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1. Introduction

During the last 15 years econometric techniques for evaluating
macroeconomic policy using dynamic stochastic models in which expectations
are consistent, or rational, have been developed extensively. Designed to
solve, control, estimate, or test such models, these techniques have
become essential for theoretical and applied research in macroeconomics.,
Many recent macro policy debates have taken place in the setting of
dynamic rational expectations models. At their best they provide a real-
istic framework for evaluating policy and empirically testing assumptions
and theories. At their worst, they serve as a bénchmark from which the
effect of alternative assumptions can be examined. Both "new Keynesian"
theories with sticky prices and rational expectations, as well as "new
Classical" theories with perfectly flexible prices and rational expecta~
tions fall within the domain of such models. Although the models entail
very specific assumptions about expectation formation and about the
stochastic processes generating the macroeconomic time series, they may
serve as an approximation in other circumstances where the assumptions do
not literally hold.

The aim of this chapter is to describve andbexplain these recently
developed policy evaluation techniques. The focus is on discrete time
stochastic ﬁodels, though some effort is made to relate the methods to the
geometric approach (i.e., phase diagrams and saddlepoint manifolds) com-—
monly used in theoretical continuous time models. The exposition centers
around a number of specific prototype rational expectations models. These

models are useful for motivating the solution methods and are of some
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practical interest per se. Moreover, the techniques for analyzing these
prototype models can be adapted fairly easily to more general models.
Rational expectations techniques are mich like techniques to solve differ-
ential equations: once some of the basic ideas, skills, and tricks are
learned, applying them to more general or higher order models is straight-
forward and, as in many differential equations texts, might be left as
exercises.

Solution methods for several prototype models are discussed in Sec-
tion 2. The effects of anticipated, unanticipated, temporary, or perman-
ent changes in the policy variables are calculated. The stochastic steady
state solution is derived, and the possibility of non~uniqueness is
discussed. Evaluation of policy rules and estimation techniques oriented
toward the prototype models are discussed in Sections 3 and 4. Techniques

for general linear and nonlinear models are discussed in Sections 5 and 6.

2. Solution Concepts and Techniques

The sine qua non of a rational expectations model is the appearance

of forecasts of events based on information available before the events
take place. Many different techniques have been developed to solve such
models. Some of these techniques are designed for large models with very
general structures. Others are designed to be used in full information
estimation where a premium is placed on computing reduced form parameters
in terms of structural parameters as quickly and efficiently as possible.
Others are short-cut methods designed to exploit special features of a

particular model. Still others are designed for exposition where a




premium is placed on analytic tractability and intﬁitive appeal., Graph-
ical methods fall in this last category.

In this section, I examine the basic solution concept and explain
how to obtain the solutions of some typical linear rational expectations
models. For expositional purposes I feel the method of undetermined
coefficients is most useful. This method is used in time series analysis
to convert stochastic difference equations into deterministic difference
equations in the coefficients of the infinite moving average representa-—
tion. [See Anderson (1971, p. 236) or Harvey (1981, p. 38)]. The differ-
ence equations in the coefficients have exactly the same form as a deter-
ministié version of the original model, so that the method can make use of
techniques available to solve deterministic difference equations. This
method was used by Muth (1961) in his original exposition of the rational
expectations assumption. It provides a general unified treatment of most
stochastic rational expectations models without requiring knowledge of any
advanced techniques, and it clearly reveals the nature of the assumptions
necessary for existence énd uniqueness of solufions. It also allows for
different viewpoint dates for expectations, and provides an easy way to
distinguish between the effects of anticipated versus unanticipated poliqy
shifts. The method gives the solution in terms of an infinite moving
average representation which is also convenient for comparing a model's
properties with the data as represented in estimated infinite moving
average representations. An example of such a comparison appears in
Taylor (1980b). An infinite moving average representation, however, is

not useful for maximum likelihood estimation for which a finite ARMA model
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is needed. Although it is usually easy to convert an infinite moving
average model into a finite ARMA model, there are computationally more
advantageous ways to compute the ARMA model directly as we will describe

below.

2.1. Scalar Models

Let Vi be a random variable satisfying the relationship

(2.1) ¥y, = afy

+ 8u, ,
t t t

t+1

where o and § are parameters and E 1is the conditional expectation

t
based on all information through period t. The variable wu; 1is an exo-
genous shift variable or "shock" to the equation. It is assumed to follow

a general linear process with the representation

o

(2.2) Y = L e
i=0

where ei i=0,1,2,... 1is a sequence of parameters, and where 8t is a
serially uncorrelated random variable with zero mean. The shift variable
could represent a policy variable or a stochastic error term as in an
econometric equation. In the latter case, § would normally be set to 1.
The information upon which the expectation in (2.1) is conditioned

includes past and current observations on € as well as the values of

a, 6, and ei. The presence of the expected value of a future endogenous

variable Eyt+l is emphasized in this prototype model because the dynamic
t

properties that this variable gives to the model persist in more compli-

cated models and raise many important conceptual issues. Solving the




model means finding a stochastic process for the random variable vyt that
satisfies equation (2.1). The forecasts generated by this process will
then be equal to the expectations that appear in the model. In this

sense, expectations are consistent with the model, or equivalently,

expectations are rational.

A Macroeconomic Example. An important illustration of equation

(2.1) is a classical full-employment macro model with flexible prices.
In such a model the real rate of interest and real output are unaffected
by monetary policy and thus they can be considered fixed constants. The
demand for real money balances - normally a functionvof the nominal
interest rate and total output ~ is therefore a function only of the
e#pected inflation rate. If Py 1s the log of the price level and my
is the log of the money supply, then the demand.for real money éan be
represented as

-P),

= -g(E
B(Ep ., - P

t

(2.3) m - P,

with 8 > 0., In other words, the demand for real money balances depends
negatively on the expected rate of inflation, as approximated by the
expected first difference of the log of the price level. Egquation (2.3)

can be written in the form of equation (2.1) by setting o = g/(1+g) and

8§ = 1/(1+8), and by letting v, =P and u = m, « In this example the

t t

variable wut represents shifts in the supply of money, as generated by
the process (2.2). Alternatively, we could add an error term A to the

right hand side of the equation (2.3), to represent shifts in the demand
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for money. Equation (2.3) was originally introduced in the seminal work

by Cagan (1956), but with adaptive, rather than rational expectations.
The more recent rational expectations version has been used by many

researchers including Sargent and Wallace (1973).

2.1.1. Some Economic Policy Interpretations of the Shocks

The stochastic process for the shock variable u, is assumed in
equation (2.2) to have a general form. This form includes any stationary
ARMA process [see Harvey (1981), p. 27, for example]. For empirical
applications this generality is necessary because both policy variables
and shocks to equations frequently have complicated time series proper-
ties. In many policy applications (where u; in (2.2) is a policy
variable), one is interested in "thought experiments" in which the policy
variable is shifted in a special way and the response of the endogenous
variables is examined. In standard econometric model methodology, such
thought experiments require one to calculate policy multipliers [see Chow
(1983), p. 147, for example]. In forward-looking rational expectations
models, the multipliers depend not only on whether the shift in the boliéy
variable is temporary or permanent, but also on whethér it is anticipated
or unanticipated. Equation (2.2) can be given a special form to charac-
terize these different thought experiments, as the following example

indicate.

Temporary versus Permanent Shocks. The shock ut 1s purely

temporary when 90 =1 and Bi =0 for 1> 0. Then any shock u is

expected to disappear in the period immediately after it has occurred;




that is FEu,, . =0 for i >0 at every realization of uy. At the other
t .
extreme the shock U is permanent when ei =1 for i > 0. Then any
. . . . _ s
shock uy 1is expected to remain forever; that is fut+i ut for 1 0

at every realization of u . In this permanent case the u process can be

written as ut = ut 1 + et. (Although uy is not a stationary process in
this case, the solution can still be used for thought experiments, or
transformed into a stationary series by first-differencing).

, a range of intermediate persistence assump-

By setting ei = pl
tions can be modeled as p varies from O to 1. For 0 < p < 1 the

shock u, is assumed to phase out geometrically. In this case the ut

process is simply U = pup 4 + €gs & first order autoregressive model.
When p = 0, +the disturbances are purely temporary. When p = 1, they

are permanent.

Anticipated versus Unanticipated Shocks. In policy applications it

is also important to distinguish between anticipated and unanticipated

shocks. Time delays between the realization of the shock and its

incorporation in the current information set can be introduced for this
purpose by setting ei = 0 for values of 1 up to the length of time of

anticipation. For example, in the case of a purely temporary shock, we

can set 8 =0,68. =1,68, =0 for i>1 so that u = This

0 1 i t -1
would characterize a temporary shock which is anticipated one period in

advance. In other words the expectation of uy;; at time t 1is equal

to Up b1 because €t = ut+l is in the information set at time +. More

generally a temporary shock anticipated k periods in advance would be

) ented b = .
represente y ut et—k




A permanent shock which is anticipated k periods in advance would
be modeled by setting 6, =0 for i =1,...,k -1, and ei =1 for
i

i=%k, k+ 1l,... Similarly, a shock which is anticipated k periods in

advance and which is then expected to phase out gradually would be modeled

by setting ei =0 for i=1,.e.,k =1 and 0, = pl-k for i =k, k+1,...,

with 0 < p < 1. 1In this case (2.2) can be written alternatively as

u a first-order autoregressive model with a time delay.

='u +
t P17 Fpx?

The various categories of shocks and their mathematical representa-

tions are summarized in Table 1. Although in practice, we interpret st

in equation (2.2) as a continually perturbed random variable, for these
thought experiments we examine the effect of a one~time unit impulse to
€.+ The solution for y. derived below can be used to calculate the

t

effects on Vi of such single realizations of et.

2.1.,2. Finding the Solution

In order to find a solution for T (that is, a stochastic process
for y; which satisfies the model (2.1) and (2.2)), we begin by repre-

senting Y, in the unrestricted infinite moving average form

]

(2.4) Vo = L Yye g
i=0

Finding a solution for yt +then requires determining values for the
undetermined coefficients vy, such that equation (2.1) and (2.2) are
satisfied. Current and past et represent the entire history of the

perturbations to the model. Equation (2.4) simply states that y, is a

general function of all possible events that may potentially influence




yt+ The linear form is used in (2.4) because the model (2.2) is linear.

Note that the solution for y_ in equation (2.4) can easily be used to

calculate the effect of a one time unit shock to € The dynamic impact
dy

of such a shock is simply - ts

det

To find the unknown coefficients, the most direct procedure is to

= YS.

in (2.1) using (2.4), and solve for the

substitute for y; and By
& t+1

Ys in terms of a, § and ei. The conditional expectation Eyt+l is
t

obtained by leading (2.4) by one period and taking expectations, making

use of the equalities E€t+i =0 for i > 0. The first equality follows
t
from the assumption that st has a zero unconditional mean and is

uncorrelated; the second follows from the fact that for i< 0 is

€o+i

in the conditioning set at time t. The conditional expectation is

(2.5) By, .= ) ¥
t

L€, Lo
T+l 2 1 t-idl

Substituting (2.2), (2.4) and (2.5) into (2.1) results in

o © ) )

(2.6) Loviegg T L Yiep gy * 8 L 8ie e
i=0 i=1 i=0

Equating the coefficients of on both sides of the

ft? Ft-1? 27"t

equality (2.6) results in the set of equations

(2.7) Y, T oavg,, *88, 1=01,2,...
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The first equation in (2.7) for i = 0 equates the coefficients of £

on both sides of (2.6); the second equation similarly equates the co-

efficient for et 1 and SO on.
Note that (2.7) is a deterministic difference equation in the v,
i
coefficients with ei as a forcing variable. This deterministic differ-

ence equation has the same structure as the stochastic difference equation

(2.1). It can be thought of as a deterministic perfect foresight model of
the "variable" Yo Hence, the problem of solving a stochastic difference

equation with conditional expectations of future variables has been con-

2.1.3. The Solution in the Case of Unanticipated Shocks

Consider first the most elementary case where ut = et.v That is,
ei =0 for i » 1. This is the case of unanticipated shocks which are

temporary. Then equation (2.7) can be written

(2.8) Yo = oy * 8.

