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Policy evaluation and design for continuocus time linear

rational expectations models: some recent developments

1. Introduction

The first systematic introduction to economic dynamics came for

me, as for many of my contemporaries, through William Baumol's lucid
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and "user-friendly" book Economic Dynamics (Baumol [1970]). It

seems appropriate, therefore, to survey in this volume honouring
William Baumol's contributions to economics, some of the recent devel-
opments in médelling dynamic macroeconomic systems. All these
developments bear the hallmark of the rational expectations revolution
which has swept macroeconomics and international finance since the
early Seventies. Only models represented by systems of first order
linear differential equations with constant coefficients are considered.
The reason for limiting the discussion to linear systems will be
obvious to those who have attempted to analyse even very simple non-
linear rational expectations models. The restriction to continuous
time systems reflects the existence of many excellent survey articles
on general discrete time systems (e.g. Whiteman [1983], Blanchard
[1983] and McCallum [1983]). Continuous time rational expectations
models, by contrast, appear extensively in the literature in one, two

or occasionally three dimensions, but have not been the subject of

1. The first edition of this book appeared as early as 1951.




systematic surveys to anything like the same extent. (Exceptions are

Dixit [1Y821, Buiter [198la, 1982] and Currie and Levine [1982].

Section II of the paper summarises the continuous time analogue
of the discrete time solution method of Blanchard and Kahn {1980},
as developed in Buiter [1982]. Section III considers some problems
that are associated (or may appear to be associated) with this
solution method. Section IV contains the solution to the general
linear-quadratic optimal control problem in continuous time rational
expectations models. It builds on work by Calvo [1978], Driffill

[1982])], Miller and Salmon {1982, 1983] and Buiter [1983].

Both optimal (but in general time—inconsistentj and time-consistent
(but in general sub-optimal) solutions are derived in a uniform
framework. A numerical example, involving optimal and time-consistent
anti-inflationary policy design in a contract model (using an
algorithm developed by Austin and Buiter [1982]), serves as an

illustration of the general approach in Section V.

iT. Solving continuous time linear rational expectations models

Consider the continuous time linear rational expectations

model given in (1).

I x(t) 1

(1) . = A X(t)—[ + Bz(t)
Ety(t) y(t)-J

with boundary conditions




(2a) F. x{(t) +F_y(t ) = f ; F, is n_, x n and of full rank.
1 e} 2 o) 1 1 1

(2b) The solution is restricted to lie on the stable manifold.

X is an nlbvector of predetermined state variables, vy an n--n1

vector of non-predetermined state variables and z a k-vector of
exogenous or forcing variables. A, B, F1 and F2 are known constant
matrices; f is a known vector of constants. E is the expectation

operator and (t) the information set conditioning expectations

formed at time t. For any vector w, Et w(s) = E(w(s)|ﬂ(t)) and

S0 = Llim (w(s) - w(t)

P ] . The information set Q(t) contains all
s+t

current and past values of x, y and z and the true structure of the

model given in (1) and (2a, b).
Formally, we assume':
(a1) E wis) = w(s) s <t

(A2) Q(t) > Q(s) t>s

We shall make use of the "law of iterated projections", i.e.

(3) EEM(s) |ae )y [ae)) = [ Ew(s)|a(e))) t, <t

A
ct

E(w(s) IQ(to)) t




Assumption (A1) combines "perfect hindsight" (s < t) and "weak
consistency" (s = t) (see Turnovsky and Burmeister [1977]).
Assumption (A2) means that memory doesn't decay. Condition (3)

is a basic property of conditional expectations, if (A2) holds.

For ordinary n-dimensional first order linear differential
equation systems, a unique solution exists if there are n linearly
independent boundary conditions.g/ For the n, predetermined variables
X, the boundary conditions take the form of n, linear restrictions

at the initial date to' For many applications these linear restrictions

will take the form of n1 initial wvalues, i.e.

(2a') x(to) = x(to)

In Buiter and Miller [1982, 1983a] a more general form of the boundary

conditions for the predetermined variables such as (2a) was necessary.

The meaning of the boundary condition (2b) will become apparent
below. A sufficient condition for ruling out the éxplosive growth
of the expectation, held at time t, of future values of z, is that
E//é(s) is a bounded function of s on [t, + @) and continuous

t

almost everywhere.

2. Note that, through the presence of the conditional expectations
operator E., equation (1) strictly speaking represents a partial
differential equation system. The solution chosen here is the
"minimal state" solution (see McCallum [1983]) involving only
"fundamentals”. Rational expectations and weak consistency ensure
that the additional degrees of freedom introduced through the
presence of the expectation operator are actually very limited.

P




The solution for x andli is restricted to be a continuous function
of time when there is no change in current expectations of future -
values of the forcing variables, i.e. x(t) and y(t) are continuous
functions of t as long as Etz(s) ' s > t, doesn't vary with t.

- -3—/

This rules out anticipated future. discrete jumps in y. The
economic rationale for this restriction appears sound: an infinite
instantaneous rate of capital gain cannot be anticipated in models

with reasonably rich opportunities for intertemporal arbitrage and

speculation.

