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CONDITIONAL PROJECTION BY MEANS OF KALMAN FILTERING

Richard H. Clarida and Diane Coyle

Recently, Sims (1982) and Doan, Litterman, and Sims (1983) have proposed
and implemented methods for evaluating the Plausibility and internal consistency
of econometric forecasts. As Sims (1982) has convineingly argued, the usual
method for constructing macro-econometric forecasts is potentially misleading
since it assumes that the specified paths for a policy variable is generated by
disturbances to the policy equation alone, with all other disturbaces held to
zero. By contrast, the methodology proposed by Doan, Litterman, and Sims
explicitly takes into account policy endogeneity by generating true conditional
projections given specified paths for the policy variables. More generally, the
key insight of the Doan, Litterman, and Sims approach is that a constraint on
the future path of one variable in the system carries information which can be
used to help predict the most-likely current values of other variables in the
system,

The Doan, Litterman, Sims methodology may be descibed as follows. The
historical, dynamic correlations among the variables in some set of interest
are summarized using a multivariate time series model such as a vector
autoregression. The estimated parameters and innovation variance-~covariance
matrix of the model are then used to construct a projection of the most likely
post-sample path for a given subset of variables subject to the constraint that
(a linear combination of ) the remaining variables attain the post-sample
trajectory predicted by the forecast under study. The forecast is then compared
against the derived conditional projections using a metric constructed from the

estimated innovation variance-covariance matrix.
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The principle behind.the Doan, Litterman, and Sims methodology is that the
estimated time series model provides a conditional Joint density function for
-the post-sample trajectory of the system which can be used to find likelihood
‘maximizing paths subject to linear restrictions on those paths. Doan, Litterman,
and Sims use the following procedure to calculate these constrained conditional
projections. A linear constraint upon future values of the system's variables
is transformed, using the matrix of estimated moving average coefficients, into
an equivalent constraint on the sequence of orthogonalized innovations. The
least-squares estimate of the constrained innovations is computed and is used to
obtain the . least-squares projection of the system's variables subject to this
constraint by constructing the path implied by the computed innovations. This
- classical approach requires first constructing a matrix of moving average
coefficients whose dimension is equal to the product of the number of variables
in the system and the number of post-sample periods in the forecast and then
inverting, for each set of constraints studied, a transformation of this matrix
of dimension equal to the product of the number of linear restrictions at each
post-sample date and the number of post-sample periods in the forecast. For
systems of even moderate size, this can be an imposing task.

Doan, Litterman, and Sims conjecture that these computations cannot be
carried out recursively forward in time (as can unconstrained point forecasts)
because of the aforementioned fact that a constraint on future values of a
variable in the system carries information about the most likely current values
of all variables in the system. The purpose of this note is to establish that
in fact recursive, state-space methods can be used to implement the Doan,
Litterman, and Sims approach to econometric forecast and policy evaluation. In

particular, we show that the methods of Kalman filtering and smoothing can be
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used to combine post-sample constraints on a linear combination of a system's
variables with that system's historically estimated parameters to yield

minimum mean square linear projections of the variables' future paths which
optimally incorporate all of the posf-sample constraints. PFurthermore, the
Kalman algorithms are easily programed and modified to incorporaté different
linear constraints, avoid cumbersome matrix inversions, and provide estimates of
the full variance-covariance matrix of the constrained projections which can be
used directly, under standérd normality assumptions, to test statistically the
likelihood and internal consistency of the forecast under study.

The plan of the paper is as follows. In Section 1, we show that the
methods of Kalman filtering and smoothing can be used to foreggst the post-
sample behavior of a linear dynamic system subject to linear restrictions on the
future values attained by its variables. In Section 2, we show how differences
between a particular forecast under study and the constfained projections
generated by the Kalman filter can tested for statistical significance. 1In

Section 3, we discuss the empirical implementation of our state-space approach.