(2.9) == i=1,2
2-9 Yi+1 - a Y. 1 = [y ge00e

From equation (2.9) all the Y for i > 1 can be obtained once we have
Yy However, equation (2.8) gives only one equation in the two unknowns
Yo and Y Hence without further information we cannot determine the
Yi coefficients uniquely. The number of unknowns is one greater than the
number of equations. This indeterminacy is what leads to non-uniqueness

in rational expectations models and has been studied by many researchers
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including Blanchard (1979), Flood and Garber (1980); McCallum (1983),
Gourieroux, Lafont, and Monfort (1982), Taylor (1977), and Whiteman
(1983).

If |a| < 1 then the requirement that ¥y 1is a stationary process
will be sufficient to yield a unique solutin. (The case where |o| > 1
is considered below in Section 2.1.4.). To see this suppose that
Yl # 0. Since equation (2.9) is an unstable difference equation, the Yi
coefficients will explode as i gets large. But then ¥y would not be a

stationary stochastic process. The only value for Y, that will prevent

the Yi from exploding is Yl = 0., From (2.9) this in turn implies that

Y-

;= 0 for all 1 > 1l. From equation (2.8) we then have that Y = 8.

Hence, the unique stationary solution is simply Yy = Gst. In this case,
dyt+
de

the impact of a unit shock is equal to § for s =0 and is

t

equal to O for s 2 1. This simple impact effect is illustrated in
Figure la. (The more interesting charts in Figures 1b, lec, and 1d will be

described below).

Example: In the case of the Cagan money demand equation this means
that the price p, = (1 + B)-lmt' Because B > 0, a temporary unantici-
pated increase in the money supply increases the price level by less than
the increase in money. This is due to the fact that the price level is
expected to decrease to its normal value (zero) next period, thereby
generating an expected deflation. The expected deflation increases the
demand for money so that real balances must increase. Hence, the price

Py rises by less than m . This is illustrated in Figure 2a.
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For the more general case of unanticipated shifts in wuy that are

expected to phase-out gradually we set ei = pl, where p < l. Equation

(2.7) then becomes
(2.10) L o fe i=0,1,2,3,00.

Again, this is a standard deterministic difference equation. In this more

general case, we can obtain the solution Yi by deriving the solution to
H

the homogeneous part yi ) and the particular solution to the non-homo-

P
geneous part vy, . The solution to (2.10) is the sum of the homogeneous

(H) (P)

solution and the particualr solution Yi =Yy

ity . (see Baumol

(1970) for example, for a description of this solution technique-for

deterministic difference equations). The homogeneous part is

(g) 1 (H) - .
Y- ="y, i=0,1,2,0e0 ,

2.11
( ) i+l a ‘1

: . (H) 1,i+1  (H) . : : - .
with solution Yiel = C;) Yo As in the earlier discussion if
(H)
|a| < 1 then for stationarity we require that v = 0. For any other

0

H
value of Yo the homogeneous solution will explode. Stationarity

H .
therefore implies that yé ) =0 for 1=0,1,2,...

(P)

i
To find the particular solution we substitute Yy = hb into

(2.10) and solve for the unknown coefficients h and b. This gives:

(2.12) b

[
©

§(1 - ap)7L.

=
n
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Because the homogeneous solution is identically equal to zero, the sum of

the homogeneous and the particular solutions is simply

i
(2.13) Y, = -l—-fﬂ—a—p, i=0,1,2,...

In terms of the representation for Iy, this means that

(2.14) y, = Ay

The variable Vi is proportional to the shock uy at all t. The effect

of a unit shock is shown in Figure 1lb. Note that yy follows the

€t

same type of first order stochastic process that ut does; that is,

Get

2.1 = T,
( 5) yt pyt—l + 1 - o

Example: For the money demand example, equation (2.1k) implies that

1 1
(2.16) pt = re (1 T8
1- (l+(3)p

)mt

- Ty

=M+ g(1-p) ™"
As long as p < 1 the increase in the price level will be less than the
increase in the money supply. The dynamic impact on Py of a unit shock

to the money supply is shown in Figure 2b. The price level increases by
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less than the increase in the money supply because of the expected defla-
tion that occurs as the price level gradually returns to its equilibrium
value of 0. The expected deflation causes an increase in the demand for
real money balances which is satisfied by having the price level rise less
than the money supply. For the special case that p =1, a permanent
increase in the money supply, the price level moves proportionately to
money as in the simple quantity theory. In that case there is no change
in the expected rate of inflation since the price level remains at its new

level.

2.1.4. A Digression on the Possibility of Non-Uniqueness

If Ial > 1, then simply requiring that T is a stationary
process will not yield a unique solution. In this case equation (2.9) is
stable, and any value of Yy will give a stationary time series. There
is a continuum of solutions and it is necessary to place additional
restrictions on the model if one wants to obtain a unique solution for the
Yy There does not seem to be any completely satisfactory approach to
take in this case.

One possibility raised by Taylor (1977) is to require that the pro-
cess for Yy have a minimum variance. Consider the case where U, is

uncorrelated. The variance of yt is given by

2 2 2 =1
(2.17) Var y, = yg *+ (YO -8 (a -1) .

where the variance of et is supposed to be 1. The minimum occurs at

Yo = s -2 from which the remaining Yi can be calculated. Although the
o
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minimum variance condition is a natural extension of the stationarity
(finite variance) condition, it is difficult to give it an economic
rationale.

An alternative rule for selecting a solution was proposed by
McCallum (1983), and is called the "minimum state variable technique". 1In
this case it chooses a representation for y, which involves the smallest

number of e, terms; hence, it would give v, = Set- McCallum (1983)

examines this selection rule in several different applications.

Chow (1983, p. 361) has proposed that the uniqueness issue be
resolved empirically by representing the model in a more general form. To
see this substitute equation (2.8) with & = 1 and equation (2.9) into
equation (2.4) for an arbitrary o That is, from equation (2.4) we

write

(2.18) y, = 2 Y

2
(ay; + Deg + vy o + (yy/ade, o + (v /aT)e 5+ «on

-1
Lagging (2.18) by one time period, multiplying by o and subtracting

from (2.18) gives

1

1
(2.19) Vo =g Yooy T lovy + Deg = Te s

which is ARMA (1,1) model with a free parameter Y Clearly if Y, = 0

then this more general solution reduces to the solution discussed above.

But, rather than imposing this condition, Chow (1983) has suggested that
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the parameter Yy be estimated, and has developed an appropriate econo-
metric technique. Evans and Honkapohja (1984) use a similar procedure for
respresenting ARMA models in terms of a free parameter.

Are there any economic examples where |a| > 1? In the case of the
Cagan money demand equation, o = g/(1 + g) which is always less than 1
since B 1is a positive parameter. One economic example where o > 1 is
a flexible-price macroeconomic model with money in the production func-

tion. To see this consider the following equations:

(2.20) m - P =8z, - Bit.
(2.21) 2, = -c(it - (fpt+1 - pt)),
(2.22) z, = d(mt - pt).

where zy 1s real output, 1 is the nominal interest rate, and the
other variables are as defined in the earlier discussion of the Cagan
model., The first equation is the money demand equation. The second equa-
tion indicates that real output is negatively relatéd to the real rate of
interest (an "IS" equation). In the third equation 1z is positively
related to real money balances. The difference between this model and the
Cagan model (in equation (2.3)) is that output is a positive function of
real money balances. The model can be written in the form of equation

(2.1) with

(2.23) o = B i

1+8 - d(a+3c—l)
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Equation (2.23) is equal to the value of ¢ in the Cagan model when

d = 0., In the more general case where d > 0 and money is a factor in
the production function, the parameter o can be greater than one. This
example was explored in Taylor (1977). Another economic example which
arises in an overlapping generation model of money was investigated by
Blanchard (1979).

Although there are examples of non-uniqueness such as these in the
literature, most theoretical and empirical applications in economics have
the property that there is a unique stationary solution. However, some
researchers, such as Gourieroux, Lafont, and Monfort (1982), have even
questioned the appeal to stationarity. Sargent and Wallace (1973) have
suggested that the stability requirement effectively rules out speculative
bubbles. But there are examples in history where speculative bubbles have
occurred and some analysts feel they are.quite common. There have been
attempts to model speculative bubbles as movements of y. along a self-
fulfilling nonstationary (explosive) path. Blanchard and Watson (1982)
have developed a model of speculative bubbles in which there is a positive
probability that the bubble will burst. Flood and Garber (1980) have
exémined whether the periods toward the end of the eastern European hyper-
" inflations in the 1920's could be described as self-fulfilling speculative
bubbles. To date, however, the vast majority of rational expectations
research has assumed that there is a unique stationary solution. For the
rest of this paper we assume that la[ < 1, or the equivalent in higher

order models, and we assume that the solution is stationary.
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2.1.5. Finding the Solution in the Case of Anticipéted Shocks

Consider now the case where the shock is anticipated k periods in
advance and is purely temporary. That is, ut = et " so that ek =1
and ei =0 for 1 # k. The difference equations in the unknown para-

meters can be written as:

(2.2)4) Yi - aYi+l i = o,l,z,..-k—l
1 8
(2.25) Yktl T o'k T o
(2.26) Y =-]-:Y i=k+1 k+2.o'
i+l a'l ’ »

The set of equations in (2.26) is identical in form to what we considered
earlier except that the initial condition is at k + 1. For stationarity

we therefore require that vy 0. This implies from equation (2.25)

K+l

that Yk = §. The remaining coefficients are obtained by working back

using (2.24) starting with Y, = 8. This gives vy, = 5ak-l, i=0,1,2,...k=1,
The pattern of the 0 coefficients is shown in Figure lc. These

coefficients give the impact of Et on  Yiygs for s > 0, or equiv~

alently the impact of the news that the shock uy will occur k periods

later. The size of Yo depends on how far in the future the shock is
anticipated. The farther in advance the shock is known (that is, the

larger is k), the smaller will be the current impact of the news.

Example: For the demand for money example we have

k-1

k
(2027) Pt=6[a€ + o € + see t+ qe

+ £-1 oo (ko1) T Syl
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Substituting o = g/(1+8), & = 1/(1+8), and ¢ = u =m into
(2.27) we get
k

(2.28) Py = (I—_];—B) )

(—B—)k-1
i=0

1+8 My e i®

Note how this reduces to P, = (1 + s)_lm.t in the case of unanticipated
shocks (k = 0), as we calculated earlier. When the temporary increase in
the money supply is anticipated in advance, the price level "jumps" at the
date of announcement and then gradually increases until the money supply'
does increase. This is illustrated in Figure Z2c.

Finally, we consider the case where the shock is anticipated in
advance, but is expected to be permanent or to phase-out gradually. Then,
suppose that ei =0 for i=1,eee,k =1 and ei = pi_k for i » k.

Equation (2.7) becomes

(2.29) Yi = aYi+l i= O,l,E,QQQ,k -1
i~k
(2.30) Yi+1=l<§Y1 - So— i=k, K+ 1,eee .

Note that equation (2.30) is identical to equation (2.10) except that the

initial condition starts at k rather than O. The homogeneous part of

(2.30) is

1
(2.30) v i=k, k+1,0e. .
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H

In order to prevent the Y§ ) from exploding as i 1increases 1t is
H .
necessary that Yi ) = 0. Therefore YiH) =0 for 1=%,k+1,e00 &
P i-k
The unknown coefficients h and b of the particular solution g ) = hb
are
-1
(2.32) h = &(1 - ap)
b=p'

Since the homogeneous part 1s zero we have that

i-k
(2.33) y, =S0— i =K, K+ Lyeee s

i1 - ap

The remaining coefficients can be obtained by using (2.29) backwards

-1
8§(1 - ap) . The solution for yy 1is

i

starting with Yie

5 (k. el
1 -op '*&% 7% S

(2.34) v, + o

tagy w1 Yoep g

After the immediate impact of the announcement, Ve will grow smoothly
-1
until it equals §(1 - op) at the time that wuy increases. The effect

then phases out geometrically. This pattern is 1llustrated in Figure 1d.