There is no formal recognition of uncertainty in tﬁe model. The
expectations are to be interpreted as single-valued or point expectations,
i.e. expectations held with complete subjective certainty. It will be
clear, however, that the results obtained for (1) are applicable to the
stochastic linear differential equation system given in (4), provided

there are no measurement errors in the observation of the state vector

L7
[x Y]T-
(4) lrdx(t) 1 - 2 x(ea | + B z(t)dt + av
}'Et dy (t) y(t)de

The continuous time vector process v(t) is a stationary zero mean

stochastic process with independent increments. Examples are Wiener

3. and, if F2 $ 0, in x.

4. mT denotes the transpose of m.




(7

(8)

(9)
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A, is an n,xn diagonal matrix containing the stable roots of A

1 1 1

and A2 an (n—nl) X (n—nl) diagonal matrix containing the

unstable roots of A.

We also define

p is an n1 vector and q an n—n1 vector.

Taking expectations conditional on Et on both sides of (4) and

using (5), (6) and (7) we obtain

Et g(t) = A2 Et q(t) + DEtz(t)
where
D = V.,B, + V,..B



(10)

(2b')

(10")

C

From the law of iterated projections given in (3) it follows -

that, for t <s
Et g({s) = A2th(s) + DEtz(s)

Treating this as a differential equation in s, conditional on Et,

we can write the solution for th(s) in "forward-looking"

form as

AZS ; Az(s-r)
K2 -Je DEtz(T)d'r s>t

K is an n-n vector of arbitrary constants. Since A

2 1 2

contains unstable roots only, boundary condition (2b), that the

solution should be convergent, compells us to choose K2 as

follows:

Given (2b') we evaluate (10) at t = s. From the weak consistency

assumption (A1) it then follows that
[oe]

Az(t-'r)

- J e DEt z(T)dr

t

From equations (6) and (7) we know that g = V21x + V22y .

1f V22 is invertible, the solution for the non-predetermined

variables can therefore be written as




(11)  yl(ti = - Vv, Vv x(t) -V

An equivalent expression, provided W has an inverse, is

11

(11') y(t) = W.. W.o x(t) - V.

1 A2(t—T)
21 11 22 |

e DE z(1)dt
t
t
Substituting (11) or (11') into the equations of motion for x

given in (1) and choosing the backward-looking solution for

x(t) we find that the predetermined variables are given by (12)

or (12')
A (et £ A(tes)
(12)  x(t) = W e Wy x(to) + I W, e LIR: z(s)ds
tO
t ©
A1 (t-s) -1 -1 Az(s-—"c)
- I W11 e W11 A12 V22 J e DEsz(T)des
to s
At : A (t=s)
(12") x(t) = w“ e w11 x(to) + lel e W11 Blz(s)ds
1:O
F A (t-s) IR ¢ A (s-1)
- que {A1 Vi Voy *W, W, Az}Je DE_ z(T)dtds
to S

Boundary condition (2a) can be written as

-1 -1
(13)  x(ty)) = -F F,y(t) +F £

The initial value for x at t = to is solved for from (13) and (11)

or (11') with y evaluated at t = to.
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Thus the non-predetermined variables can be expressed as a
function of the current predetermined variables and of current
expectations of future values of the forcing variables. The predetermined
variables at time t depend in a non-~explosive manner on their
initial values at to , on the actual vaiues of the forcing variables
between to and t and on the expectations, formed at each instant

between tO and t, of the future values of the forcing variables.

It is clear that, if the process governing the forcing variables
z can be expressed by a system of simultaneous first order linear
differential equations z = Lz 'é/, then the x vector can be augmented
to include =z ; the solution of this augmented homogeneous system only
involves the first terms on the r.h.s. of (11) (or (11')) and (12) (or
12')). For many purposes, and especially for optimal policy design, it

is however very informative to keep the explicit dependence of x and y

on actual and anticipated future values of z.

III. Three Problems

Three issues arise in connection with the solution method outlined
in Section II. They are 1) the rather minor problem of ensuring that
theAeigenvalues are "assigned to" the proper state variables where such
an unambiguous assignment is dictated by the structure of the model; 2)

the existence of solutions other than the minimal state solution involving

5. Or, in the stochastic case, dz = Lzdt + dw where w is a stationary,
zero mean stochastic process wi#h independent increments and
independent of the state vector [x y]T.




only fundamentals and 3) the problem of zero eigenvalues or eigenvalues

with zero real parts.

III. 1 The right root in the right place

Consider the simple two-variable homogeneous system given in

equation (14).

i r g
(14) xft) = %y %45 x(t)
Ety(t) @y %o y(t)
L L
Let o, = o. The eigenvalues are Al = e, and A2== e,
x(t) is predetermined, with x(to) = §(to) and y(t) is
non-predetermined.
The solution is given by :
A, (t-t ) o, (t-t )
_ 1 o - . 1n o -
x(t) = e x(to) = e x(to)
o A, (-t ) At a A(t)
y(t) = i_:él— e 1 x(to) + Ke 2. K—:él—‘x(t) + Ke
1 722 1 722
o] a. .t
= -&-——E%—x(t) + Ke 22
11 722

K is to be determined by a boundary condition for y.




