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ABSTRACT

This paper discusses the estimation of serial correlation in fixed-
effects models for longitudinal data. Like time series data, longitudinal
data often contain serially correlated error terms, but the autocorrelation
estimators commonly used for time series, which are consistent as the
length of the time series goes to infinity, are not consistent for a
short time series as the size of the cross-section goes to infinity. This
form of inconsistency is of particular concern because a short time series
of a large cross-section is the typical case in léngitudinal data.

This paper extends Nickell's method of correcting for the inconsistency
of autocorrelation estimators by generalizing to higher than first-order
autocorrelations and to error processes other than first-order autoregressions.
The paper also presents statistical tables that facilitate the identifica-
tion and estimation of autocorrelation processes in both the generalized
Nickell method and an alternative method due to MaCurdy. Finally, the
paper uses Monte Carlo methods to explore the finite-sample properties of

both methods.
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ESTIMATING AUTOCORRELATIONS IN FIXED-EFFECTS MODELS

1. Introduction

The recent development of several major longitudinal data bases has
led to an explosion in the analysis of pooled cross-section and time series
data.! A common technique in such analysis is to assume that Yit» the
dependent variable observed for the ith individual at time t, is generated

by the equation
Yit =g T B'Xj¢ + ey (1)

where ay 1s an individual-specific constant, Xjt 1s a vector of explanatory
variables, B is the associated parameter vector, and €4, is an error term.
The term aj represents the combined effect of unobserved variables that
remain fixed for the individual over time. This "fixed-effects" approach
is sometimes referred to as the dummy variable technique because it can be
estimated by entering individual-specific dummies as explanatory variables.
It is also known as the covariance approach because an equlivalent estima-
tion technique i1s to subtract the time mean of (1) from (1) itself to

"difference out” the fixed effects and produce the equation

Yie = Y1 = B'(Xyp~Ky) + (€4¢€y) (2)

T
where, for any variable zjyy, zg3 = ) z4/T.

t=1
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An alternative approach, the "randomeffects” technique, treats
ay as a random component of the error term and applies generalized least
squares. This technique, however, yields an inconsistent estimator of B
when some of the variables underlying aj; are correlated with some of the
variables in Xj¢- Indeed, in many longitudinal analyses, such as those
examining union wage effects,2 the very purpose of using longitudinal data
is to difference out unobserved individual-specific variables thought to be
correlated with other explanatory variables. The}efore, the fixed-effects
technique is clearly to be preferred in many applicatioms.

Of course, if the error term € is serially correlated because of
the omission of variables that change gradually over time, ordinary least
squares (OLS) estimation of the fixed-effects model (with either individual-
specific dummies or subtraction of time means) is inefficient and also
yields incorrect standard error estimators and hypothesis tests. This is
probably a common problem in practice. Of the few longitudinal analyses
that have checked for autocorrelation, most have found it to be present.3

In such circumstances, if the true autocorrelation structure and
parameters were known, the analysis of the pooled cross—section and time
series data could then proceed with the same methods commonly used to
correct for autocorrelation in a single time series. If they are not
known, however, new problems arise. As shown below, the conventional auto-
correlation estimators, such as those generated by autoregressions of the
OLS residuals, are consistent as the length of the time series T goes to
infinity, but are not comsistent for small T as the size of the cross-

section N goes to infinity. This is particularly troubling because a short



time series of a large cross~section is the typical case in longitudinal
data.

Nickell (1981) has already derived an exact expression for the in-
consistency of the first-order autocorrelation estimator in the particular
case where the error follows a first-order autoregression. As Nickell
(1980) has suggested, this expression can be used to correct the incon-
sistency of the estimator, and the corrected estimate can
reestimate equation (1) in "quasi-first-differenced” form. Sections 2 and
3 of this paper extend Nickell's analysis to higher-order autocorrelation
estimators and to more general autocorrelation structures. This extension,
along with the accompanying statistical tables, enables an assessment of
whether the observed autocorrelation pattern is well described as a first-
order autoregressive process or whether some other structure is more
appropriate. The tables also facilitate correction for the inconsistency of
the estimators. Section 4 discusses an alternative approach due to MaCurdy
(1982) and presents additional statistical tables that simplify the iden-
tification of the error structure under his approach.* Section § presents
Monte Carlo evidence on the finite-sample properties of the alternative

methods, and the final section briefly summarizes the paper.
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2. Inconsistency of Autocorrelation Estimators

This section discusses the estimation of the correlation between
€4t and €4,t-K° 1t is assumed that, for any i and t, €4, has zero mean and
2 . .
constant variance o2, and the correlation of €4 and €4 g is pg. If ##3j,

€4 and €45 are assumed to be independently distributed. Now define ry,

the estimator of the kth-order autocorrelation P K> by

N T
Yl (egr ~ ©i,g) (e1,t-k ~ ©i,-K)
i=1 t=K+1
'k TN T - ;
) (ei,t-K ~ €1,-K)
i=1 t=K+1

where the e's denote the residuals from OLS estimation of equation (2),

e .
1,k = TT-K gsy bR

This estimator can easily be computed by an autoregression (with constant
term) of the OLS residuals.