Example: For the money demand model, the effect on the price
level pty is shown in Figure 2d. As before the anticipation of an
increase in the money supply causes the price level to Jump. The price

level then increases gradually until the increase in money actually
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occurs. During the period before the actual increase in money, the level
of real balances is below equilibrium because of the expected inflation.
The initial increase becomes larger as the phase-out parameter p gets
larger. For the permanent case where p = 1 the price level eventually

increases by the same amount that the money supply increases.

2.1.6. General ARMA Processes for the Shocks

The above solution procedure can be generalized to handle the case
where (2.2) is an autoregressive moving average (ARMA) model. We consider
only unahticipated shocks where there is no time delay. Suppose the error
process is

(2.40) u = p.u + eee + +eg + 9

u L I 2 +
1 -1 Potp T %t v

+
151 0 "t-q”

an ARMA (p,q) model. The coefficients in the linear process for Uy in

the form of (2.2) can be derived from:

( 4 ) mi_n (J ap)
2.41 6, =y, + .0, . i = 0,1,2,0e0
3 ‘J’J izl pl 51 dJd slycy »d
min (J QP)
8., = .0, . i > q.
; izl I i>aq

where Vg = 1. See Harvey (1981, p. 38), for example.
Starting with j = M = max (p, ¢ + 1) the ej coefficients in

(2.41) are determined by a pth order difference equation. The p initial

conditions (eM 1,...,6M P) for this difference equation are given by

the p equations that preceed the eM equation in (2.41).
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To obtain the vy, coefficients, (2.41) can be substituted into
equation (2.7). As before, the solution to the homogeneous part is
YiH) = (0 for all i. The particular solution to the non-homogeneous part

will have the same form as (2.41) for j > M. That is,

D

(2.42) Y. = ) e;Y,

J. =M, M+l’... L]
45 19t

The initial conditions (YM—l’ . ’YM-p) for (2.42), as well as the
remaining vy values (YM-p—l’ e ’YO)‘ can then be obtained by

substitution of @, for i=0, «ee,M =1 into (2.42). That is,

1 5 o
Yi+1_aYi _aei 1—0,1, es e ,M-lo

(2.43)

Comparing the form of (2.42) and (2.43) with (2.41) indicates that the

Yi coefficients can be interpreted as the infinite moving average repre-
sentation of an ARMA (p, M - 1) model. That is, the solution for yy
is an ARMA (p, M - 1) model with an autoregressive part equal to the
autoregressive part of the u, process defined in equation (2.40). This
result is found in Gourieroux, Laffont, and Monfort (1982). The methods.
of Hansen and Sargent (1980) and Taylor (1980a) can also be used to com-

pute the ARMA representations directly as summarized in Section 2.4 below.

Example p =3, g = 1: In this case M = 3 and equation (2.41)

becomes

(2.4k) 9

1l
[

8, =¥ * p18
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= +
O, = P18, * 058,

O = p185.1 * poBy o * 038 o i=3,kh,...
The +y coefficients are then given by
2.k = + + i = cos
(2.45) Yo TPYi T PRV T P3Yy 3 L= 3h,

and the initial conditions . and are given solving the

three linear equations

1 8
(2.46) Ny

1
Yo T Y1 "§(¢1 * pq)

(py = o )7

Yo (oovy *+ o375 = 2ley * py¥y * pp))e
Equations (2.45) and (2.46) imply that Ve is an ARMA (3,2) model.

2.1.7« Different Viewpoint Dates

In some applications of rational expectation models the forecast of
future variables might be made at different points in time. For example,

a generalization of (2.1) is

(2.47) ¥y, = a, By + 0. E y +a E y +u.
t 1tt t+1 2t-1 t+1 3t—l t t

Substituting for yt and expected yt from (2.4) into (2.47) results in

a set of equations for the vy coefficients much like the equations that
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we studied above. OSuppose u, = ey 4 + ét’ Then, the equatbtions for ¥
are

48 = +
(2.48) Yo = Y 6

( 1-03___ dQl

Yivl T + Yy~ +
i+l al a2 1 a Q

i = l,2,."

Hence, we can use the same procedures for solving this set of difference

equations. The solution is

<
]

bp +
a p §

b i=1,2,0e0

<
l

- pa.). Note that this reduces to (2.13) when

where b = §/(1 - a, - pa 1

3 2

2.1.8. Geometric Interpretation

The solution of the difference equation (2.T) that underlies this
technique has an intuitive graphical interpretation which corresponds to
the phase diagram methods used to solve continuous time models with
rational expectations. (See Calvo (1980) or Dixit (1980) for example).

Equation (2,7) can be written

(2.49) Yiel ~ Y T (Z=-1)y, == 0 i=0,1,ee0
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The set of wvalues for which Yy is not changing are given by setting the

right-hand side of (2.49) to zero. These values of (yi, ei) are plotted
i

in Figure 3. In the case where 8; =p » for 0 <p <1 there is a

difference equation representation for ei of the form

(2.50) 8., -8 = (p - l)ei

where 90 = 1, The set of points where ©0 is not changing is a vertical
line at ei = 0 in Figure 3. The forces which move vy and 8 in
different directions are also shown in Figure 3. Points above (below) the

upward sloping line cause Yi to increase (decrease). Points to the

right (left) of the vertical line cause ei to decrease (increase). 1In

order to prevent the Y from exploding we found in Section 2.1.3 that it

)
was necessary for Yi T71 - o Gi. This linear equation is shown as the

T - o
straight line with the arrows in Figure 3. This line balances off the
unstable vertical forces and uses the stable horizontal forces to bring
Y; back to the values N =0 and ei =0 and 1 » ». For this reason
it is called a saddle point and corresponds to the notion of a saddle path
in differential equation models (see Birkhoff and Rota (1962), for
example).

Figure 3 is special in the sense that one of the zero-change lines
is perfectly vertical. This is due to the fact that the shock variable

ug 1s exogenous to yy. If we interpret (2.1) and (2.2) as a two

variable system with variables yt and ut as the two variables, then

the system is recursive in that wuy affects Vi in the current period
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and there are no effects of past yy on u.- In Section 2.2 we consider
a more general two variable system in which wuy 1s endogenous.

In using Figure 3 for thought experiments about the effect of one

Vrs S,
and 6, 1is .
i dsi

The vertical
dei

time shocks, recall that Y; is

axis thereby gives the paths of the endogenous variable yt corresponding
to a shock e, to the policy equation (2.2)., The horizontal axis gives
the path of the policy variable. The points in Figure 3 can be therefore

viewed as displacements of yt and u from their steady state values in

t
response to a one-time unit shock.

The arrows in Pigure 3 show that the saddle path line must have a
slope greater than zero and a slope less than the zero-change line for
Y. That is, the saddle path line must lie in the shaded region of Figure
3. Only in this region is the direction of motion toward the origin. The
geometric technigue to determine whether the saddle path is upward or
downward sloping 1is frequently used in practice to obtain the sign of an
impact effect of policy. (See Calvo (1980), for example).

In Figure 4 the same diagram is used to determine the qualitative
movement of T in response to a shock to u which is anticipated k
periods in advance and which is expected to then phase out
geometrically. This is the case considered above in Section 2.1.5. The
endogenous variable y initially jumps at time O when the future
increase in u becomes known; it then moves along an explosive path
through period k when u increases by 1 unit. From time k on the

motion is along the saddle path as y and u approach their steady state

values of zero.
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In many economic applications the forcing variables are
nonstationary. For example the money supply is a highly nonstationary
series. One typically wants to estimate the effects of changes in the
growth rate of the money supply. What happens when the growth rate is
reduced gradually? What if the reduction in growth is anticipated?
Letting wug be the log of the money supply my, these alternatives can be
analyzed by writing the growth rate of money as gy = M - m.t_1 and

assuming that

g ) + € .

= olg £-2 t-k

& T 841 t=1

Thus, the change in the growth vate is anticipated k periods in
advance. The new growth rate is phased in at a geometric rate p. By

solving the model for the particular solution corresponding to this

equation, one can solve for the price level and the inflation rate. 1In
this case, the inflation rate is nonstationary, but the change in the

inflation rate is stationary.

2.2. Bivariate Models

Let Y1t and Yot be given by

= + + +
Y1t “1f Vieer T Brovoe-1 T PraYora T A%
2.51 = o B + + + S.u ,
(2.51) Yoo = @B Vi ¥ Bog¥iy T BoVorg %
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where uy is a shock variable of the form (2.2). Model (2.51) is a
special bivariate model in that there are no lagged values of ylt and no
lead values of yo. This asymmetry is meant to convey the continuocus
time idea that one variable Y1t is a "jump" variable, unaffected by its
past while Yy, is a more slowly adjusting variable that is influenced by
its past values. Of course in discrete time all variables tend to jump
from one period to the next so that the terminology is not exact.
Nevertheless, the distinction is important in practice. Most commonly,
I1¢ would be a price and ypy & stock which cannot change without large
costs in the short run.

We assume in (2.51) that there is only one shock Uy . This is for
notational convenience. The generalization to a bivariate shock (u., , u_ )

1t 2t

where u appears in the first equation and u in the second equation

1t 2t

is straightforward, as should be clear below.
Because (2.51) has this special form it can be reduced to a first

order 2-dimensional vector process:

1 - E
811 Y1t % B0 . Y1441
(2.52) =
-Boo  ~Bo1 Yot-1 ap -1 Yo,
8
+ 1 u
s +
2

This particular way to construct a first order process follows that of

Blanchard and Kahn (1980). A generalization to the case of viewpoint

R
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dates earlier than time t 1is fairly straightforward. If ylt 1 or

By, 4,3 &lso appeared in (2.51) then a first-order model would have to be
t

more than 2 dimensional.

2.2.,1., Some Examples

There are many interesting examples of this simple bivariate model.

Five of these are summarized below.

Example 1: Exchange Rate Overshooting. Dornbusch (1976) considered

the following type of model of a small open economy (see also Wilson
(1979) and Buiter and Miller (1983)):
m - p, = -a(Ee -e )

t £ t+1 t

P - Py_p = Bleg - py)

where ey is the log of the exchange rate, and Py and m are as
defined in the Cagan model. The first equation is simply the demand for
money as a function of the nominal interest rate. In a small open economy
with perfect capital mobility the nominal interest rate is equal to the
world interest rate (assumed fixed) plus the expected rate of depreciation

Ee - e o+ The second equation describes the slow adjustment of prices

+
£ t+l

in response to the excess demand for goods. Excess demand is assumed to
be a negative function of the relative price of home goods. Here prices

adjust slowly and the exchange rate is a jump variable, This model is of




-30-

. ‘ 1 _ _1
the form (2.52) with Yip = €42 Ypp = Pyo @ = 1, Big = - 2> Bl = 0, § = o
_ R - R _
ap = 05 Byg =T 4 g By 7T + > 827 O

Example 2: Open Economy Portfolio Balance Model. Kouri (1976),

Rodriquez (1980), and Papell (1984) have considered the following type of

rational expectations model which is based on a portfolio demand for foreign

assets rather than on perfect capital mobility:

+ = - +
& * Ty “(E Sa1 ” %) T Y
£y = fy_q = Bey.

The first equation represents the demand for foreign assets fi (in logs)
evaluated in domestic currency, as a function of the expected rate of
depreciation. Here ug is a shock. The second equation is the "current
account" (the proportional change in the stock of foreign assets) as a
function of the exchange rate. Prices are assumed to be fixed and out of the

picture. This model reduces to (2.52) with ¥ ft’ o = all+a),

1w St Yot
Blo = l/(l+a), Bll = O’ 61 = l/l+a, a2 = Oa 520 = B, 621 = '19 62 = 0.

Example 3: Money and Capital. TFischer (1979) developed the following

type of model of money and capital.