In Section 4, we provide some concluding remarks.
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1: State-Space Representation and the Kalman Filﬁer

We consider the problem‘of forecasting the post-sample beﬁavior of a linear
dynaﬁic'system subject to linear restrictions on the future valueé attained by
its variables. Harvey (1981) provides an excellent recent tfeatment.of'the
necessary state-space tools. |

Let x be a vector containing the system's r variables. The movement of
x through time is assumed to be governed by a constant-coefficient, vector

autoregression

P
Xt -_-lei(T e ey ' | (1)

which has been estimated from past observation on the x , t = =S, « « «, 0.
Here ¢(t) is an r.r matrix of autoregression coefficients and e, is an r.l
vector white noise with contemporary covariance matrix Q. This p'th order

vector autoregression can be written in the first-order form

(1) ¢(2) . . . ¢ (p) I
_ o | 0
X = L © % * : €t
p-1 0 0
or (2)

x, =0 + Ge_;
Xy T 8% £}

where x, is the rp.l state vector (x_, )', & is the rp.rp

t Xe-1°

companion matrix, and G is constant rp-r matrix. Equation (2) constitues the

. L] L] xt-p+1
transition equation of the system.
Let Ye be an m-1l vector of of the restricted values attained by a linear

combination of the system's variables in the post-sample period t = 1,. .,T.
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yt is related to the state of the system ;; by the measurement equation

=S—
Yy N (3)

" where St is a fixed matrix of order m-rp. The measurement equation thus imposes
m linear restrictions on the system at each post-sample date.

The Kalman filter consists of a set of recursive equations for calculating
minimum mean square linear projections (MMSLP) of the variables contained in the

;; given the information contained in measurements Yt = (yt, yi o o e, yl)'.

1’

Let x be the best linear projection of 3% given Yt the covariance

t/t-1

ix of the forecast e X -Xx
matrix o e forecas rror s 4 /4-1

). Note that since the initial state of the system

P .
-1" t/t-1
, and'Ht the covariance matrix of

- s (x -x
A o

' xO is just the final observation in the sample of past —it t=-8, ..., 0,

X =x and P = 0., The set of recursions is given by the prediction
¥at0 ~ %o o/o & v P

equations:

_ = . \
Xt Jo-1 cl”"1-,--1/1-,-1’ (1)
Pojea1 - PFpoajp® T OGS (5)
H =8 (6)

P S 3
t t t/t-1 t’

and the updating equations:

X

— 1 ' ]
t/t xt/t—l * Pt/t-l i )3 : (1)

S H™ -
Wy Oy Ve 61

-1
=P -P S H P . 8)
Pt/t t/t-1 t/t-1t ¢ S t/t-1 (

The prediction equations can be regarded as calculating recursively the
conditional moments of the joint normal distribution of E£ and_yt, updating

the information set Yt 1 on each pass through the Kalman filter.
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Each step in the Kalman filter yields the MMSLP of ;; conditional on the
information contained in Yt. The only projection which incorporates all the
post-sample restrictions is Q%/T’ the projection of the state in the final post-
sample period. ‘The method of Kalmah smoothing may be used to.calculate the
MMSLP of each variable at each post-sample date which incorporates all the post-
samplg restrictions. These smoothed projections shall be denoted xt/T'

There are several alternative methods of Kalman smoothing. We follow

Anderson and Moore (1977) and stack the state vector so that only the Kalman

filter recursions need to be used. Define the new rT-1 state vector

X E . .. "' Th
%, = (xoax oo "X mep) en
9 (1) ¢(2) . « v o(P) . .0 I
I 0 e e e s e e 0 of
- = - +
Xt 0 I ¢ o o o e o ® 0 't—l . Et
0 0 e o s s o o1
or (9)
%x =90% + Ge
t t=1 t

where ® ‘s the rT- rT companion matrix and G is a fixed matrix of dimension ri. r.
Note that XT contains the entire post-sample trajectory of the forecast under
study. With this augmented state vector, T passes through the Kalmén filter
will provide smoothed estimates of the variables in the system from 1 to T
given the information in YT = (ET, . o .,?1)'. After the T'th pass through,

% = ( x

X o o o4X )'-
T/T /T’ T-1/T° 1/t
the Kalman filter yields the MMSLP of the entire post-sample trajectory of the

It folows directly that the final step of

system subject to the restrictions on this path contained in YT.
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There is a particularly simple relationship between the unconditional

0’ and the projection which incorporates the information

contained in YT, RT/T’ This is obtained by first setting St = 0, for

t=1, . . «, T~1. After T-1 passes through the filter, we obtain

projection of X, XT/

. e _ T.._ }
Ypire1 = Xppo ¥ b (10)

| =3P 3"+ GQG'; |
PT/T-l T-1/T-1 GaG"; (11)