Let @,y > 0 and L) < 0. Clearly we have the right number

of stable and unstable eigenvalues (one of each) but unfortunately
the unstable root is unambiguously attached to the predetermined
variable. Also, since a22 < 0, we cannot use the convergence
criterion to set K =-0. This problem will of course be

revealed if the system is solved correctly. The purpose of pointing
it out here-;s merely to remind the reader that equality between

the number of stable eigenvalues and the number of predetermined
state’variables and between the number of unstable eigenvalues and

the number of non-predetermined variables is not strictly sufficient

for the applicability of the solution methods of Section II.

III. 2 Sunspots and other forms of non-uniqueness

The solution for the non-predetermined variables inen in (11)
in terms of the current values of the predetermined variables and the
currene and anticipated future values of the forcing variables isﬂ
what McCallum has called the "minimal state" solution (McCallum [1983]).
It involves only the fundamentals (i.e. the forcing variables actually

appearing in the equations of the model) and a minimal representation

. of the state variables.

A simple scalar example will illustrate the wealth of alternative
solutions that satisfy the equations of motion of these rational

expectations models.




(15)

(16)

(17)

Et§(t) = o y(t) + 8 z(t) a > 0.

The minimal state solution for the non-predetermined
variable y is

o

-oa(s-t)

y(t) = -8B e Etz(s)ds.

t
It is easily checked that any variable u(t) can be added
to this solution, provided u(t) satisfies the homogeneous

equation of (15) i.e. provided

E ﬁ(t) = qul(t)

t
a(t-t )
For instance, u(t) = y(to)e satisfies (15) as would
af{t-t ) :
u(t) = Z(toka O . u(t), however, need not involve y or z

and could involve processes that are completely extraneous to the

model under consideration (see e.g. Buiter [1981b]). It is

easily checked that u(t) can be written as :

a(t) = lim E e (T8

- y(t) .

The extraneous element in the solution of (15) is generally
ruled out on the grounds that unless u(t) = 0 for ail £, an
explosive process will be added to the behaviour of the

system and that this would cause the system to violate (implicit)

physical boundaries or other plausible constraints in finite

time. Boundary condition (2b) is the expression of this view.

The same kind of nuisance process cannot be added to the solution




(18a)

(18b)

(19)

of a boundary value problem involving an ordinary differential equationF
for a predetermined variable such as x in equation (18) because it

would violate the initial condition.

x(t) yx(t) + 8z(t)

x(to) x(to)

The minimal state solution for x, given the initial boundary condition is

t
y{t-t,) _ -
x{t) = e x(to) + & J eY(t s) z(s)ds

tO
We cannot add to this solution any non-zero term u(t), because although
any u(t) satisfying the homogeneous equation ﬁ(t) = yu(t) would
satisfy the equation of motion (18a), it would violate the condition
x(to) = §(t0) unless u(to), and therefore u(t), t >ty is equal
to zero. The reason for the non—uniquéness in the solution for (15) and
its absence in (18) is therefore not that, as was pointea out by Shiller
[1978], (15) is a partial differential eguation involving time in two
ways: calendar time and the expectations or forecast horizon. At each
instant t, a boundary condition must therefore be given for

lim e_a(T-t)

T ™
completely independently of each other, as reflected in the constraint

Et y(t). These boundary conditions cannot, however, be set

that u(t) must satisfy (17). Without the expectation operator in (15)

we would have to select a single boundary condition to determine
. -a(T-t) . . .
u(t) = lim e y(t) . It is the lack of compelling economic
T

economic arguments for choosing u(t) = O that is the fundamental

reason for the indeterminacy, not the presence of the expectation operator.




In terms of the general model of Section I1, we can add to
the fundamental solution for the canonical forward-looking
variables q, given in (10') , any n-n, vector process u
(deterministic or stochastic) which satisfies the homogeneous

this non--

system Et u(t) = A2 u(t). Through g = szx+ V22y

uniqueness of g «can be translated into non-uniqueness for y and

X.

In what follows, the analysis will be restricted to the
minimal state solution, for convenience rather than out of a deep
conviction that any properly specified macroeconomic model would
generate the right set of boundary conditions to puncture any

extraneous bubbles at their inception.

III. 3 Zero roots and the hysteresis phenomenon

There is nothing in the analysis thus far to rule out zero roots
in Al' the set of eigen:;}ues governing the behaviour of the homo-
geneous solution for x. From (12) it can be seen that a zero root
in A1 means that for one or more of the predetermined variables, Y
the influence of the initial conditions doeé not wear off, even
asymptotically, and that the contribution of the exogenous variables
is similarly undamped. The model will exhibit hysteresis: if the

forcing variables become constant after some point in time and if the

6. Multiple zero roots will complicate the solution method somewhat,
but the Jordan canonical form representation of the system can
always be used even when A cannot be diagonalized as in (5).

