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ABSTRACT

This paper examines five examples of rational expectations models with a
continuum of convergent solutions and demonstrates serious difficulties in the
economic interpretation of these solutions. The five e#amples are (1) a model
of optimal capital accumulation with a negative rate of time preference, (2)
Taylor's (1977) linear rational expectations model of macroeconomic equilibrium;
(3) Calvo's (1984) model of contract setting and price dynamics; (4) Obstfeld's
(1984) equilibrium model of monetary dynamics with individual optimizing agents;
and (5) Calvo's (1978) life-cycle model of savings and asset valuation. In
every case, when these models yield a continuum of convergent infinite horizon
solutions, these solutions fail to exhibit economically appropriate, forward
looking dependence of the endogenous variables on the paths of the exogenous
forcing variables--a difficulty that does not arise under the circumstances
where these models yield unique convergent infinite horizon solutions. Further,
the three models that have natural finite horizon versions, either lack finite
horizon solutions or have solutions that do not converge to any of the infinite
horizon solutions. Again, this difficulty arises only under the circumstances

where these models have a continuum of infinite horizon solutions.
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1. Introduction

In recent years, Taylor (1977), Calvo (1978, 1984) and Obstfeld (1984),
among others, have presented examples of rational expectations models with a
continuum of convergent solutions. This situation arises when the dynamic
systems associated with these models have steady states at which the number of
stable roots is greater than the number of backward looking dynamic processes., !
This paper demonstrates, through detailed consideration of five examples,
serious difficulties that atisevin the economic interpretations of solutions
‘to such models.?

The first example is a model of optimal intertemporal consumption choice
and capital accumulation with a negative rate of time preference, This model
has a steady state toward which there converge a continuum of rational expec-
tations paths. None of these paths, however, has any economic significance,
and each must be constructed as the backward looking solution of what ought to
be a forward looking economics relationship.

The second example is Taylor's (1977) model of macroeconomic equilib-
ﬁm.TMsmﬁlMsamMMWmdbm%mmmrummlamunmm
solutions when the effect of real money balances on aggregate supply is strong
and positive. None of these solutions, however, has economically appropriate,
forward looking expression for the price level as a function of the future
behavior of the money supply.3

The third example is Calvo's (1984) model of price dynamics. In this
model, . a continuum of rational expectations solutions converge to a steady
state equilibrium that is unstable in the Walrasian sense, while only a single
solution converges to steady state equilibria that are stable in the usual
Walrasian sense. The present analysis demonstrates that all of the solutions

that converge to the Walrasian unstable equilibrium lack an economically




appropriate dependence of the path of prices on exogen'ous factors that are
shifting the excess demand function over time,

The fourth example is based on Obstfeld's (1984) equilibrium model of
monetary and price level dynamics in which individual households maximize the
lifetime utility from commodity consumption and services of real money
balances. The infinite horizon version of this model yields a continuum of
convergent rational expectations solutions when the elasticity of the marginal
utility of consumption with respect to real money balances, N, is less than
minus one. The finite horizon version of Obstfeld's model, however, does not
have any solution when 1N is less than minus one, under the standard terminal
condition that requires the utility value of final money balances to be
zero, When this terminal condition is modified by a capital levy that fixes a
positive level of final real money balances, the finite horizon version of
Obstfeld's model sometimes has a solution, but solution does not éonverge to
any of the continuum of solutions fof the infinite version of Obstfeld's
model. Moreover, all of the infinite horizon solutions when n is < -1, fail
to exhibit economically appropriate forward looking relationships between real
money balances and the price level and the future behavior of the nominal
money supply.

The fifth example is Calvo's (1978) life-cycle model of consumption and
savings behavior in which the young generation acquires land to finance
consumption in old age. The infinite horizon version of this model yields a
continuum of convergent solutions when consumption in youth responds suffi-
ciently positively to an increase in the price of consumption in youth
relative to consumption in old age. When this condition is met, however, the
finite horizon solution of Calvo's model does not converge to any of the

continuum of infinite horizon solutions. Moreover, as in the other examples,




none.of the continuum of convergent infinite horizon §olutions ekhibiﬁé a
forward looking relationship between the relative price of consumption in
successive periods and the future behavior of the rental on land,

Based on the analysis of these five examples, the paper concludes with
some general observations on rational expectations models with a continuum of

convergent solutions.

2. An Optimal Capital Accumulation Problem

Consider an optimal capital accumulation problem in which the objective
is to maximi;e the discountedvutility of consumption;
(1) Maximize ] ulc(t)) exp(-pt) at

0

where - U(C) is a standard concave utility function, T is the time horizon,
and p is the pure rate of time preference which is assumed to be negative.4
The initial capital stock K(O) is‘given, and rate rate of change of the
capital stock, K = dK/dt, 1is the excess of output (net of depreciation) over

consumption;
(2) K = F(K) - C

where F(K) 1is the production function illustrated in the top panel of figure 1.
To determlne the solution of this optlmlzatlon problem, define the

current value Hamiltonian,
(3) ' H =U(C) + q(F(K) - C)

where q is the shadow price of a unit of capital. The necessary conditions

for a solution require that for t < T,

(4) dH/L = U'(C) - q =




(5) K= 8H/&Q = F(K) - C
(6) d=p3~ ¥/ XK= pxg - qF'(K)
(7) A >0,

In addition, the boundary condition,
(8) q(T)K(T) = 0.

should be satisfied at time T.

Fbr t < T, the necessary conditions for optimal behavior imply a
dynamic system governing the behavior of K and g. Solving (4) for C =
N(g) = U"1(q), with N'(g) < 0, the differential equation governing K can

1

be written as
(9) K =F(K) - Na),

The differential equation governing g cén be written as
(10) g =qlp - F'(K).

The differential equation system (9) and (10) represents a rational
expectations (or perfect foresight) model of the determination of K and
de Equation (9) should be thought of as a backwaré looking dynamic process
since the current capital stock depends on past net investment, not on future
net investment. In contrast, equation (10) should be thought of as a forward
looking dynamic process since the shadow value of a unit of capital (which
measures the current utility value of additions to the capital stock) ought
to reflect the present value of the future incremehts to utility of

consumption made possible by a current increment to capital.
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Fig.--1: The Production Function and Phase Diagram for the Optimal
Consumption and Capital Accumulation Problem.




The behavior of K and q implied by dynamic system (9) and (10) is
illustrated in the phase diagram in the lower panel of figure 1. In this
diagram, there are three steady state positions, (K‘;, q’{), (K;, q*zf) and

(K;, q;), occuring at the three values of K at which
(11) F'(K) = p < O,

Along the vertical lines passing through these three steady state points,
é = 0, The sign of é at other points indicated by the direction of the
vertical arrows., The curve along which K =0 is determined by the combi-
nations of K and q for which F(K) = N(q). Above the K = 0 curve,
ﬁ > 0, and below this curve, ﬁ < 0, as indicated by the horizontal arrows
in the diagram.

