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1. Introduction

A stationary time series is one which fluctuates around
a mean value. More technically, it has a mean value, vari-
ance and autocovariances which are finite and constant
through time. Many economic time series, however, are
clearly nonstationary in the sense that they tend to depart
ever farther from any given value as time goes on. When
movement in a series appears to be predominantly in one
direction it is often said to exhibit "trend." 1In applied
work trend is often attributed to a functional dependence on
time. Accordingly, nonstationary time series are frequently
"detrended" by regressing the series on time or a function
of time. The residuals are then treated as a stationary
time series with well defined variance, autocovariances and
covariances with other detrended variables. The model or

representation implicit in these procedures is

(1.1) Y. = £f(t) + u

t t

where {Yt} is an observed nonstationary time series and {ut}
is the stationary series of deviations around the trend
function f£(t). 1In the case of a’linear trend, f£(t) has the
form o + Bt.

An alternative hypothesis consistent with nonstationar-
ity is the one popularized by Box and Jenkins (1970), namely
that the observed series represents the accumulation (inte-

gration) of changes or first differences which are a



stationary time series. A series of this type evolves

according to the relation

(1.2) Y =Y + g + ¢

t t-1 t

where {et} is a stationary series with mean zero and

constant variance 052 and B is the (fixed) mean of the first

differences often called the drift. The simplest member of

this class is the random walk in which the steps, are

€pr
serially random. Accumulating changes in Y from any initial

value, say YO' we have

(1.3) Y, =Y., + Bt + €.

1

I~ ¢t

i=1
which has the same form as a linear version of (l1.1). It is
fundamentally different, however. The intercept is not a
fixed parameter but rather depends on the initial value YO.
The disturbance is not stationary but rather the variance

and autocovariances depend on time. In the random case the
variance is just to;. The width of a confidence interval

for future values of Y in (1.1) is limited in width by the
finite dispersion of u, while in (1.3) it increases without
bound (in proportion to v/t for a random walk with normally
distributed errors). We follow Nelson and Plosser (1982) in
referring to the first class of models (1.1) as trend station-
ary processes (TSP) and the second élass (1.2) as difference
stationary processes (DSP).

A test for the hypothesis that a time series belongs to

the DSP class against the alternative that it belongs to the



TSP class has been developed by Dickey and Fuller (]979).
In the simplest case one estimates by least squares the

coefficients in the model.

+ Bt + ¢,,

(1.4) Y, = o+ Y .

t

which belongs to the DSP class if p = 1 and B = 0 and

belongs to the TSP class if |p| < 1. Dickey and Fuller show
that the least squares estimate of p is not distributed around
unity under the DSP hypothesis but rather around a value less
than one. The negative bias diminishes with the number of
observations. Nelson and Plosser applied this testing proce-
dure to a wide range of historical time series for the U.S.
economy and found that the DSP hypothesis was accepted in all
cases with the exception of the unemployment rate which, not
surprisingly, appears to be stationary and population which
was not consistent with linear versions of either hypothesis.
Further, many variables such as real GNP and employment were
found to be reasonably characterized as random walks with
drift.

In this paper we explore the pitfalls inherent in
regression models in which time is included as an explana-
tory vafiable under the TSP hypothesis when in fact the time
series we are interested in explaining belongs to the DSP
class. We take as our benchmark the case where the series
is generated by a random walk. 1In Section 2 of the paper we
investigate the properties of standard regression statistics

including R2, t-ratios and sample autocorrelations of



residuals when time is the only explanatory variable as it
is in "detrending" regressions. In Section 3 we extend the
investigation to regressions which include other explanatory
variables. Particular attention is focused on the danger

of spurious regression relationships among variables which
are unrelated.

2. Goodness-of-Fit and Residual Variance
in Linear Time Trend Regressions

The simplest example of regression on time and the
one most often encountered in practice is the linear "de-

trending" regression

(2.1) Y, =a + Bt +u

t t

in which the nonstationarity in Y is assumed to be explained
by a linear dependence on time with the remaining variation
in Y being due to a stationary "cyclical" component {ut}.

If the series is one which grows exponentially it is often
transformed to natural logarithms prior to detrending.
Regression (2.1) is properly specified if the series belongs
to the TSP class and account is taken of autocorrelation in
the disturbances prior to drawing inferences about 8.
However, if Y belongs to the DSP class then the disturbance
in (2.1) is not stationary and the appropriate transforma-
tion to produce a stationary series would be differencing.
Suppose one nevertheless fits the linear trend to a DSP
series. What can we say about the properties of the usual

regression statistics and the resulting "detrended" data?



We begin by noting that a DSP has the form of a linear
regression with cumulative errors, as in (l1.3). The initial

value YO may be regarded as an unknown parameter, say o, SO

we have
t
(2.2) Y. = o+ Bt + ] €.7 t=1,...,N.
. i
i=1
In this context, the realization (Y;,...,Y) is thought of

as resulting from a random drawing from the joint distribu-

tion of disturbances (el,...,e ). This joint distribution

N
implies a joint distribution for the cumulative errors in
(2.2). These regression errors have mean zero and a N x N
covariance matrix, say 2. The properties of the ordinary
least squares (OLS) coefficients & and 8 and the resulting
residuals are of considerable practical interest since it is
these residuals which are often interpreted as "detrended"
data in applied work.