Because longitudinal data typically consist of a short time series
of a large cross-section, we will now investigate the probability limit of
rg as the size of the cross—section N grows large while the length of the

time series T is fixed. This probability limit is
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N T
) _ _
Plin e 1 ] (egr — eq gI(eg ¢k = €5 —g)
o NMTKY 0 kel ’ ’
plim r,6 = *
Nreo K
WA o
plim - ) (efp-x ~ €1 )
o NTKY ) ke ’

Since the OLS estimator of B in equation (2) is consistent, the probability
limit of the difference between ejt+ and pit - 51 is zero. It follows that
N[ T —]
1 o1 - -
plin & ] ‘= ] C1r ~ €4, )€1tk ~ €4, x)
N+ i=1 t=K+1 -
plim T = —
N+ N T _ )
plim 5 ) ) (€i,t-k ~ €1,-K)
N> i=1} T-K  t=K+1 5

Now define the terms

T
A, = 1 ) (€1 ~€1,x)E1 tkx £1,-) »
i T-K t=K+1
3 - 32
= 1 (€i1,t-k ~ €1,-K)° ,
By TK  t=K+1 ’ ’
N
- _ 1 Z Al ,
An = i=1
- 1 N
and BN = '—N—- Z Bi .



Then

plim

N>

Furthermore, given the

tion, the law of large

plim
N+
and plim
N+
so that
plim

N+

3.4

IR

E (By)

plim AN
Nroo
plim By
N>

conditions described in the beginning of this sec-

numbers implies that

E (A1)

E (Bi)’

E (Ai)
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Following Kendall's (1954) analysis of a single time series, let

V = T-K and, without loss of generality, let 02 = 1. Then, dropping i

subscripts,
T
1 - 2
E (By) = = E|] (. -€ )
v t=k+1 KK
T
- 7 E[- ) ‘c‘tEK- Vg—é
P t=K+1
[v T 2
) €
Lt=l(+1 t-K
= 1 ~-E 7 - |
) v-1
= -5 |v+2 ] (V-3) o,
v j=1 4]
V-1
1 2
= 1 - = = "3 ) V-3Dpo, , (3)
vV oV -
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T
- 1 - -
and E (A1) = v E t=%(+1 €, ~€p) €, ¢ ~€ )
1 T - -
= = E z €. € - Ve, €
v NESPRRE A S K K
L[ F e f e
= p, — —5— E € €, .
Kooy? L=K+1 Eoe=k#l C KJ
1 Vil K
= p. - = (V-3) P, . + L (V=3 e
K V2 4=0 K+3 3=1 K-j
V-K~-1
+ I (VK- p.—‘ : (4)
j=1 y
-

This last expression assumes V> K + 2. If V < K+ 2, the last summation
vanishes from equation (4). Similarly, if V < K, the upper bound of the

index in the second summation should be V instead of K.
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With expressions (3) and (4) for E(A;) and E(B;{), we now have a

general solution for

E (Ai)
P lim rK = m .
N+ i

This expression encompasses as a special case Nickell's (1981)

equation (17) for the probability limit of ry when €4, follows a first-
order autoregression. It is more general, however, in that it applies to
autocorrelatlon structures other than first-order autoregressions as well
as to higher than first-order autocorrelations.

Inspection of equations (3) and (4) reveals that as T and hence V

go to infinity, plim rk converges in probability to pK. For small T
N+
and V, however, plim T does not equal pK. This inconsistency of Ty

N+
in short time series is illustrated in the next section for the cases
where eit is serially independent, follows a first-order autoregression,
or follows a first-order moving~average process. In each case, an exact
expression for the inconsistency of the autocorrelation estimators enables
correction of the estimates. Where serial correlation is indeed present,
the corrected estimates can be used to achleve more efficient estimation of

B and more appropriate hypothesis tests.



Serial independence:

~10-

3. Some Special Cases

pK=0for K# 0.

For K # 0, applying equations (3) and (4) to this case yilelds

E (By) =
and E (A1) =
so that

i

For example, as

1
-3
1
_"‘2‘ (V-K) 3
v
i E(A,)
E(B,)
e S
- V(vV-1)

N (but not T) goes to infinity, the probability

1imit of the first-order autocorrelation estimator is

plim r

N> 1
and plim T,
N>

If T = 6, for instance,

ry is ~-.17 even though

-1
v

S ol 2
V(V-1)

®
the probability limit of r; is ~.20 and that of

the true py and py are both zero. To put it another

way, if autoregressions of the OLS residuals give estimated first- and

second-order autocorrelations of approximately -.2, this result is entirely

in accordance with the

hypothesis that € ¢ is serially uncorrelated.
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AR(1): pg = oK,

For any K # 0,

E(B) =1-2-2 [ (vel)p + (v-2) 0% 4 .oop 2V24 oV
1 2
vV vy
V- 2 V-2 2
=1 -l-z—z [ o402+, . p LyHotp 24e o p et (pp “)tp ]
vV v
v V-1 2
1 o | PP PP P
=1 - = - ._2_ I + 1 + ...+ i
v v -P P -P
=1 -L1_2_ | (V-l)o-pv-pv_l-u--pz]
v vl L 1 !
+
c1-l_2 | @-1p _ pr-pVH
7 1-p 2
vV v (1-p)
=1 - _ 20 r v - l-pvq]
- o 2 1o |
A Vi(l-p)



Hence,

plim

N+

where

and

v

V-1 . K . .
+ 13-[ I3 d- ] v-3p" 3= ] (V-K-j)p;}
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j= j=1 j_—_l

v-1 . K . V-k-1
’-1-2-[2 - e+ T - eI+ T (k-3 pj}]