The characteristic roots of the dynamic system (9) and (10), at the three

steady state positions, are given by

(12) A= (1/2)[p /%= a1,

Since p is < 0 and F"(K) is < 0 at the two outer steady state positions,
(K:, q?) and (K%, qg), one characteristic root is negative and the other is
positive, Consistent with this pattern of roots, there are stable branches of
the dynamic system, labeled S;Sq; and S3S3/ that converge to each of these
outer steady state positions. At the middle steady state position (K;, qg),
where F"(K) > 0, the characteristic roots of that dynamic system both have
negative real parts, implying more stable roots (two) than backward looking
processes (one). Consistent with this fact, a continuum of paths converge to
the steady state position (K;, qa); specifically, all of the paths lying
between the stable branches S1s1 S3S3e Thus, (KE, qi) is a steady state

position in a rational expectations model with a continuum of converging




paths, It remains to determine the economic significance of this steady stafe
and of the paths converging to it.,

Given the initial capital stock K(0) and a choice of the initial value
of the shadow price q(0), the differential equations (9) and (10) completely
determine the subsequent paths of K(t) and q(t). The appropriate choice
of q(0) that yields the solution of the optimization problem is the choice
that leads to satisfaction of the boundary condition (7) at time T,
Specifically, for the situation illustrated in figure 1, if K(0) = Kor
then 9p 1is the correct choice of q(0) provided that the time it takes to
move along the path from (KO, qo) to the vertical axis is equal to T. A
lower choice for the initial q would lead to higher comsumption and higher
utility during an initial period, but would Arive the capital stock and
consumption level to zero before T. Since the discount rate is negative and
the utility function is concave, this would not be optimal for a horizon of
length T, Conversely, choice of a higher initial g would leave the economy
with a positive capital stock at time T. This also would be : suboptimal
because utility could be increased by consuming the remaining capital stock
during a brief interval beforg T.

For any initial capital stock, a longer time horizon T, implies a
higher optimal initial value of d, but one that always remains below the
value of determined by the ordinate of the stable branch S1s1 at the initial
capital stock. 1Indeed, as T grows very large, the optimal initial choice
of q(0) converges to the value of q determined by the point on the stable
branch S48y corresponding to K(0). It fo;lows that for very large T, the
optimal path for K and q initially runs very close to the stable branch
S48y+ Moreover, since the speeds of adjustment of K and q are both very

low in the neighborhood of (K?, q?), K and q vremain in the neighborhood




of this steady state for a long time. Only as the time horizon T
approaches, does the economy move away from this neighborhood and increase
consumption by running down the capital stock. Thus, the stable branch
S1s1 and the steady state position (K¥%, q;) are relevant to describing the
optimal behavior of the economic system as the time horizon becomes very
long.5

In contrast, the steady state position (K;, q;) and the continuum of
-paths converging to this steady state have no economic relevance, no matter
how long the time horizon. For any initial KX(0), a choice of gq(0) that
places the economy on one of the paths between §;S; and S3S3 that lead to
the steady state (K;, qa) necessarily leaves the economy with a positive
capital stock at time T. The longer the time horizon, the closer the economy
comes to the steady state (K;, q;), and the more time the economy spends
near to this steady state. Such behavior is distinctly suboptimal since the
level of consumption associated with this steady state is lower than the level
of consumption that could be sustained with a smaller capital stock, and since
the economy never enjoys the benefit of consuming its excessively large
capital stock. Mathematically, the non-optimality of these paths is indicated
by the failure of the second-order condition for concavity of the Hamiltonian
with respect to K at (K;, q;). The demonstrable suboptimality of all of
these paths indicates existence of an infinity of non-explosive solutions for
a rational expectations model does not insure that any of these solutions is
economically meaningful,

Further insight into the economic significance of alternative solutions
of the dynamic system (9) and (10) comes from considering the forward and
backward looking solutions of (10):

T
(13) qg(t) = Avexp(pet) + [ als) *F'(K(s)) *exp(-p*(s - t)) ds
) t




t
(14) q (t) = Beexp(pet) - [ q(s)*F'(K(s)) %exp(-p*(s - t)) ds
0

where A and B are constants., For a finite horizon, these two solutions
are well defined and yield the same value of q(t) when evaluated along the
same path of K(s), provided that A and B satisfy the condition,
T

(15) B=A+ fo a(s) *F' (K(s)) *exp(-p°*s) ds.
From an economic perspective, however, the forward looking solution is the
appropriate solution because the utility value of a marginal unit of capital
should reflect the future path, rather than the past path, of the marginal
product of capital, |

When the aiscount rate is negative (p < 0), the infinite time horizon,
optimal capital accumulation problem does not have a solution. Appropriate to
this situation, the forward looking solution de(t) given by (13) does not
have a well defined, bounded value for the stable branch converging to either
(K?, q:) or (Ks, qg) or for any of the infinity of paths converging to
(K;, q;). The only a bounded solution for q(t) is the backward looking
solution qb(t) given by (14). The necessity of using a backward looking
solution for q(t) for which there is no corresponding forward looking
solution means that q(t) cannot be interpreted as forward looking, even
though the economics of the situation require that q(t) should be forward
looking. As we shall see, this difficulty in obtaining a forward looking
solution for what ought to be a forward looking variable is a problem that
frequently arises in rational expectations models exhibiting a continuum of

convergent solutions,
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3. Taylor's Macroeconomic Model

Taylor's (1977) linear rational expectations model of macroeconomic
equilibrium provides a much discussed example of a continuum of convergent
solutions. This model consists of an aggregate demand function, an aggregate
supply function, a money market equilibrium condition and a goods market
equilibrium condition which jointly imply the following reduced form equation

for the price level;

(16) p =E _p. + 61p

-6 +
£+ t-1P¢ 1M T Y

Et-1 t

where Py is the logarithm of the price level at time ¢, Er_q1 indicates
the expectation conditional on information available at t - 1, my is the
logarithm of the money supply, and u, is a serially independent, normally
distributed error with zero mean and finite variance. The critical reduced
form parameter in this model, §,, is a combination of parameters of the

1

various behavior functions. Taylor argues that 61 must be nonzero, but
could be either positive or negative, Taylor considers only the case where

the money supply is constant (mt = m), and writes the solution of the model

as
(17) P, =m+k + I niu

where k is a constant that depends on the parameters of the model and where

the ﬂi's satisfy

(18) Tl'o = —1/51
(19) "i+1 = (1 + 61)'"i for i= i, 2’ eeso o0

with ﬂ1 a free parameter., When 61 is positive, the model has a unique

non-explosive solution obtained by setting 1!1 = 0 and hence Tri =0 for




1

all i > 1, When 61 is negative and '61' < 2, however, Taylor concludes

that the model has an infinity of non-explosive solutions, one for each choice
m .

of 1
The difficulty with this conclusion becomes apparent in the general case

where the money supply follows a known path but is not necessarily constant.

In this case, the solution of the model should be written as

* o
(20) p, = F(t) + k + i:; LAY

where the Ni's satisfy (18) and (19) with n1 a free parameter, and where
o

(21) F(t) = (8,701 + 6)) L (1701 + 8 ))n
1 1745 177 T

+J
F(t) expresses the forward looking relationship between the current price
level and current and future levels of the money supply. This relationship
arises in Taylor's model because the real interest rate that affects aggregate
demand depends on the expected inflation rate, and the expected inflation rate
ought to depend (under the assumption of rational expectations) on the
expected future behavior of the money supply.