Standard least squares regression theory provides us
with some immediate and useful results, namely (1) & and B
are unbiased (2) sampling errors (4-a) and (B-B) in a given
sample depend only on the e's underlying that sample and not
on o or R (3) the particular residuals, or detrended data,
obtained from a given sample depend only on the e¢'s and not on
a or B. These properties imply that we can investigate the
distributions of (&-a), (@-B), the detrended data, and derived
statistics such as standard errors and t-ratios by Monte

Carlo methods without being concerned that our results depend

on arbitrarily chosen values of a and B.



To make our investigation operational we need to
choose a particular DSP process as an archtype and our
choice is the random walk for which the ¢ are independent
and identically distributed. The random walk is the
simplest member of the DSP class and also provides a
reasonable characterization of many economic time series.
For this case the elements of I are just Qj,k =
min(j, k) OEZ so that © is completely determined by the
number of observations and 082.

The covariances between errors in this model are all
positive and standard analysis of regression with positively
correlated disturbances suggests that conventional standard
errors and t-statistics will be misleading by overstating
significance of coefficient estimates. Correspondingly, R2
will exaggerate the extent to which movement of the data is
actually accounted for by time. This is analogous to the
spurious regression phenomenon discussed by Granger and
Newbold (1974) in the context of pairs of stochastic tiﬁe
series. To see how the spurious regression phenomenon works
in our situation, consider the case where 8 = 0 so that the
level of Y does not have any functional dependence on time.
The population value of R2 is zero since time does not in
fact account for any of the variation in Y. If we never-

theless run the regression of Y on time we will obtain a

sample value of R2 which is given by

(2.3) R%® = 1 - (SSE/SST)



where SSE is the conventional error sum of squares and SST
the total sum of squares. Using the true parameters we
would have SSE = SST and R2 = 0. As we shall see, sample R2
will be wrong on both counts, that is both SSE and SST are
distorted in the sample.

Taking the SST part of R2 first, we note that by

definition the sample variance of N observations is

1 1

(2.4) SST/(N-1) = (N-1)"% (J¥%) - IN(N-1)]17% (Tv)2.

For model (2.2) with 8 = 0 the expected value of the first

term is readily shown to be
(2.5) EL(N-1) TN (JY%) = INN+1) /28110 2 5 (8/2)0 2

which is the correct average variance of Y over the sample

. . 2 2 2
since the variances of Yl' Y2, YN are ¢o_, 208 ,...,NGE
respectively. The distortion of SST comes with the second
term which arises from using the sample mean of Y in calcu-

lating SST since

2

(2.6) E(JN)? = (1 + 2%+...+8%)0 ?

= [N(N+1)(2N+1)/6]o€2

which is of order N3 instead of order N as would be the case

in a random sampling situation. Thus we have

(2.7) E[(JY)%/(N-1)N] = [ (N+1) (2N+1) /6(N-1) ] o _°

which combined with (2.5) gives us



(2.8) E[SST/ (N-1)] = [(N+l)/6]o€2.

Comparing (2.8) with (2.5) we see that the effect of using
the sample mean of Y instead of the true mean, zero, in
calculating the sample variance of Y is to cut the measured
variation in the data on average by two-thirds.

In studying the behavior of SSE we are able to make use
of a formula given in Nelson and Kang (1981), based on work
by Chan, Hayya, and Ord (1977) for the expected values of
the autocovariances of residuals from regression of a random
walk on time. This result does not depend on whether the
mean of the changes, B, is zero or not. Recognizing that
the variance of the residuals is their autocovariance at lag
zero, equation (2.1) of Nelson and Kang (1981) yields the

approximation
(2.9) E[SSE/(N-1)] = [(N+1)/15]0_°.

Comparing this result with (2.5) which gives the true
variance of Y for a realization of length N, we see that the
variance of "detrended" data is only 2/15 as large. Thus,

even when no trend or drift is present, regression

detrending will remove about 86 percent of the variation

from the original data.

If it were true that E(Rz) = 1 - E(SSE)/E(SST) instead
of 1 - E(SSE/SST) we could combine results (2.8) and (2.9)
to obtain E(Rz) = 3/5 = .6 for regression of a random walk
with zero drift on time. As we shall see from the results

of sampling experiments, E(Rz) is not that large, but rather
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around .44 due to the difference between E(SSE)/E(SST) and
E(SSE/SST). The fact that E(SSE) and E(SST) are both of
order N does suggest that E(Rz) does not depend importantly
on sample size, a result which is confirmed by sampling
experiments. To explore the sampling characteristics of
sample R2, t-ratios, residual variance, and residual
autocorrelation we have performed a set of experiments in
which the trend model was fitted by OLS to 1000 independent
replications of a random walk with o« = 0, B8 = 0 and £
i.i.d. N(0,1). The basic results for N = 100 observations
are presented in Table 1. Only the results for R2 and the
mean values of & and B depend on &« and B.