7. and through them possibly also for one or more of the non-predet-
ermined variables (see equation (11).




system converges to a stationary or steady state equilibrium, the
stationary equilibrium values of one or more of the state variables
will be functions of the initial conditions and of the values of the
exogenous variables along the adjustment path to the statiohary
equilibrium; the steady state conditions alone do not suffice to
determine unique steady state values for x and y (see e.g. Buiter
and Gersovitz [1981] and Buiter and Miller [1983b]). A general algebraic
treatment of the case where A1 contains a zero root can be found in
Giavazzi and Wyplosz [1983). The main points can be brought out quite
simply with the example given below, which also has some intrinsic
economic interest. We also use this example to consider the case where

a zero root is contained in A i.e. where the non-predetermined

2 14

variables (or q) are governed by a zero root.

The example is a contract model of the inflation-unemployment
trade-off due to Marcus Miller. This is discussed in Buiter and

Miller [1983Db]. The basic version is represented in equations (20)~(22).

(20)  p(t) = Y(y(t) - g(t)) + m(t) P >0
. -% (t-—to) ¢ -z, (t-s) »
(21) m(t) = ﬂ(to)e ' t g I c(s)e ds 5> O
tO
(. -t
(22) c(t) = C2 J Et plt)e art ;2 >0
t

P is the logarithm of the general price level, T the "core"
rate of inflation, ¢ the current rate of contract inflation,

y actual output and § the exogenous natural level of output.




Egquation (20; is the familiar core inflation-augmented Phillips
curve. Core inflation, in (21), is a backward-looking exponentially
declining moving average of past contract inflation. Current
contract inflation in (22) is a forwa?d—looking exponentially
declining moving average of future expected inflation. Both the
price level, p, and core inflation, ©, are treated as predetermined.
Current contract inflation, ¢, however, is non-predetermined and can
move discontinuously at a point in time in response to "news". The
model can be viewed as a modification of Calvo's [1983] continuous
time contract model of the inflation process. Calvo specified the
current general price level as a backward-looking function of past
contract prices, and the current contract price level as a forward-
looking function of expected future general price levels and excess
demands. Inertia or sluggishness therefore characterizes only the
price level in Calvo's model, not both the price level and the core

rate of inflation as in equations (20 -~ 22).

We can represent the model in state-space form as in equations

(23a, b), treating the output gap y-—§ as exogenous.

(23a) T (t) -t Z, T (t) o 1y - yer]
= . +
Ec(t) -2, & | | et “T¥
(23b) ptey = [1 o JMrw T + v [y - 3]

c(t)




Tne two characteristic roots of the state equation system

(23a) are A, = 0 and A2 =z

1 The solutions for

2 7 5
7/

T, ¢ and é are therefore given by

(24a) m(t)

t o

‘ (iz-cl)(s-T) _

j(to) + Cl C2 Y I J e Es(y(T)-y(T)drds
' t

s
o

(24b) c(t)

m(t) + CZ Y

(€T (D) )
j e E (y(r) - y(m)ar
t

(24c) p(t) = m(t) + P(y(t) - 7(£))

The fact that Al = O creates no problems whatsoever. Core
inflation w(t) can be reduced below its initial value n(to)
only through past expectations ( formed between to and t) of
future recessions (negative values of Es(y(r) - ;(T))).

Current contract inflation c(t) differs from current core
inflation w(t) if the "present value" of currently anticipated
future booms or recessions differs from zero. Note that a
sustained and sustainable reduction (e.g. a steady state
reduction) in inflation é(t) requires an equal reduction in

core inflation w(t) .

Note that, in terms of the solution method of Section 11,
V=11 1 and W = .5 .5 . There are two linearly

1 -1 .5 ~-.5

independent eigenvectors even though at least one and possibly
both eigenvalues are zero.




(25)

Consider an aggregate demand pelicy which keeps constant the
output gap after some time t1 >t at y(tl) - §(t1). The only
value of this permanent output gap for which a stationary
equilibrium exists is of course zero. In that case the éteady state
conditions of (23b) only give us m = c = é - The common stationary
equilibrium value of core inflation, contract inflation and actual
inflation cannot be determined from the steady state conditions
alone. It is, from (24a), a function of the initial value of m,
and of the entire sequence of expectations of future values of the
output gap. The rank deficiency of the state matrix in (23a) produces
this "hysteresis". If the zero output gap for t Z.t1 has been

anticipated correctly from to onwards, i.e. if Es(y(T)-§(T)) =0,

T>t s >t then

17 0

lim 7(t) = lim c(t) = lim p(t) =
too troo £t

(to)
t

1 1
J (CZ—EI)(S—T)
e

™
t

Ty Ly J( Es(y(T)-§(r))drds
t

o S

It will be apparent from equations (24a, b, ¢) that even if

A2 = C2 - Cl = 0 (if there is no discounting of expected future

inflation in the contract inflation equation) the model is still

well-behaved, i.e. c(t) is finite, if the undiscounted expected

-

cumulative net output gap f Et(y(r) - y(1))dt is finite. If we
t
again make the stronger assumption that the output gap expected after

some time t1 is zero, then this is sufficient (but not necessary)

for "t to remain bounded for all time with its steady-state value




given by (25) with ;1 = gz. A zero root in A2 therefore merely
puts tighter constraints on the permissible forcing processes to

ensure bounded values for the non-predetermined variables; it doesn't

invalidate the general solution procedure of Section II.

