general than those permitted in time
domain work. This is not emphasized in what follows because in the absence of a
priori knowledge regarding the appropriateness of any one lag distribution, we
do not believe that simplicity is necessarily undesirable. In the emp'u"ical.work
below however, we do estimate (a matrix rational lag structure that is not easily

implementable in purely time domain work.

A closely related point is that we show that a closed form representation for
the t;.quilibrium of a model often is not hecessary for the application of " full
information " methods of estimation. Thus, the method here shares some of the
same computational advantages as instrumental variable estimation in General-

ized Method of Moments applications to rational expectations models.

'.Uncovered interest parity is the hypothesis that the expected relative
depre'ciation-of a domestic currency is equal to the differential in interest rates
between two countries. Ito (1984) expressed that hypothesis in terms of cross-
equation restrictions on a vector autoregressive representation of the exchange
rate and domestic and foreign interest rates. That earlier work also tested that
restricted representation of the dynamicé of the yen/dollar exchange rate, the
Japanese domestic interest rate and the Euro-dollar interest rate. This paper
tests the same hypothesis within a more flexible parametrization afforded by

the frequency domain approach. It is an advantage of the procedure that it is
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easily modified for application to data sampled finely in time. This is exploited

below in the estimation using weekly data.

The rest of the paper is organized as follows. The uncovered interest parity
relation is developed as a testable hypothesis using optimal prediction formulas
for processes with rational spectral densities in Section 2. Section 3 demon-
strates the validity of the simplifying computational techniques used here within
the framework of a general discussion of identification subject to, and the sta-
tistical testing of certain familiar key cross-equation restrictions. Section 4
| then makes explicit the exact nature of the deviation from exact likelihood tech-
rﬁques, in small sample, of the method that is used here. Section 5 makes con-
crete the claim that estimating the model without calculating the closed form
does not prevent the analyst from obtaining correct representations for the
dynamic broperties of the model. This is important for the proper simulation of,
and for the calculation of forecasts using such models. As should be clear in
what follows, the results here are broadly applicaﬁle to the empirical analysis of
a general class of models. An important class of applications naturally lies in
studies of financial markets that take expectations to be central in the analysis.

Section 8 presents empirical results and Section 7 concludes the paper.




2. TESTABLE RESTRICTIONS IMPLIED BY UNCOVERED INTEREST ARBITRAGE

In this section, we develop the restrictions implied by the relation of
uncovered inierest parity. Consider forward contracts for v-period ahead
foreign exchange transactions, with the observation interval normalized to one
period. As usual, s; is the logarithm of the observed current spot rate (the value
of foreign currency in terms of domestic currency), 7:(v) and r¢(v) are respec-
tively the domestic and foreign v-period interest rates observed at time ¢t
Uncovered interest parity holds if the expected depreciation of the currency is
equal to the observed interest rate spread. To put it another way, uncovered
interest parity holds when the expected yields for comparable assets denom-

inated in different currencies are equal. The hypothesis is succinctly stated as

Hy ()] = s + me(v) - i)

E|seer

where {y; } is some vector random sequence with finite second moments, and
yi. t SN is assumed to be observed at time N. We denote by Hy(¢) the Hilbert
space spanned by infinite sequences of linear combinations of the random vari-
ables { ¥, uSt } corﬁplete under mean square norm. The symbol F denotes
linear least squares projection. We hold v fixed and assume that
z,:[st T (V)i (v) ]T is contained in ¥;. By this assumption A;(t) is contained in
Hy(t), that is, economic agents are assumed to have at least as much informa-
tion as that generated by observations on exchange and interest rates. To sum-
marize the abo;re, we make operational the uncovered interest arbitrage
hypothesis by assuming agents form expectations using optimal prediction for-
mulas, and that the spot exchange, and Qomestic and foreign interest rates are

publicly observed.
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In the absence of capital controls, arbitrage between assets with different

currency denomination forces covered interest parity :

se+re(V)=ri(v) = fo (V).

where f;(v) is the forward exchange rate. Combining these 2 relations, we have

Hy(0)] = £:()

Ll
Elst4y

that is, the forward rate is the rationally expected future spot rate. All informa-
tion available at period ¢ that may be optimally used in predicting the future

spot rate is embodied in the movements of the forward rate.

This observable implication has been extensively studied in the literature.
(See for example, Cumby and Obstfeld (1984) and Hansen and Hodrick (1980)
and the references in their papers.) A single equation method has been favored
in the literature. The unexpected change in the spot rate is regressed on ele-
ments identified with current and lagged information: the appropriate test
becomes one of orthogonality. When the observation period is finer than the
length of the forward contract (that is, v exceeds 1), the error term is known to
have a finite order moving average structure. Hansen and Hodrick (1980) and
Cumby and Obstfeld (1984) have implemented solutions to this nonstandard

inference problem in regression analysis.

In this paper, we estimate the dynamic structure of these variables
directly, so that the moving average properties are jointly estimated with all the
other parameters of the restricted representation. If one were only interested
in tests of the restrictions per se, one might proceed as in Ito (1984), where the
unrestricted vector autoregression is estimated by ordinary least squares and a

Wald-type test is employed in examining the validity of the hypothesis. Here,
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however, we are also concerned with exploring the expliéit dynamic properties
associated with the restricted representation. There are reasons to examine
statistical representations of economic data even if the economic hypotheses
used to obtain those parametrizations are rejected at normal (classical) levels

of significance. For now, we continue with the formal development.

If {y: } is covariance stationary and linearly regular, it possesses a Wold

moving average representation that is time invariant:
Y = C(L)Sg = Zocjet-jl where ESgEg_u =7 6(11,)
i=

For notational simplicity define the vectors
al=[100 0], b=[1 1-100 .- 0].
'fhen the parity relation above can alternatively be expressed as
[a;z"’vC(z)L = bC(z)

when the determinant of C(z) has no zeroes inside the unit circle, and the
equality is taken in the sense of element-by-element equality as analytic func-
tions. The restrictions above are a special case of the characteristic cross-
equation restrictions that arise in a wide class of models. These will be studied

more carefully in the next sections.

For now we need to express these restrictions in a formn convenient for esti-
mation. First notice that there are no restrictions across all but the first 3 rows
of the matrix function C(z). Call these rows 7;(2), j = 1,2,3. Then the restric-

tions are exactly
[z71t2) ], = 7u(2) + 722) = (o).