Note first that the mean sample R2 is .443 although Y
does not in fact depend on t. The R2 obtained in each
realization is a lower bound on the R2 which would have been
obtained in the multiple OLS regression which included other
independent variables. The minimum observed value of R2 was
.000+ and the maximum .978. This occurs in spite of the
fact that B is unbiased.

The mean sample variance of residuals, [SSE/(N-1)], is
6.79 which agrees closely with the value given by approxima-
tion (2.9) for N = 100 and U€2v= 1, namely 6.73. Since the
true variance of Y averaged over the sample is 50, the
detrending procedure has indeed removed 86 percent of the
variation in the data. This attenuation effect does not

depend on 082.
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The spurious regression phenomenon is further reflected
in the large dispersion of t~ratios for B and &, their
standard deviations being about 15 and 7 times respectively
what they would be in a properly specified regression model.
As a result, the true null hypotheses B = 0 and o = 0 are
rejected with frequencies of 87 percent and 80 percent
respectively at a nominal 5 percent significance level.

Earlier papers by Chan, Hayya and Ord (1977) and Nelson
and Kang (1981) discuss fhe behavior of sample autocorrela-
tions of residuals from regression of a random walk on time.
An approximation is developed in which the expected sample
autocorrelation for a given lag is a function only of the
ratio of the lag to the length of the series except for
terms of order N"1 and smaller. For example, at lag one the
expected autocorrelation is roughly (1-10/N). Thus the
shape of the sample autocorrelation function is effectively
an artifact of detrending with the value of the autocor-
relation for given lag depending on the particular sample
length. Further, the function is shown by Nelson and Kang
to resemble a damped sine wave as can be seen in Figure 1
where the function is plotted for N = 10l1. This implies
pseudo-periodic behavior in the detrended series where none
is present in the underlying data. At lags which are small
relative to sample size, however, the function declines
roughly exponentially. These results do not depend on the

true value of B or of 0€2.



12

In our experimental case with N = 100 the empirical
means of the first three sample autocorrelations of
residuals, denoted Lo, r, and ry in Table 1 are .88, .77,
and .68 respectively. The values predicted by the approxi-
mation formula, .91, .82 and .74,

are somewhat too high. The empirical
mean values do decline roughly exponentially. This suggests
that an investigator versed in time series model identifi-
cation would typically specify a stationary first order AR
process for this "detrended" series even though the original
data are not stationary around a trend. This conjecture is
supported by values of the partial autocorrelations at lags
in Table 1. The means

two and three, denoted r and r

22 33
are -.04 and -.02 respectively which should be compared with
a standard error of 1//N or .100 in this case. We conclude
that an investigator who takes the time trend model
seriously is likely to specify an AR(1l) process for the
residuals with a coefficient typically around .88 in the
case of 100 observations or in general about (1-10/N).

To check the sensitivity of our results to sample size
we also ran the experiment for N = 20 observations, again
with 1000 replications. Mean R2 was nearly the same, .435,
as expected. The mean sample variance of residuals was
1.40, so again detrending removed about 86 percent of the
variation in the data. In accordance with the smaller

number of observations, t-ratios are reduced in absolute

size with standard deviations falling to about 6 and 3 for
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8 and & respectively, the true null hypotheses being
rejected 73 percent and 54 percent of the time respectively
at a 5 percent nominal significance level. The means of ry,

r, and r, were .50 and .17 and -.04 compared with corres-

2 3
ponding values from the approximation formula of .59, .28
and .05. Thus with only 20 observations the oscillatory
character of the autocorrelation function becomes more
evident at low lags. This is further evident in the partial
autocorrelations Iyn and I3 which have mean values -.18 and
-.13 though the appropriate standard error is now .22. If a
second order autoregression is specified for the residuals
the coefficients implied by sample autocorrelations indicate
complex roots (oscillatory behavior) in 69 percent of the
cases. By comparison, complex roots were indicated in less
than 1 percent of the cases for N = 100.

An alert investigator would presumably recognize the
presence of autocorrelation in the trend regression
residuals and would rerun the regression after correction
for autocorrelation if the objective was to test for the
presence of trend rather than simply detrending. Under the

hypothesis of AR(1l) errors, the appropriately transformed

regression would be

(2.10) (Y, - pY = a(l-p)+8[t—p(t-l)]+(ut—out_1),

t t-1)

where p is the AR coefficient for the OLS residuals.
Indeed, (2.10) would be a correctly specified regression if