IV Optimal and time-consistent policy design

In this section we consider the optimal control.of the model
given in (1). The vector of forcing variables is divided into two
components, u and z. u is an % vector of policy instruments and z a k
vector of exogenous variables. The model is rewritten in (26a, b,
c, d). For simplicity the bouﬁdary conditioné for the predetermined
variables are assumed to take the form of n, initial values at to.
Without significaht loss of generality the non-explosiveness
condition for the exogenous vériables and the convergence condition

for the non-predetermined variables given in (2b) are expressed as

(26c) and (26d) respectively.

ro ] kel
(26a) x® oA ¥ s uw) +Fze)
Ety(t) y(t)
(26b) x(to) = x(to)
. -BsI ‘
(26c) lim e Et z(s) = O ¥B8>0 VtZtO
s>
. -BsI _
(264) lim e Et y(s) = O ¥B> O thto

S




The objective functional to be minimized is the familiar quadratic

given in (27)

[~

c=o{t-t))

27)  min J(t) = min E, J[%[x(t)Ty(t)Tu(t_)'Tz(t)Tme(t)"l+wT"x(t)'l Je © at
{u(t)} {fut)} "o / o yo) | |y
o] u(t)l u(t):
|z ()] Lz (t) |
where
@ = [aea Q Q
XX xy Xu xzz
of 9 o @
Xy YY yu yz
oF of o o
Xu yu ‘uu uz
o of o q
| "xz Tyz uz zz |
T T T T T
w = [ w 0 w w ]

’C >0 vis the dis;ount’rate.

 9 is a symmetric positive_semi-definite matrix. Like

the vector wT it is partitioned conformabiy with x,y,u and z
Quu is a symmetric, positive definite métrix. |

A, B and F are also partitioned conformably with

x and y.

The objective function (27) is sufficiently general td include the
case where the state equation (26a) is supplemented by an output equation
v(t) = G, |x(t)| + G2 u(t) + G3 z(t) , and the integrand in the objective

1
y(t)

T = ~T
functional is specified in terms of the output vector as v (t) Qv(t) +w v(t).




Optimal Policies

The natural interpretation of this optimal control pfoblem is that
of a non-co-operative Stackelberg leader-follower game. Equation (26a)
represents the 'reaction function' of the follower (the economic system)
who takes as given the current and anticipated future actions of the

controller, who is the leader.
To derive the optimal policy we define the Hamiltonian H
28) H(t) = 3xmTe xm+2ye)To x®) +y(0) IO y(t)+2x(6) T ult) +2y(£) 2 u(t)
: XX : Xy Yy Xu yu

: T T T T C T
+ 2x(t) szz(t)+2y(t) Qyzz(t)+u(t) Quuu(t)+2u (t)Quzz(t)+z(t) szz(t)]

-z (t-t )
T T T T 0
*w x(t) +wy y(t) +wuu(t) + mzz(t) te -

+ )\(?{)[A11 x(t) + A 5 v(t) + B1 u(t) + F1 z(t)]

1

T
+ AMB)Y[A., x(t) + A, y(t) + B_ u(t) + F_ z(t)]
y 21 22 2 2

X . (t)is the n
X 1

mined state variables x(t) while ly(t) is the n-n, vector of co-state

vector of co-state variables corresponding to the predeter-
variables corresponding to the non-predetermined state variables y(t).

The first-order conditions for an optimum are given by the equations

of motion (26a) and (29a, b, c)




JH(t)

(29a) Jo(t) = 0 ¥t
-3H(t) _ s T
(29b) ax(t) - Tr My vt
-3H(t) *T
29 = A
{29¢) 3y (0) y(t) vt
Defining the current'value co-state variables (shadow prices)
E(t—to)I
(30a) p(t) = e A_(t).
X X
c(t-t )1
(30b) t) = e A (t
uy( ) y )
we can solve (29a) for the optimum instrument values as in (31).
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Substituting for u(t) from (31) into (26a) and into (29b, c)
the behaviour of the state variaﬁles and the co-state variables under

optimal control is given in (32).
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The 2n boundary conditions for the economy under the optimal policy
take the form:
(33a) x(to) = x(to)
(33b) tim e P9 Ig g1 =0 B>0, s>t
s - 0
oo
8. I is the kxk identity matrix.
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(33c) lim e
(33d8) uy(to) =0

The crucial boundary condition is the one relating to the
initial values of the co-state variables corresponding to the non-
predetermined state variables given in (33d). Since. y(to) is free,
it will be set optimally, i.e., the valués of the co-state variables
M at the initial date, t_, which meésure the marginal contribution

0]

of y(to) to the objective functional, will be zero. (See Bryson and
Ho [1985, p. 55-59], Calvo {1978].)