When 61 is positive, the unique non-explosive solution that is obtained
by setting ﬂ1 = 0 and hence “i =0 for i » 1, When 61 is negative,
however, that we no longer find an infinity of non-explosive solutions, one

for each choice of Instead, we find no non-explosive solutions because

1.
the forward looking discounted sum that defines F(t) does not converge for a
wide class of reasonable specifications of the behavior of LI

(including My, constant at m) when &, is negative and ‘61' < 2

This difficulty with the convergence of the sum defining F(t) is

concealed when My 45 is constant because the solution of the model can also

be written as
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(-]
(22) P, = B(t) + k + _Z T,
i=0
where
” .
- J
(23) B(t) = 51 j:g (1 + 61) mt-j-1'

Here, .B(t) 1is the backward looking solution for the component of Py that
depends on the path of m. When 51 is negative and ’61' < 2, B(t)

converges for reasonable assumptions about the behavior of mgs In

particular, when m_ 2 = m, B(t) =m and we obtain exactly Taylor's result

S
that there is an infinity of solutions for Pys One for each choice of n1.
However, use of B(t) in the solution (23) is contrary to the economics of
Taylor's model because it makes the price level a function of past levels of
the money supply, not of present and future levels of the money supply.s. If
one insists that dependence of P, on present and future m's is essential
for an economically sensible solution of Taylor's model, then when 61 < 0
and I61, < 2, none of the continuum of solutions of Taylor's model qualifies
as economically sensible. It follows that to satisfy this criterion of

economic sensibility, it is necessary to rule out the case where 51 < 0 and

]61| < 2.7

4. Calvo's Model of Price Dynamics

Another example of a rational expect;tions model with an infinity of
stable solutions is Calvo's (1984) model of price dynamics. In Calvo's model,
prices of individual products are fixed by contracts that expire with a con-
stant probability 6§ per unit time, implying that the fraction of contracts
in force at time zero that will still be in force at time t is Sexp(-6t).
The general price level at time t is an average of the prices of indivi@ual

products in force at time t;
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t
(24) P(t) = [ &v(s)exp(d(s - t)) ds

-
where V(s) is the price of an individual product whose contract was last set
at time s. The price in a contract set at time t is assumed to reflect the
general price level and state of excess aggregate demand expected over the

length of the contract;

[ -]
(25) v(t) = [ 8[p(s) + BE(P(s), r(s))lexp(-8(s - t)) ds

t
where £(P, r) measures excess aggregate demand as a function of P and the
real interest rate r, and B > 0 measures the responsiveness of an indi-
vidual price to excess aggregate demand.8 The real interest rate is equal to

a fixed nominal interest rate, i, minus the expected rate of change (right

hand derivative) of P, Differentiation of (24) reveals that

(26) P = S[V - P].

Setting r i - §{v - P] in (25) and differentiating the result with respect

to t, it follows that
(27) V=26V-p-BEP, i-8V-=2))].

The differential equation system (26) and (27) constitutes a rational
expectations model that determines the time paths of P and V, given an
initial value of P, The steady states of this model are common values of
P and V at which £(P, i) = 0., Assuming that excess aggregate demand is a
continuous function of P and is positive for all sufficiently low values
of P and negative for all sufficiently high values of P, it follows that
there must be at least one steady state. If there is only one steady state,
then at this steady state fP must be.negative, and it is easily shown that

model linearized at this steady state has one positive and one negative
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characteristic root. 1In this case, there is a unique stable solution of the
model for any initial price level,

The peculiar case of continuum of stable solutions arises at even
numbered equilibria where £(P, i) = 0 and fP > 0 when the total number of
equilibria where £(P, i) = 0 is odd and greater than one. The behavior of
P and V in the case of three solutions of £(P, i) = 0 is illustrated in
figure 2, The curves labeled S1S1 and S$383 are the stable branches of the
dynamic system converging to the steady state equilibria (P1, V., =P, ) and

1 1

(Py V,

condition for Walrasian stability, fP < 0, is satisfied. All paths lying

= P3), respectively. At these two steady state equilibria, the usual

outside the rggion bounded by these two stable branches diverge. all paths
lying between these two stable branches converge to the steady state equi-
librium (P2, V2 = Pz). Such convergence is consistent with the fact that the
linearized dynamic system has two stable roots at a steady state where

f; > 0. Thus, we observe the very peculiar result that an equilibium that is

P
unstable in the Walrasian sense is super stable in Calvo's model of price
dynamics. For any initial P(0), a continuum of choice of V(0) imply paths
of P and V converging to this Walrasian-unstable equilibrium, while for
each initial P(0), only one choice of V(0) yields a path converging to
either of the two Walrasian-stable equilibria.9

The difficulty with this conclusion of super stability of Walrasian
unstable equilibria in Calvo's model is revealed by considering a more general
excess aggregate demand function, £(P + z, i), where 2z is an exogenous
forcihg variable that shifts the excess aggregate demand function (and the

positions of the Walrasian equilibria) over time. With this modification, the

linearized version of Calvo's model can be written as
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The Dynamics of Calvo's Model of Price Adjustment.
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-D~-6 ) P-F 0
(28) . -

-6 - BSE - B&f - D+ 885%f v -V BSE z
P r r P

where D is the differential operator and P = V¥ is the common steady state
value of P and V when z = 0. With z = 0, this system is exactly the
linearized version of Calvo's model., The characteristic roots of this system

are given by

>
1]

(29) (172) +[88% - / @' 2 - 4352fp ]

(30) A

(1/2) +[88% + ¥ 2 2 - 488°%¢
r r P

Since f_. is negative, a negative fp implies that A, is negative and A,

is positive; whereas a positive fp implies that X1 and Xz are both
negative or have negative real parts.

The general solution of (28) is given by

(31) P(t)

A-exp(A1t) + B-exp(kzt) + a*G(t) + beH(t) + P

(32) v(t) (A(}\1 + 5)/5)'exp(l1t) + (B(_X2 + 5)/5)°exp(A2t)
+ cG(t) + dH(t) + V

where A and B are arbitrary constants, where
= = -B82 - = =
(33) a=>b = -8§ fP/(A1 AZ), c a(k1 + 8)/68, 4 b(A.2 + 8)/6,

and where

t
[ z(s)%exp (A (t - 5))as
0

(34) G(t)
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He(t) = ft z(s) ‘exp(A, (t - s))ds when £, < 0
(35) H(t) =
t
H (t) = fo -z(s) %exp(),(t - s))ds when £, > O.

For a Walrasian-stable equilibrium where fP < 0, the unique non-
4explosive solution consistent with a given initial P(0) is obtained by
setting' B=0 and A = P(0Q) ~- b'Hf(O). For a Walrasian-unstable equilibrium
where fP > 0, a non-explosive solution consistent with a given initial
P(0) is obtained by a continuum of choices of A and B subject tolthe con-
istraint that A + B = P(0). To obtain each of this continuum of solutions,
however, it is essential to use the backward looking solution H(t) = Hb(t).
Thus, in each of this continuum of solutions, there is no relationship
between P(t) or V(t) and the behavior of z(s) for s > t,.

It may be argued that use of an exclusively backward looking solution
for P(t) and V(t) in the case whére fp > 0 is contrary to the economics
of Calvo's model. In this model, prices of newly negotiated contracts are set
with a view to what excess demand will be over the future life of the con-
tract. It is reasonable to expect, therefore, that prices of newly negotiated
contracts, represented by V(t), will reflect the future behavior of the
exogenous factor 2z(s) that shifts the excess aggregate demand function.
Further, since the general price level P(t) is an average of prices of
contracts negotiated up to time t, it is reasonable to expect that it too
should reflect the expected evolution of z(s) for s > t. If one accepts
this argument, then failure of any of the continuum of solutions converging to

a Walrasian-unstable equilibrium to exhibit forward looking dependence of
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v(t) and P(t) on z(s) for s > t is reason for disqualifying these
solutions as economically sensibie solutions of Calvo's model.'® fThis leaves
the solutions converging to Walrasian-stable equilibria (one solution for each
equilibrium and each initial value of P) as the only economically sensible

solutions of Calvo's model.