p were set at unity which corresponds to first differencing.
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However, an investigator who believed the errors were
stationary would presumably use the value of r, from the OLS
residuals. Estimation of (2.10) with r, in place of p
amounts to a two-step Cochrane-Orcutt (1949) procedure. The
transformation of course under-corrects for autocorrelation
since r, is typically éround .88 for N = 100. As a result
the spurious regression phenomenon by no means disappears.
In the same set of experiments with N = 100 the standard
deviation of the t-ratio for the trend coefficient B dropped
only to 4.57 after transformation, with the true null
hypothesis being rejected in 58 percent of the realizations
at a nominal 5 percent level. Similarly, the standard
deviation of t(d) fell to 2.67 and the rejection frequency
to 45 percent. The mean R2 in these regressions was .122.
The residuals in the transformed regressions give no hint of
trouble: the mean Durbin-Watson statistic was 1.88 corres-
ponding to a mean autocorrelation at lag one of only .05.1
The Cochrane-Orcutt procedure is often iterated using
successive estimates of (a,B8) and p until convergence
occurs. In the special case of time trend regression,
convergence effectively occurs at the first iteration. The
algebraic reasons for this are explored in the Appendix.
This result is entirely a result of the algebra of least
squares and the special nature of the time trend variable
and is not dependent on the data being generated by a TSP,

DSP, or whatever.
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To sum up, an investigator following standard
methodology will tend to find evidence of a trend in random
walk data when none is in fact present. This is essentially
because testing for trend in the regression framework takes
as a maintained hypothesis the assumption that the time

series is stationary, apart from a deterministic trend (if

any). Since trend lines fit random walk data well in an ex
post sense, the detrending procedure will tend to remove
much variation in the data which is in fact stochastic
rather than deterministic. As Nelson and Kang {1981) have
demonstrated, the autocorrelation properties of the
detrended data will be dominated by the effects of
detrending, thereby obscuring evidence of any actual auto-
correlation in first differences. We conclude that the
appropriate test for trend developed by Dickey and Fuller
(1979) should be conducted prior to analysis of non-
stationary series. At a minimum, the alternative that the
series are stationary in differences should be considered.
It is doubtless true that many economic time series
such as output, sales, and prices do in fact exhibit a
positive rate of drift which would mean B8 > 0 in our simple
model. If this is the case, does it mitigate any of our
objections to time trend regression? Not at all. As noted
previously, the properties of estimation errors (&-a) and (8
-B), the residuals, and statistics constructed from them do
not depend on B; residual variance will understate the true

stochastic variation in the data to the same degree,
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residual autocorrelations will display the same pseudo-

periodicity, and conventional measures of significance will

be overstated. R2 will still reflect the spurious

regression phenomenon. The behavior of R2 in the case
B > 0 is illuminated by considering the effect of B on SSE
or SST. While SSE does not depend on B8 at all, E(SST) is

augmented by a term which is a function of 82 and N and is

of order N°. The ratio E(SSE) /E(SST) is then of order N !

implying that R2 will tend toward one as N increases in the

case B # 0, instead of toward a constant. Denoting by ﬁz

the expression [1-E(SSE)/E(SST)], it is easy to show that

(2.11)  R® = (R + ov/2) (8270 21711+ 9/2) (8%/0 %) ]
where ﬁoz is the previously derived value of ﬁz for B = 0.

Note that ﬁz exceeds ﬁoz if B # 0, the difference increasing

with the ratio (62/062) and N. It is the case for postwar
annual U.S. real GNP in logs that B and o, are roughly

2

equal., For 62 =0, we have

=2

(2.12) &% = [R.2

o * (N/2)1/(1+N/2)

which is always greater than N/(N+2). This suggests that
for economic time series R2 will be driven close to unity
very rapidly as N increases. The high values of R2 reported
in the literature for regressions which include time are
therefore not surprising. Obviously, R2 gives us little
useful information about the explanatory power of the

independent variables in such regressions.



17

To check on the validity of (2.11) as an approximation

we reran our Monte Carlo experiments setting 82 = o€2 and N

2

at 20 and 100, The mean sample R” in the case N = 20 was

.953 compared with the .949 implied by equation (2.12) with

2
0

the mean R2 rose to .992 which compares with .989 predicted

R replaced by the Monte Carlo mean for B = 0. At N = 100
by (2.12).

An example from the literature may help to emphasize
some of the points made in this section. Perloff and
Wachter (1979, Table 3) report a series of regressions of
aggregate output in the U.S. on time, time squared, time
cubed and an index of labor and capital inputs constructed
under various assumptions about the form of the aggregate
production function. The polynomial trend function is
intended to capture the effects of technological change.

The data cover the 92 quarters from 1955 through 1977. The
reported R2 values are about .995. Using (2.12), we would
exXpect an R2 of about .988 in a regression of output on time
alone if output were a random walk and did not depend on the
index of inputs, assuming (8/08) = 1 and taking ﬁoz = .44,
Thus the reported R2 in itself provides no real information
about the relationship. The t-ratios for time squared and
time cubed are not significant but for time they are in the
range of 8 to 10 which is within one standard deviation of
zero for the results reported in our Table 1 for the case of

a random walk with zero drift. The t-ratios for the input

index are ten or larger, however. This suggests that the
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upward drift in output may be largely due to the upward
drift in the index of inputs. However, Perloff and Wachter
warn that "because of autocorrelation, these statistical
tests should be viewed with caution" (p. 130, fn. 25).
Indeed, the Durbin-Watson statistic for the preferred model
1s .231 corresponding to an r, of .884, very close to the
mean values recorded in our Table 1 for a slightly larger
number of observations. Therefore, we interpret the Perloff
and Wachter results as being consistent with the hypothesis
that the contribution of technology (inputs other than labor
and capital) to output is not stationary around a determin-
istic trend but rather is a nonstationary stochastic process
akin to a random walk. If this hypothesis is correct, then
technological change occurs in an irregular stochastic
fashion rather than in a smooth deterministic one.
3. Spurious Regression Relationships Between

