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ABSTRACT

We discuss estimation of the model
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when data on the continuous dependent variable Y and on the independent
variables X are observed iff the "truncation variable" T > 0 and when T is
latent. This case is distinct from both (i) the "censored sample" case, in
which Y data are available iff T > 0, T is latent and X data are available for
all observations, and (ii) the "observed truncation variable" case, in which
both Y and X are observed iff T > 0 and in which the actual value of T is

observed whenever T > 0. We derive a maximum-likelihood procedure for

estimating this model and discuss identification and estimation.
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Consider estimation of the model

(1.1) Yi = XibY * ey

X.b_ + e

(1.2) T, 5P -

when data on the continuous dependent variable Y and on the independent
variables X are observed iff the "truncation variable" T > 0 and when T is
latent (i.e., not observed). This case is distinct from both (i) the
"censored sample" case, in which Y data are available iff T > 0, T is latent and
X data are available for all observations, and (ii) the "observed truncatlon
variable" case, in which both Y and X are observed iff T > O and in which the
actual value of T is observed whenever T > 0,1

In these alternative cases, one can estimate the parameters of (1.2)
directly, and thus can make a selection bias correction to estimate (1.1)
consistently using only observations with T > O. When T is latent, however,
there are no X (or T) data for "zeroes" (observations with T < 0), and the data
for "ones" (observations with T > 0) exhibit no observed variation in T. Hence,
in this case one cannot estimate directly the probability that an observation
will have positive T or use existing methods for selection bias correction to
estimate (1.1) consistently. However, as we now show, one can correct for
selection bias and obtain consistent estimates of (1.1) even when T is latent
and even when X is available only for observations in the truncated sample.?

First, the probability density of a Y value of Yi for observation i in
the population, conditional on its characteristics Xi and on the fact that

it is in the truncated sample (has 'I'i > 0), is

(2) ey (¥, | T, >0, X,) = mY(YiI X, )pr{T, > 0] Y, X} /et > o|‘x }




-2

where m and c, are the marginal and conditional probability density
functions for any variable z. We follow most previous work on censoring

and truncation by assuming that eY and én are bivariate normal mean-zero -

random variables, uncorrelated with the X, with variances OYY and GTT’

respectively, and with covariance o__. Together with (2), this implies that

TY

_ _ _ 1/2
(3) my(¥, [ %) = °eY(eYil X)) = meY(eYi) = fleys /o yy)lo

1/2

where f is the standard normal probability density function. Also, by (1.2},

o«

- - - 1/2
(4) priT, > 0| X;} =Pre, > X | X} = | 1/2 £(t)dat = 1 - F(-7 /o7 1)
=J, /o
(5) Pr{Ti >o0]y i} = Pr{eTi > _xile eys > xi} a
A 2
= J £(t)dt = 1 - F(-K, /o 1/2)
K. /o 1/2 "
iV ppey
where F is the standard normal cumilative density function; Ji = XibT;
Ki = XibT + U Y; uT'Y = OTYeYi/OYY = the mean of eTi conditional on eYi;
and Opq, y = [1—(0 [o - )] = the variance of ep, conditional on ey..
Hence, (1)-(5) imply that the likelihood for & sample of
observations' Y conditional on their X and given that they are all in the
population subset t that is in the truncated sample3 is
<
(6) |, >0, x,)
_ 1/2 1/2 1/2 1/2 w
= T f(ey, fo7yy) o7yl [1-F(-K, fo 0 )/ 11-F (=T, fo 7))
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Note also that the regression function implicit in (1.1) is
(n Ely |, >0, x,) = Xby + Lo, o221 ek 5 0 12) pix 5 e 2/2))
i i > Ui i’y YT TT it TT i'T’ TT

(7) usually arises in the analysis of censored samples (see Heckman,
1979, p. 156). However, it is equally applicable to truncated sam.ples.h
As regards identification, note first that both (6) and (7) are homo-

geneous of degree zero in b, , UTT and OYT: that is, these parameters are

identifiable only up to a constant of proportionality. Accordingly,
OTT may be normalized to unity without loss of generality.

g

. . s if g = 0. . =
Second, hr is not identified if 0 In this case, OTT'Y o

TY

and J = K;+ 'If so, the second term in the numerator of (6) and the deno-

minator of (6) are equal for all observations and (6) collapses to

1/2

1/2]
YY

Moy

(8) Ly, [T, >0, %) =1 ltle, /o
i i i . Y,
i€t i

which is exactly the likelihood function implicit in OLS estimation.

Similarly, the truncated regression function (7) reduces to

(9 m(y,|T, >0, x)=xD

In both cases, however, if d__ # 0, then use of (8) (or (9)) rather than

TY

(6) (or (7)) will result in inconsistent estimates of the parameters of (1.1).

Third, following Fisher (1966, especially Chapter 5), we can

approximate the nonlinear terms of (T) (with o__ normalized) to any desired

T

degree of accuracy by a Maclaurin expansion of arbitrarily high degree.