5. Obstfeld's Model of Monetary Dynamics
Obstfeld (1984) presents an interesting example of a continuum of stable
rational expectations solutions to a model in which households seek to
maximize their lifetime utilities,
T
(36) Max [ ulc(t), m(t)) %exp(-pet) dt, p > 0
* 0

by choice of their time paths of consumption, <¢(t), and real money

balances, m(t), subject to the flow budget constraint,
(37) m = Yy +V-c - Tem,

where y 1is the fixed level of household income, v is the real flow of

- transfer payments from the government, and T = ﬁ/P is the inflation rate,
From the perspective of individual households, initial nominal and real money
balances, the fixed level of income, and the time paths of P, 7 and v are

11

taken as given. Optimal behavior by individual households requires choice

time paths of ¢, m and the shadow price of consumption (or of real money

balances), A > 0, that satisfy the transition laws (37) and
(38) = Ae(p - 7 - x(c, m)), x(c, m) Eum(c, m)/uc(c, m);
the first order condition,

(39) u lc, m) = A,
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-the initial condition
(40) m(0) = M(0)/P(0)

where M(0) is the household's initial nominal money balance, and the

terminal condition

0, for T (K =

(41a) exp(-p*T) *XT) m(T) =
(41b) lim(-p°t) *A(t) 'm(t) =0, for T = o=,
t >0

From the perspective of the economy, equilibrium requires that
consumption of the representative household equal a fixed level ¢ that
corresponds both- to output of consumption gobds (per household) and household

income,
(42) c=c =y,

Equilibrium also requires that the ratio of the (per household) nominal money
supply to the price level equal the level of real money balances desired by

‘households,
(43) M/Pl= m.

The government's budget constraint requires that real transfers (per house-

hold) equal the government's revenue (per household) from money creation;
(44) v = Uem,

where u = ﬁ/M is the exogenously specified rate of monetary expansion.

Differentiation of (43) with respect to time yields the result that
(45) m=u- (m/m)

along any equilibrium path for the economy.
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Combining (39) and (42), we obtian he relatibnship,
(46) A=hm) Tu (3, m) or m=g(d) =h7 (N,

that must be satisfied along any equilibrium path for the economy. Differ-
entiating this relationship and making use of (37) and (38), we obtain the
differential equations that characterize the evolution of m and XA along

any equilibrium path:

(47) m=(1/(1 + M))[p+ u-x(c, m)Im

(48) X= (/00 + M)elo+ u=-x(3, g(A))] A

whgre

(49) n(m) =mh'/h and 7Y(A) = A.g'/g = 1/n(g(]A)),

From these results it is apparent that the steady state values of m and A
for any constant rate of monetary expansion, m(M) and ANy = h(ﬁ(u)), are

determined uniquely by the requirement that
(50) x(C, m) = p + H.

Obstfeld focuses on the infinite horizon case, T = ®, In this case,
When the elasticity of the marginal utility of consumption with respect to
m, N(m) = m'ucm/uc, is > -1, there is a unique stable rational expectations
equilibrium path for the economy--the path associated with m and A
remaining at their steady state values. This path is an equilibrium because
all of the conditions (37) through (45), including the transversality
condiﬁion (41b), are satisfied., It is the only stable equilibrium path
because, as illustrated in panels A and B of figure 3, any initial choice of
m and A = h(m) other than their steady state values implies a subsequent

path of m and A that diverges from the steady state,
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A
= h(m)
=gq(A) Panel A
1>n>0
m
Panel B
o>n> -1
= h(m)
= g(A)
m
Panel C
-1 > n
= h(m)
= g(A)
m

Fig.--3: Dynamics in Obstfeld's Model for Three Values of n.
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When n(m) is < -1, Obstfeld concludes that there is a continuum of
stable rational expectations equilibrium paths. Each initial choice of m
and A = ﬁ(m) implies, as illustrated in panel C of figure 3, a subsequent
path of m and A that converges to the steady state., Since each of these
paths satisfies all of the conditions (37) through (45), including the trans-
versality condition (41b), each is a rational expectations equilibrium path,

There is no doubt that when households solve their individual optimi-
zation problems taking as given the initial level of money balances and the
paths of p and v associated with any of the solutions described in the
preceding paragraph, they behave in a manner that sustains these solutions as
equilibrium paths for the economy. There are, however, reasons for doubting
the economic sensibility of Obstfeld's model and its solutions when n is
< -1. These doubts arise first from considering solutions of the finite
horizon version of Obstfeld's model and second from considering solutions of
Obstfeld's model when the rate of monetary expansion is not necessarily
constant,

The difference between the finite and infinite horizon wversions of
Obstfeld's model is in the terminal condition (41). All of the other condi-
tions of optimal behavior by individual households and equilibrium in the
economy reduce to the relationship (46) and the differential equations (47)
and (48), and are the same in both versions. For a fihite horizon, when
n> -1, there is a unique rational expectations path for the economy.12 This
path is determined by the unique choice of m(0) <m and A(Q0) = g(m(0)) that
is consistent with A(T)m(T) = 0 when m and X subsequently evolve in
accord with (47) and (48).'3 a longer time horizon T requires an initial
m(0) closer to m and an initiai A closer to A= g(m)., In the limit,

as T grows large, the path of the economy lies most of the time in a near
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neighborhood of the steady state point (m, X), Thus, when n > -1, the
unique solution of the finite horizon version of Obstfeld's model converges to
the unique solution of the infinite horizon version,

For a finite horizon, when n < -1, therevis no rational expectations
equilibrium path for the economy. The only eligible paths are those that
start at some m(0) and A(0) = h(m(0)) and move along the path where
A = h(m) as dictated by (47) and (48). But with n< -1, movement along the
A= h(m) locus must be, as illustrated in panel C of figure 3, toward the
steady state point where m =m and X = h(m). Such behavior does not
satisfy the terminal condition (41a). This terminal condition is essential
because with a finite horizon individual households recognize that the
terminal utility value of real money balances is zero and hence wish to run
down theit real money balances as they approach the end of life, 14

If the govermnent imposes a real capital levy, K, payable in money at
date T, the terminal condition in the finite horizon version of Obstfeld's

model is altered from (41a) to
(51) m(T) = K.

This altered terminal condition modifies only slightly the results when n

is > -1. The starting point for the unique solution is the point on the

A = h(m) such that when m evolves in accord with (47), m(T) = K. When

K = m, this requires that m(0) = m and the economy sits at the steady state
from 0 to T. When K #m, m(0) lies between m and K and m moves
away from m(0) and m to reach K at T. As the time horizon becomes
longer (for a fixed K), m(0) moves closer to m and m(t) remains longer
in the neighborhood of m. Thus when n is > -1, the unique solution for
the finite horizon converges to the unique solution for the infinite horizon

as the finite horizon becomes long,
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When n is < -1 and the terminal condition (51) replaces (41a),
solutions for the finite horizon version of Obstféld‘s model sometimes
exist, When K =m, setting m(0) =m and holding m(t) at m until T
is always the solution. But, unlike the infinite horizon problem with the
terminal condition (41) or (51), this is the_gELZ.solution for the finite
horizon problem. When K # m, the situation is more complicated and depends
on properties of the utility function. The case considered by Obstfeld where

the utility function is given by

(52) | u(c, m) = (c“m6)1'R/(1 -R), @ B>0, a+B<1, R<I1

with B and R chosen so that n = B*(1 - R) is less than -1, is
especially interesting. With this utility funciton, if K is > m, a
unique solution to the finite horizon problem always exists. This solution is
obtained by choosing m(0) > K, so that m(t) evolving in accord with (47)
falls to K at T. As the time horizon lenghtens, m(0) must be set higher,
tending toward a limiting value of infinity. For any horizon length, m(t)
never approaches nearer to m than K. Thus, the solution to the finite
horizon problem for K > m does not converge to any of the continuum of
solutions for fhe infinite horizon problem. When K is >< m, a unique
solution for the finite horizon problem exists only when the horizon is not
too ldng. When it exists, this solution is obfained by choosing m(0) < K so
‘that - m(t) evolving in aceord with (47) rises to K at T. A solution fails
to exist when the horizon is sufficiently long that the time it takes m(t)