Hence imposing the cross-equation restrictions in estimation is achieved by con-

structing the matrix function C(z) with
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75(z) = n(2) + 72lz) = [2 ¥ matz) |,

and using this constrained C(z) in building the spectral density matrix
C(e™*?)C(e™¢)".

Note that estimation of the constrained model under the null hypothesis
may be performed for a variety of configurations of forward contract lengths
and sampling intervals simply by altering the value of v in the above expression.
This corresponds to using alternative principal roots of unity in evaluating a fre-
quency domain approximation to the {quasi-)likelihood of the given model. The
ease with which one may adapt the given estimation routine’to different timing
intervals reflects an oft-quoted adege about the use of time and frequency
domain procedures. The reader should compare the manipulations here to
those in Sargent (1979), Hakkio (1981), Baillie ef al (1983) and Ito (1984), who

estimate similar models in the time domain.

The trick here of building up the spectral density matrix using the cross-
equation restrictions is a useful one for estimation. The reader who is uneasy
about the propriety of such a mechanism for the analysis of these models is
correct in the conjecture that some aspects of the dynamics are lost in the con-
struction.! However the following sections demonstrate that in this instance all

of these aspects are unnecessary in the estimmation.

" To continue with the development, it is useful to present a method for the
explicit computation of the Wiener-Kolmogorov expressions for processes with

rational spectral density.

Consider the random sequence { ¢, } possessing a rational spectral density.

By factoring the spectral density, we may represent

!In particular, the notion that " stable roots are solved backwards, unstable roots for-
wards “ in optimizing models seems to be ignored here.
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a(L)

& = (L) 7n¢ . where E 414, = 0 for u # 0,

and —-(—l; (:) is a rational function with the common factors in a(z) and B(z)

removed. Further the function %— is analytic in a domain containing the unit cir-

cle and has no zeroes inside the unit circle. We wish to calculate

He—(t) ] This is simply the optimal linear least squares forecast of ¢Ev

E [tt +y
periods from ¢ conditional on the information in current and past realizations of

£. We know by our assumptions that

”5<‘)]=[L‘"§%] n(e).

H{(t)]=f[5t+v

E[ft-&-v

a(L . alz)
To calculate [L"" —6-((1—’%- L , we consider [z"” ﬂ(:) » which is that analytic
+

function obtained from z"’%(%-)l by removing its principal or singular com-

ponent. By the assumptions on a and #, the function % has a convergent one-

sided Laurent series expansion in nonnegative powers of z about 0 :

—(—)-:(:) =j§°7, 23,

. . - afz)
Notice that the function z 8(z) has a removable pole of order v at the origin.
This is also the only singularity of the function inside the unit circle. The singu-

lar part of 27 .;%%- at the origin is therefore given simply by U‘Z‘: v; 23, Then
=0

_,agz!] _ v alz) _ L=
[z 8=) .= 8 T BT

- a( ) _ |
=z [ﬁ(:) j§07jzj
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=£"_[,,(z) - (Sy2) ﬁ(z)]
ﬁ(Z) j=0’ '

Since we assume § has a spectral density that is rational, a and g may be

chosen to be polynomials in nonnegative powers of z. Therefore

- x(z) _ =z =1
=8 |, = <z)[°(2’-<,§°r,-z’>p<z)] |

remains a rational function possessing a convergent one-sided Laurent series

expansion at the origin.

To state these results differently, notice that we can write the decomposi-

tion

Az) - Fypzt ==> a(z) = ( Dyz! )8(=z) + (5 7s2! 8(z).
B(Z) i=0 §=0 . i=v

Now note that the second term on the right hand side ( Y 7527 )B8(z) has no
J=v

nonzero coefficient on any power of z strictly less than v. This implies that the

first v- 1 coefficients of az) match exactly the first v- 1 coefficients of

(5727 )8(2).
1=0

v—1
Hence in forming z™ |a(z) - ( Y} 7;27 )8(z) |. all coefficients on strictly
§=0

negative powers of z are guaranteed to vanish.

The outcome of the discussion in this section is that when the Wiener-
Kolmogorov formula is applied to a process with rational spectral density, the
calculation is easily performed using only polynomial long division and multipli-

cation.

In the next sections of the paper, we show precisely the necessary results
that make the proposed estimation technique an analytically and computation-

ally attractive one.
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3. REMARKS ON IDENTIFICATION AND TESTING

In this section, we address identification in the general model amenable to
the estimation procedure. A slight generalization of the framework employed in
the rest of the paper is useful for the discussion. The modification is chosen to
allow the reader to compare the results here with those in Hansen and Sargent
(1981). While some facts established in that paper are repeated here, the state-

ments and proofs are sufficiently different to motivate our presentation.

There are two identification issues relevant for the kinds of models con-
sidered in the current work. The first arises only in the multivariate case; the
second relates to the notion of a fundamental representation for dynamic

models.

8.1 Orthogonalization

The identification issue specific to multivariate timeseries models also sur-
faces in the guise of orthogonalization orders for interpreting vector autoregres-
sions. It is perhaps best understood in that context. When a relatively unres-
tricted representation for a multivariate time series model is analyzed, the vec-
tor of residuals correspond to different shocks that impinge on the system.
V¥ithout a priori identifying restrictions, the residuals for each equation do not
necessarily represent shocks to the variable on the left hand side of that equa-
tion. Researchers employ different a priori assumptions to identify individual

elements of the residual vector with recognizable economic shocks.

Such association however is not necessary for the purpose of testing the
cross-equation restrictions of interest in the current work. We do need to note

exactly the restrictions imposed by the economnic hypotheses over and above
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those used to just-identify a statistical alternative. Proposition 1 below states
precisely the characteristics of such a just-identified alternative. This well-
known result is employed either implicitly or explicitly in any discussion of

orthogonalization orders for relatively unrestricted vector autoregressions.

For ease of exposition we first make exact some terms to be used in what
follows. An array of rational functions in the complex indeterminate z is a
matriz rational function. Unless otherwise noted, we consider only matrix
rational functions that are square arrays. When we take series expansions for
each element of an array, the resulting array is called the series expansion for
that matrix function. A square matrix rational function is regular if it has full
rank almost everywhere. A regular matrix rational function is SJundamental if it

is analytic and vanishes nowhere in an open domain containing the unit disk.

We can now state Proposition 1.