K v-1 A ¢ _y V-1 .
% - % {iz -1+ T @4 T vr-9p J}
v =t 3=1 =1

v-1
K, _1_2_ 3y o]
o [1 v 2 ) (VJ)p]

j=1

V-K-1

j=1 J=1 j-_-l

L

1 !-Vil
By 151 T (V-3)p
17y =1 =1

&)

©
+
glo

V-1 . K . V=K-1 .
) (V—j)pxﬂ—i (v—j)pK - ¥ (V-k-1)p 7

j=1 j=1 j=1

2 vy , 2 (o))
1 (1-)2
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If K =1, then

V-1 341 V-K-1 .
¢ = 7 - -v-1)- T (v-3-1)p ]
j=1 , j=1
= 1-V+ [(V—l)p2 + (V~2)p3 + .ol + z:v—1+ pv]
- (=200 + (=302 + oo+ 2773 4,72
= 1-Vv-%+2( +p2-+.“ +pV)-pV
v p_pV+1
= 1-V-V -p" +2 T
C
and plim rn, =9 +-B
N+o
v p_pV+l
1 -V-vw -p" +2 —T;;__
=p -+ 7 .
2 V(1l4p) 20 (1-p )
vo- 1-p + 2
(1-0)

This last expression can be shown to be exactly equivalent to Nickell's
(1981) equation (17).

Proceeding to higher-order autocorrelations not considered by
Nickell, if K = 2, the appropriate algebraic manipulation shows that

V-1

cC = 2-V-2Vp—sz+3pv'1+2pv+pv+1+4°—£—°;._ ,
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which can be substituted into equation (5) to obtain plim r,- Similarly,

N>
if K = 3,
o= 3-v-2v - 2wl -+ 2Vl 4 4"
V-2
V+2 o)
+p + 6 i ,

which can be substituted into (5) to obtain plim r3.

-

N

To facilitate the use of these results, the probability limits of
ris o and rq as M are displayed in Table 1 for selected values of p
and T. For example, if T = 10 and autoregressioms of the OLS residuals
yield autocorrelation estimates of rj = 3, 19 = 0, and ry = -2,
this pattern would be quite consistent with an assumption that the error
follows a first-order autoregressive process with parameter p = .5. Omne
could then reestimate equation (1) in "quasi-first-differenced” form, as is
frequently done with single time series, to achieve more efficient estima-
tion of B and more accurate estimation of standard errors.

Table 1 is useful not only for correcting for the inconsistency of
the conventional autocorrelation estimators, but also for examining whether
the autocorrelation pattern in the residuals accords with the assumption of
an AR(l) error structure. For example, with T = 10 again, an observed pat-
tern of ry = A, ryp = ~-.2, and r3 = -.2 would not be consistent with any
AR(1) structure. It is, however, approximately what one would expect to
see if the error follows a first-order moving-average process with first-

order autocorrelation p = .5, as will be demonstrated below.
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$P1 =P, pg =0 for K > 1.

For any K # 0,

E(By) =1-1. 2 (v-1) p.
v 2
v
For K > 2,
E(Af) = = L [(VK+1) p +V = K + (V-K-1) p]

<

Vlz— [2(V-K) p + V - K]

V-
\

~

|

(20 +1) ,

N

so that, for K > 2,

(V-K) (20+1)

plim r = -
Now X V2—V—2(V—1)p

For X = 1,
E(41) = 9-1—2[Vo+v-1+(v—2)p]

\

= o E(By) +-12— [2=V) o + 2(v-1)0% - v + 17,
v
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so that

2
vPov-2 e

Table 2 presents, for the MA(l) case, the probability limits of rj,
ry, and rj as Mo for selected values of p and T. For example, 1f T = 10
and autoregressions of the OLS residuals yield autocorrelation estimates of
ry = by, Ty = =2, and rq = -.2, this pattern would be consistent with an
assumption that the error follows a first-order moving-average process with
first-order autocorrelation p = .5. On the other hand, with T = 10, an
observed pattern of rj = .6, Ty = .2, and ¥ = 0 would not be consistent
with any of the displayed MA(1l) structures. Reference to Table 1, however,
reveals that this pattern is approximately what ome would expect if the

error is AR(l) with p = .8.
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4. An Alternative Approach

The approach described above involves analysis of the residuals from
OLS estimation of equation (2). An alternative approach, suggested by
MaCurdy (1982), begins by taking first differences of equation (1) to ob-

tain
Vit T Yi,e-1 =B Ry - Xy o)) vegp - pog- (6

MaCurdy suggests estimating equation (6) by OLS and then using the re-
sulting residuals e:t to estimate autocorrelations of the differenced
error term €j4 ~ €4 ¢.1- Since the OLS estimator of B in equation (6) is
consistent as N goes to infinity, the probability limit of the difference

*
ween E, ~€ i ro. e tional -
betwee eit and it 1,t-1 S zero As a result, conventio auto

*
correlation estimators applied to e, are consistent for the autocorrela-

tions of the differenced error term.