to reach K from any positive m(0) is less than T. Since this always
happens for any X < m, it is again clear that the solution to the finite
horizon problem does not converge to any of the continuum of solutions of the

infinite horizon problem when n < -1,
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Next, consider Obstfeld's model when the rate of monetary expansion is
not necessafily constant, The requirements for a rational expectations equi-
librium solution are still summarized by (46), (47) and (48) and the boundary
condition (41), When 1N is > -1, there is a unique solution for fairly
. general specifications of the time path of U, This solution is obtained by
choosing the unique initial values m(0) and A(0) = h(m(0)) that imply
satisfaction of the terminal conditon (41) when m and A subsequently
evolve in accord with (47) and (48)., The behavior of real money balances
along this solution path is described by the forward looking solution of (47);

- .

(53) m(t) = f ((x(s) = u(s)) m(s)/(1 + n)) *exp(R(t) - R(s))ds + Acexp(R(t))
N ,
where
u
(54) R(u) = [ (p/(1 + m))du
0

and where A is a constant whose value is determined by the terminal
condition (41) (which requires that A = 0 in the infinite horizon case),
This expression indicates that real money balances at time t depend in an
economically.appropriate fashion (in rational expectations model) on the
future course of the rate of monetary expansion, Future monetary expansion
ought to matter for current equilibrium real money balances because future
monetary expansion influences the inflation rate and hence the costs that
households perceive from holding money balances.

Further, when n > -1, in both the finite and infinte horizon cases the
equilibrium level of real money balances at time t is independent of the
initial nominal money supply M(0) and the rate of monetafy expansion
between 0 and t.13 This is economically sensible because in Cbstfeld's

model there is no reason why past behavior of the nominal money supply ought




26

to affect current or future behavior of any real variable. Moreover, from
these results, it follows that the equilibrium price lewvel at time ¢, which

is given by
(55) P(t) = M(t)/m(t),

depends in an econmically sensible manner on the past and future behavior of
the nominal money supply: The initial money supply M(0) and the rate of
monetary expansion between 0 and t affect P(t) by determining M(t);
while the future behavior of the rate of monetary expansion affects P(t) by
influencing m(t) in the manner indicated by the integral on the right hand
side of (53). !

When n is < =1, we do not retain these economically sgnsible
relationships between the exogenously specified path of the rgte of monetary
expansion and the endogenously determined equilibrium paths of real money
balances and the price level. For the finite horizon with the terminal
condition (41a), there is no solution for the equilibrium path of the economy
and hence no ihplied relationship between the behavior of M and that of m
and P. With the terminal condition (51), when a finite horizon solution of
m(t) exists, it is given by (53); but as previously emphasized, this solution
does not converge to any of the continuum of infinite horizon solutions.
Further, in each of the continuum infinite horizon solutions, m(t) cannot be
related to the future behavior of U in the manner indicated‘by (53) because
the integral on the right hand side of (53) does not converge when n is
< =1, Instead of using (53) as the solution of (47), it is necessary to use
the backward looking solution,

t

(56) m(t) = [ ((ms) - x(s))m(s)/(1 + N)) *exp(R(t) = R(s))ds + B exp(R(t))
0
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where B > 0 is a free parameter that determines m(0). In general, there is
a continuum of choices of B = m(0) > 0 that yield equilibrium paths for the
economy consistent with all of the conditions (37) through (45) including the
transversality condition (41b). 1In none of these solutions, however, is the
behavior of the real money supply or the price level related to the future
course of the rate of monetary expansion,

Summarizing the results of this analysis, it is clear that Obstfeld's
model exhibits strange behavior when M is < =1. In the infinite horizon
case, this strangeness is manifest in a continuum of solutions in which the
paths of real money balances and the price level are not related in an
economically sensible, forward looking ﬁanner to the future behavior of the
money supply. In the finite horizon case, this strangeness means either
absence of any solution, or solutions that do not converge to any of the
continuum of infinite horizon solutions as the length of the finite horizon
becomes long.16 In contrast, when n is > =1, Obstfeld's model always has
a unique, economically sensible solution in both the finite and infinite
horizon cases; and the finite horizon solution converges to the infinite
horizon solution as the length of the finite horizon becomes long. The
conclusion that seems warranted by these results is simply that Obstfeld's
model lacks economically sensible solutions when n is < =1,

Given this conclusion, it is reasonable to enquire whether 10 < -1 can
be excluded on some economically plausible argument. Standard concavipy
restrictions on the utility function u(c, m) are not sufficient to insure
that n = m'ucm/uc is > -1, However, the rationale for introducing m into
the utility function is to represent the services of cash balances. Consis-

tent with this rationale, it it might be argued that for any given level of

m, a higher level of c¢ ought to imply a higher marginal service yield from
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money balances since each real unit of these balances is being used more

intensively. This would imply that u and hence N would be positive,

cm
thereby ruling out the situation in which Obstfeld's model fails to yeild

economically sensible solutions.

6. Calvo's Life-Cycle Model
Calvo (1977) provides an example of a continuum of stable rational expec-
tations equilibrium paths in a life-cycle model of consumption and savinés.
In this model, u(ct, X¢) denotes the utility of the generation born at t
as a function of their consumption in youth, c¢, 1in period t, and their

consumption in age, x., in period t + 1.,. In youth, each generation earns

wages w which it uses to finance current consumption and to save by
purchaéing claims to land from the old generation. land is in fixed supply
(at one unit) and earns a rental Ry The old generation consumes this rental
plus the price, 9y, at which it sells the land to the young generation.

From the perspective of the generation born at t, therefore, the relative
price of consdmption in youth (in period t) in terms of consumption in old

age (in perod t + 1) is given by

(57) Ve = (e * Reyg) /9,

With the wealth of each generation fixed at W, the utility maximizing levels
of ¢y and x, are determined as functions of this relative price (which is

taken as given by individual members of the generation);

(58) ¢

C(vt)

(59)

"
]

Vt ‘(W - C(Vt))o
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Equilibrium reqﬁires that total consumption by the young and old each
period equal the available supply of consumption goods that period; speci-

fically, in t we require that

(60) C(vt) + v 1'(w - C(vt_

t- 1

Alternatively, using (57) and using the resource constraint and the budget

constraint to establish that qt =v 1.(§ - C(vt_1)) - Rt' the equilibrium

t-

condition may be written as
(61) SUauy + Reyq)/ay) = q

where S(vt) =W - c(vt) is the saving function. Calvo considers time paths
of q that satisfy (61)., For present purposes, however, it is more conven-
ient to consider time paths of v that satisfy (60).17

Equation (60) is a first order difference equation in Vie Under fairly
general assumptions about the utility function, when R, 1is constant at R,
there is a unique steady state solution of this difference equation, denoted
by v, and aséociated levels of consumption the young and old generations,

denoted by ¢ =C(V) and X = vew -¢) =w+ R - ¢, The difference equation

is stable in the neighborhood of this steady state if and only if
(62) -1 <V - ((w=2¢)/C'(Vv)) =8 <1

In the infinite horizon case, when this stability condition is violated, the
model has a unique (stable) rational expectations solution, obtained by
setting v, = v for all ‘t. In the infinite horizon case, when this sta-
bility condition is satisfied, a continuum of choices of initial values of
v, (at least in the neighborhood of V) imply subsequent equilibrium paths

of v, determined by (60) (with R = R) that converge to ¥, Hence, when
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the stability condition (62) is satisfied, Calvo's model has a continuum of
(stable) rational expectations solutions,

As with Obstfeld's model, there is no doubt that Calvo's model has a
continuum of convergent solutions when the stability condition (62) is
satisfied. However, these solutions have peculiar properties that are
exhibited by considering first solutions to the finite horizon version of
Calvo's model and then solutions to the infinite horizon version when the
rental on land is not constant.