=Yk

]
I

= ~(vlk
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o - Py T "alfrt+1 - aa(fpt+1 - )ty

ke = b1frt+1 + be(fpt+1 - py) * Ve

The first two equations describe output yt and the marginal efficiency of
capital r, as a function of the stock of capital at the end of period t -
1. The third and fourth equations are a pair of portfolio demand equations
for capital and real money balances as a function of the rates of return on
these two assets. ILucas (1976) considered a very similar model. Substituting

the first two equations into the third and fourth we get model (2.52) with

_ . S Lot LA S
Y1t T Pg> Yop = Ko 0 S 7% a,’ B1o T 1 + a, ° 812 =0- 8 =77 2,
b -b

_ 2. _ 2 _ X
%7 (1 +b (1-y)) Bop = (1 + b (1 -y)) Boy =1 + b (1 - )

: t 1. d = +
Example k4 Staggered Contracts Mode The model yt alfyt+l a2

+ Gut of a contract wage yy can occur in a staggered wage setting model

Vi1

as in Taylor (1980a). The future wage appears because workers and firms
forecast the wage set by other workers and firms. The lagged wage appears
because contracts last two periods. This model can be put in the form of

(2.54) by stacking the y's into a vector:

1 ~% I 3 0 Eyt+l §
- + u .
-1 0 Vi1 0 -1 Yy 0
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Example 5: Optimal Control Problem. Hansen and Sargent (1980)

consider the following optimal control problem. A firm chooses a contin-
gency plan for a single factor of production (1abor) ng to maximize

expected profits

[

J & - 2.
: jzo B (2o ¥iey = 200y = Berger)” T Veasheay!
subject to the linear production function yt = Ynt' The random vari-

ables pt and wy are the price of output and the wage, respectively.

The first order conditions of this maximization problem are:

=8
- + + = -
B Pen (1 + ghng +n 5 =5lwg - vpy)e
This model is essentially the same as that in Example (k) where u, =W, - yp,.

2.2.2. Finding the Solution

Equation (2.52) is a vector version of the univariate equation
(2.1). The technique for finding a solution to (2.52) is directly
analogous with the univarite case.

The solution can be represented as

(2.53) ylt .Z Y13€4o4
i=0

o

L Ypigp_s

y
2 120
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These representations for the endogenous variables are an obvious

generalization of equation (2.k4).

Utilizing matrix notation we rewrite (2.52) as

(2.54) th = szt+l + sut
2. E = Az + 4
(2.55) tzt+l v T

where the definitions of the matrices B and C, and the vectors =z and
8§ in (2.54) should be clear, and where 4 = c-l B and d = —C—16- Let

v, = (Yli’ 721_1)', i=0,1,2,... and set o1 = 0. Substitution of

(2.2) and (2.53) into (2.55) gives
(2.56) Yiep = Avg + dey i=0,1,2,...

Equation (2.56) is analogous to equation (2.7). For i = 0 we have three

kno 1 ts of the unknown tors = 0)' d = '.
unknown elemen un vectors vy, (Ylo’ )' an ] (Yll’ 720)
10° Y11 and Yo However, there are only two

equations (at i = 0) in (2.56) that can be used to solve for these three

The 3 unknowns are vy

parameters. Much as in the scalar case considering i =1 gives two more

equations, but it also gives two more unknowns (y ); the same is

12° To1
true for 1 =2 and so on. To determine the solution for the Y;
process we therefore need another equation. As in the scalar case this
third equation comes by imposing stationarity on the process for ylb

and ypy oOr equivalently in this context by preventing either element of

Y4 from exploding. For uniqueness we will require that one root of A
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be greater than one in modulus, and one root be less tﬁan one in modulus.
The additional equation thus comes from choosing vy, = (y11» Yog!'

so that Yy does not explode as i » ». This condition implies a unique
linear relationship between Y11 and Yo0° This relationship is the

extra equation. It is the analogue of setting the scalar Yl =0 in

model (2.1).
-1
To see this, we decompose the matrix A into H A H vwhere J 1is

a diagonal matrix with Xl and A2 on the diagonal. H is the matrix

whose rows are the characteristic vectors of A. Assume that the roots

are distinct and that lxll >1 and lle <1l. Let u = ("11’ “21)' = Hy, .
Then the homogeneous part of (2.56) is
(2.57) Yi+l = AHY:.L 1= 1,2,.0.,
so that

Mol = Aui 1= 1,2,000,
or
(2.58) uli+l = Aluli P 1,2,..0.

Moja1 T Aaboy i=1,2,...

For stability of Mg as 1 + » we therefore require that g =0

which in turn implies that My T 0 for all i > 1l. In other words we

want
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(2.59) =h 0

Hyp = BygY¥ep T BioYpo T

h. ) 1is the first row of H and is the characteristic

where (hll, 10

vector of A corresponding to the unstable root Al. Equation (2.59) is
the extra equation. When combined with (2.56) at i = 0 we have 3 linear

equations that can be solved for and Y20- From these we can

Ylo b4 Yll ?
use (2.56) or equivalently (2.58) to obtain the remaining vy, for 1 > 1.
i

In particular yu N = 0 1implies that

—42
2.60 Y. = - Y i = vee
( ) 1i hl] 2i-1 + 1,2, ?

From the second equation in (2.58) we have that

+ = .
By Yie1 ¥ BonYoy = AalBpyYpg + Bog¥py o)

Substituting for . and . from (2.60) this gives
Y1141 Y11

(2.61) i=0,1,2,e0e

Yoie1 - PoYoi

Given the initial values Y2l we compute the remaining coefficients from

(2.60) and (2.61).

2.2.3. The Solution in the Case of Unanticipated Shocks

When the shock u, is unanticipated and purely temporary, eo =1

and 6. =0 for all i > O. In this case equation (2.56) for 1 =0 is
i
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(2.62) Yi1 = 211¥10 T 4

d

+
Yoo = %o1Y10 T %2

and the difference equation described by (2.56) for i > 0 is
homogeneous. Hence the solution given by (2.60), (2.61), and (2.62) is
the complete solution.

For the more general case where 8, = pi, equation (2.62) still
holds but the difference equation in (2.56) for i 2 1 has a nonhomoge-
neous part. The particular solution to the nonhomogeneous part is of the
form yiP) = gbi where g is a 2 x 1 vector. Substituting this form
into (2.56) for i > 1 and equating coefficients we obtain the particular
solution

(2.63) yép) = (pI - A)'ldpl, 1= 1,2,00

Since equation (2.60) is the requirement for stability of the homogeneous

(8) _

solution, the complete solution can be obtained by substituting Y11

(P) (7) (P)

Yyp - Y17 @4 Yog = Ypg < Ypo oINPT (2.59) to obtain

h
(p) _ _ 22 (P)
(2.64) Y1171 T Thy, (vp = ¥20" )+

Equation (2.6L4) can be combined with (2.62) to obtain yj5, Y17»> and Ypge
The remaining coefficients are obtained by adding the appropriate elements

of particular solutions (2.63) to the homogeneous solutions of (2.61) and

(2.62).
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2.2.4., The Solution in the Case of Anticipated Shocks

For the case where the shock is anticipated k periods in advance,
but is purely temporary (eo =0 for i = 1,0,k -1, ei =0 for

i=k+ 1,0..), we break up the difference equation (2.56) as:

(2'65) Yi+l = AYi i = O, l,..o,k - l
2.66 = Ay + d

(2.66) Yee1 - x

(2.67) Yi+l = Ayi i=k+1, K+ 2,e00

Looking at the equations in (2.67) it is clear that for stationarity,

= ' must satis the same relationship that the vector
st = Viear Yo ty P
'Y satisfied in equation (2.60). That is,
(2.68) Yiias = = 12 Yoo
1k+1 hll 2k

Once Yo and Yik+1 have been determined the Y values for 1 >k can

be computed as above in equations (2.60) and (2.61). That is,

h
_ L2 .
(2.69) Y1441 = Yoi 1= Kyeee
il
(2.70) Yoie1 = AoYos i=Kk,eee
To determine Yo and Ve V€ solve equation (2.68) jointly with the

2(k + 1) equations in (2.65) and (2.66) for the 2(k + 1)+1 unknowns

Y ,.'.,Y

00 o (Note how this reduces to the result

RER ARSI ¥SY
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obtained for the unanticipated case above when k = 0). A convenient way

to solve these equations is to first solve the three equations consisting

of the two equations from:

k+l

Y41

(obtained by "forecasting" y; out k periods) and equation (2.66) for
Yor> Yik+l and Yi0° Then the remaining coefficients can be obtained
from the difference equations in (2.65) starting with the calculated value
for .

Y10

. k-i

The case where ei =0 for i=1, eee sk -1 and ek = p for
i =%k, k =1 can be solved by adding the particular solution to the non-
homogeneous equation

(i-k)

(2.72) = Ayi + dp i=k, k+1, k +2,...

Yisl

in place of (2.67) and solving for the remaining coefficients using

equation (2.65) and (2.66) as above. The particular solution of (2.72) is

-1 i
(2.73) y. = (pI - A) "dp i=k, k+1, k+2,...

2,2.5. The Exchange Rate Overshooting Example

The preceeding calculations can be usefully illustrated with Example
1 of Section 2.2.1.: the two variable "overshooting" model in which the
exchange rate (y1t = et) is the jump variable and the price level
(y2t = Pt) is the slowly moving variable. For this model equation (2.55)

is
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E
tet+l %

(2.74) = A + dmt
Py Py 1

where the matrix

Q|-

1+ 3(1+§)
(2.75) A=

|

B

1
and the vector 4 = (- =, 0)'. Suppose that o =1 and B = 1. Then the
a

characteristic roots of A are
(2.76) A =1+ =707

The characteristic vector associated with the unstable root is obtained

from
2e h h A= h h
(2.77) ( 11’ 12) Al( 11° 12)
this gives _hl2/hll = -0.414 so that according to equation {2.61) the

coefficients of the (homogeneous) solution must satisfy

2. = -0.41kh i = 0,1,2,e00
(2.78) Y1141 oy 1=0,1.2,
Using the stable root we have

(2.79) Yoiey = 002937, i=0,1,e0.
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-1 _ i-k
The particular solution is given by the vector (pI - A) dp as in

equation (2.73). That is

ik
(p) _ (. 5=p)a> o
(2.81) Yli = (l's_p)(.s_p)_.zs 1= k, k + l, k + 2,-..
i-k
(2.82) (P) =220 =k, k+1, K+ 2.0

Y2121 © (1.5-p)(:5-p)=+25

where k 1is the number of periods in advance that the shock to the money
supply is anticipated (k = 0 for unanticipated stocks).

In Tables 2,3, and 4 and in Figures 5,6, and T, respectively, the
effects of temporary unanticipated money shocks (k =0, p =0),
permanent unanticipated money shocks (k = 0, p = 1), and permanent money
shocks anticipated 3 periods in advance (k =3, p=1) are shown. In
each case the increase in money is by 1 percent.

A temporary unanticipated increase in money causes the exchange rate
to depreciate (e rises) and the price level to increase in the first
period. Subsequently, the price level converges monotonically back to
equilibrium. In the second period, e falls below its equilibrium value
and then gradually rises again back to zero. (Table 2 and Figure 5).

A permanent unanticipated increase in money of 1 percent eventually
causes the exchange rate to depreciate by 1 percent and the price level to
rise by 1 percent. But in the short run e rises above the long-run
equilibrium and then gradually falls back to zero. This is the best

illustration of overshooting. (Tables 3 and Figure 6).
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If the increase in the money supply is anticipated in advance, then
the price level rises and the exchange rate depreciates at the announce-
ment date. Subsequently, the price level and e continue to rise. The
exchange rate reaches iﬁs lowest value (e reaches its highest value) on
the announcement date, and then appreciates back to- its new long-run value
of 1. (Table 4 and Figure 7). Note that p and e are on explosive

paths from period 0 wuntil period 3.