For example, consider the estimator

g g * %
e e
* 421 t=g#2 it LK
Tk T ¥ 2 ’
y €i,tx
t=K+2

which can easily be computed by an autoregression (without constant term)

of the OLS residuals from equation 6).
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Then
N T
1 1
plim W .Z T-K-1 Z € €s,e-1C 1 ek 1, k-1
x oo i=1 t=K+2
11 = .

oo K 1 f 1 g 2

plin ¥ L~ TK-I t=K+2(€i,t—K €5, k-1

N>

Manipulation of this expression similar to that in Section 2 produces

the result
sl £t - Pr " Pret " Pl )
N+ K 2 (1 -9 K

where pj is the true Jth_srder autocorrelation of the original error term.
*
The expression in equation (7) for the probability limit of Ty is the true

th . * .
K —order autocorrelation pK of the differenced error term.

In principle, once one has used the estimates r; to identify and
_estimate the autocorrelation structure of the differenced error term, one
may “"integrate back” to obtain the autocorrelation structure of the origi-
nal error term. In practice, however, the differencing procedure may ob-
scure the original error structure. For example, if the original error
follows an AR(1l) process with autoregressive parameter p, the differenced
error follows an ARMA(l,1) process with autoregressive parameter p and
moving-average parameter -1l. This more complicated autocorrelation struc-
ture makes it difficult to recognize that, in levels, the error follows a
simple AR(1l) process. Indeed, MaCurdy's analysis of longitudinal earnings

data from the Panel Study of Income Dynamics concludes that the differenced
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error follows an MA(2) process and the original error therefore follows an
ARMA(1,2) process with a unit autoregressive parameter. As will be shown
below, however, a much simpler AR(1) process for the original error fits
the observed residuals pattern almost as well.

The remainder of this section develops statistical tables to facili-
tate recognition of simple error structures in MaCurdy's method.> The

* * *
tables give py , P2 , and p3 —— the probability limits of the autocorrela-

tion estimators for the differenced error term -- when the original error

is serially independent, AR(1l), AR(2), MA(l), or MA(2).

Serial independence : pg = 0 for K# O.

Applying equation (7) yilelds

* 1
5 U
%
and P = 0

for K > 1. Hence, if the residuals from OLS estimation of equation (6)
show a first-order autocorrelation of about - %- and higher~-order auto-

correlations close to zero, this result accords with the hypothesis that

eit is serially uncorrelated.
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+ -—
L oK . oKL _ K-l
K 2 (1 -p)
K-1
= 0% -2 +1)
2 (1 -p)
_ X1 -0
2
1 7z
x p (1 -p)
92 - 2 )
p* - 92(1-0)
3 2 ’

and so forth.

are displayed in Table 3.

*
and r

sistent with an assumption that €

3

To facilitate the use of these results,

Suppose,

= -,01.

it

*
for example, that r. =

follows an AR(l) process with p =

(8)

h 1 f P, d *

the values o Pys» P, and o,
*

1 -.32, r, = ~.09,

Examination of Table 3 shows this pattern is roughly con-

.3’

in which case the probability limits of the first three autocorrelation

estimators are respectively -.35, -.105, and -.0315.

The supposed values
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* % *
for Ty rz, and r3 are in fact the ones MaCurdy observed and modeled as
an ARMA(1,2) process. An AR(l) process with p = .3, however, fits the re-
siduals pattern nearly as well and is much more tractable for purposes of

estimating equation (2) with a correction for autocorrelation.

AR(2) : €44y = X, €1,t-1 * Ao €1,t-2 + v4y vwhere vy, is independently,

identically distributed with zero mean and constant variance.

In this case, the true autocorrelations are®

p, = "1
= — ’
1 1 AZ
2 2
. ) )‘1 +>‘2 - )‘2
- ’
2 1 AZ
and, for K > 2,
P = MPge1 T APx, -

Then, use of equation (7) and some algebraic manipulation gives

2 2

- O RV
— - H
1 2 (=% -1,
2 2 3 2
. D)2, -2 a7 - A, A -
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3 2 4 2 2, 2 3 2

o p*= 2)\1 +4>\1)\2—2)\1>\2 -Al -3>\IA2+)\1 )\2 +A2 —Al -
3 2 (1 - Xl - kz)
* * *
Table 4 presents pl, p2, and p3 for selected values of Xl and kz consistent

with a stationary AR(2) process. For example, if autoregressions of the
* * *

OLS residuals from equation (6) yield r, = -.35, r, = -.1, and T, = -.3,

this pattern would be roughly consistent with an assumption that €4t

follows an AR(2) process with kl = 1.2 and kz = =,5.

MA(1l) Py = Py Pg = 0 for X > 1.

In this case,

* - 20 - 1

°1 7 -0y °
*

S S
2 2 (1 -»0)

and, for X > 2,

* 0
pK = .

* * *
Table 5 displays Py Py and p3 for selected admissible values of p.
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MA(2) : Pis Py # 0, Pg = 0 for X > 2.

In this case,

p* _ 291—02-1
— ’

1 2 (1 pl)

. 20, -0,

°2 T T =5y
1

* Py

Py = 2@ -5 °

and, for K > 3,
* 0
Px

* % *
Table 6 displays A Pos and p3 for selected admissible values of Py

and p2.
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5. Monte Carlo Results

The preceding sections have derived the probability limits (as N+o)
of various autocorrelation estimators. Two remaining questions are how
closely, in finite samples, do these estimators cluster around their proba-
bility 1limits, and to what extent does using these estimators to correct
for serial correlation improve the estimation of the original regression
equation (1)? This section explores t
methods.