To analyze the solutions of the finite horizon version of Calvo's model,
it is useful to consider the diagrams in the four panels of figure 4, In each
of these panels, the line with slope -1‘connecting the point ¢ =w + R on
the horizontal axis with the point x = W + R on the vertical axis shows the
combinations of ¢y and xe_q that are consistent with resource con-
straint, Cp + Xp_q = W + R. The curves labeled PCC in each panel are
the price consumption curves which show the loci of consumption points
(ct = C(vt), xt = vt°(§ - C(vt))) chosen by each generation as a function of
the relative price Ve These price consumption curves are drawn on the
assumption that the utility function is in the CES family.18 In panel A, the
elasticity of substitution is greater than one, implying a negatively sloped
PCC. The stability condition (62) is necessarily violated in this case. 1In
panel B, the elasticity of substitution is greater than one, implying a
positively sloped PCC, but the distribution parameter is such that the slope
at the steady steady point (where PCC intersects the resource constraint line)
is greater than one. In this case, the stability condition (62) is also
violated. 1In panel C, the elasticity of substitution is less than one and the

distribution parameter is such that the slope of PCC at the steady state is

less than one, implying that the stability condition is satisfied, In panel
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Panel A

Fig.--4: The Dynamics of Calvo's Life-Cycle Model.
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D, the elasticity of substitution is zero and the distribution parameter'is
such that the PCC proceeds along a ray through the origin with slope less than
one until the vertical line ¢ = w is reached and then proceeds upward-along
this vertical line, In this case, the stability condition is also satisfied.

In figure 4, the dynamic behavior of vy, c¢ and x¢ implied by (60)
may be described as follows. In any of the panels, a point At = (ct' xt) on
PCC represents a possible consumption point of the generation born at t. The
associated value of v, is the negative of the slope of the line connecting
this point with the point % on the horizontal axis. Proceed horizontaliy
(léft or right) from A. to a point Bi+q on the resource constraint line to
determine the level of c.,; consistent with A, . Proceed vertically (up or
down) from B, _, to the point Ar,; = (Cgy4qs X¢4q) On PCC that represents the
consumption point of the generation born at t + t implied by Ay and
(60), The negative of the slope of the line connecting At+1 to the point
W on the horizon£a1 axis is vg4q+ Repeat this procedureAstarting with
At 41, and so on, to traceout the path of Ceyjr Xeajr and Vi 4 implied by
(60) given A . In panels A and B, this procedure implies a pathvthat
diverges from the steady state whenever A, is not the steady state poinﬁ.

In contrast, in panels C and D, this procedure implies a path that converges
to the steady state, provided that A is sufficiently near to the steady
state.

To determine the solution of the finite horiéon ve?éion of Calvo's model,
assume provisionally that land c¢continues to yield its rental R in t + 1
~and that this determines the consumption‘of\fhé iaét Qeneration, borh at‘“T,
in old age. (Modifications of this assumption will be considered later.,) The
consumption point A_ = (¢, x_ = R) of the last generatioﬁ in each of the

T T T

panels of figure 4 must be the point where the horizontal line x = R
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intersects PCC. To qonstruct the solution that ends at this point, reverse
the procedure of the preceding paragraph. From AT move vertically to find
By on the resource constraint line, then move horizontally to find Ap_q oOn
PCC, then vertically to BT_1 on the resource constraint, and so on until the

appropriate starting point A, = (c1, x1) for the first generation is

1
located. The unique rational expectations equilibrium path for the economy is
the path that starts at 2, and follows the procedure described in the
preceding paragraph (reverse the procedure of this paragraph) to end up at

Amqe

For the situations described in panels A and B of figure 4, the solution
in the finite horizon case starts at a point A, that is nearer to the steady
state point that Ay and moves outward (either directly or cyclically) away
from the steady state to reéch Anqe In theée cases, as the length of the time
horizon is lengthened, the initial point A, moves closer to the steady
state, and the path oéxﬁhe eéonomy remains longer in the neighborhood near the
steady state. Thus, in these cases where the stability condition (62) is
violated, the infinite horizon solution (remaining forever at the steady
state) is the limiting result of the finite horizon solution.

For the situations described in panels C and D of figure 4, where the
stability condition (62) is satisfied in the neighborhood of ‘the steady state,
the solution for the finite horizon does not converge to any of the continuum
of solutions for the infinite horizon. Instead, in each of these cases the
path of the converges to a limit cycle (shown by the rectangle drawn with
heavy lines whose four corners lies on the resource constraint and the price
consumption curve). In panel D, the terminal point Amp is the south-east

corner of this rectangle. This point marks the consumption point for all

generations that are an even number before T (i.e. AT-j = Anp for j even
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and less than T). The opposite corner of limit cycle rectangle is the.
consumption point for all generations that are an odd number before T

(ieee, Ap.j = Apoq for all odd j less than T). 1In panel C, the terminal
point Ap lies outside the rectangle describing the limit cycle. Construct-
ing the solution for the finite horizon problem by moving backward from the
point A, (in the manner previously described), we obtain a path that con-
verges toward (but remains outside) the rectangle that describes the limit
cycle. Thus, for the situations described in panels C and D, where the
stability condition (62) is satisfied, the limit cycle in these diagrams,
rather than the steady state point, describes the path toward which the finite
horizon solution of Calvo's model converges.

This conclusion is reinforced by considering modifications of the
terminal cohdition determining Ape Suppose that rent in T + 1, which deter-
mines X, differs from the rent R that land earns in every other period.
The terminal point Ap now must lie at the intersection of the horizontal

line where x ; Repyq and PCC, and the equilibrium path is copstructed by
moving backward from this terminal point., If Rp,q happens to equal X, the
result for all four cases in figure 4 (and in any other case) is that the
economy remains at its steady state point in the fintite horizon case. Any
other value of Royq does not alter the main qualitative features of the
results illustrated in panels A and B, In panels C and D, if the terminal
point lies outside the limit cycle rectangle, the equilibrium path cycles on
(in panel D) or just outside (in panel C) the limit cycle rectangle until
shortly before the terminal date, and then cycles out to reach the terminal
point., 1In these panels, if the terminal point lie inside the limit cycle
rectangle, the equilibrium path cycles on (in panel D) or just inside (in

panel C) the limit cycle rectangle until shortly before the terminal date and




35

then cycles in to reach the terminal point. In the circumstances in panels C

and D (except R +

41 X), as the time horizon becomes long, the path of the

economy spends most of its time on or near the limit cycle rectangle., Thus,
for the situations illustrated in panels C and D, where the stability con-
dition (62) is satisfied at the steady state, the limit cycle, rather than the
steady state, is the convergence path for the economy as the length of the
horizon becomes long.