Nonstationary VariablesResulting From

Inappropriate Use of Time as an Independent
Variable

In situations where it is the relationship between non-
stationary variables which is of primary interest one often

encounters regression equations of the form

(3.1) Yt =g + Bt + yxt + u,

where {Yt} is a nonstationary variable, such as output, {Xt}
is a nonstationary independent variable (or set of such
variables), such as a production input, and {ut} is a

sequence of disturbances. The role of time is to account
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for growth in Y not attributable to X, for example the
impact of technological change on output. The parameters of
(3.1) are estimated by ordinary or generalized least squares
procedures which make the assumption that the errors {ut}are
stationary. Equivalently, another way to state this
assumption that the part of Y is not explained by X,

(y, - YXt) is a TSP variable. If this quantity is instead a

t
DSP variable then first differencing of the relationship,

that 1is

(3.2) AYt =B + Y(AXt) + €

£
would put it in the form suitable for estimation by standard
procedures. What we are interested in here is the conse-
quence of estimating the relationship in levels (3.1) when
in fact the differenced relationship (3.2) is the one which
has stationary disturbances.

We begin by noting as in Section 2 that a relationship
between levels of the variables including time is obtained

by accumulating changes given by (3.2) from an arbitrary

time period zero which gives

(3.3) Y =Y

N o t Bt *YX  +

[ SN
1 1

i o~

i
This equation has the same form as (3.1) except that the
disturbance is cumulative rather than stationary and the
intercept is given by the arbitrary initial value YO rather
than being a fixed parameter. Standard results in

regression theory tell us that OLS estimates of 8 and Yy in
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(3.3) will be unbiased but inefficient since the distur-
bances in (3.3) will be correlated across time periods.

In the case that the €, are serially random then the
disturbance in (3.3) is a random walk. The covariance
matrix @ for these N disturbances would then have elements
Qj,k = min(j,k)oez; j.k=1,...,N, and an appropriate GLS
estimator could be constructed for YO’ B, and vy which would
recognize this covariance structure. Alternatively, the
equation could be estimated efficiently in first differences
by OLS, which is much simpler.

Estimation of y by OLS in levels will be subject to the
spurious regression phenomenon discuséed by Granger and
Newbold (1974). The classical formula will under-
state the sampling variance of ? and therefore overstate its
significance. A heuristic explanation of this is as
follows. Lovell (1963) showed that the OLS coefficient 9
obtained in a regression of Y on time and X is numerically
identical to the OLS coefficient obtained in the regression
of detrended Y on detrended X. The detrended values of any
time series may be expressed as the product of an NxN
matrix, say T, times the vector 6f observations for the
series. Note that T depends only on N and is the same for

all series of length N. Multiplying (3.3) in vector form

through by T we have

(3.4) TY = yTX + Tu
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where Y, X and u denote column vectors of the respective
time series and we use the fact that the detrended values of
the intercept variable and time are identically zero. Using

tildes to denote the detrended variables, we have

(3.5) Yt = Yxt + U, .

If {X:} and {u.} are both random walks, then {Yt} is also a
random walk and (3.5) is the regression of a detrended
random walk on another detrended random walk with a distur-
bance which is also a detrended random walk. In short,
estimating y by least squares in (3.3) is equivalent to a
regression where the independent variable and the error term
have the same autocorrelation function. A standard text-
book result, originally due to Wold (1953), is that the
effect of autocorrelation in regression errors is to inflate
the variance of the OLS coefficient by a factor of the form
(1 + ZQiri) where Di is the autocorrelation of the
disturbance at lag i and r, is the sample autocorrelation of
the independent variable at lag i. Since Di and r. will
tend to be the same in our situation, the variance of Y will
be larger than the classical formula would indicate.
Further, since these autocorrelation coefficients become
larger with sample size (recall that it is roughly (1-10/N)
at lag 1), the spurious regression effect will be more
pronounced in larger samples.

To get an idea of the magnitude of the spurious

regression phenomenon in this situation for sample sizes
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typically encountered in economics we have conducted a Monte
Carlo experiment corresponding to that reported in Table 1
but with the addition of an independent variable which is a
random walk. Since the spurious regression phenomenon
depends on the random walk nature of the variables and not
on specific parameter values we have set 8 and Y equal to
zero so that the R2 obtained provides a lower bound for the
general case. {Xt} and {ut} are zero-drift random walks
with unit variance Normal disturbances. The primary results
are given in Table 2. As in the detrending regressions,
only the means of &, g and ? and values of R2 depend on a, B
and vy.