2.2.6. Geometric Interpretation

The solution of the bivariate model has a helpful geometric
interpretation. Writing out equation (2.56) with ei = 0 in scalar form
as two different equations and subtracting Y14 and Y2i-l from the
first and second equation respectively results in

_(2.83) Y1441 % Y9441 ~ Y11 T (a3-1)vyy + @ypvp;

BYpy = Yoy = Ypyg = 8p;Yyg * (Bppl)vpy g

According to (2.83) there are two linear relationships between Y14

3 = - . 3 - = O
and Yoi-1 consistent with no change in the coefficients: AYli=l
and Aypy = 0. For example, in the exchange rate model in equation

(2.74), the equations in (2.83) become

1

_ . B 1
(2f8“) AY1i41 = G(T+g) Y1i * o(1+g) Y2i-1

__8 . __8
BYo; T+ Y11 ~1 + g Yoi-1®
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The two no-change lines are

1
(2.85) Y13 T T g Yaia
Y11 T Yei-l

and are plotted in Figure 8. The arrows in Figure 8 show the directions
of motion according to equation (2.84) when the no-change relationships in
(2.85) are not satisfied. It is clear from these arrows that if the vy
coefficients are to converge to their equilibrium value (0,0) they must
move along the "saddle point" path shown by the darker line in Figure 8.
Points off this line will lead to ever-increasing values of the y
coefficients. The linear combination of Y14 and Yoi.1 along this
saddle point path is given by the characteristic vector associated with
the unstable root A, as given in general by equation (2.60) and for this
example in equation (2.78). Note how Figure 8 immediately shows that the
saddle point path is downward sloping. In Figure 9 the solution values
for the impacts on the exchange rate and the price level are shown for the
case of a temporary shock as considered in Table 2 and Figure 5. 1In
Figures 10 and 11, the solution values are shown for the case where the
increase in money is permanent. The permanent increase shifts the
reference point from (0, 0) to (1, 1). The point (1, 1) is simply the
value of the particular solution in this case. Figure 10 is the case
where the permanent increase is unanticipated; Figure 1l is the

anticipated case.

)
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Note that these diagrams do not give the impact on the exchange rate

and the price level in the same period; they are one period out of
synchronization. Hence, the points do not correspond to a scatter diagram

of the effects of a change in money on the exchange rate and on the price

level. It is a relatively simple matter to deduce a scatter diagram as

shown by the open circles in Figure 10 and 11.

2.3. The Use of Operators, Generating Functions, and z-transforms

As the previous sections have shown, the problem of solving rational
expectations models is equivalent to solving nonhomogeneous deterministic
difference equations. The homogeneous solubion is obtained simply by
requiring that the stochastic process for the endogenous variables be
stationary. Once this is accomplished, most of the work comes in
obtaining the particular solution to the nonhomogeneous part. Lag or lead
operators, operator polynomials, and the poﬁer series associated with
these polynomials (i.e., generating functions or z-tranformations) have
frequently been found useful in solving the nonhomogeneous part of
difference equations (see Baumol (1970), for economic examples). These
methods have also been useful in rational expectations analysis. Futia
(1981) and Whiteman (1983) have exploited the algebrea of z~-transforms in
solving a wide range of linear rational expectations models.

To illustrate the use-of operators, let stt = X be the forward
lead operator. Then the scalar equation in the impact coefficients that

we considered in equation (2.7), can be written

(2.86) (1 - oF)y, = 86, 1 =0, 1,2,e00
1 L
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i
Consider the case where ei = p and solve for Yi by operating on both

sides by the inverse of the polynomial (L - aF). We then have

i
(2.87) Yy T Ig%"ZF
i
= Ao 1=0,1, 2,00
1l - ap

The last equality follows from the algebra of operator polynomials (see
for example Baumol (1970)). The result is identical to what we found in
Section 2.1 using the method of undetermined coefficients to obtain the
particular solution. The procedure easily generalizes to the bivariate
case and yields the particular solution shown in equation (2.63). It also
generalizes to handle other time series specifications of ei.

The operator notation used in (2.86) is standard in difference
equation analysis. In some applications of rational expectations models,

a non-standard operator has been used directly on the basic model (2.1).

To see this redefine the operator F as FE y = Ey . That is, F

£ t £ t+1

moves the date on the variable but the viewpoint date in the expectation

is held constant. Then equation (2.1) can be written (note that

(2.88) (1 - aF)Eyt = 8
t

Formally, we can apply the inverse of (1 - of) to (2.88) to obtain
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(2.89) By, s(1 - aF)'lut

§(1 + of + (aF)2 +oeeddug

2
§u, + “f“t+1 tam Bug, toeee)

2

l~apt
and where we again assume that w o =opu ot Equation (2.89) gives the same
answer that the previous methods did (again note that Eyt = yt).
t

As Sargent (1979, p. 337) has discussed, the use of this type of operator

on conditional expectations can lead to confusion or mistakes, if it is
interpreted as a typical lag operator that shifts all time indexes,

including the viewpoint dates. The use of operators on conventional

difference operations like (2.6) is much more straightforward, and perhaps
it is best to think of the algebra in (2.88) and (2.89) in terms of (2.86)
and (2.87). | |

Whiteman's (1983) use of the generating functions associated with
the operator polynomials can be illustrated by writing the power series

corresponding to equations (2.2) and (2.h4):

[ ]

Y Y%
i=0 *

i

v(z)

6(z)

[
o~
[<>]
]
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These are the z-transforms (see Dhrymes (1971) for a short introduction to
z-transforms and their use in econometrics). Equating the coefficients of
€p_s in equation (2.6) is thus the same as equating the coefficients of
powers of z. That is, (2.6) means that

(2.90) z) = a2 (y(z) = v,) + so(z).

Solving (2.90) for v(z) we have

(2.91) Yz = (- a2 (yg - sa ze(2))

As_in Section 2.1, equation (2.91) has a free parameter YO which must be
determined before v(z) can be evaluated. For y, to be a stationary
process, it is necessary that v(z) be a convergent power series (or
equivalently an analytic function) for |z] < 1. The term (1 - afl z)_l
on the right-hand side of (2.91) is divergent if a-l > 1. Hence, the
second term in parentheses must have a factor to "eancel out" this
divergent series. For the case of serially uncorrelated shocks, o(z) is
a constant eo = 1 so that it is obvious that YO = § will cancel out
the divergent series. We then have y(z) = § which corresponds with the
results in Section 2.1. Whiteman (1983) shows that in general v(z)

will be convergent when |af <1 if o = §6(a). For the unanticipated
autoregressive shocks this implies that y(z) = s(1 - pa)~l (1 - pz)

which is the z-transform of the solution we obtained earlier. When

la] > 1 there is no natural way to determine Yo? so we are left with

non-uniqueness as in Section 2.1.
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2.4, Higher Order Representations and Factorization Techniques

We noted in Section 2.2 that a first-order bivariate model with one
lead variable could be interpreted as a second-order scalar model with a
lead and a lag. That is,
(2.92) v, =a.Ey, . tay su

= +
t lt t+1 2 t-1 t

can be written as a bivariate model and solved using the saddle point
stability method. An alternative approach followed by Sargent (1979),
Hansen and Sargent (1980) and Taylor (1980a) is to work with (2.92)

directly. That the two approaches give the same result can be shown

formally.
i d E i ti 2.92 i
Substitute for A an E Vop 10 equation (2.92) using
(2.4) to obtain the equations
(2.93) Y - (Y, - 86,)
1 Y0 0
1
1 % 5
(2.9)4‘) Yi+l = al Yl - (!l Yi—l - al 61 1= 1, 2, X

As above, we need one more equation to solve for all the vy
coefficients. Consider first the homogeneous part of (2.94). TIts

characteristic polynomial is

{2.95) 725 -z

which can be factored into
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(2.96) (xl - Z)(A2 - z)

where Al and A2 are the roots of (2.95). The solution to the homo-

(H)
y

geneous part is = klxi + k2x1. As we discussed above, in many

economic applications one root, say kl’ will be larger than 1 in
modulus and the other will be smaller than 1 in modulus. Thus, the
desired solution to the homogeneous part is achieved by setting kl =0

H i
so that Yi ) = k2x2 where ko equals the initial condition YéH)

Equivalently we can interpret the setting of k1 = O as reducing the

characteristic polynomial (2.95) to (z - A2). Thus, the vy coefficients

satisfy

(2.97) Yy T A i=1,2, ...

Equivalently, we have "factored out" (z - Al) from the characteristic

polynomial.

For the case where u, is uncorrelated so that 6 =0 for
i

i > 0, difference equation in (2.94) is homogeneous. We can solve for
Yo by using Y, = X2Y0 along with equation (2.93). This gives

-1 1 .
Yo = 8(1 - alxe) A5 i =0, 1,00

To see how this result compares with the saddle-point approach,

write (2.94) as

i % 5
T4l o) & i oy
(2.98) = - 0, i =1, 2, eeo
Yy 1 0 Yio1 0
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o
1 2
The characteristic equation of the matrix A 1is A2 - A ~-—=0.

a
Hence, the roots of A are identical to the roots of thi char:zteristic
polynomial associated with the second-order difference equation (2.94).
(This is a well-known resﬁlt shown for the general pth order difference
equation in Anderson (1971)).

The characteristic vector of the matrix A associated with the

tabl t is d £ h ti h h A= h h .
unstable roo xl is found from the equation ( 11° 12) Al( 11° 12)

Thus, the saddle point path is given by

[

: 12 1
(2.99) Yo = -y o= (= A) v
i hll i-1 ay 1 i-1
For the two methods to be equivalent, we need to show that (2.97)
1
and (2.99) are egquivalent, or that A2 == - xl. This follows
a
1
immediately from the fact that the sum of the roots (Al + xz) of a

second-order polynomial equals the coefficients of the linear term in the

ial: + = -,
polynomial Al A2

i
For the case where ei = p , wWe need to compare the particular

solutions as well. For the second-order scalar model we guess the form
i
Y = ab . Substituting this into (2.94) we find that b = p and

a = §(1 - ap - a2p_1)_l. To see that this gives the same value for the

particular solution that emerges from the matrix formulation in equation

(2.63), note that
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-1
1 e} 8
o - - - S
-1 " E 1 i
(2.100) (pI = A) "dp™~ = P
-1 p 0
- 8
- 1 % o
2_L 2 8
R -
1 1 ol
i ' ) : A (r) (P)
Equation (2.100) gives the particular solution for the vector (Yi _— l)'
(P)
which corresponds to the vector y; in equation (2.63). Hence
-1 i
() ~poy
Yi T 1

2 -1 -
p = poy toapey

i
[oYe)

1 - oap - 029~l
which is the particular solution obtained from the second-order scalar
representation.

Rather than obtaining the solution of the homogeneous system by
factoring the characteristic equation, one can equivalently factor the
polynomial in the time shift operators. Because the operator polynomials
also provide a convenient way to obtain the nonhomogeneous solution (as
was illustrated in Section 2.3), this approach essentially combines the
homogeneous solution and the nonhomogeneous solution in a notationally and

computationally convenient way.
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Write (2.94) as

o
(o) (rteio By od
L I
1_1,%2
Let H(L) =L~ - + L be the polynomial on the left-hand side of
a a
1 1
a
(2.101) and let P(z) = 22 - ir‘z +‘;2 be the characteristic polynomial
1 1

in (2.95). The polynomial H(L) can be factored into

(2.102) p(l - ¢L-1)(1 - L)

-1 -1 -1
where ¢ =-p , ¢ = -u a0 > and where p 1is one of the solutions of

P(y) = 0; that is one of the roots of P(.). This can be seen by

equating the coefficient of H(L) and the polynomial in (2.102).

Continuing to assume that only one of the roots of P(+) 1is greater than

one in modulus (say Al) we set ¢ = AI < 1. Since the product of the

roots of P(e) equals we immediately have that ¢ = 12- Thus,

2%
there is a unique factorization of the polynomial with ¢ and ¢ both
less than one in modulus.