In each of the Monte Carlo experiments, the regression model takes

the form
yip =03 tBXip v E4¢ o (9)

In all experiments, B =1 and the aj are independently and approximately
normally distributed’ with mean O and variance 1.8. For each individual i,

Xip follows the first-order autoregressive process

Xie = 3 Xg e-1 t Vit

where the wyy are independently and approximately normally distributed with
mean O and variance 1. The same set of ay and Xj¢ is reused in every trial
of every experiment.

Each trial generates a new sample of €4¢ according to the first-

order autoregressive equation

€4t = PEq,e-1 * Vit
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where the vy, are independently and approximately normally distributed with
mean 0. The autocorrelation parameter p is varied between experiments.

The variance of Vit also is'altered between experiments so that, in all
experiments, the variance of €4, is 1/.84.

The first series of experiments uses time series length T = 10 and
cross-section size N = 50. Each experiment uses a different value for p
and is replicated 50 times. In each replication, once the data are
generated, equation (9) is estimated by OLS in both its level and first-
differenced forms. Autocorrelations are then estimated from the residuals
of both regressions and compared with the corresponding probability limits
in Tables 1 and 3. After the appropriate adjustments have been made, these
estimates are used to reestimate equation (9) with correction for serial
correlation. The remainder of this section summarizes the findings of
these and related experiments.

The first finding is that, as expected, estimation of equation (9)
without appropriate correction for serial correlation tends to produce
misleading standard error estimates forlgl Table 7 reports the relevant
summary statistics for experiments with T = 10, N = 50, and p set at 0,

-4, .8, or .99. The first column gives the average over 50 replications of
the estimated standard error of B from OLS estimation of equation (9). The
second column shows the standard deviation actually observed for'g in the
50 replications.® Columns 3 and 4 report the analagous statistics for OLS
estimation of the first-differenced version of equation (9).

O0f course, in the experiment with p = 0, OLS is the appropriate pro-
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cedure, and the average standard error estimate is nearly identical to the
observed standard error of E. Applying OLS to the first-differenced
equation, however, erroneously assumes that € {, follows a random walk, and
consequently the average standard error estimate considerably understates
the variability actually observed for g: The table also shows that, as p
grows larger and the error process becomes more like a random walk, the
standard error estimator in the first-differenced version performs better
while the standard error estimator from applying OLS in levels tends to
understate the actual variability in €l

The second set of findings concerns how closely the autocorrelation
estimators cluster around their probability limits. Table 8 gives the
relevant results from the experiments with T = 10, N = 50, and ¢ equal to
0, .4, .8, or .99. The first three columns pertain to the first—-, second-,
and third-order autocorrelation estimators based on the OLS residuals. For
each value of p, Table 8 shows the probability limits of ry, rp, and r3, as
previously displayed in Table 1. Table 8 also shows the average values of
ry, rp, and ry actually observed over 50 replications, as well their
observed standard deviations.? Similarly, columns 4-6 give the probability
limits (from Table 3) and the sample means and standard deviations of the
autocorrelation estimators r:, r;, and r; for the first-differenced
equation.

As can be seen in the table, for all the values of p, the probabil-
ity limits of the autocorrelation estimators for the first-differenced

equation appear to be very good measures of the central tendency of these
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estimators in finite samples. For example, with p = 0, the probability
limits of r;, r;, and r; are ~.5, 0, and 0, while the observed sample
averages are -.49, -.00, and -.0l. The observed standard errors in the
sample are large enough (usually about +05) so that the true AR(1) error
structure will occasionally be difficult to recognize. This result,
however, pertains to experiments with a cross-section size of only 50. 1In
most actual applications, the cross-section will be much larger and the
standard errors correspondingly smaller.

The results are somewhat different for the autocorrelation estima-
tors from the level equation. When'p is 0 or .4, the average autocorrela-
tion estimates in the experiment are quite close to the corresponding
probability limits. When p is larger, however, the higher-order autocorre-
lation estimators tend to diverge from their probability limits. When
p = .8, the probability limit of ry is -.04, but the sample mean of ry is
—-.l4. When p = .99, the probability limit of ryp is .41, but its sample
mean is .31, and the probability limit of ry is .16, but its sample mean is
‘-.04. For all values of p, the probability limits and sample means of ry
agree reasonably well, but the discrepancies observed for the higher-order
autocorrelation estimators suggest that, when p 1s large, it may be dif-
ficult to identify the true autocorrelation structure with the residuals
from the level equation.

The experiments reported in Table 9 further explore the finite-
sample properties of the autocorrelation estimators by reducing the time

series length to T = 6. 1In each of these experiments, p = .4. In the
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experiment with N = 50, the sample averages of the autocorrelation estima-
tors from the first-differenced equation continue to agree well with their
probability limits. The shortening of the time series, however, appears to
exacerbate the problems of the estimators from the level equation. Even
with a relatively small p of .4, the sample mean of ry is -.28, compared to
its probability limit of -.22, and the sample mean of rj is -.37, compared
to its probability limit of -.10.

The rest of Table 9 reports the results of experiments with N
increased to 100 and 200. The successive doublings of the cross—section
size reduce the observed standard errors of the autocorrelation estimators
as expected, but do not move the sample means of ry and rjy appreciably
closer to their probability limits. At least for data bases of these
sizes, a comparison of the autocorrelation estimates from the level resid-
uals with the tabulated probability limits may not give an accurate means
of identifying the true autocorrelation structure.