Note that the empirical mean of the conventional
standard error for ? is about one fourth as large as the
empirical standard deviation of ?, implying that the
precision of the estimate of Y will be greatly overstated if
serial correlation in the regression errors is ignored.
Correspondingly, the empirical standard deviation of the
conventional t-ratio is too large by a factor of about 4.

If a t-table is used to assess significance, y is signifi-
cant at the 5 percent level or better 64 percent of the time
and at the 1 percent level or better 55 percent of the time.
The spurious relationship with time is somewhat reduced by
the inclusion of X, as one would expect, but the rejection
frequency for the true null hypothesis is nevertheless 83

percent at a nominal 5 percent level, compared with the 87
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percent frequency we obtained when time was the only
regressor.

The values of R2 are of course higher than in the
simple time trend regressions of Section 2 since inclusion
of an additional variable cannot lower R2 in a given sample.

The empirical mean rises to .501 from .443. Thus, time and

a random walk variable will typically explain about 50

percent of the variation in a random walk which is in fact

unrelated to either. This further reinforces our conclusion

in Section 2 that R2 values are highly misleading or at
least uninformative in regressions involving time as a
variable. The increase in R2 due to inclusion of X will of
course typically appear "significant" by conventional
criteria since the F-test used to assess its significance
under classical regression assumptions will correspond to
the t-test for ?.

Finally, we note that the empirical means of sample
autocorrelations of the residuals reported in Table 2 are
somewhat smaller than those reported in Table 1 in the
absence of X, for example at lag one we obtain .852 instead
of .883. The mean Durbin-Watson statistic is correspond-
ingly somewhat larger, .260 compared with .198. Never-
theless, an alert investigator would again typically reject
the hypothesis of serially random errors. Believing the
regression disturbances to be stationary, and noting the
roughly exponential decline of the sample autocorrelations

in a typical realization, our imaginary investigator would
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presumably follow the popular procedure of assuming a first
order AR process for the errors and use r, as an estimate of
the AR coefficient. The transformed regression equation

would be

(3.6) (Ye=r¥eq) = all-r)+g(t-r, (£=1))+y (X -1 X _))

+ (ut_rlut—l)'

Now (3.6) would be a properly specified classical regression
if r, were set at unity (corresponding to first differ-
ences), since (u -u, ;) is indeed random in our situation.
Sample values of r, are, however, rarely close to unity
since the empirical standard deviation is only .064 around
the mean of .852. The transformed regression would still
suffer from the problem of nonrandom, indeed nonstationary,
disturbances.

The corresponding results for the transformed

regressions (3.6) using a first round estimate of r. are

1
reported in Table 3. Note that the empirical standard
deviation of the t-ratio for Y is reduced by the trans-
formation from 4.490 to 1.287, although the standard
deviation for a t-distributed variable with 96 degrees of
freedom is 1.010. Thus, the frequency of rejection of the
true null hypothesis on Yy is still too large, in particular
11.3 percent at a nominal 5 percent level and 5.4 percent at
a nominal 1 percent level. This overstatement of signifi-

cance is reflected in the comparison of the empirical

standard deviation of ?, .126, with the mean standard error,
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.100. The spurious relationship of Y to time is also
diminished by the transformation although it is still very
strong. The empirical standard deviation of the t-ratio for B
is 4.69. Rejection frequencies are 60 pefcent at a

nominal 5 percent level and 51.5 percent at a nominal 1
percent level.

The autocorrelation coefficients of the residuals in
the transformed regressions are of course considerably
diminished relative to those obtained for the original
regressions, averaging only .079 at lag one with a standard
deviation of .097. An investigator using the standard error
1/YN = .100 would rarely reject the hypothesis of serially
random errors. The mean Durbin-Watson statistic of 1.820 is
similarly well inside the acceptance region.2 We conclude
then that an investigator who believed the disturbances in
the levels regression to be stationary would typically find
the results of the transformed regression to be satisfactory
in the sense of passing the usual tests of random errors and
therefore run a substantial risk of finding a significant
relationship between Y and X where none exists.

Unlike the case of the detrending regression, however,
continued iteration of the Cochrane-Orcutt procedure does
alter the estimates and improve their properties. The
frequency of rejection of the true null hypothesis on Yy
drops to 6.7 percent at a nominal 5 percent level and to 2.5
percent at a nominal one percent level, reflecting the fact

that estimated standard errors are closer to the actual
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standard deviation. The effect on inference about B is less
dramatic. The frequencies of rejection fall only to 51.5
percent and 39.8 percent for the 5 percent and 1 percent

tests respectively.

4, Summary and Conclusions

It is common practice in applied regression to
attribute nonstationarity or "trend" in a time series to a
functional dependence on time with the remaining variation
in the series assumed to be stationary. 1In this paper we
have considered the consequences of such an assumption
when the time series is not stationary around
a function of time but rather is stationary in first
differences. The results reported by Nelson and Plosser
(1982) are consistent with this hypothesis for a wide range
of economic variables. The prototypical example of such
nonstationary stochastic processes is the random walk
process which forms the basis for our exploratory analysis.