Because ¢ = x2, the stable solution (2.97) to the homogeneous

difference equation can be written

(2.103) (1 - ¢L)y§H) = 0.
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The particular solution also can be written using the operator notation:

-1 1i

(2.10k4) LB Sy P .
* u(l - ¢L‘1)(1 - L)

The complete solution is given by Y = YiH) + YéP) which implies that
(H) -1, (P)
(2.105) (1 = agh)y; = (L= agL)yy ~ + (1= a0 y; e

The first term on the right-hand side of (2.105) equals zero. Therefore

the complete solution is given by

-1 i
qu p

T A1,
Al(l - A L )

-1 i
Gal p

- e e

-1

=AYyt

This solution is equivalent to that derived by adding the particular
solution in (2.101) to the solution of the homogeneous solution of (2.97).
Note that this procedure for solving (2.101) can be stated quite
simply in two steps: (1) factor the lag polynomial into two stable
polynomials, one involving positive powers of L (lags) and the other
involving negative powers of L (leads), and (2) operate on both sides of
(2.101) by the inverse of the polynomial involving negative powers of L.
It is clear from (2.100) that the Yy weilghts are such that the
solution for y¢ can be represented as a first-order autoregressive

process with a serially correlated error:
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~1 -1
2. = -
(2.107) Yo = A¥y_q * Sy (A = p) g

where u = pu +
b Plgel T Bt

In the papers by Sargent (1979), Taylor (1980a) and Hansen and
Sargent (1980), the difference equation in (2.101) was written

= and = Eu a form which can be obtained by taki
Y fyt+i % MR v neé

conditional expectations in equation (2.92). In other words rather than
working with the moving average coefficients they worked directly with the
conditional expectations. As discussed in Section 2.3 this requires the

use of a non-standard lag operator.

2,5 Rational Expectations Solutions as Boundary Value Problems

It is useful to note that the problem of solving rational
expectations models can be thought of as a boundary value problem where
final conditions as well as initial conditions are given. To see this

consider the homogeneous equation

(2.108)

1 .
Yivl = o Vi i=0, 1,..0

The stationarity conditions place a restriction on the "final" value

lim y, = O rather than on the "initial" value Yo° As an approximation
Joee

we want Yj = 0 for large Jj. A traditional method to solve boundary
value problems is "shooting": One guesses a value for Yo and then uses
(2.108) to project (shoot) a value of Y, for some large J. If the

resulting Y3 # 0 (or if Yj is further from O than some tolerance

range) then a new value (chosen in some systematic fashion) of Y, is
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tried until one gets Yj sufficiently close to zero. It is obvious in
this case that g = 0 so it would be impractical to use such a method.
But in nonlinear models the approach can be quite useful as we discuss in
Section 6.

This approach obviously generalizes to higher order systems; for
example the homogeneous part of (2.94) is

o

Yi 4 = Y: - Yi_
i+l al i al i-=1

(2.109) i=0,1, 2,eee

with Y = 0 as one initial condition and Yj = 0 for some large J as
the one "final" condition. This is a two point boundary problem which can

be solved in the same way as (2.108).

3. Econometric Evaluation of Policy Rules

Perhaps the main motivation behind the development of rational
expectations models was the desire to improve policy evaluation
procedures. Lucas (1976) argued that the parameters of the models
conventionally used for policy evaluation--either through model simulation
or formal optimal control--would shift when policy changed. The main
reason for this shift is that expectations mechanisms are adaptive, or
backward looking, in conventional models and thereby unresponsive to those
changes in policy that would be expected to change expectations of future
events. Hence, the policy evaluation results using conventional models
would be misleading.

The Lucas criticism of conventional policy evaluation has typically

been taken as destructive. Yet, implicit in the Lucas' criticism is a
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constructive way to improve on conventional evaluation techniques by
modeling economic phenomena in terms of "structural" parameters; by
"structural" one simply means invariant with respect to policy
intervention. Whether a parameter is invariant or not is partly a matter
of researcher's judgment, of course, so that any attempt to take the Lucas
critique seriously by building structural models is subject to a similar
critique that the researcher's assumption about which parameters are
structural is wrong. If taken to this extreme that no feasible structural
modeling is possible, the Lucas critique does indeed become purely
destructive and perhaps even stifling.

Hensen and Sargent (1980), Kydland and Prescott (1982), Taylor
(1982), and Christiano (1983) have examined policy problems where only the
parameters of utility functions or production functions can be considered
invariant or structural. Taylor (1979, 1980b) has considered models where
the parameters of the wage and price setting functions are invariant or
structural.

The thought experiments described in Section 2 whereby muliplier
responses are examined should be part of any policy evaluation
technique. But it is unrealistic to think of policy as consisting of such
one-shot changes in the policy instrument settings. They never occur.
Rather, one wants to consider changes in the way the policymakers respond
to events--that is, changes in their policy rules. For this we can make
use of stochastic equilibrium solutions examined ia Section 2, We

illustrate this below.




-56-

3.1 Policy Evaluation for a Univariate Model

Consider the following policy problem which is based on model
(2.1). Suppose that an econometric policy advisor knows that the demand
for money is given by

(3.1) m - P = - B(fptﬂ - Pt) .

Here there are two shocks to the system, the supply of money mg and the

demand for money U . Suppose that ut = put_1 + et, and that in the
past the money supply was fixed: my = 0; suppose that under this fixed
money policy, prices were thought to be too volatile. The policy advisor
is asked by the Central Bank for advice on how m, can be used in the
future to reduce the fluctuations in the price level. Note that the
policy advisor is not asked just what to do today or tomorrow, but what to
do for the indefinite future. Advice thus should be given as a
contingency rule rather than as a fixed path for the money supply.

Using the solution technique of Section 2, the behavior of Py

during the past is

&y

Conventional policy evaluation might proceed as follows: first, the
econometrician would have estimated p in the reduced form relation (3.2)
over the sample period. The estimated equation would then serve as a
model of expectations to be substituted into (3.1); that is, Ept+1 = op,

t
would be substituted into
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(3.3) m - P

= - - <+ .
, -2, = -8lep, - ) +u

The conventional econometricians model of the price level would then be

m -u

| t t
(3.4) Py =T 7 81 - p)"

Considering a feedback policy rule of the form m = gu . equation (3.4)

implies

1
[1+8(1 - p)]% (1 -p°)

2 2
(3.5) var p, = . [g +1 - 2gp].

If there were no cost to varying the money supply, then equation (3.5)
indicates that the best choice for g to minimize fluctuation in pt is
g = po

But we know that (3.5) is incorrect if g # O. The error was to

assume that Ept+1 = ppt regardless of the choice of policy. This is the
t

expectations error that rational expectations was designed to avoid. The

correct approach would have been to substitute m.t = gut 1 directly into

(3.1) and calculate the stochastic equilibrium for p_. This results in
; 1-p(l-g) . g

(3.6) Py =L +8)(L*p(1p)) % "1 +p %1

Note how the parameters of (3.6) depend on the parameters of the policy

rule. The variance of Py is
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2
(3.7) Var p, = L [(l + 8(1-g))  2g(1 + g(1- + g2] 62.
. k (L +)(1 - p)2 (1 - 3(1_9))2 1 + g(1l-p) €

The optimal policy is found by minimizing Var pg with respect to g.

Suppose that g =1, p = .9, and oi = 1, Then the value of g
that minimizes (3.7) is g = .57 rather than .9 as in the conventional
case. The minimized value of Var py is .52. When p = .9, Var pt = .68.
Using (3.5) the econometrician would have promised Var py = .25,

This simple policy problem suggests the following approach to macro
policy evaluation: (1) Derive a stochastic equilibrium solution which
shows how the endogeneous variables behave as a function of the parameters
of the policy rule; (2) Specify a welfare function in terms of the moments
of the stochastic equilibrium, and (3) Maximize the welfare function
across the parameters of the policy rule. In this example the welfare
function is simply Var p. In more general models there will be several
target variables. For example, in Taylor (1979) an optimal policy rule to
minimize a weighted average of the variance of real output and the
variance of inflation was calculated.

Although equation (3.1) was not derived explicitly from an
individual optimization problem, the same procedure could be used when the
model is directly linked to parameters of a utility function. For
instance, the model of Example (5) in Section 2.2 in which the parameters
depend on a firm's utility function could be handled in the same way as

the model in (3.1).
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3.2 The Lucas Critique and the Cowles Commission Critique

The Lucas critique can be usefully thought of as a dynamic extension
of the critique developed by the Cowles Commission researchers in the late
1940s and early 1950s and which gave rise to the enormous literature on
simultaneous equations. At that time it was recognized that reduced forms
could not be used for many policy evaluation questions. Rather one should
model structural relationships. The parameters of the reduced form are,
of course, functions of the structural parameters in the standard Cowles
Commission setup. The discussion by Marschak (1953), for example, is
remarkably similar to the more recent rational expectations critiques;
Marschak did not consider expectations variables, and in this sense the
rational expectations critique is a new extension. But earlier analyses
like Marschak's are an effort to explain why structural modeling is

necessary, and thus has much in common with more recent research.

3.3 Game-Theoretic Approaches

In the policy evaluation procedure discussed above, the government
acts like a dominant player with respect to the private sector. The
government sets g and the private sector takes g as given. The
government then maximizes its social welfare function across different
values of g. One can imagine alternatively a game theoretic setup in
which the government and the private sector each are maximizing utility.
Chow (1983), Kydland (1975), Lucas and Sargent (1981), and Epple, Hansen,
and Roberds (1983) have considered this alternative approach. It is
possible to specify the game theoretic model as a choice of parameters of

decision rules in the steady state or as a formal non-steady state dynamic
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optimization problem with initial conditions partly determining the
outcome. Alternative solution concepts including Nash equilibria have
been examined.

The game-theoretic approach naturally leads to the important time
inconsistency problem ralsed by Kydland and Prescott (1977) and Calvo
(1979). Once the government announces its policy, it will be optimal to
change it in the future. The consistent solution in which everyone
expects the government to change is generally suboptimal. Focussing on
rules as in Section 3.1 effectively eliminates the time inconsistency

issue. But even then, there can be temptation to change the rule.

4, Statistical Inference

The statistical inference issues that arise in rational expectations

models can be illustrated in a model like that of Section 2.

h,1. Full Information Estimation

Consider the problem of estimating the parameters of the structural

model

h,1 = + +
(h.1) T “fytﬂ 8x, F Yy

where vy 1s a serially uncorrelated random variable, Assume (for

example) that Xy has a finite moving average represeatation:

).|..2 = + + eee +
( ) Xt et elet—l eqet_q
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where € is serially uncorrelated and assume that Cov (Vt, es) =0 for

all t and s.

To obtain the full information maximum likelihood estimate of the
structural system (4.1) and (4.2) we need to reduce (4.1) to a form which
does not involve expectations variables. This can be done by solving the
model using one of the techniques described in Section 2. Using the
method of undetermined coefficients, for example, the solution for y, is

L. = +oaee + +
(k.3) Yy T YoBy YqS-q ~ 't

where the vy parameters are given by

YQ o a2 “« o aq-l aq 1
Yy 0 1 o ... o¥2 g2t 8
(it 3 AL I L 3
Y 0 1 o 6
9 0 0 0 ... O 1 e

Equation (4.2) and (4.3) together form a two dimensional vector model.

1
Yo ¢ Y1 €1
(4.5) i 0 v * 8 0 v
t 1 t=-1
Y €,
+ .00 + O t q .
) vt_q

Equation (4.5) is an estimatable reduced form system corresponding to the

structural form in (4.1) and (4.2).
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If we assume that (v ) is distributed normally and

£ %
independently, then the full-information maximum likelihood estimate of
(el, ey eq, oy §) can be obtained using existing methods to estimate
miltivariate ARMA models. See Chow (1983, Section 6.7 and 11.6). Note

that the coefficients of the ARMA model (4,5) are constrained. There are

cross-equation restrictions in that the 6 and vy parameters are related

to each other by (4.4). In addition, relative to a fully unconstrained
ARMA model, the off-diagonal elements of the autoregression are equal to
Zero.