The resulting expression can be written in a form that is nonlinear in X




e

but linear in a new set of parameters (that are nonlinear functions of the
original parameters). Except in one special case, X enters this trans-
formed equation in an arbitrarily large number of terms all of which are,
however, nonlinearly related because of the nonlinearity of the normal

distribution. Thus, subject to the normalization ¢ = 1, the parameters

T

of the truncated regression model (7) are identified.?
The sole exception to this result on identification arises when

constants are included among the X's in both (1.1) and (1.2) but by = 0 for

all nonconstant X's (e.g., when the only parameter in Xib is an intercept

T
term). - In this case, the ratio f£(* )/F(*) in (7) is a constant for all
observations in the truncated sample and so the intercept term in (1.1) is
not identified. (To see this, examine the expansion of (7) and note the
existence of a linearity when bT = 0 for all nonconstant X.)

In principle, estimation of (7) by nonlinear least squares (NLS) or
(6) by maximum likelihood (ML) yields consistent estimates of the parame-
ters of (1). An advantage of ML is that the truncated regression function
(7T) is heteroskedastic (so that NLS will yield incorrect standard errors),
whereas correct asymptotic standard errors can be computed directly from
the inverted Hessian obtained via ML. .Using an earlier version of this
paper, Greene (1982) has derived a routine to estimate (6) by ML and has
included it in a flexible econometric software package.6

We note, in passing, that (6) (or (7)) generalizes the estimator pro-

posed by Heckman (1979) for censored data. Under Heckman's approach, the

parameters bT are estimated in a first-stage probit analysis using data for
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the entire population. In the second stage of the procedure one estimates
(7), using data for the population subset that has T > 0, with the

bT constrained to equal the values obtained in the first stage. However,
one could instead estimate (6) (or (7)) directly, using observations with T
> 0, but without a first-stage probit analysis. This has the advantage of
not constraining the b_ . The disadvantage of this application of (6) to

T

censored data is that it estimates bT using fewer observations than are

used in the Heckman two-stage procedure.
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Footnotes

1. On (i), see Heckman (1979). On (ii), see Amemiya (1973, p. 1015, esp.

equations (10)), Hausman and Wise (1976), and Wales and Woodland (1980).

2. If aggregate data are available on the X characteristicsbfor
the general population, one may use the work of Cosslett (1981), who propo-
ses fairly general estimators that make efficient use of such information.
Here, however, we are concerned with cases in which such aggregate X data

for the population are not available,

3. Note that (6) is identical in form to the expression in
equation (21) in Wales and Woodland (1980). However, Wales and Woodland
treat their (21) only as a building-block in the construction of other
likelihood functions that require more information than does (21), and do
not suggest that their (21) can itself be used to estimate the parameters

of their function for Y.
4. We owe this point to an anonymous referee.

5. Thus, in the present case, no exclusion restrictions (e.g.,

' that at least one variable that appears in (1.1) may not appear in (1.2)
and/or vice versa) are required for identification. What identifies (6)
(or (7)) is the nonlinearity of the normal distribution, although the model
will be identified under other nonlinear distributions as well. A caveat

is in order here: in models like the one developed here, parameter estima-




i .

tes may be sensitive to distributional assumptions. (For example, see Olsen,

1982).

6. After completing this paper, we become aware of the work of Muthen and
Joreskog (1983), who also derive the likelihood function (6) and present Monte
Carlo results. However, they do not discuss identification of (6) or its non-

linear least squares analogue, (T).




-8~

REFERENCES

Amemiya, T. (1973), "Regression Analysis When the Dependent Variable is
Truncated Normal," Econometrica 41: 997-1016.

Cosslett, S.R. (1981), "Efficient Estimation of Discrete-Choice Models,"
pp. 51-111 in Manski and McFadden, eds., Structural Analysis of
Discrete Data with Econometric Applications, Cambridge, MA: MIT
Press. ’

Fisher, F.M. (1966), The Identification Problem in Econometrics, New York:
McGraw-Hill.

Greene, W. (1982), LIMDEP Manual, Department of Economics, New York University.

Hausman, J.A. and D.A. Wise (1976), "The Evaluation of Results from Truncated
Samples: The New Jersey Income Maintenance Experiment," Annals of
Economic and Social Measurement 5: 421-4L46,

Heckman, J.J. (1979), "Sample Selection Bias as a Specification Error,"
Econometrica 47: 153-162.

Muthen, B. and K.G. Joreskog (1983), "Selectivity Problems in Quasi-Experimental
Studies," Evaluation Review T: 139-1Th.

Olsen, R.J. (1982), "Distributional Tests for Selectivity Bias and a More
Robust Likelihood Estimator," International Economic Review 23:
223-240.

Wales, T.J. and A.D. Woodland (1980), "Sample Selectivity and the Estimation
of Labour Supply Functions," International Economic Review 21:

437-468.