The experiments reported in Table 10 address the question of whether
attempting to correct for serial correlation improves the estimation of the
original regression equation. These experiments assume that the error
structure has been correctly identified as AR(1). Then ry, the first-order

autocorrelation estimate based on the residuals from the level regression,

*
or rl, the estimate from the first-differenced regression, is used to

generate an estimate ? of the autocorrelation parameter, which is then
used in the reestimation of equation (9). The estimate of p based on

r. is obtained by interpolating the observed r, into the relevant section

1

*
of Table 1. The estimate of p based on T is obtained by inverting
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equation (8) in Section 4 to get

A *
p =1+ 2r1 .

Both estimates of p are then used to reestimate equation (9) in quasi-
*
first-differenced form, i.e., with new variables zit obtained from the
*

transformation z, = z - pz,
it i

it The experiments of Table 10 use N = 50,

,t=1"
T = 10, and p equal to .4 or .8.
The first two rows of the table reproduce from Table 7 the average
estimated standard errors of g from OLS and first-differencing, along with
the sample standard deviations actually observed for these estimators of B.

The next two rows give the analagous statistics for the quasi-first-

difference estimators based respectively on r, and r:.

When p = .4, estimating in first differences tends to produce
moderate underestimates of the standard error of aﬁ OLS estimation in
levels appears to be a little more efficient for B and to give smaller
underestimates of the standard error. Both methods of correcting for
serial correlation appear to eliminéte the underestimation of the standard
error of é and to be more efficient than first-differencing (but not OLS)
for estimating B. There is no clear difference between the estimators
based on ry and those based on r;.

When p = .8, OLS gives substantial underestimates of the standard

error of B. Estimating in first differences is much more efficient for B
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and seems to underestimate the standard error of?; only slightly. The
quasi-first-difference methods further reduce the

underestimation of standard errors and achieve large efficiency gains rela-
tive to OLS similar to those obtained by first-differencing. Again, there

is no clear difference between the estimators based on r1 and those based

ear to what extent the

Carle research,

results can be generalized beyond the specific conditions of the experi-
ments. Within these conditions, though, the following patterns have
emerged:

(1) The results have confirmed that falilure to correct for serial
correlation may lead to inefficient estimation and misleading hypothesis
tests.

(2) In experiments that assumed correct identification of autocorre-
lation structure, the methods developed in this paper to estimate and
correct for serial correlation sometimes achieved ma jor efficiency gains
and more reliable standard error estimates. For example, in experiments
with p = .8, the observed standard deviation of the coefficient estimator??
was more than one-third less with correction for serial correlation than with
OLS. No major differences in efficiency appeared between the alternative
correction methods.

(3) Important differences did appear in the reliability of the alter-
native methods for identifying autocorrelation structure. In certain cir-

cumstances (i.e., with larger p or shorter T), the probability limits
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derived for the higher-order autocorrelation estimators based on the OLS
residuals appeared to be poor measures of the estimators' central tendency
in finite samples. 1In such circumstances, it may be difficult to infer
from the estimated autocorrelations what the true autocorrelation structure
is. 1In contrast, the probability limits of the autocorrelation estimators
based on residuals from estimating in first differences proved to be good
measures of these estimators' central tendency through the full range of
experimental conditions. If these results are generalizable, applying OLS
to the first-differenced regression equation and then examining the auto-~
correlation patterns of the resulting residuals may be the most reliable

way to identify the autocorrelation structure of the error process.
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6. Summary

This paper has discussed methods of estimating autocorrelations in
fixed-effects models for longitudinal data. It has extended Nickell's
method by deriving a more general expression for the inconsistency of con-
ventional autocorrelation estimators as the size of the cross-section N
(but not the length of the time series T) goes to infinity, and it has pre-
sented statistical tables to facilitate identifi;ation of autocorrelation
structures and correction for inconsistency of autocorrelation estimators.
The paper also has presented tables to simplify identification of auto-
correlation processes in MaCurdy's first-differencing method. Finally, the
paper has reported Monte Carlo results suggesting that, in finite samples,
the first-differencing approach may be a more reliable method for iden-

tifying autocorrelation structure.
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TABLE 1

Probability Limits of r;, rp, and r3 as MNw
in AR(1) Model with Selected Values of p and T

T =6 T =38 T = 10
P r r2 r3 r1 r2 r3 r1 r2 r3
0 -.20 -.17 .00 -4 -.13  -.10 -.11  -.11  -.10
-1 =12 -.20 -.02 -.06 -.16 -.13 -.02 -2 -.12
-2 -.05 -.22 -.05 02 -.16 -.15 06 -.12 -.14
.3 .03 -.23  -,07 11 -.16  -.18 15 =10 -.16
4 .10 -.22 -.10 19 =13 -.20 223 -.07  -.17
.5 17 =20 -.12 26 -.10  -.21 32 -02  -.17
.6 26 -.16  -.13 346 -.05  -.20 40 .04 -.15
.7 31 -2 -2 42 .02 -.18 48 12 .11
.8 .37 -.06 -.10 49 .09 -.13 .56 20 -.04
.9 b4 .02 -.06 -56 .18 -.05 63 .31 .05
.99 49 09  -.01 .62 .28 .04 69 .41 .16
T = T = 30 T = 100