Full information estimation maximum likelihood methods for linear
rational expectations models have been examined by Chow (1983), Muth
(1981), Wallis (1980), Hansen and Sargent (1980, 1981), Dagli and Taylor
(1983), Mishkin (1983), Taylor (1979, 1980a), and Wickens (1982). As in
this example, the basic approach is to find a constrained reduced form and
maximize the likelihood function subject to the constraints. Hansen and
Sargent (1980, 1981) have emphasized these cross-equation constraints in
their expositions of rational expectations estimation methods. In Muth
(1981), Wickens (1982) and Taylor (1979) multivariate models were examined
in which expectations are dated at t - 1 vrather than t and E yt
appears in (4.1) rather than E yt+1. More general multivariatetgédels
with leads and lags are examinZd in the other papers.

For full information estimation, it is also important that the
relationship between the structural parameters and the reduced form

parameters can be easily evaluated. In this example the mapping from the

structural parameters to the reduced form parameters is easy to
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evaluate. In more complex models the mapping does not have a closed form;

usually because the roots of high-—order polynomials must be evaluated.

4,2, Identification

There has been relatively little formal work on i@entification in
rational expectations models. As in conventional econometric models,
identification involves the properties of the mapping from the structural
parameters to the reduced form parameters. The model is identified if the
structural parameters can be uniquely obtained from the reduced form
parameters. Over-identification and under-indentification arebsimilarly
defined as in conventional econometric models. In rational expectations
models is the mapping from reduced form to structural parameters is much
more complicated than in conventional models and hence it has been
difficult to derive a simple set of conditions which have much generality.,
The conditions can usually be derived in particular applications as we can
illustrate using the previous example.

When q = 0, there 1s one reduced form parameter YO’ which can be
estimated from (4.2) and (4.3), recalling that Cov (vt, Et) = 0, and two
structural parameters & and o in equation (k.4). Hence, the model is
not identified. In this case, § = Yo is identified from the regression
of Yy on the exogenous X, but o 1is not identified., When q = 1,
there are three reduced form parameters Yor Y1 and 91 which can be
estimated from (4.2) and (L4.3), and three structural parameters §, a,
and 61. (61 is both a structural and reduced form parameter since Xy
is exogenous). Hence, the model is exactly identified according to a

simple order condition. More generally, there are q + 2 structural
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parameters (8, o, 8, seees eq) and 29+l reduced form parameters

(YO, Yl

conditions, therefore, the model is overidentified 1f q > 1,

seves Y5 B seees 9 ) in this model. According to the order
a q

Treatments of identification in more general wodels focus on the
properties‘of the cross-equation restrictions in more complex versions of
eqlation (4.4). Wallis (1980) gives conditions for identification for a
class of rational expectations models; the conditlons may be checked in
particular applications. Blanchard (1982) has derived a simple set of
identification restrictions for the case where x, 1in (4.2) 1is
autoregressive and has generalized this to higher order multivariate

versions of (4.1) and (4.2).

4.3. Hypothesis Testing

Tests of the rational expectations assumption have generally been
constructed as a test of the cross—equation constraints. These
constraints arise because of the rational expectations assumption, TIn the
previous example, the null hypothesis that the cross—equation constraints
in (4.5) hold can be tested against the alternative that (4.5) is a fully
anconstrained moving average model by using a likelihood ratio test.
Note, however, that this is a joint test of rational expectations and the
specification of the model. Testing rational expectations against a
specific alternative like adaptive expectations usually leads to non-
nested hypotheses.

In more general linear models, the same types of cross-equation

restrictions arise, and tests of the model can be performed analogously.
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However, for large systems the fully unconstrained ARMA model may be

difficult to estimate because of the large number of parameters,

hoh, Limited Information Estimation Methods

Three different types of "limited information" estimates have been
used for rational expectations models. These can be described using the
model in (4.1) and (%.2). One method investigated by Wallis estimates
(4.2) separately in order to obtain the parameters 8, seees eq. These
estimates then are taken as given (as known parameters) in estimating
(4.3). Clearly this estimator is less efficient than the full information
estimator, but in more complex problems the procedure saves considerable
time and effort. This method has been suggested by Wallis (1980) and has
been used by Papell (1984) and others in applied work.

A second method proposed by Chow (1983) and investigated by Chow and
Reny (1983) was mentioned earlier in our discussion of nonuniqueness.

This method does not impose the saddle point stability constraints on the
model. It leads to an easier computation problem than does imposing the
saddle point constraints. If the investigator does not have any reason to
impose this constraint, then this could prove quite practical.

A third procedure is to estimate equation (L4.1) as a single equation
using instrumental variables. Much work has been done in this area in

recent years, and because of computational costs of full information

methods it has been used frequently in applied research, Consider again

the problem of estimating equation (4.1). Let e, = ?Yt+l = Vi 0° the
forecast error for the prediction of y . Substitute Eyt+l into (4.1)
t

to get




~66-

(4.6) y

= + -+ -
Wiy © 8y VT 0y

By finding instruments of variables for yt+l that are uncorrelated

with vy and e one can estimate (4.6) using the method of

t+l

instrumental variables. In fact this estimate would simply be the two

stage least squares estimate with ¥ treated as if it were a right-

t+1
hand side endogenous variable in a conventional simultaneous equation

model. Lagged values of xt could serve as instruments here. This
estimate was first proposed by McCallum (1976).

Several extensions of McCallum's method have been proposed to deal
with serial correlation problems including Cumby, Huizinga and Obstfeld
(1983), McCallum (1979), Hayashi and Sims (1983), Hansen (1982), and

Hansen and Singleton (1982). A useful comparison of the efficiency of

these estimators is found in Cumby, Huizinga and Obstfeld (1983).

5. General Linear Models

A general linear rational expectations model can be written as

* + + oo e + + + LXK N ] + =
(5.1) BV * Bi¥e BYip A1fyt+1 Aqut+q Cu,

where yt 1is a vector of endogenous variables, ug is a vector of

exogenous variables or shocks, and Ai’ Bi and C are matrices
containing parameters. N

Two alternative approaches have been taken to solve this type of

model. Once it is solved, the policy evaluation and estimation methods

discussed above can be applied. One approach is to write the model as a
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large first-order vector system directly analogous to the 2-dimensional
vector model in equation (2.55). The other approach is solve (5.1)
dirvectly by geheralizing the approach taken to the second-order scalar
model in equation (2,92). The first approach is the most straightforward.
The disadvantage is that it can easily lead to very large (although
sparse) matrices with high-order polynomials to solve to obtain the
characteristic roots. This type of generalization 1s used by Blanchard
and Kahn (1980) and Anderson and Moore (1984) to solve deterministic

rational expectations models.

5¢.1. A General First-Order Vector Model

Equation (5.1) can be written as
(5.2) Ez = Az, + Du

by stacking Yis TYgo1o *o0 o yt—p into the vector =zt much as in
equation (2.55). (It is necessary that Ay be nonsingular to write (5.1)
as (5.2)). Anderson and Moore (1984) have developed an algorithm that
reduces equations with a singular Ag into an equivalent form with a
nonsingular matrix coefficient of yt+q and have applied it to an
econometric model of the U.S. money market. (Alternatively, Preston and
Pagan (1982, pp. 297-304) have suggested that a "shuffle" algorithm
described by Luenberger (1977) be used for this purpose). In equation
(5.2) 1let Zy be an n-dimensional vector and let uy be an m

dimensional vector of stochastic disturbances. The matrix A is n X n

and the matrix D 1is 1n X m.
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We describe the solution for the case of unanticipated GLemporary
shocks: ut =g whare st is a serially uncorrelated vector with a zevro
mean. Alternative assumptions about u, can be handled by the methods
discussed in Section 2.2. The solution for Zy can be written in the
general form:

[+ -}
(5.3) z, = Y T.e .
t 120 * t-1
where the T, are n x m matrices of unknown coefficients. BSubstituting
i

(5.3) into (5.2) we get

(5.4) T

Ar + D
rO

3
"

AI‘. i = 1, 2, LN 4 L]

Note that these matrix difference equations hold for each column of ri

separately; that is

(5.5) Y, = Ay, + 4

Ay, i 71, 2, ees,

Yi+1 i

where Y5 is any one of the n x 1 column vectors in Pi and where d
is the corresponding column of D. Eguation (5.5) is a deterministic
first-order vector difference equation analogous to the stochastic
difference equation in (5.2). The solution for the Fi is obtained by

solving for each of the columns of T, separately using {5.5).
i
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The analogy from the 2-dimensional case 1s now clear. There are
n equations in (5.5). In a given application we will know some of the
elements of YO’ but not all of them. Hence, there will generally be
more than n unknowns in (5.5). The number of unknowns is 2n-k where
k 1s the number of values of YO which we know. For example, in the
simple bivariate case of Section 2 where n = 2, we know that the second
element of YO equals O. Thus, k =1 and there are 3 unknowns and 2
equations.

To get a unique solution in the general case, we therefore need
(on - k) = n =n - k additional equations. These additional equations
can be obtained by requiring that the solution for Iy be stationary or
equivalently in this context that the Yi do not explode. If there are
exactly n - k distinet roots of A which are greater than one in
modulus, then the saddle point manifold will give exactly the number of
additional equations necessary for a solution. The solution will be
unique. If there are less than n - k roots then we have the same non-
uniqueness problem discussed in Section 2.

Suppose this root condition for uniqueness is satisfied. Let the

n -k roots of A that are greater than one in modulus be Al’ eee 5 A
-1
Diagonalize A as H AH = A. Then
(5.6) H'Yi+1 - AHYi 1 = l, 2, oo
(1) 0 . - (1)
Hip  Hio\ [Yial Ay 11 12 Yi
(5.7) = is=
(2) (2)
Ho1 B/ \Vin 0 YA Hoo Yy

n-k
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where Al is a diagonal matrix with all the unstable roots on the
diagonal. The <y vectors are partitioned accordingly and the rows

(Hll, H12) of H are the characteristic vectors associated with the

unstable roots. Thus, for stability we require

(5.8) Hllyil) + leyi2) = 0,

These n = k equations define the saddle point manifold and are the
additional n - k equations needed for a solution. Having solved for

Yl and the unknown elements of YO we then obtain the remaining Yi

coefficients from

1 -1 2
2 2
(5.10) Y§+i = A2yi ) i=1, 2, ees

5.2. Higher Order Vector Models

Alternatively the solution of (5.1) can be obtained directly without
forming a large first order system. This method is essentially a
generalization of the scalar method used in Section 2.4, Very briefly, by
substituting the general solution for y, into (5.1) and examining the
eqation in the ri coefflcients the solution can be obtained by
factoring the characteristic polynomial associated with these equations.

This approach has been used by Hansen and Sargent (1981) in an

optimal control example where p =q and B, = hAi. In that case, the
i
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factorization can be shown to be unique by an appeal to the factorization
theorems for spectral density matrices. A similar result was used in
Taylor (1980a) in the case of a factoring spectral denéity functions.

In general econometric applications, these special properties on
the A; and B; matrices do not hold. Whiteman (1983) has a proof that
a unique factorization exists under conditions analogous to those placed
on the roots of the model in Section 5.1. Dagli and Taylor (1983) have
investigated an iterative method to factor the polynomials in the lag
operator in order to obtaln a solution. This factorization method was
used by Rehm (1982) to estimate a T-equation rational expectations model

of the U.S. using full information maximum likelihood.

6. Technigues for Nonlinear Models

As yet there has been relatively little research with nonlinear
rational expectations models. The research that does exist has been
concerned more with solution and policy evaluation rather than with
estimation. Fair and Taylor (1983) have investigated a full-information
estimation method for a non-linear model based on a solution procedure
described below. However, this method is extremely expensive to use given
current computer technology. Hansen and Singleton (1982) have developed
and applied a limited-information estimator for non-linear models.