More generally, when the stability condition (62) is satisfied at a
steady state position it need not be the case that solutions for the finite
horizon version of Calvo's model converge to a limit cycle as the horizon
becomes long. For example, it is possible that there could be multiple
intersections of the price consumption curve with the resource constraint line
implying multiple steady state equilibria. Solutions to the finite horizon
model might then converge to one of the steady states at which the stability
condition (62) is violated. What muét be true in general is that solutions to
the finite horizon model do not converge to a steady state at which the
stability condition (62) is satisfied, except in the case where the terminal
condition fixes this exact point as the ending point for the economy. The
reason is that the dynamics of the model in the neighborhood of such a stable
steady state cause the path of the economy to cycle in toward this steady
state. Hence, it is not possible for a solution that must terminate at a
point other than this steady state to start out too near this steady state or
remain long in its neighborhood.

Another difficulty with Calvo's model when the stability condition (62)
is satisfied arises from the relationship between the relative price of
consumption in successive periods and the path of the rental on land. To

exhibit this difficulty, consider the linear approximation of (60) in the
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neighborhood of the steady state;

(63) u, - 9'ut_1 = zt/C'(v )

where y =v - v measures the deviation of v
s s

s from its steady state value

and zs = Rs - R measures the deviation of Rg from the constant level of
R - that determines v, When |6| > 1, the stability condition (62) is
violated and the unique solution for the equilibrium path of u, (which

determines the paths of v, and ci) must be written in the foward looking

form

- - ‘(o .°° j. .t
(64) u, = (1/8«C'(v)) jfo (1/9) Zpager ¥ K9

where the constant K is set equal to zero. This result expresses the
economically appropriate dependence of the relative price of consumption
between t and t + 1 on the rental of land in t + 1 and beyond. This
result is exploited (usually with a non~-zero K) to construct the solution in
the finite horizon case for any value of 6, However, in the infinite horizon
case, when Iel € 1 and the stability condition (62) is satisfied, this
forward looking expression cannot be used because the sum on the right hand
side of (64) does not converge, Instead, it is necessary to use the backward

looking solution of (63);

m »
(65) u_ =c'(v)e I e . 4+ peot,
t §=0 t-j

With |e| < 1, this solution converges for a continuum of choices of the
constantA L, implying a continuum of solutions for the equilibrium path of
the economy. However, none of these solutions exhibits forward looking
dependence of the relative price of consumption between t and t + 1 on the

rental of land in t + 1 and beyond.
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In connection with this resulf, it should be noted that when ,6’ < 1

and the path of v_=v + u,_ is given by (65) (for any value of L), the price

t t
of land, 9¢r can always be expressed as the present value of future rentals;19
) j=1
(66) Q= T R/T Ve,
Jj=1 1=0

The difficulty, therefore, is not in obtaining an appropriate forward looking
expression for the price of land, given the path of the relative price of con-
sumption in successive periods. The difficulty is in obtaining an expreséion
for the relative price of consumption that exhibits an appropriate forward
looking dependence of future rentals on land.

In summary, when the stability condition (62) is violated both the finite
and infinite time horizon versions of Calvo's life-cyclé'model have unique
rational expectations solutions. In both versions, the relative price of
consumption in suécessive periods depends in an economically appropriate
manner on the future course of the rental on land. When this rental is
constant, the solution for the finite horizon case converges to the solution
for the infinite horizon case as the length of the finite horizon becomes
long. When the stability condition (62) is satisfied, Calvo;s model exhibits
strange behavior. Specifically, the infinite time horizon version of this
model exhibits a continuum.of rational expectations solutions. The relative
price of consumption in successive periods in these sqlutioné, however, is
linked to past rather than future rentals on land. A uni@ue finite horizon
solution that does not suffer from this deficiency can be constructed when the
sStability condition (62) is satisfied, but this solution has its own
peculiarities (convergence to a limit cycle’ aﬁd it does not converge to any
of the continuum of infinite horizoﬂ s§1utions. It may be argued, therefore,

that the assumptions that allow the stability condition (62) to be satisfied
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should be excluded on the grounds that Calvo's life-cycle model fails to

exhibit economically sensible behavior when these assumptions are satisfied.20

7. Conclusions

Some of the results of the five examples of rational expectations models
with a continuum of convergent solutions considered in this paper are speéific
to those examples. There are, however, three general lessons to be learned
from these examples.

First, existence of a steady state equilibrium in a rational expectations
model which is the convergence point for a continuum of solutions of that
model does not imply that any of these solutions'is economically meaningful.
This is clearly demonstrated by the first example where the continuum of paths
converéing to the steady state (K;, q;). are demonstrably irrelevant to the
solution of the dynamic optimization problem that gives rise to the dynamic
system (9) and (10)., This example ihdicates that caution is required in
interpreting similar sets of solutions when they arise in rational expec-
tations models whose behavioral functions are specified on an ad hoc basis,

Second, when a rational expectations model has a steady state which is
the convergence point for a continuum of solutions, none of these solutions
may exhibit an economically appropriate, forward looking dependence of the
endogenous variables on future behavior of the exogenous variables. This
difficulty was observed in all five examples considered in this paper. It is
likelybto be a difficulty in other models as well because the condition that
gives rise to a continuum of convergent solutions (more stable roots than
backward looking dynamic processes) automatically implies difficult& in
constructing the forward looking components of the solutions for the

endogenous variables (because there are fewer unstable roots than forward
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looking dyanamic processes),z1 When appropriate forward looking dependence of
endogenous variables on exogenous variables is an essential feature of eco-
nomiclly sensible solutions of a rational expectations model (as arguably it
is in the five examples considered here), there may be grounds for rejecting a
cohtinuum of solutions converging to a steady state and for questioning the
economic sensibility of the model under the circumstances that give rise to
such a continuum of solutions,

Third, under circumstances that give rise to a continuum of solutions of
the infinite horizon versions of rational expectations models, finite horizon
solutions of these models may not exist, and when they do exist, they may not
converge to any of the continuum of infinite horizon solutions. This may
provide additional grounds for questioning the relevance of the continuum of
infinite horizon splutions. These grounds may be strengthened if (as the case
fqr two examplesvconsidered here) the circumstances that insure a unique
infinite horizon solution also imply a unique finite horizon solution that
converges to the infini;e horizon solution as the horizon becomes long.

Finally, it should be emphasized that this paper has not demonstrated the
impossibility of constructing rational expectations models with a continuum of
convergent solutions. It can be argued that Taylor's macroeconomic model,
Calvo's price dyhamics model, Obstfeld's monetary dynamics model and Calvo's
life-cycle model all exhibit such a continuum of solutions for some specifi-
cations of tﬁeir parameter values or behavidr functions.‘ Each of these
solutions satisfies all of the formal requirements in their respective models
for a rational expectations solution‘of the_model. Only by raising the
additiohal considerations summarized in the two preéeding paragraphs has it
been pogsible to question the economic relevance of the continuum of

convergent solutions of these models, Moreover, it is possible that a
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rational expectations model can be constructed which has a continuum of
convergent solutions that meet the difficulties discussed in this paper, 21
Only by examining each such model on its own merits is it possible to consider

the economic meaning and relevance of its solutions.
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FOOTNOTES

1. The conditions for existence of a continuum of convergent solutions to
linear rational expectations models afe examined in Blanchard and Kahn (1980)
and Buiter (1982), It is well known that these conditions apply locally in
the neighborhoods of steady states for non-linear rational expectations
models; see Burmeister (1980),

2. The issues examined in this paper are different from the issue of the
justification for selecting the unique nonexplosive solution to a rational
expectations model when other explosive solutions are available. This latter
issue will not be addressed in this paper.