The primary findings are as follows.

1) Regression of a random walk on time by least squares
will produce R2 values of around .44 regardless of
sample size when in fact the variable has no depen-
dence on time whatever (zero drift). For random walks
with drift the R2 will be higher and will increase with
sample size, reaching one in the limit regardless of

the actual rate of drift of the series or its vari-

ability.
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Residuals from regression of a random walk on time will
have a variance that on average is only about 14
percent of the true stochastic variance of the series .
This result holds regardless of sample length or

the true rate of drift (mean rate of change) of the
series. If these residuals are mistakenly inter-
preted as a "detrended" series, then their variance
will greatly understate the actual variance of the
series. Equivalently, stochastic variation is mis-
takenly attributed to dependence on time which is

present in only an ex post sense, not an ex ante one.

The mean values of sample autocorrelations of a
"detrended" random walk are a function of sample
length, being roughly (1-10/N) at lag one for example,
and therefore are purely artifactual. Since the
function oscillates with a period of roughly (2/3)N
the detrended data will appear to exhibit a long

cycle which is spurious. Nelson and Kang (1981)
showed that this result is quite robust with respect
to serial correlation in the first differences of the

series.

A conventional t-statistic for the least squares co-
efficient of time is a very poor test for the presence
of trend in the sense of a dependence on time. Such
tests lead to rejection of the null hypothesis of no

dependence in 87 percent of the cases for a sample
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length of 100 at a nominal 5 percent level when in fact
there is no dependence on time. Attempts to correct
for serial correlation in the residuals only par-
tially corrects this effect. An investigator apply-
ing a first order AR correction based on sample auto-
correlations of the residuals would still reject the
true hypothesis at a nominal 5 percent level with 73
percent probability. The correct procedure would be

to take first differences in which case the size of

the test would be correct.

Regression of one random walk on another, with time
included to account for trend, is strongly subject to
the spurious regression phenomenon. That is, a con-
ventional t-test will tend to indicate a relationship
between the variables when none is present. Since
such regressions can be thought of as regression of
one "detrended" random walk on another, the phenomenon
can be viewed in the framework developed by Wold
(1953) for stationary autocorrelated series. For

the case of zero drift, unrelated random walks, the
true null hypothesis of no rglationship is rejected
with a frequency of 64 percent at a nominal 5 percent
level using 100 observations. The true null hypothe-
sis of no dependence on time is correspondingly re-
jected with an 83 percent frequency. Attempts to

correct for serial correlation on the assumption
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that the disturbances are stationary and first order
autoregressive only partially alleviate the problem;
the rejection frequencies drop to 11.3 percent and

60 percent respectively. Continued iteration reduces
these to 6.7 percent and 51.5 percent respectively.
First differencing would of course correct the size

of the tests.

Our advice to practitioners based on this investiga-
tion is to regard stationarity around a function of time as
a tentative rather than a maintained hypothesis. It is
certainly not a harmless assumption, but rather one fraught
with potential pitfalls. Regression models involving non-
stationary time series should be estimated in differenced
form and the results carefully compared with those for the
regression in levels with time as an explanatory variable.
Two recent papers by Plosser and Schwert (1977, 1978)
suggest that the consequences of differencing when it is not
needed to achieve stationarity are much less costly in the present
context than those of failing to difference when it is appropriate. 1In
addition, the tests for stationarity in differences as
opposed to stationary around a trend line developed by
Dickey and Fuller (1979) are strongly recommended as a guide

to the appropriate transformation of time series data.
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TABLE 1. Empirical Moments of Summary Statistics for OLS
Regression of a Zero-Drift Random Walk on Time
With One Hundred Observations, Based on One
Thousand Replications: Y, = a + Bt + ﬁt.

o ' Stapda;d
Statistic Mean Variance Deviation
R? .443 .092 .304
SSE/ (N-1) 6.7 18.32 4.28
g -.002 .013 .115
Est. Var. (§) .81 E-4 .26 E-8 .51 E-4
t(B) -.16 220.2 14.84
a .02 13.81 3.72
Est, Var, (4) .28 .03 .17
t(8) -.005 50.41 7.10
D.W. .198 .011 .104
r, .88 .28 E-2 .532 E-1
r, .77 .91 E=-2 .956 E-1
r, .68 .17 E-1 .129
rys -.04 .01 .09
Iy3 -.02 .01 .09
NOTES: 4 and B are computed by OLS and their estimated

variances and t-ratios under the (inappropriate)
assumptions of the classical linear regression

model.

(have expected value zero).