There are a number of alternative solution procedures for nonlinear
models that have been investigated in the literature. They generally
focus on deterministic models, but can be used for stochastic analysis by

stochastic simulation techniques.
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Three methods are reviewed here: (1) a "multiple shooting" method,
adopted for rational expectations models from two-point boundary problems
in the differential equation literature by Lipton, Poterba, Sachs, and
Summers (1982), (2) an "extended path" method based on an iterative Gauss-
Siedel algorithm examined by Fair and Taylor (1983), and (3) a nonlinear
stable manifold method examined by Bona and Grossman (1983). This is an
area where there is likely to be miuch research in the future.

A general nonlinear rational expectation model can be written

(601) fi(yt’ y sese o .Y b Ey

t—P 'y ais xt) =u,

t+1°°° " E'yt+q it?

’
t-1 % N

for i=1, ves ,n, where yt 1s an n dimensional vector of endogenous

variables at time ¢, xt is a vector of exogenous variables, a, 1is a
i

vector of parameters, and uijt is a vector of disturbances. In some
write-ups (e.g., Fair-Taylor) the viewpoint date on the expectations in
(6.1) is based on informtion through period + - 1 rather than through
period t. For continuity with the rest of this paper, we continue to
assume that the information is through period +, but the methods can
easily be adjusted for different viewpoint dates. We also distinguish
between exogenous variables and disturbances, because some of the
nonlinear algorifhms can be based on known fubure values of Xy rather

than on forecasts of these from a model like (2.2).

6.1. Multiple Shooting Method

We described the shooting method to solve linear rational

expectations models in Section 2.5. This approach is quite useful in
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nonlinear models. The initial conditions are the values for the lagged
dependent variables and the final conditions are given by the long-run
equilibrium of the system. In this case, a system of nonlinear equations
must be solved using an iterative scheme such as Newton's method. One
difficulty with this technique is that (6.1) is éxplosive when solved
forward so that very small deviations of the endogenous variables from the
solution can lead to very large final values. If this is a problem then
the shooting method can be broken up in the series of shootings (maltiple
shooting) over intervals smaller than (0, j). For example three intervals
would be (O, jl), (jl, 32) and (32, j) for 0< J, <, < 4. In
effect the relationship between the final values and the initial values is
broken up into a relationship between intermediaté values of these vari-
ables. The intervals can be made arbitrarily small. This approach has
been used by Summers (1981) and others tq solve rational expectations
models of investment and in a number of other applications. It seems to

work very well.

6.2. Extended Path Method

This approach has been examined by Fair and Taylor (1983) and used
to solve large-scale nonlinear models. Briefly it works as follows.
Guess values for the Eyt+j in equation (6.1) for j =1, ... ,J. Use
these values to solve the model to obtain a new path for yt+j‘ Replace
the initial guess with the new solution and repeat the process until the
path yt+,, J =1, eese ,Jd converges, or changes by less than some
tolerance range. Finally, extend the path from J to J + 1 and repeat

the previous sequence of iterations. If the values of yt+j on this
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extended path are within the tolerance range for the values of J + 1,
then stop; otherwise extend the path one more period to J + 2 and so

on. Since the model is nonlinear, the Gauss-Siedel method is used to
solve (6,1) for each iteration given a guess for Vgge There are no
general proofs available to show that this method works for an arbitrary
nonlinear model. When applied to the linear model in Section (2.1) with
la] < 1, the method is shown to converge in Fair and Taylor (1983). When
lql > 1, the iterations diverge. A convergence proof for the general
linear model is not yet available, but many experiments have indicated
that convergence is achieved under the usual saddle path assumptions.

This method is expensive but is fairly easy to use. An empirical
application of the method to a modified version of the Fair model is found
in Fair and Taylor (1983) and to a system with time varying parameters in
Taylor (1983). Carlozzi and Taylor (1984) have used the method to

calculate stochastic equilibria. This method also appears to work well.

6.3. Nonlinear Saddle Path Manifold Method

In Section (2.4) we noted that the solution of the second-order
linear difference equation (2.94) is achieved by placing the solution on
the stable path associated with the saddle point line. For nonlinear
models one can use the same approach after linearizing the system. The
saddle point manifold is then linear. Such a linearization, however, can
only yield a local approximation. |

Bona and Grossman (1983) have experimented with a method that

computes a nonlinear saddle-point path. Consider a deterministic

univariate second-order version of (6.1):
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(6.2) fy ) =0, i=1, 2, «us

41 Y Vg1

A solution will be of the form

(6.3) y, = g(yt— )a

t 1

where we have one initial condition y,. Note that equation (6.2) is a
nonlinear version of the homogeneous part of equation (2.94) and equation
(6.3) is a nonlinear version of the saddle path dynamics (2.97).

Bona and Grossman (1983) compute g(e) by a series of successive
approximations. If equation (6.3) is to hold for all values of the

argument of g then
(6.4) t(glg(x)), glx), x) =0

must hold for every value of x (at least within the range of

interest). In the application considered by Bona and Grossman (1983)

there is a natural way to write (6.4) as
(6.5) g(x) = n(glal(x)), alx), x),

for some function h(.). For a given x equation (6.5) may be solved

using successive approximations:

(6-6) gn+l(x) = h(gn(gn(x)), gn(x)a x)s n= 03 1L, 2, ...
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The initial function go(x) can be chosen to equal the linear stable
manifold associated with the linear approximation of f(.) at x.

Since this sequence of successive approximations maist be made ab
every X, there are two alternative ways to proceed. One can make the
calculations recursively for each point Iy, of interest; that is, obtain -
a function g for x = yo, a new function for x = yq and so on.
Alternatively, one could evaluate g over a grid of the entire range of
possible values of x, and form a "meta function" g which is piecewise
linear and formed by linear interpolation for the value of x between the
grid points. Bona and Grossman (1983) use the first procedure to
numerically solve a macroeconomic model of the form (6.2).

It is helpful to note that when applied to linear models the method
reduces to a type of undetermined coefficients method used by Lucas (1975)
and McCallum (1983) to solve rational expectations models (a different
method of undetermined coefficients than that applied to linear process
(2.4) in Section 2 above). To see this, substitute a linear funchion

= gy into

v -1

t

6 % 1
( '7) Yt+l = al yt - al yt—l’

the deterministic difference equation already considered in equation
(2.94). The resulting equations is .
2 2

1
(6.8) (g -— g+ "y, =0.
ay oy t-1
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Setting the term in parenthesis equal to zero, yields the characteristic

polynomial of (6.7) which appears in equation (2.95). Under the usual
assumption that one root is inside and one root is outside the unit circle

a unique stable value of g 1is found and is equal to stable root A2 of

(2.95).

T« Concluding Remarks

As its title suggests, the aim of this paper has been to review and
tie togeher in an expository way the extensive volume of recent research
on econometric techniques for macroeconomic policy evaluation. The tabel
of contents gives a good summary of the subjects that I have chosen to
review. In conclusion it is perhaps useful to point out in what ways the
title is either overly inclusive or not inclusive enough relative to the
subjects actual reviewed.

All of the methods reviewed--estimation, solution, testing,
optimization--involve the rational expectations assumption. In fact the
title would somewhat more accurately identify the methods reviewed 1P the
word "new" were replaced by "rational expectations". Some other new
econometric techniques not reviewed here that have macroeconomic policy
applications include the multivariate time series methods -{vector auto-
regressions, causaltiy, exogeneity) reviewed by Geweke (1983) in Volume 1

of the Handbook of Econometrics, the control theory methods reviewed by

Kendrick (1981) in Volume 1 of the Handbook of Mathematical Economics, and

the prediction methods reviewed by Fair (1985) in this volume. On the

other hand some of the estimabion and testing bechnlques reviewad here
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were designed for other applications even though they have proven useful
for policy.

Some of the topics included were touched on only briefly. In
particular the short treatment of limited information estimation
techniques, time inconsistency, and stochastic general equilibrium wodels
with optimizing agents does not give justice to the large volume of
research in these areas.

Most of the research reviewed here is currently very active and the
techniques are still being developed. (About 2/3 of the papers in the
bibliography were published between the time I agreed to write the review
in 1979 and the period in 1984 when I wrote it). The development of
computationally tractable ways to deal with large and in particular non-
linear models is an important area that needs more work. But in my view
the most useful direction for future research in this area will be in the
applications of the techniques that have already been developed to

practical policy problems.

s
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TABLE 1

SUMMARY OF ALTERNATIVE POLICIES
AND THEIR EFFECTS

Model: V. = afyt+l +6u§, [of < 1.
@ du
H = = t+i =
Policy: u, .Z eiet—i=;>ej_ e ,1=0,1, ....
i=0 t
@ : el T
Solution Form: y. =1 YiE€__s: =Y " ’ P
t - 1t-1 de
i=0 t
Stochastics: €. is serially uncorrelated with zero mean.
Thought Experiment: One time unit impulse to €,

>
Theorem: For every integer k = 0.

if
0 for i < k,
8, =
i i- S
o for i = k,
then
Ga—(l-k) for i < k,
l-cp
¥, =
. soik .
e for i = k.
l-ap
Interpretation:

Policy is anticigated k periods in advance,
k = 0 means unanticipated.

A

: <
Polsicy is phased-out at geometric rate p 0 = p
p = 0 means purely temporary (N.B. p0= 1 when p = 0),
p = 1 means permanent.
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TABLE 2

EFFECT OF AN UNANTICIPATED TEMPORARY INCREASE
IN MONEY ON THE EXCHANGE RATE AND THE PRICE LEVEL

(k=0, 0=0)
PERIOD AFTER SHOCK: i 0 1 2 3 4.
Effect on exchange rate: Y14 .59 -.12 -.04 -.01 -.00
Effect on price level: Y,. .29 .09 .03 .01 .00

2i
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TABLE 3

EFFECT OF UNANTICIPATED PERMANENT INCREASE
IN MONEY ON THE EXCHANGE RATE AND THE PRICE LEVEL

(k=0, p =1)
PERIOD AFTER SHOCK: i 0 1 2 3 4
Effect on exchange rate: Y 11 1.41 1.12 1.04 1.01 1.00
. . (P):
particular solution: v 11 - - 1 1 1 1
homogeneous solut ion:yli ’ - .12 .04 .01 .CO
Effect on price level: Yos .71 91 .97 .99 1.00
. . (®)
particular solution: Yoy 1 1 1 1 1
. (B)-
homogeneous solution:v, . -.29 -.09 -.03 -.01 -.00

21
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TABLE 4

EFFECT OF A PERMANENT INCREASE
IN MONEY ANTICIPATED 3 PERIODS IN ADVANCE
ON THE EXCHANGE RATE AND THE PRICE LEVEL

(k=3, p=1)

PERIOD AFTER THE SHOCK: i 0 1 2 3 4 5 6 .

Effect on.the exchange rate: Yli .28 .43 .71 1.21 1.06? 1.02 1.00
particular solution: Yii) - - - - 1.00 1.00 1.00
homogeneous solution: Yig)' - - - - .06 .02 .0L

Effect on the price level: yéi .14 .28 .50 .85 .96 .99 1.00
particular solution:  y&) - - - 1.00 1.00 1.00 1.00
homogeneous solution: () - - - =15 -,06 -.01 -.00

Y24
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 Figure 3. Illustration of the Rational Expectations Solution and the
Saddle Path. Along the saddle path the motion is towards the
origin at geometric rate p. That is, ei=pei_1.

k-lg— > < —

0 6.

.?%gure 4. TIllustration of the effect of an anticipated shock to u_ which is
"7 then expected to be phased out gradually at geometric rate p . The
shock is anticipated k periods in advance. This thought experiment
corresponds to the chart in Figure 1d.
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Figure 8. Geometric Incerpretation of the

Solution in the Bivariate Model. The
darker line is the saddle point path

along which the impact coefficients canverge

to the equilibrium value of (0,0).
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Figure 9. Solution values for the case of
Temporary-Unanticipated shocks.
(k = 0, p = 0). The numbered points
are the values of i. See also Table 2
and Figure 5.
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