Proposition 1 Let S(w), w in (-m,x], be a given rational spectral density
matrix that has full rank almost everywhere. Then there exists a factoriza-
tion

S(w) = C(e™**)C(e™?)*

where C(z) is fundamental. Further, if C{0) is chosen to be real and lower
triangular with all positive elements on the diagonal, then the factorization
is unique.

Proof The first part of the proposition is simply the classic Spectral Factoriza-

tion Theorem.® There exists a decomposition

S{w) = F(e™¥) ¢ F(e™)*

2Key references for the multivariate Spectral Factorization Theorem are Rozanov (1960,
pp.388-374; 1967, Ch.I, pp.43-48) and Hannan (1970, Ch.II, pp.84-87; Ch.III, p.128).
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the representation is unique if F'(0) is chosen to be the identity matrix. Using
the Choleski factorization, & may be written as G = UUT where now the factori-
zation is unique when U is restricted to be a square matrix that is real and lower
triangular with all positive elements on the diagonal. Setting C(z) = F(z)U

completes the demonstration.

Q.E.D.

Note that the class of fundamental representations may be generated from
that with F(0) =7/ by post-multiplying by some matrix U where UUT = C.
Further an autoregressive representation can be computed by applying a vector
generalization of Levinson's algorithm to the matrix covariogram.? The
covariogram, in turn, may be calculated by inverse Fourier transforming the
spectral density matrix, or by taking the Laurent series expansion of the
rational matrix covariance generating function. In either case, that representa-
tion is constrained to be fundamental and corresponds tb the choice of F(0) as
the identity matrix. Different orthogonalization orders are simply alternative
decompositions of the symmetric positive definite matrix €. When F(0) is the
identity, the matrix G is the prediction error covariance matrix that the Levin-

son algorithm computes simultaneously with F(z)"!.

3.2 Fundamental Representation

We now discuss identification in the presence of cross-equation restrictions
such as those in the earlier section. Recall the restrictions implied by the

hypothesis of uncovered interest parity may be stated as

3This is a fast algorithm to solve the Yule-Walker equations for dynamic regressions. When
the "number of regressors” is k, the Levinson algorithm is an O (lc2 operation whereas
usual algorithms employed by least squares routines for ?vertlng X are O(ks). This
saving results from exploiting the Toeplitz properties of XX ' matrices in dynamic models.
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[alz"’C’(z) L‘_: bC (z).

We generalize this to

laz)c2) s = b(e)C(2) (Y

where C(z) and b(z) have one-sided series expansions convergent in nonnega-
tive powers of z. The series expansion of a(z) is generally twb-sided in z. Han-
sen and Sargent (1981) show that a large class of dynamic linear models may be
written in this form. This class includes, but is not restricted to, models whose
equilibria are the result of an optimization problem. Examples of such models
are stationary versions of the hyperinflation model in Sargent and Wallace
{1984), or aggregative models like those of staggered wage contract economies
in Taylor (1980) where the equilibria are not the outcome of a maximization pro-

gram but may be described by (RY).

We now present a relation between fundamental and nonfundamental
representations that éatisfy the cross-equation restrictions RY. This result is a
trivial generalization of Hansen and Sargent’s Lemma 2 (1981). The method of
proof, however, is different. In the following, a diagonal matrix Blaschke factor
is a matrix whose diagonal comprises only 1's and Blaschke functions, and is

zero elsewhere.

Proposition 2 Let C(z) satisfy RY. The matrix functions C(z) and b(z)
are assumed to have one-sided Laurent series expansions in nonnegative
powers of z; a(z) is arbitrary. The spectral density matrix generated by
C(z)is

S(w) = C(e™**)C(e™*)*, for win (-m,nl].

Then there exists a p(z) that is fundamental and satisfies the boundary
condition p(e™“)p(e™*)" = S(w) for all w in (~n,n] so that #(z) generates
the same spectral density as C(z). Further, that p(z) satisfies
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latz)ptz) o = 8C2)e(2).

Proof By the proof of the Spectral Factorization Theorem, the matrix function

A
C(z) determines a finite sequence of unitary matrices {U,-] and diagonal
; A 5 i=1

h

matrix Blaschke factors {B,- (z) } such that
L =t

p(z) = C(z) ﬁ,”:ﬁ;(z) = C(z)V(z).
1= ‘

is fundamental. Note that V(z) is constructed to have a convergent one-sided

series expansion in strictly negative powers of z. By hypothesis,

la)c@) |+ - v)XE) = 0

I
i
v

a(z)C(z) - Q(z) - b(z)C(z) =0,
where @ (z) is one-sided in strictly negative powers of z, and corresponds to

the principal component of a{z)C(z). Postmultiplying by V(z) yields

a(z)C(z)V(z) - Q(2)V(z) — 8(2)C(z)V(z) = O

Apply the [ ]4. operator on both sides of the equation to obtain

[e)cwv@ | - [pexEv @] = 0

The term [Q(z)V(z) ],.. vanishes because §(z)V(z) is one-sided in strictly nega-

tive powers of z by construction. Now note that

b(z)C(2z)V(z) = b(z)v(z)

has a convergent power series expansion in nonnegative powers of z; b (z) being
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convergent in nonnegative powers of z by assumption and ¢(z ) being fundamen-
tal by construction. Hence [b (z)C(z)V(z) L. is simply b(z)¢(z). This com-

pletes the demonstration for we have shown that
[atdpte) s = b()pta)

Q.E.D.

Hansen and Sargent (1881) use an iterated projection argument in their
proof. They exploit the identification bétween the Hilbert space associated with
a random process and the location of its transfer functibn singularities and
determinantal zeroes. The proof above makes no reference to those results but
assumes the Spectral Factorizatioﬁ Theorem. The practical implications of this
proposition can be stated briefly. Suppose we impose the cross-equation res-
trictions in the estimation procedure, and estimation yields a function C (z) with
determmantal zeroes inside the unit circle. Then there is an alternative go(z)
that is fundamental satisfies exactly the restnctlons implied by the hypothesis
of interest, and generates precisely the same second order statistics as the
estimated function C(z). Hence statlstlcal tests of the model that rely only on
second order statistics of the data do not depend on the econometrician deliver-
ing an estimate that is fundamental. Examples of such tests are the {quasi-)
likelihood ratio statistics usually computed in this literature. To restate this
somewhat, if an estimated C(z) is not fundamental, we can obtain an estimated
¢{z) that is fundamental and yields exactly the same (quasi-) likelihood value.
(Estimation criteria have not yet been presénted so this anticipates somewhat
the discussion below.) The procedure to achieve this involves only multiplication
of unitary matrices and diagonal matrix Blaschke factors, all of which may be
computed from the initial C(z). This result is also useful for calculation of

impulse response functions when the information content of shocks to the
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system are embodied in movements of the observed variables.*

3.8 E'stirnation

We turn to a preliminary discussion of estimating a representation for the
matrix transfer function C(z). Consider a class of criterion functions {(S,X¥);
S denotes the second order statistics generated by the model and X¥ is
(z1.x2. ' '+ .zy) the observed partial realization pf the model vector random pro-
cess. We study estimators of C'{z) that maximize I subject to the restrictions

Rt.