The dynamic system under optimal control, given in (32)
therefore contains n predetermined variables (x, the predetermined
state variables and uy: the sha@pw prices of the non-predetermined
state variables) and n non-predetermined variables (y, thé non-
predetermined state variables andv ux, the shadow prices of the
predetermined state variables). Following Miller and Salmon [1982,
19831, we rearrange (32) by grouping together the predetermined and
non-predetermined variables and by subsuming the constant vector (the

last term on the r.h.s. of (32)) under the exogenous variables.

1

Letting z = [z} ; We obtain

9. For (33d) to hold, a controllability condition for y must be
satisfied: there must exist at t, a path of expected future policy
{Et u(s) ; s Z_to} such that y(t,) can be set at the value required
o
to make uy(to) equal to zero. See Bryson and Bo [1975; p.58, p.164

and Appendix B, pp. 455-457].
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and from (31)
(35) a(t) = ¢ [ =x@)] + D z(t)
t
uy( )
ux(t)
y(t)
— -

If A can be diagonalised and if it has n stable and n unstable
characteristic roots the solution method of Section II can be applied
to (34) and the optimal policy as well as the behaviour of the economy

under optimal policy can be computed easily.

Time-Consistent Rational Expectations Solutions

It is obvious from the boundary condition (33d) and the equations
of motion under optimal control (32) that in general if the controller

re~optimises at t==t1> t0 his optimal plan from time t1 > tO onwards

will not be the continuation for t 2_t1 of the optimal plan derived

at time to, even if no new information about the exogenous variables

has accrued between to and tl' The optimal plan is not in general time

consistent. (See Kydland and Prescott [1977]). The reason is that while




u =0 at t = to, it will, in general, be different from zero for
t > to, given the dynamics of equation (32). Reoptimizing at
t = t1 > to, the controller will, taking X(tl) as given, be

tempted to adopt a plan for t > t, that wilil set uy(tl) = O.,

1

Unless, under the optimal plan adopted at t==t0, the value of

u at t = t1 would have been equal to zero anyway, the re-
optimization at t==t1 would falsify the expectations held between

to and t1 by the agents represented ih the model of equation (26a).
10/

It is these expectations that will have brought the system to x(tlf——
in the first place. Past expectations of future policy actions would
have been used as an additional policy instrument, unconstrained by the
requirement that they be equal to actual, realized policy actions

(except for unforeseen exogenous shocks).

If the agents in the model anticipate that the controller will
reoptimize at tl' taking as given their past expectations of his
future actions, embodied in x(tl), they will expect uy(tl) = 0. If

the controller can reoptimize at each and every instant, they will

10. Note that the "followers" whose behaviour is given by (26) form
expectations not only of future values of z but also of future
values of u. This is clear from equation (12), if we interpret
z as containing both policy instruments and variables exogenous
to the system and to the controller. The followers (the agents
forming expectations in (26)) take an open-loop view (in
stochastic models an "innovation-contingent" open-loop view [see
Buiter (1981b)]) of future policy.




(36)

(37)

anticipate uy(t) =0 Wt > to. The characterization of a time- ‘

consistent rational expectations solution is then sti:aightforward.

A time-consistent rational expectations solution is characterised
by zero values at each instant of the co-state variables corresponding
to the non-prédetermingd state vai:ia.bles, i.e. by uy(t) =0, t>¢t.
The optimality condition - -g—g = i; no longer applies as the controller

is effectively forced to treat y(t) as exogenous rather than as

driven by the equations of motion of the system.

The equations of motion under time-consistent control are
therefore obtained by omitting the rows corresponding to fxy(t) and
the columns corresponding to uy(t) in (32). The behaviour of the

system under time-consistent control is given by (33a, b, ¢) and

-1 T -1_T -1 T -

x(t) A11'319uu9xu A12-B1$2uuﬂyu -B,2 .B1 x(t)
" -1 T -1 T -1 T
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Etux(t) —mxx—gxuguuﬂxu] - [Qxy_gxuguugyu] - [All quﬂuuBl CInll ux(t)
+ [ F-Bola Tz + -B. sz'lvw ]
1 1 uu uz 1 uwu u
-1 -1
F2 - B2§zuuQuz B2 uu wu
-1 . -1
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-1
z z{t) - Quu “u

- -1 7T -1 T -1
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u QR x(£)-Q " y(t)-Q B1 u(t)-Q °@Q
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Note that while the time-consistent solution is a product of the
realisation (ex ;nte) by the agents in the model (the followers)
that the contrqller (the leader) wiil cﬁeat if.he has an inqentive
to do so (if py(t) ¥ 0) , there is no cheating (ex post) aioné
the time-consistent path because the incentive to cheat has been
eliminated; the leader has lost his leadership.

Obviously, the optimal policy will be time-consistent i.f.f.
under the optimal policy, py(t)VE o, t Z_to. If this is not
the case, precommitment is necessary for the coniroller to implement

the optimal solution.