o ry rz I'3 rl r2 r3 r1 I'2 I'3
0 -.07 -.07 -.07 -.03 -.03 -.03 -.01 ~-.01 -.01
.1 .02 -.08 -.08 .06  -.03  -.04 .09 ~-.00 -.01
.2 11 -.06  -.10 .16 -.01 -.04 219 .03 -.01
.3 .20 -.03 -.10 .25 .03 -.04 29 .07 .01
4 .30 01 -.10 .35 .09 -.01 39 .14 .04
.5 -39 .08 -.08 45 .17 .03 48 .23 .10
-6 .48 .16  -.03 54 .27 .10 .58 .33 .18
.7 .56 .25 .04 -64 .38 .20 .68 .46 .30
.8 .65 .36 .13 73 .51 .34 .78 .61 47
.9 .73 .48 .26 .82 .66 .51 .88 .77 .67
.99 .79 .59 .40 .89 .79 .68 .96 .92 -89
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TABLE 2

Probability Limits of r;, rp, and r3 as M
in MA(1) Model with Selected Values of p and T

T =6 T =8 T = 10
rr T2 r3 bt r2 3 1 £2
"020 -017 -00 —014 —-13 "'-10 —011 "011
-.12 -.21 -.02 -.06 -.17 -.13 -.02 -.13
_003 _026 --04 ool. "020 "'015 .07 _016
006 "031 _006 013 —024 -118 017 _c19
017 —038 —-09 n24 "'028 --21 027 "-21
028 _044 "013 035 —o32 -025 038 —024

T =15 T = 30 T = 100
r r9 Iy r rg rg ry ro
-007 "c07 -o07 "-03 _003 "'003 _-01 -.01
002 --09 —008 006 —-05 -004 009 "001
-12 _010 —-10 -16 -005 "'005 019 _001
.22 -012 "011 026 _006 "'006 -29 "'002
-32 —-14 --13 036 "006 —006 -39 -002
043 -015 _-15 046 _007 —007 -49 '—002

[a ]
w

.10
-.12
-.14
-.17
-.19
-.22

r3

-.01
-.01
-.01
-.02
-.02
-.02
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TABLE 3

Autocorrelations of First-Differenced Error Term
When Original Error 1Is AR(1) with Selected Values of p

% *

P pl 02 93

0 -.50 0 0

.1 -.45 -.05 -.00
.2 -.40 -.08 -.02
.3 -.35 | -.11 -.03
4 -.30 -.12 | -.05
.5 -.25 -.13 -.06
.6 -.20 -.12 -.07
.7 -.15 -.11 | -.07
.8 -.10 -.08 -.06
.9 -.05 | -.05 -.04

Random walk 0 0 0
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ABLE 4

When Original Error 1s AR(2) with Selected Values of Ay

*
P1
-.05
.05
.15
.25
.35
.45
.55
.65
.75
.85

Py

-.35
-.25
-.15
-.05
.05
.15
25

-.65
-.55
~.45
-.35

°1
—095

-.90
-.89
-.84
-.75
-.62
-.45
-.24

.01
.30
.63

.30
.19
.12
.09

.90

.05
—022
--47

z 0

-.86
-.78
-.57
-.20

.37

-.20
-.13
-.09
-.05

-086

Ny = =T

* *

Ql 02
—015 --70
_.05 -.71
.05 -.68
.15 -.61
.25 -.50
-35 -035
45 -.16
.55 .07
.65 .34
)\2’-' -.1

* *

1 f2
-.45 -.10
--35 —017
-.25 -.20
-.15 -.19
-.05 -.14
.05 -.05
A= .5

* *
ST
-.75 .50
-.65 .37
-.55 .28

*

°3
.11
-.11
"031
~.47
—058
-.60
—.51
-.29
.09

.05
.00
-.06
-.10
-.11
-.06

_525
-016

A

*
P

-.25
-.15
-.05
.05
.15
.25
.35
+45

.55
<45

—025
.15

Py
.85
.75

2

—'50
-053
"052

.38
«25
.08
.13

.13
-.03
-.18
-.31
-.38
-.38
-.27
-.04

-.06
-.04
-.05
-.06
-.03

-.60
_042
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TABLE 5

Autocorrelations of First-Differenced Error Term
When Original Error Is MA(1) with Selected Values of p

--50

- -44

-.38

-.29

—017

-006

-.13
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TABLE 6

Autocorrelations of First-Differenced Error Term
When Original Error Is MA(2) with Selected Values of p; and po

p2 = -4 p2 = -3 p2 = -,2
* * * * * * * * *
"030 —040 .20 --35 -030 015 --40 --20 olo
—'22 _-50 -22 _028 --39 -17 _-33 —‘28 -11
-.19 -.50 .19 -.25 -.38 .13
--14 "-50 014
Py =~ pp=0 py= -1
* * * * * * * * *
-.45 -.10 .05 -.50 0 0 -.55 .10 ~.05
-.39 -.17 .06 -.44 -.06 0 -.50 .06 -.06
-.31 -.25 .06 -.38 -.13 0 L L 0 -.06
"'021 _036 -07 "029 —‘21 O '036 --O7 _-07
-.08 -.50 .08 -.17 -.33 0 -.25 -.17 -.08
0 -.50 0 -.10  -.30 -.10
-13 —050 —-13
pz = = ‘3 p = '4
* * * * * * * * *
1 P2 °3 °1 P2 °3 °1 P2 °3
--60 020 _-10 —-65 -30 —.15 "'070 040 "‘-20
"-56 017 _011 —-61 028 _-17 _067 039 "'022
-.50 .13 -.13 -.56 .25 =-.19 -.63 .38 -.25
--43 007 —-14 "‘-50 021 --21 —057 -36 -¢29
-.33 0 -.17 -.42 .17 -.25 ~-.50 .33 -.33
-.20 -.10 -.20 -.30 .10 -.30 -.40 .30  ~.40
0 "'025 "'-25 —-13 0 "038
.33 -.50 -.33
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TABLE 7