Proposition 3 Given X¥, let €(z) maximize [ subject to the restrictions
RY, where C(z) is not necessarily fundamental. Then there exists a matrix
transfer function p(z), that is fundamental and may be constructed from
knowledge of C(z) alone. Further g(z) maximizes I in the class of funda-
mental factors satisfying RY.

Proof This follows almost immediately from Proposition 2. Since X¥ is fixed
throughout the discussion, it is omitted without ambiguity. Let #5 be the collec-
tion of fundamental matrix functions satisfying RY. Similarly let CR denote the
collection of square matrix functions that satisfy R. Obvicusly Cp contains ®g.

Therefore
' - ~“wy®) > -“w 1wy
c B I(C(e**)C(e™¥)°) 2 R L(p(e™®)p(e %))
Hence we have

L(B(e™*)p(e%*)") = L(f(e=*)C(et¥)")

p HC(e )T ()

“For instance, the procedure is used in calculating fundamental vector moving Average
representations from spectral density matrices restricted to be rank deficient. See Litter-
man, Quah and Sargent (1985).
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2 B Lp(e=)p(e™9)").

Q.E.D.

This proposition allows us to use estimates of fundamental factors con-
structed from possibly nonfundamental factors that maximize such ecriterion
functions. As discussed more fully below, this class of permissible objective
functions includes the Whittle likelihood or Hannan's approximation to the likeli-
hood function for normally distributed vector processes. Estimators that max-
imize these criterion functions are known to be asymptotically quasifmaxirnum

likelihood (see for example Kohn (1979)).
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4. ESTIMATION

When ¢; has the normal distribution, z; is similarly normally distributed as
it is simply a linear combination of £;_;. The (conditional) log-likelihood func-

tion is therefore

W(3.XV) = -%{lndetTy, + XTI Xy 1.

with Xy := (z{.z%. - - .zf).

where I’y is that symmetric block Toeplitz matrix constructed from the theoreti-

cal (predicted) covariogram:
r’ = S8BT ( I‘(O), r(-l)- R P(-(N—l)) )v r(j) = E'ﬂ z!ztr-j'

As usual, ¥ denotes the vector of parameters, and Xy is the N—term data
sample. Denote by p the dimension of the observed vector z;. The function ly is
repeatedly evaluated at different values of the parameter vector ¥ in estima-
tion. Since matrix inversion is 0(n3), and Ty is Np xNp, direct function evalua-
tion quickly gets prohibitively expensive.5 In this section, we formulate an opera-
tionally efficient approximation to the log-likelihood function. Estimates are

obtained as maximizing elements of an objective function that is sometimes

5n most cases, ly is decomposed first into a product of conditional distributions. This is
eesily done when the model has a simple autoregressive form. One can caleulate a sequence
of conditional distributions by forming prediction error decompositions for a given value of
¥. The matrices inverted are then reduced in aize. However recall that we wish to estimate
models without necessarily first calculating the closed form representation. The conditional
decompositions may be fairly expensive to compute in some models, while those models are
easily handled by the techniques here. The cost may take the form of deterioration in nu-
merical precision. This problem is well-known in eigenvalue or polynomial root location. The
reader may note that since the matrix I'y is block Toeplitz, one can explait Levinson's algo-
rithm in its inversion. It is easy to verify, however, that that is 0 (N%3) while the frequency
domain criterion function evaluation method used here is O(N logNp3) and so remains an
order of magnitude faster.
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referred to as the Whittle likelihood or as Hannan’s frequency domain approxi-
mation. The development below makes explicit the approximation error in the
function. Whether (constrained) maximizers of the approximation are “close"
to maximizers of the original function is a different question. For that we appeal
to Kohn (1979). When the degrees of all polynomial functions used are assumed
known a priori, our assumptions ensure that maximizers of f.he frequency
domain criterion function are strongly consistent for the same parameter vec-
tor as are maximizers of the conditional log-likelihood lN.B Further the "likeli-
hood ratio” statistics asymptotically have the usual x% distribution under the
null. All the efficiency properties of quasi-maximum likelihood estimators are

inherited by the estimator here.

We approximate ly by

(exV) = -% :Zj:‘ In det So(wy) + tr | So(w;)~1 I'(wy) ] ].

where Sg(w) = Co(e™“)Co(e™“)’ is the theoretical spectral density and

. N N
I{(w) = 7:‘(-( !le,e"‘”‘ X tz:lz,e“"" )* is the empirical periodogram. This criterion

| function is in the class discussed in the section on identification, so that all the
results there apply. Without restrictions on the theoretical spectral density, an
extremal point of Iff sets C(z) so that S(w) approaches /() for all w. (In the

limit S(w) is singular so that the function is not defined.) Maximizing If subject

SWe do not mention the usual regularity assumptions. Simulation results of Phadke and
Kedem (1978) for multivariate moving average models suggest deterioration when a deter-
minantal zero is close to the unit circle. Kohn'a theorems apply when ¢; is a vector sequence
of second order stationary squere integrable martingale differences, which weakens the re-
quirement of iid normality.
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to constraints may be viewed as matching the theoretical spectral density to an
(admittedly inconsistent) estimate of the true spectral density.
To see how If approximates ly, form the block (inverse) Fourier transform

matrix

tog(y-1) ] W = %(k-l)

1
Fwm = T [1ze jk

with the (j,k) pxp block the identity matrix multiplied by the complex sinusoid

ew"(’-n . By construction Fyy ) is unitary. Define the block diagonal matrix

SWP) = block dia.g {S,(w;).S,(wz). e .S.‘(UN) ]