In this situation & and B are unbiased




TABLE 2: Empirical Moments of Summary Statistics for OLS
Regression of a Zero-Drift Random Walk on an
Unrelated Zero-Drift Random Walk and Time With
One Hundred Observations. Based on One Thousand

Replications: Y, =8 + Bt + 9%, + G,
Standard
Statistic Mean Variance Deviation
R? .501 .077 .278
SSE/ (N-3) 5.830 14.131 3.759
5 -.011 .177 .421
std. Error (%) .102 .002 .045
t(Y) -.054 20.164 4.490
B .005 .014 117
std. Error (B) .013 .000+ .007
t(B) .324 133.556 11.557
D.W. .260 .016 .128
r, .852 .004 .064
r, .721 .013 .112
ry .604 .021 .146

(See Notes to Table 1)




TABLE 3: Empirical Moments of Summary Statistics
For Transformed Regressions (3.6) Based on the
Same One Thousand Samples Used in Table 2.

Standard
Statistic Mean Variance Deviation
R? .162 .032 .178
SSE/ (N-3) .970 .024 .153
y .003 .016 .126
std. Error (Y) .100 .000+ .012
t(y) .044 1.656 1.287
B .005 .014 .118
std. Error (B) .031 .000+ .014
t (B) .142 22.010 4.692
D.W. 1.820 .038 .195
r, .079 .009 .097
r, .064 .010 .099
ry .052 .010 .098

(See Notes to Table 1).




FOOTNOTES

The alert reader will recognize that the Durbin-Watson
statistic is not strictly appropriate for testing for
random disturbances in regression (2.10) since p is
estimated from the data. In effect, the model in-

cludes a lagged dependent variable, Following

Y, g
Durbin (1970), one could estimate p with o and g and
compute the h-statistic which takes into account the
estimated variance of the estimate of p. However,
this variance will tend to be small for large values
of p such as we have in this situation. See the

discussion in Durbin (1970, p. 419).

See footnote 1.
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APPENDIX

RAPID CONVERGENCE OF SLOPE AND AUTOREGRESSIVE
PARAMETERS IN LINEAR TIME TREND REGRESSION

The familiar regression model with AR(l) errors is

(Al) Y, = th + €

t t

(A2) + v

€t T PEe.1 t

where Y and X are deviations from means. Following Cochrane
and Orcutt (1949), one obtains a first round estimate of B8
by OLS, say 8, and then runs an autoregression on the
residuals to get a first round estimate of p, say P. The
data are then transformed to (Yt-th_l) and (xt-pxt_l) from
which a second round estimate of B is obtained, and so
forth. Convergence is effectively immediate in the special
rcase of time trend regression for which xt =t; t =
“N,...,+tn.

Consider first the least squares estimate of B given a

*
value of p, say B . It can be shown to be

2
(A3) B*_ZYtXt+p e A R )
- 2, 2 2
RS Y

—ZQZXtXtﬁl

where the summations run from t = - n+l to +n. Consider

dividing each term by thz, in which case we have

~ 2 2
s, BHOTIY, (X med ¥ X g -elX Y ) /DX

l+pz-2p(XXtXt_l)/zxt2

(A4) B



with the approximation being due to leaving the first
observation out of é. Obviously, we can say little in
general about the difference between B* and 8, the OLS
estimate with p = 0. This difference depends on autocor-

relation in X and cross correlation between Y and X at lags

(+1) and (-1). However, in the time trend case we have Xt =
t=X 4 +1 which implies
x , B+p2B-208 _ 4
(A5) B = —— = B.
1+p7-2p

The degree of approximation is the order of difference
between Zt(t—l)/;t2 and unity, which is 1/N. Thus the
nature of the independent variable in the time trend case
implies that the slope estimate is insensitive to the value
of p.

Similarly, consider estimating p on the basis of a

given value for B, say (é+AB). In the general case we have

* }étét_l-(AB)Xétxt_1+(Ae)thét_l

(a6) o = —/— 3 ) "
Eet_l +(AB) 2xt_l -2(AB)Zet_lxt_l

where the summations run from t = - ntl to +n and & denotes
OLS residuals associated with B. Now dividing each term by
A 2 . . . .

Zet—l and noting that the third term in the denominator

becomes negligible

~ o ~ o 2
s, DHOOB) (IX & =18 X, _1)/18

(A7) o =
1+(88) %I, _ %/T8, _,°




which will differ from § depending on (AB), cross
correlation between X and e at lags (+1) and (-1) and the
variance ratio of X and e. In the special case Xt =t =

Xt-l + 1 we see that the approximation reduces to
* o4 2 2 2
(A8) o = B/ (L+ (8B LX, _ “/Te, 1 °)

since ZXté becomes ()X + Zét_l) which differs from

t-1 t-1%¢-1
zero only by end terms (by the algebra of least squares),

and similarly for ZetX Since (AB) tends to be small in

t-1°
the time trend case the adjustments to p will be small.

To sum up, iteration of trend line coefficients and
autoregressive coefficients for detrended data will be rapid
due to the special nature of the independent variable. 1In
our experience, widely-used computer programs for Cochrane-
Orcutt have never gone beyond one iteration. This result is
entirely due to the algebra of least squares. The true
nature of the underlying data is irrelevant, whether it be a
TSP, a DSP, or something else. Further the result implies
that rapid convergence will occur whenever the independent
variables are closely approximated by linear trends. The

result also generalizes to higher order autoregressive

schemes for the residuals.