Two comments on this time-consistent solution are pertinent.
First, the "loss of leadership" solution characterised in (3§)yand .
(37) doesn't solve the time-inconsistency problem_associated with
optimal policy in rational expectatiéns models. It is merely an
alternative solution that may be relevant when precommitment i
impossible. Miller and Salmon [1982, 1983] have shown that the
time-consistent solution is equivalent to the open-loop Nésh
equilibrium in a two-player linear-quadratic differential game.
This sheds further light on the "loss of leadership" interpretation

of the time-consistent solution.

Second, the analysis of Section IV brings out the incompleteness
of the standard specification of the optimal control problem. As

pointed out by Reinganum and Stokey [1981], the period of commitment




is a crucial parameter of the optimization problem. Treating

. the period of commitment as exogenous, we can interpret the

optimal policy as the equilibrium policy when credibility is
complete and the period over which the leader can make binding
commitments is infinite. The time-consistent solution represents
the other extreme when the period of commitment has shrunk to zero
and no credible announcements of future policy actions are

possible at all. Clearly, one could plausibly think of intermediate
cases in which the period of commitment is positive but finite.

Even more interesting would be an endogenous determination of the
pefiod of commitment or a theory of precommitment. Reputation
effects, threats and sanctions, voluntary or self-imposed constraints
on future freedom of action etc. all would come into play. We

are unfortunately still far removed from such a positive theory

of coﬁstitutions.

Section V : An example of optimal and time-consistent policies:

anti-inflationary poliéy in a contract model

As an example of optimal and time-consistent policy design
we shall consider anti-inflationary policy in the model given by
equations (20)- (22), whose state—space-representation ;s in
(23a, b). .The level of demand y is treated as the control

variable and the objective functional is given in (38).




L)
t

It
i - * 2= - -
(38) min E l-i(y(s) - y*)2 + y(p(s)) e ols t)ds
vy} 2T
t .
Yip > 0.
Deviations of output from its target level y* are penalized,
as are deviations of ﬁhe inflation rate from zero. y* need
not equal the natural level of output.
The equations of motion for the state variables w, c. and
their current value co-state variables uo and v and the
optimal path of demand are given in equations (39a, b).
ne) | [z, o o IREICHEE] o
Y - - 0
B (B) o (p-z,) Ly u_ (t)
(39a) E.p (B)} = (y*-y)
+ 2
tm 102 1eyy° PHTy M (t) 1+yY
. 2
Egc(®) I\ ) s(t) 2 e
2 2 2 ¥~
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. _ o L - L
- vy z,¥ .Yy
(39b) y(t) = w(t) + uc(t) + y + >
1+yy 1+yy 1+yy
with
n(to) = ﬂ(to)
and

uc(to) =0
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Note from (39b) that the bptimal policy does not feed back
directly from Mo  the shadow price of core inflation. 1In (39%a),
% and Eté similarly don't feed back from wo directly, but only
indirectly through the effect of u, or Lc' This is a reflection
of our assumption that core inflation is simply an exponentially
deciding moving average of past contract inflation. The shadow
price of contract inflation therefore contains the relevant information
about the shadow price of core inflation. The optimal policy has
the sensible property that if we start off withvthe "bliss" rate of
core inflation (m = O0) and if the target and natural levels of
output coincide, then demand will be kept at the natural level and
full employment with zero inflation endures. Cet. par. a higher
value of y* relative to ; means a higher optimal level of demand;
also a higher inherited value of core inflation implies a lower
optimal level of demand. If uc >0, i.e. if current core inflation
makes a positive marginal contribution to the minimized value of the
loss function, then current demand is hiéh relative to its long run

value.

The steady state equilibrium under optimal policy is characterised




. Moo (T=t)e | _
= = = X -
T ¢ P ‘ Yo (p+2,) (p=L,)) (y* - ¥).

Yo T Vle+z ) (o2 (y* - ¥)

Thus the system under optimal policy always converges towards
the natural level of output. If the target level of output
coincides with the natural level of output steady state inflation
will be zero.ll/ For there to be a unique convergent saddlepoint
equilibrium the model should possess two stable and two unstable
roots; the state matrix in (39a) should therefore have a positive
determinant. This requires C2 > p . The shadow price of core
~inflation is always positive (negative) in long-run equilibrium if
y* > § (v* < §); the determinant condition for saddlepoint stability
implies that the opposite holds for the shadow price of contract

inflation. This reflects the backward-looking nature of 7 and the

forward-looking nature of c.

In the numerical example given below, p2 + (;1 - Cz)p <0,

11. If there is no discounting, the steady state value of the loss
function is unbounded (unless y = y*) and no solution exists.




(40a)

(40b)

(41)

so the long-run rate of inflation will be positive (negative) i.
y* >y (y* <y). I have not been able to establish whether or
not this is a necessary condition for saddlepoint stability in

general.