Then

1k

* - N {
Fup)SwarFing) = [N 1,2, Sola)e' v

that is, Fnp) Swv.p) F(N,)' is symmetric block Toeplitz composed of N pxp
blocks. Each pxp block is a term in the discrete inverse Fourier transform of

the spectral density. Since

N
T(-k) & N Y Sylay)e'd ™
=1

we have
Ty = SBT (I'(0).T(-1), - T(-(N=-1)))
R Fovp) Swe) Favg)

It follows that
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N
IndetTy = ) Indet Sy(w;)
k=1

and

XvTT5' Xy = XnT Fivg) Swip)™! Fing)” Xu.

f} z (wi)® Solwy )1 Z (e ). with 7 (wg) := 7—1 f: PR

i tr [sﬂ(wk)-‘](wk) ]

k=1

where [ (w ) := N_‘l [;(wk );(ok)° ] is the periodogram. Therefore

Iv(@BX¥) » -% f: {ln det Sa(w;) + tr Se(w;)™! I(awy) ]
§=1

The right hand side is simply If(3,Xy). Note the data enters the criterion func-
tion only through the periodogram. The periodogram is a sufficient statistic and

is formed only once in the estimation.” The approximation arises from the sub-
en

i N
stitution of El;r_ f S(w)e¥“dw for N71)] S(wl)e““‘. This suggests possible
0 i=1

improvements in the estimator considered here.8

"The determinant and inverse of the Hermitian arrays Sy(w) are easily computed using the
isomorphism between pxp complex and 2p x 2p real matrices. See for example Hannan
(1870, pp.224). By exploiting the conjugate symmetry about 7 of the spectral density ma-
trix, only approximately half of these on (~m,7] need to be caleulated.

8We do not pursue this but leave it as a topic for future research. Adrian Pagan informs us
that this approximation error argument applies to every term in the covariogram expansion:
the aggregate error when summed to form the Whittle likelihood may be substantial.
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5. FUNDAMENTAL FACTORIZATION OF A SPECTRAL DENSITY MATRIX

Let C(z) be a factorization of S(«) on the unit circle, not necessarily funda-

mental, C(e™¥)C(e™“)" = S(w) for w in (—mn], where the series expansion

C(z) = ), Ciz* has all real coefficients.

k=ww
We seek to obtain a fundamental factor ¢p(z) that generates the given spec-

trel density, that is,

S(w) = fp(e;““’):p(e""“)'. for win (-m,n].

We assume S(w) is pxp, rational and has full rank almost everywhere.?

First we derive from C(z) a matrix rational function with all entries analytic
in a domain containing the unit circle. This factor will then admit a convergent

one-sided power series expansion in nonnegative powers of z. For each column j

of C(z), collect the denominator function zeroes § p; }, with ’pﬂ, ! <1 in ele-

ments of the column vector. Form Blaschke factors, one for each column,
J=12 - .,p,
1-ppz
d(z)=1]] —,—)&—. where lpﬂ, |< 1
k27 Pn
letting d; be unity when column j has no element with denominator function
vanishing inside the unit circle. Since the zeroes come in complex conjugate

pairs, d,(z) is simply a rational function where both numerator and denomina-

tor polynomials can be chosen to have all real coefficients. Further for all j d;

®See Litterman, Quah and Sargent (1985) for the modifications required when the spectral
density matrix is rank deficient. Typically some C(z) is readily available. When one is not, it
may be obtained from the spectral density matrix by a generalized Chaleski factorization.
Litterman, Quah and Sargent implement this modified Choleaki algorithm.
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has modulus 1 on the unit circle: d;(z)d;(z) = 1 for l z I =1

Construct the diagonal matrix function

D(z) = diag {di(z).dz(z). - - .dp(z) ]

and define

pi(z) = C(z) D(z)™".

The unit modulus property of d;(z) on l z l = 1 ensures that D(z) is unitary on
the unit circle so p; generates the same spectral density as C. The matrix func-
tion ¢; has elements that are ratios of polynomials with all real coefficients.
Now no entry -of ¥ has singularities inside the unit circle so that ¢; admits a
one-sided Laurent series expansion convergent in nonnegative powers of z :
pi(z) = i) V2t
k=0

Note however that even had det C(z) vanish nowhere on the unit disk, post mul-
tiplication by D(z)~! will, in general, introduce such zeroes into det ¢,(z).
These zeroes will need to be removed to construct a fundamental factor. We

égain employ Blaschke factors but now their use is a little more subtle.

Write ¢y(z) = B(z) 1 A(z), where B(z) is the diagonal matrix polynomial
whose j—th nontrivial element By;(z) is the product of the denominator func-
tions in the j—th row of ¢ (z); A(z) is the matrix polynomial whose j—th row is

the product of the j—th row of C(z) with By (z ). Then det py(z) is the ratio of

det A(z) to det B(z).1 After canceling common factors, write I wi(z) ! = —-L)-z(:) .

10The function det 4 (x) may be formed using an extension of the Faddeev - Sominskii algo-
rithm. Gantmacher (1959, pp.87-89) presents the algorithm for 4 (z) =4 an array of com-
plex numbers. The modification straightforwardly replaces camnplex numbers by scalar poly-
normials.
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and locate those zeroes of the numerator polynomial that are strictly inside the
unit circle. Call these Aj, j = 1,2, - - - ,h. We seek to modify ¢,;(z) so that these
zeroes are removed from the determinant, while keeping all entries in the factor
analytic on the wunit disk and maintaining the boundary condition
p(e )p(e™)" = 5(v).

A simple example will illustrate the issues involved:

Example 1 Let

1-2z o]

p1(z) = [a(z) 1

with a(z) analytic in a domain containing the unit disk. For definiteness,
assume that a(}4) = 2. Then det ¢;(z) = 1-22 has a zero inside the unit circle at
z=Y% Although ¢(z) admits a one-sided Laurent series expansion convergent in
nonnegative powers of z on the u1;1it disk, ¢3(z) is not fundamental for the spec-
tral density matrix S (w) = ¢,(e*9)p,(e~*¥)*. Another way to see this is to con-

struct a time domain representation
x = will)es, Eejeiy = I 6(u)

Clearly z; may be formed from current and lagged £ so that H; (¢) contains
H;(t). However formally inverting p,(z),

0
-a(z) 1-2z

wi(z)™! = (1-22)"! [

(1-2z )‘i 0
-a(z)(1-2z)"! 1

and we note that the entry (1-2z)~! is not convergent in a one-sided series
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expansion in nonnegative powers of z. We see from

ge = po(L) 'z,

that £, cannot be formed as a square summable linear éombination of current
and lagged z;'s (nor as the mean square limit of such a linear combination).
However the first element of the vector €; can be obtained as a square summ-
able linear combination of future realizations of z;, while the second element
can be formed only by taking linear combinations of current, lagged and future
z;'s. Hence we say that H; (¢) is not contained in H:(t), and that such a ¢,(z)

is not fundamental for the spectral density matrix of the vector process { z¢ 3.