3. This deficiency also applies to the minimum variance solution suggested by
Taylor and to the solution dependent on the minimal set of state variables
suggested by McCallum (1983) as the economically relevant solution of Taylor's
model,

4, The assumption of a negative rate of time preference and the strange shape
of the production function illustrated at the top of figure 1 are necessary to
create a dynamic system with a steady state at which there are two stable
characteristic roots,

5. Since the steady state (K;, C;) lies below the tangent to the total
product curve at K: in the upper panel of figure 1, it can be shown that it
is not optimal to choose paths of K and gq that lie near the stable

branch é3s3 and remain (for long time horizons) near the steady state

(Kg, q;) for a long time,

6. McCallum (1983) has shown that the indeterminacy arising from a continuum
of solutions to Taylor's model when 61 < 0 and l61| ¢ 2 can be resolved by

insisting on the solution that depends on the minimal set of state vari-
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ablés. This solution, however, suffers from the Qame difficulty of all other
solutions that there is no forward looking dependence of the price level on
the future behavior of the money supply.

7. In order for 61 to be negative in Taylor's model, real money balances
‘must have a strong positive effect on aggregate supply. It might be that
e#plicit consideration of the microeconomic foundations of Taylor's model.
would rule out this possibility. For example, if real balances affect
aggregate supply because wealth affects the supply of labor, then normality of
leisure in the household utility function would imply negative coefficient for
real balances in the aggregate supply function. Introducing money as an
argument in the production function, however, would provide a rationale for a
positive effect of real balances on aggregate supply. Application of a
generalized version of Samuelson's correspondence principle might be used to
argue that this effect should not be so strong as to induce 'a negative value
of 61.

8. Suppose that excess demand at time s for the product whose contract price
V(t) is set at t is given by x(s) = Y*(P(s) - V(t)) + O8+£(P(s), r(s)),
where Y measures the responsiveness of excess demand to deviations between
the price of this product and the general price level and O measures the
effect of excess aggregate demand on excess demand for an individual

product. Suppose further that the objective of the price setting process is
to set each contract price so that expected excess demand for the product over
the length of the contract is zero., It may then be shown that V(t) should
be set in accord with (25) with B8 set equal to 6&/v,

9. There is no obvious way in which Mccéllum's criterion of a solution that

depends on a minimal set of state variables would select a unique solution

from the continuum of solutions converging to a Walrasian unstable equi-




43

librium, If both characteristic roots are real (and negative) at such an
equilibrium, there will be a continuum of directly convergent solutions along
which it is possible to express V as a function of P and thereby reduce
the set of state variables to just P. There is no obvious basis, however,
fof selecting one of these directly convergent solutions in preference to all
others, When the two roots are a complex conjugate pair (with negative real
parts), all solutions cycle in toward a Walrasian-unstable equilibrium, and
the minimal set of state variables consists of P and V.

10, Insistence upon a solution that exhibits forward looking dependence of
V(t) and P(t) on z(s) for s > t imposes a condition beyond the
conditions expressed by the equations that constitute Calvo's model. The
arqument for imposing this additional condition is that it is implied by the
economic content of Calvo's model. If one argues that this additional
condition is not an essential part of the model, then he is left with a
continuum of solutions converging to any Walrasian-unstable equilibrium.

11. The model examined in this section is a simplified version of Obstfeld's
model., The simplifications do not alter the substance of the analysis.

12, 1In this discussion it is assumed that n does not change sign and

that is always either greater than or less than -1, Peculiar things can
happen when these assumptions are not satisfied.

13. The differential equation (47) controlling m can be rewritten as

m = (1/(1 + n))*[{(p+ Uem - um(E, m)]. Since um(E, m) rises as m
declines, while (p + u)e°m falls as m declines, it may be shown that

m< -b for some positive b whenever m < m(0) < m. It follows that m
will be driven to zero (while A is d:iven to zero or to infinity) in finite

time starting from m(0) < m.
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14, In particular, if m(0) is set equal to m, then (47) and (48) imply
that m and A will remain at their steady state values between 0 and

T With m constant at m, it follows that 7= pu and v = uem, Téking
these time paths of 7 and v as given, however, it is easy to show that
individual households will not want to hold their consumption at ¢ and the
real money balances at m. Each individual household wants to consume in
excess of ¢ and run down its real money balance, especially as t

approaches T,

15, Consider the finite horizon problem starting from t rather -than from

0. This problem is identical to the finite horizon problem starting from O
and running to T - t. In this shortened horizon problem, the initial nominal
money supply (which is M(t) in the horizon T .problem) matters only for the
initial price level and does not affect the behavior of any real variable
(including the inflation rate).

16, With the terminal condition (51) and K set at m, the solution of the
finite horizon problem does converge to the solution of the infinite horizon
solution with m(0) set at m. This inifinite horizon solution, however,
still lacks an economically sensible, forward looking dependence of real money
balances and the price level on the future behavior of the money supply.

17. Given the path of R, ,, a solution for the path of q, implies through
(57) a solution for the path of v¢. To solve for the path of qy Jgiven the
path of v, requires one additional condition. In the finite horizon case,
where the generation born at T is the last generation, this condition is
supplied by the requirement that qp. , = 0. In the infinite horizon case,
this .additional condition is supplied by the requirement given in (66) that

the price of land equal the present value of future rentals.
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18, In the Cobb-Douglas case éf unit elasficit& of substitution (not
illustrated), the price consumption éurve is a vertical line at the level of
c whefe the ratio \c/ﬁ is equal to the share of current consumption in
wealth. 1In the general CES case where the utility function is

[8c¥ + (1 - 8).}:\)]1/\)' with 0< §< 1 and v< 1, the price consumption
curve ié described by x = (§/(1 - 6))1/v'c°((§/c) - 1)1/v for 0 <c < w,
19, Calvo k1977) makes this point in the case where Ry is constant at R.
20, ’Utility functions u(cy, x¢) which imply satisfaction of the stability
condition (62) need not have any peculiar properties (inferior goods or convex
indifference curves) that utility functions are not usually assumed to
possess. The difficulty is that when a usually sensible utility function is
embedded in Calvo's life-cycle model, it implies very peculiar behavior of the
solutions of thié model. Applying the same logic used to rule out utility
functions with convex indifference curves in demand theory (because they
always imply specialization in consumption), utility functions that imply
satisfaction of the stability condition (62) can be ruled out for use in
Calvo's model (because they imply peculiar behavior of the solutions of this
model).

21, With fewer unstable roots than independent forward looking dynamic
processes, the dimension of the manifold of forward looking components of
solutions for endogenous variables will be smaller than the dimension called
for by the economic structure of the model. For the examples considered in
this paper, where there is only one independent forward looking dynamic
process, absence of any unstable roots implies absence of any forward looking
component in the solutions for the endogenous variables.,

22. Consider the problem of finding the minimum distance path cqnnecting two

polar opposite points on the surface of the sphere in R3, This problem has a
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continuum of solutions since every great circle cénnecting the two Qoles is a
minumum distance path. BAnother example is Kareken and Wallace's (1981) model
of floatiﬁg exchange rafes. In this model there is a determinate demand for
total real money balances, domestic plus foreign, but (with an exchange rate
that is expected to remain constant) there is nothing that determines the
division of this total between domestic and foreign money. Hence, corre-
spondipg to each initial exchange rate, there is a distinct equilibrium
solution of the model, with a different division of total réal money balances
between domestic and foreign money. A third example is Obstfeld's money of
section 5 ﬁhen the rate of monetary expansion is made a function, u(m), of
the level of real money balances, If we define this function implicitly by
the réquirement that x(c, m) = p + u(m) over some range of values of m,
then all-vaiues of m bwithin this range will define steady state solutiqps of

Obstfeld's model.
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