For the final pass, we use the ST which imposes the appropriate constraints on

%  so that
B T "
¥ =8 %. 12
Yp T Sl (12)
Then,
T - T
% =33 + K - S ¢y 1
xT/T Xy T(yT T xo) (13)
where,
~ -1
=P S (S P S
Kp = Poypa®e'BePe /e (1h)
This implies (cf. Doan, Litterman, and Sims (1983) equation (22), p.37)
% = ‘3( + K R - Y . ‘ ‘ 1
e = Xpjo * KTy 7 Ty o) (15)

Thus the difference between the unconditional projection &T/O and ‘the projection
~ . which incororates the post-sample restrictions RT/T is Just an affine
transformation of the difference between the post-sample constraints ?T and .

their best linear projection §T/O°
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2: Testing the Plausibility and Internal Consistency of a Forecast

As Doan, Littermaﬁ; and Sims emphaéize, there is no unambiguously
correct way to measure how likely it is that a particular condition on the
projected post-sample path of a system will be realized. One possibility,
for the case of a normal distribution over the post-sample paths, is to measure
. the plausibility of a set of linear restriétions directly by the significance
level of the associated chi-squared statistic. To do this, we first construct

the vector VT = xT - XT/T where it should be recalled that XT/T is the MMSLP of

iT which incorporates all of the post-sample constraints YT = (?T, o« .,yl)'.
This vector is multivariate normal with zero mean and covariance matrix

P « It follows that the statistic

T/T

- ) ' . =
(&r - xT/T) (PT/T) (%p xT/T) (16)

has the desired x2 distribution with ml degrees of freedom.

This procedure treats as the class of paths whose probability is to be
measured all paths with lower likelihood than the most likely path satisfying
the restrictions. An alternative "plausibility index" suggested by Doan,
Liiterman, and Sims instead looks only at paths lying on "one side" of the
‘claimed path. This index uses the square-root of the chi-squared statistic
given by (16) as if it were a normal random variable and measures plausibility
by the probability in the upper tail of the normal p.d.f. at the level of this
statistic. Whichever index is chosen, it is clear from (16) and equations
(4) through (8) that it can be constructed directly from the output of the T'th

pass through the Kalman algorithm.




3: Empirical Implementation

The Kalman recursions require as input an initial state vector &0, a
companion matrix ¥, the variance-covariance matrix Q, and the matrix S which
imposes the restrictions on the post-sample trajectory of the state vector.
Short subroutines can easily be written to construct the ¥ and Q matrices
directly from the output files of the widely available Doan - Litterman RATS

program. The S mtrix is also egsily constructed. For example, suppose that
the values of xi, the first variable in xt, are. constrained. to follow the: path
T, = (x%, . . -,x%). (17)

" The appropriate S matrix is just the 1-rp vector S =(10 . . . 0),

Kalman filtering programs are readily available. The IMSL Fortran
"subroutine SFKALM has been used by the authors. For a six variable system and
fifteen period forecast horizon, the computations used minutes of CPU time on
a VAX/VMS system. The number of passes through the filter is equal to the
number of forecast periods. However, only the output RT/T and PT/T from the
last pass is required.

Computationally, their are several advantages to the state-space approach.
In calculating the constrained conditional projections, the Kalman methods
replace the cumbersome, if not intractable, matrix inversions required by the
Doan, Litterman, and Sims method with a sequence of matrix miltiplications. 1In
addition, the Doan, Litterman, and Sims approach requires the non-trivial rT.rT
matrix of moving average coefficients which does not appear, at least to us, as
easily contructed from the RATS output files. In particular, the non-trivial

block of the companion matrix & used in the Kalman filter is invariant to the

number of post-sample periods under study.
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L: Concluding Remarks

In this note we have established that the recursive, state-space methods
of Kalmen filtering and smoothing can be used to implement the Doan, Litterman,
and Sims (1983) approach to econometric forecast and policy evaluation.
Compared with the methods outlined in Doan, Litterman, and Sims, the Kalman
algorithms are more easily programed and modified to incorporate different
linear constraints, avoid cumbersome matrix inversions, and provide estimates of
the full variance-covariance matrix of the constrained projections which can be
used directly, under standard normality assumptions, to test statistically the
likelihood and internal consistency of the forecast under study. It is our hope
that the wide understanding and ready availability of Kalman filtering
- technology will allow the Doan, Litterman, and Sims approach to be more easily,
and thus, frequently employed. For a recent application of the methods outlined

in this note, see Clarida and Friedman (1984).
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