To obtain a fundamental representation, we first try to mulitiply pi(z) by a
diagonal matrix of ‘Blaschke factors. Such a matrix must satisfy two conditions:
1° the Hermitiah prbduct remains at the given spectral density matrix, and 2°
the determinant of the resulting product matrix function vanishes nowhere

inside the unit circle. Both conditions hold for

0

1-
=

p1(z)B(2) = py(2)

?1(z)

1-22 0

a(z) z-2
1-22

Clearly %i(e™“)@1(e™%)* = g,(e™**)py(e*¥)", and I ?1(z) l= z—2 has neither

zeroes nor singularities inside the unit circle. However the bottom right-hand
element of @, does have a singularity at z = ¥ inside the unit circle, so that ?1

cannot be fundamental for the given spectral density matrix.!! We conclude that

UWrite 2, = & 1(L)Z(t), and note that the second element of z; cannot be formed from
(mean square limits of) square summable linear combinations of current and lagged #(t)'s.
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it is easy to find diagonal matrices of Blaschke factors that modify the deter-
minant of the product matrix by removing zeroes of the determinant located
inside the unit circle, while satisfying the given boundary condition. However
because the Blaschke factors have singularities inside the unit circle, it is just
as easy to introduce entries into the product matrix function that are not ana-

lytic throughout the unit disk.

Discussion of example 1 will continue below. For now we proceed with the formal

development of the method.
Recall that A;, j = 1,2, - - ,h are the zeroes of I p1(z) l inside the unit cir-

cle.

(i) Compute the singular value decomposition (Klema and Laub (1980))

ei(A1) = Ui Dy Vi

Both U, and V, are unitary and D, has positive elements in the first , places
along the diagonal and is zero elsewhere. Since | ei(z) I vanishes at z = Ay, we
know that 7, £ p—1. This factorization is exactly to prevent introduction into

the resulting array elements that are not analytic. Using the Blaschke factor

by(z) = (z=A1)"}(1-A;z ), form the diagonal matrix function
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L I'l 0
- By(z) =

Now let
ve(z) = ¢1(z) V1 By(z)
(it) In the iterative step, for j = 2,- - - A, we construct in turn

wj(Ns) = U; D; V5 (singular value decomposition )
1-X;z ‘

b(z) = g . (Blaschke function)
z—}\j .
I".f 0

By(z) =

0 b,(z )I,..r’

v1+1(z) = 9j(z) V; By(z).

The singular value decompositions are performed on different matrix functions
evaluated at the original set of zeroes | Ay }};1. To see that the construction

yields the appropriate result, we verify some of its properties.

a. Forj =, LR, ¢,(A,—) is singular.

By construction,

v,-<z>=¢.(z>ﬁ Vi Bu(z).

Hence
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p-7

lqa,-(Z) I ==> jwj(x,-) f: 0 if i @1(Aj) !: 0.

z

* '?1(2) . ﬁ
k=1

1-3\12
~Ae

b. For j = 1,2,- - - ,h, the matrix function p;,,(2) = p;(2) ¥; By(z) satisfies
the boundary condition @;41(e %) pj+1(e¢)’ = S(w). It has all entries analytic

in a region containing the unit disk, and Ip,-...l(z) l has at least 1 fewer zero

inside the unit circle than does l w;{z) l

Since

@1+1(2)pj41(2)° = 1(2) Llill {Vk Bk(z) B.(z)' W ” #i(z)’

and B,(z) is unitary on the unit circle,

py+1(e *)pir1(e9)" = p1(e)p1(e )" = S (w).

Further,

1-Xyz PP

4 —Xj

I 9s41(2) l = il pi(z) i

By construction ‘ ¢j(z) l has a zero of multiplicity p—r; at A;. These zeroes are

removed at the j—-th iteration above and no new zeroes inside the unit circle are

introduced.

Now we need to verify that ¢;,, remains analytic on the unit disk if the ele-
ments of g; are analytic. This is not obvious as the multiplying Blaschke factors

have a singularity inside the unit circle at A;.

Assuming ¢, has all elements analytic in a domain containing the unit disk,
it admits a one-sided series expansion, convergent in nonnegative powers of z,

about any point on the unit disk. Further, its value at A; is
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wi (%) = Uy D; Vj.
Hence taking the Laurent series expansion about A, l Aj l < 1,

wi(2)=U; D; V] + kZ:]l "ﬁjk(z"kj)i-

So

¢j+l(z) = ?j(z) Vj Bj(z)

- (= -Aj)kjr, 0
=U; Dj Vi Vi Bi(z) + ¥ va V; _
k=1 0 (1=252)(z =2 )Yy,
|as o] | 0
= Uj -
0 0j 10 [i1-%2
Z-X’ ’-r,
+ Ya V; -
k=1 o (1=Agz)(z=A; Y~ Ypor,
Aj 0 - (Z"Aj)k.[,-, 0
= Uy + X ¥V -
00 k=1 0 (1=7;2)(z =2 )Ly,

Hence ¢4, remains analytic on the unit disk, and in particular at A; :

0

AJ' 0
lm g544(2) = ps(Ny) = U + Y Vg 2 -
: A/ 00 (l_l X’ I )IP",'

c. The endpoint ¢ = gp,, is a fundamental factor of S(w), and admits the
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convergent power series expansion

w(z)= 3 hazt
k=0

where for all k, y; is real.1?

It follows from b. that ¢ = ¢g,41 generates S. Since we iterate over the
zeroes of the original factor, at each step removing that multiplicity of zeroes,
the end-point is a factor with a determinant that has no zeroes inside the unit
circle. Also from b., ¢ = ¢p+; has all elements analytic in a domain containing
the unit disk. It only remains to check that the sequence of matrix coefficients

{ Y& di=0 is real.