Monte Carlo Results on Standard Error Estimation
in Experiments with N = 50 and T = 10

OLS First differences
Sample Sample Sample Sample
mean of standard mean of standard
estimated deviation estimated deviaﬁion
standard of £ standard _ of B
error of §‘ error of B
.049 047 .060 .080
046 .048 .047 .054
.035 .047 027 .030
.0094 .0108 .0060 .0051
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TABLE 8

Monte Carlo Results on Central Tendency and Variability of
Autocorrelation Estimators in Experiments with N =50 and T = 10

=0

Probability limit
of estimator

Sample mean (and standard
deviation) of estimator

= .4

Probability limit
of estimator

Sample mean (and standard
deviation) of estimator

= .8

Probability limit
of estimator

Sample mean (and standard
deviation) of estimator

= .99

Probability limit
of estimator

Sample mean (and standard
deviation) of estimator

-.11 -.11 -.10

-.11 =-.11 -.l1
(.046) (.041) (.044)

.23 -.07 -.17

.22 -.08 -.20
(.046) (.048) (.044)

.56 .20 -.04

.54 .16 -.14
(.036) (.052) (.043)

.69 A1 .16

.66 .31 -.04
(.036) (.053) (.043)

* * *
r, r, r,

-.50 0 0

-.49 -.00 -.01

(.037) (.059) (.059)

-.30 =-.12 -.05

-.30 -.11 -.05
(.039) (.055) (.061)

-.10 -.08 -.06

-.10 -.08 -.07
(.046) (.053) (.053)

_-005 -0005 "0005

-.00 .01 -.00
(.050) (.054) (.045)
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TABLE 9

Monte Carlo Results on Central Tendency and Variability of
Autocorrelation Estimators in Experiments withp = .4 and T = 6

* * *
1 2 3 1 2 3
Probability limit of estimator .10 -.22 -.10 -.30 -.12 -.05
N =50
Sample mean (and standard .07 -.28 -.37 -.30 -.12 -.03
deviation) of estimator (.058) (.050) (.074) (.065) (.074) (.098)
N = 100
Sample mean (and standard .08 -.28 -.39 -.30 =-.1l1 -.06
deviation) of estimator (.038) (.044) (.057) (.042) (.062) (.065)
N = 200 :
Sample mean (and standard .08 -.28 -.38

deviation) of estimator (.029) (.025) (.039)
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TABLE 10

Monte Carlo Results on Correcting for Serial Correlation in
in Experiments with N = 50 and T = 10

p = 4 p = 8
Sample Sample Sample Sample
mean of standard mean of standard
estimated deviq&}on estimated devia;ion
standard, of B standardA of 8
error of B error of B
OLS .046 .048 .035 047
First
differences .047 .054 .027 .030
Quasi-first
Adifferences:
p based on r1 .049 .049 .029 .030

*
? based on T, .049 .049 .029 .030
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Footnotes

Ashenfelter and Solon (1982) review some of the sources and uses of
longitudinal data.

See Mellow (1981) and Mincer (1981) for examples.

See Bhargava, Franzini, and Narendranathan (1982), Nickell (1982),
Solon (forthcoming), Lillard and Willis (1978), and MaCurdy (1982) for
examples.

till another approach, suggested by Kiefer (1980) and Chamberlain
(1982), is to stack the equations from different time periods and apply
a seemingly-unrelated-regressions estimator with an unrestricted inter-
temporal covariance matrix. This approach will often be more cumber-
some than the other methods discussed in this paper, particularly if
the time series are of at least moderate length. For example, a time
series length of T=10 would require the estimation of 45 intertemporal
covariance parameters. Furthermore, if the other methods discussed
here indicate that the error structure is well described as a low-order
ARMA process, imposing such a structure in the estimation should
improve efficiency in finite samples.

The author thanks Takeshi Amemiya for the idea of generating these
tables.

See Box and Jenkins (1970), pp. 59-61.

The ay and other approximately normal variables used in the experiments
were generated by the SAS package's NORMAL function. This function
uses a multiplicative congruential method to generate uniformly dis-
tributed pseudo-random variables, shuffles the variables, and averages
series of 12 uniformly distributed variables to obtain approximately
normal pseudo-random variables. See Hammersley and Handscomb (1964)
and Quandt (forthcoming) for more detailed discussions of pseudo-random
number generation.

This standard deviation was computed as the square root of

50 )
) (Bj - 1)°/50 where j indexes the replication.
j=1

These standard deviations were computed as the square root of
50

z (rj - ;)2/49 where j indexes the replication and r is the sample
=1



A

mean over all 50 replications.
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