Following Section IV, a time-consistent policy is obtained by
deleting the rows and columns corresponding to uc in (39a, b).
The behaviour of the state variables, the remaining co-state

variable and the policy instrument y is given in equations (40a, b):

r—' - - ' — = - -1
m(t) - ;1 %4 T(t) 0
° = —Cz + —Czw -
Etc(t) 5 c2 c(t) 5 (vy*-vy)|
1+yy 1+yy

yi) = - Howw + 7+ 5 gr-9)

' 1+yy 1+vy

w(to) = w(to).

The shadow price of core-inflation, uﬂ is determined recursively,
given the solution for (40a), by (41) but policy has become
completely "backward—looking“ and y no longer "feeds back" from
any shadow price.

¥ YV

) + (p + T )u -~ — y* - ).
1yp2 1" -

Etu“(t) = =~




The steady state conditions are

- = o = L o ox 3
T c P -y (y y)
— 1 (v* v)
br T Yl oy
Yy = ¥

Again y¥* = § implies zero inflation in the long run. Long-run
inflation will be positive (negative) if y* > § (y* < §). Note
that if p2 + (;1 - cz)p < 0, inflation will be higher in the

long run under the time-consistent policy than under the optimal

policy, 1if y* > §.

Figures 1 and 2 depict the behaviour of some of the variables
of interest under optimal and time-consistent policy for the
following values of the parameters : Cl =.5; ¢,=.6; v=.5;
Yy=1 and p = .03. In Figure 1, y* = .02 and §

O. In
Figure 2 both y* and § equal zero. The initial rate of core

inflation at t = 0 1is ten per cent.

In Figure 1 under optimal policy, inflation remains slightly

above zero (at .028 per cent) even in the long run. There is a fairly

sharp initial recession. . The shadow price of contract inflation

starts at zero but becomes sharply negative and converges to a

negative long-run value. The shadow price of core inflation (not drawn)




J

jumps to .19 at t = O and converges to .075. The negative values

of Lc under the optimal policy signal the time inconsistency

problem. The time-consistent policy has a smallér recession
throughout. The authorities cannot credibly announce a path of

deep recession, as they would be tempted not to have a fierce
recession once the announcement effect of that recession has

succeeded in bringing down core inflation. When the target level
ofvoutput exceeds the natural level, the cost of not having credibility
is a long-run rate of inflation which in the numerical example is

four per cent - well above the optimal long-run inflation rate.

In Figure 2, y* = § and the long-run conflict between output
target and output constraint is absent. Both time-consistent and
optimal policies yield zero long-run inflation. Inflation is,
however, brought down more rapidly under the optimal policy. This
is reflected in a deeper initial recession under the optimal policy;
after period 9, however, the recession is slightly more severe

under the time-consistent policy.




P ) FIGURE 1
N pe
P RSN . . Optimal (op) and time-consistent (tc) anti-inflationary
{ AR ’ ./A.\ ....._: ‘ . -
‘ T e T policy when y* > Y.
\ e A
/./.. /l/[ T,
N ..}/o i A .JIJJ
.. ,!'mn/l l;].f;/l].tf
Y haad — oreg,
C t - C I’X:.ff}”“‘n"&b:'}l‘“hr.ﬂn..f:..:
\ . Tt e Feeae, vt aneeana. &
\ Pkt |=.
' \ N\ /
. s 16 3 8 19 e u B B W 3 26 23 8 24 30 1
v
vl
[N}
LY
b
. e e
Q* -
ot
op
vy i \Crn e
y \ ’
s i / \\,.
] /
v
%} I//



FIGURE 2
Lo

I\
YN . Optimal (op) and time-consistent (tc) anti-inflationary

o policy when y* n‘w

.ot

W3

02

L0l

o O

o,

M +

8 19 2o a1 22 3 24 2 26 23 28 t9 3




Conclusion

The solution method discussed in this paper can be used to
study the behaviour of continuous timé linear rational‘
expectations models under exogenous policy, under ad-hoc linear
policy feedback rules, under optimal policy and under time-
consistent policy. The consequences of any combination and
sequence of anticipated or unanticipated, current or future and
permanent or transitory shocks can be evaluated. Tﬁe great virtue
of the method is its analytical simplicity and computational
efficiency, even for fairly large dynamic systems. As was
indicated in Section II, the explicit consideration of uncertainty
in the form of additive white noise is, because of certainty
equivalence, a very siuple matter. A Qore general specification
of uncertainty (e.g. random parameters) very soon leads to awsome
complications. Deterministic non-linear systems can be tackled on
a "try-it-and-see-if-it-works" basis with a wide variety of existing
non-linear two point boundary value problem solution algorithms.
E.g. successful applications of the technique of "multiple shooting”
in economics can be found e.g. in the work of Bruno and Sachs [1982]

(see also Lipton, Poterba, Sachs and Summers [1982]).

Decentralized, non-cooperative policy design in continuous time
linear rational expectations models has been pioneered by Miller
and Salmon [1982, 1983] using a linear-quadratic differential game

approach. As with the "single player" optimal control problem of




d>

[y

Section 1V, the behaviour of the system under various kinds of
decentralized control can be reduced to the standard format of
equation (1). It appears safe to predict continued growth in
the range of applications of these methods in the fields of

macroeconomics and international finance.
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