Collect the zeroes { Aj, Az, ' * - \A, } so that the complex values, which always
come in conjugate pairs, appear last. Recall that ¢, is a matrix of rational func-
tions with all real coefficients. Then in the first few iterations of the algorithm,
associated with those zeroes that are real, ¥; is real, and the coefficients in the
power series expansion of B,-(z) in a region containing the unit disk are similarly

entirely real.

Take the complex zeroes in conjugate pairs. Suppose at the end of the
j—1)—th step, p;(z) is a matrix function with all real coefficients, and A; = i-ﬂ.
) ] ]

Continuing the algorithm

¢,+g(z) = ¢j(z) Vj Bj (z) Vj.;.l Bj+1(2). Vj, Vj...l unita:ry.

Since the ordering of the zeroes is otherwise arbitrary, we also have

v1+2(z) = 9;(2) Wy Bje1(z) Wjay By(z)

for W;, W,,, unitary constructed by the singular value decomposition. Further,

18The sequence of matrix coetficients in the expansion is the moving average response to a
fundemental innovation process and therefore has to be real.




-31-

v5(A;) = U; D; Vi, »;(z) V; B(z)

[ ]
ek, = Uijse1 Djay Viaq
and

Vj(;\-j) = T; F; W), ¢;(z) W; Bj(z)

.
z=A, = 1ijsv Fj+l Wju-

As p; has all real coefficients, v,-(i}) = g;(A;). Hence in the singular value

decompositions of ¢,;(A;) and ¢,-(3\:-)

W, =V;

Also it is easy to verify that B;.(A\;) = B;(A;s1). This implies

@s(z) W; Byuy(z) e=), vi(z) V5 Byay(z)

t 3 =A,

wi(z) V; By(z)

s=f,

that is,

Tier Fyoy Wiey = ff;n D_jﬂ Vi,

so that we can choose
Wia1 = Vyur,
Since @;(z) has full rank almost everywhere,

Vs Bj(z) Vis Bj+l(z) = f’; Bj+1(z) ‘Tjn Bj(z ).

The coefficients of B;(z) are simply complex conjugates of those of Bji(z).
Hence the coefficients of V; By(z) Vj4 By41(z) are complex conjugates of them-
selves. It follows that the coefficients of p;,»(z) are real. Proceeding thus, we

show that ¢(z) has real coefficients in the Laurent series expansion

#(z)= ¥ vizt.

k=0
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We now complete the discussion of the Example 1 by implementing this

algorithm to obtain the fundamental factor.

Example 1 (continued)

Recall

1-22 o]

pilz) = [a(z) 1)

At the zero of I P l inside the unit circle, the singular value decomposition is.

0 O
V’l(%) = [ ]
2 1

_[01]x/5_0[1[2
“l1 ol|lo oflVBEl-1 2

[y

Then

p(z) = p1(z) V By(z)

1-2z 0H1[2 -1” 1 0
a(z) 1 751 2 0 1-Y%z

z-Y%
_ 1 2(1"'22)
= V5 | 142a(2) 2— agz)
(z-2) 1-22

Since a(z) =2 at z = ¥, 2-a(z) = (1-2z) B(z) for some B(z) analytic on
the unit disk. Hence all elements of ¢(z) have one-sided convergent power

series expansions in nonnegative powers of z on the unit disk. The determinant
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' w(z) ! = z—2 vanishes nowhere on the unit disk.

In summary, we collect the main resuits above as

Theorem (Rozanov) Let S(w), v in (-m.7], be a given rational spectral
density matrix with full rank almost everywhere. Let C (z) be some factor-
ization of S (w) on the unit circle

S(w) = C(e™)C (e™)",

where C(z) has the series expansion C(z)= Y, Cpz* with all real coeffi-

ks=—e
cients. Then there exists a matrix rational function ¢(z) that is fundamen-
tal and generates the given spectral density matrix S(w). Further p(z)
may be constructed in finite steps from C(z). The matrix function e(z)

has a convergent one-sided power series expansion ¢(z) = ) ¢, z* with
k=0
real matrix coefficients § ¥, J.
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8. EMPIRICAL RESULTS

In this section, we report the results of applying the above methods to the
Japanese-U.S. foreign exchange market. By arguments using iterated projec-
tions, tests of the null hypothesis of uncovered interest arbitrage remain valid
when we restrict the information set to comprise only domestic and foreign
interest rates and the exchange rate. The model therefore is a trivariate vector
stochastic process comprising the Euroyen and Eurodollar 3-month (13-week)
bid deposit rates in London and (the natural log of) the yen/dollar bid exchange
rate. We performed tests on both monthly and weekly data for a number of dif-
ferent sample periods. The monthly data are sampled at the end of the month;

the weekly data are Wednesday observations.13

Time domain results are displayed in Table 1. We estimated uhrestricted
vector autoregressions with lag lengths five (six) over sample periods June (July)
1975 to December 1984 and June (July) 1979 to December 1984. Wald tests of
the cross-equation restrictions were then calculated in TSP (see Ito (1984)).
Marginal confidence levels are low in all cases: they change noticeably however
as we move across lag lengths. The nature of these regressions lead to design

matrices that are close to singular. Their inverse will hence be imprecisely

estimated and numerically unstable in finite sample.

For the frequency domain method, we obtained initial estimates as follows.
We removed sample means and then estimated the matrix covariogram. The
Levinson-Whittle algorithm was then used to find unrestricted projection coeffi-

cients.. Under the identification conditions speciﬁed in Section III, an

13Monthly interest rates from 1975 to 1978 are taken from World Financial Markets, Morgan
Gueranty. Monthly exchange rates from 1975 to 1978 are from the IFS database;, IMF.
Monthly and weekly data from 1979 are constructed from daily data kindly provided to us by
DRI. The reader is referred to Ito (1983,1984) for more careful description of the data and an
account of developments in the market over the sample period.
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unrestricted parametrization was extracted from the inverse of the matrix
autoregressive operator. We chose rational functions of order four for the
entries of C(z) with the leading coefficient of the denominator polynomials nor-
malized at unity.!* Unrestricted estimates were obtained by leaving the third
row of the matrix function C (z) tree in the maximization of the criterion func-
tion.

* In Table 2, we display measures of the adequacy of the restricted represen-
tation in capturing dynamic properties of the monthly data. The sample period
is January 1975 to December 1984. Since the estimated moving average
representations were not fundamental (cornputing the zeroes of the determinan-
tal function showed a number to be inside the unit circle), their characteristics -
are not necessarily identified with that informational content embodied in
exchange and interest rate movements. Nevertheless, the results above assure
u§ that we can still treat the likelihood ratio statistic in the usual manner. The
estimated parametrization itself has no obvious economic interpretation. We
present instead estimated innovation covariance matrices to let the reader

judge the fit of the model relative to less restricted representations.

The labeled VAR innovation covariance matrix may be interpreted as fol-
lows. Estimate the spectral ‘den_sity by some unconstrained nonparametric
method. One way is simply to calculate the periodogram of the data. Treat this
as the counterpart of the restricted spectral density matrices computed in the
paper. The vector autoregressive representation derived by this construction is
essentially that computed using OLS equation by equation. The innovation covari-

ance matrix should then be compared to the other innovation covariance

the authors designed for manipulating modeis of random Processes with rational matrix
spectral densities. The estimation was executed on a VAX 11-785 running VMS 4.1.
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matrices presented that are obtained by restricting the spectral density matrix.

The variates are ordered in the sequence mentioned in the first paragraph
of this section. Vector autoregressive representations used for the innovation
covariance matrices here are obtained from an estimated covariogram derived
by inverse fourier transforming the (un)restricted spectral density matrices.
We also computed decompositions of the spectral density matrix using Laurent
series expansion of the rational covariance generating function to recover the
covariogram. To the extent that the determinantal poles of the fundamental
moving average representation are well outside the unit circle, the estimates by

Laurent series expansion and those by inverse fourier transforms differ little.

The marginal significance level of the x* statistic is 63.4 percent. While
small sample properties of this statistic are unknown, and the model that is
estimated is liberally parametrized relativ_e to the number of observations, it
appears the data are not spectacularly inconsistent with the maintained

hypotheses of uncovered interest arbitrage and rational expectations.

Teble 3 collects similar results for weekly data. Here the sample period is
the first week of 1981 to the last week of 1984. The variates are now ordered as
the (log of) the spot exchange rate, the BEurodollar and Euroyen 13-week deposit
rates in London. The marginal significance level for the likelihood ratio test of

the restrictions is 7.4 percent. Individual variances of all three estimated inno-
vation px_-ocesses'increase when the restrictions are imposed. The covariance
matrices themselves do not change noticeably across computed six- and twelve-
lag vector autoregressive representations within a given parametrization. They

are also reasonably "close’ across parametrizations.




Table 1 Manthly

Wald Tests (Time Damain) of Restricted Representation

Restricted vector autoregression

Number of Lags Sample Period X2 Marginal Confidence Leve]
52 1975:6-1984:12 10.533 0.1683
1979:6-1984:12 18.059 0.880
ab 1975:7-1084:12 9.904 0.045
1879:7-1984:12 15.583 0.315

ll].')egl-ees of freedom = 18
grees of freedom = 19




Table 2 Monthly

Sample Period January 1975 to December 1584

Test of Restricted Representation, degrees of freedam =21

{Frequency Domain)
X Marginal Confidence Level
Whittle Likelihood Ratio 18.237 0.388

Restricted Estimates: Innovation Covariance Matrix

.12x10
Blags V, = | .14x10"% .76x102 x10%, In| ¥, \: -30.18
15x10~  .22x10® .93x107®
Unrestricted Estimates: Innovation Covariance Matrix
.12x10
Blags ¥, = | .99x10® .71x102 x10°S, 1n|V, | = 3058
82x10® .12x10° .83x107°
VAR Estimates: Innovation Covariance Matrix
.12x10
Blags V, = | .7Bx10% _67x10-2 x10°9, 1n|V, |= -30.68
28x10%  .18x1072  .62x107%®




Table 3 Weekily

Sample Period 1881:1 to 1684:52

Test of restricted representation, degrees of treedom:&l

(Frequency Domnain)
» Marginal Confidence Level
Whittle Likelihood Ratio 30.984 0.926

Restricted Estimates: Innovation Covariance Matrix

.58
.82x10~®
.78x10-¢

.58
.82x10-8
.78x10~®

121ags ¥V,

.43x10~®
.83x10-9

.43%x10-%
.82x1078

.45x10-9

.43x10°8

x10°S, In

Ve

= ~35.18

%1079, In

v,

= -35.25

Unrestricted Estimates: Innovation Covariance Matrix

.41
.10x10-1
B55x10-8

Glags V,

41
.99x10-€

12lags V, =
¥ | .55x107t

17x10
.40x10°®

l a2
8lags ¥,

.30
.25x102

12lags V, =
¥ |.40x10®

.38x10~®
.87x10-8

.37x107
.88x1073

.28x10°¢
.44x1078

.24x10°®
.44x10°8

.28x10-9

.89x10-8

.39x108

.81x10°3

x10°8, 1n| v, | = -35.63

x10'%, 1a| ¥, | = -s5.67

VAR Estimatex Innovation Covariance Matrix

x10'%, 1n|v, |=-s6.43

x1073 In

|

= -38.72
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7. CONCLUSION

This paper has formulated and tested the restrictions implied by uncovered
interest arbitrage. This was done within the context of a second order theory of
vector random processes. The simplifying economic assumptions (such as risk
neutrality) underlying such a tractable representation may be extreme.
Nevertheless, we believe this to be a useful framework for examining explicit

restrictions on the joint dynamics of economic variables.

The work here follows directly from Hansen and Sargent (1981) and White-
man (1983). Hansen and Sargent explored the identification problem for exact
linear models of the kind studied here. Whiteman examined the solution of
linear rational expectations models by use of moving average representations.
The estimation techniques {(and machine software) discussed in this paper com-
plement these in providing a unified set of tools for studying stochastic
economic models where theory generates explicit predictions for dynamic pro-
perties. Hence this is yet another analytically tractable framework that allows
the researcher to "keep in sight” all the second order properties of the data. At
the same time the researcher can easily impose on the empirical analysis res-

trictions informed by a version of dynamic economic theory.

An earlier study had shown the validity of the linear representation for the
market for U.S. - Japan foreign exchange. This work has verified that conclusion
using an alternative parametrization. The ease with which these restrictions
may be imposed directly on the spectral density matrix is encouraging for

research on explicit dynamics.
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