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Abstract

In this note the method of Hamiltonian dynamics is used to
characterize the time-consistent solution to the optimal control problem
in a deterministic continuous time rational expectations model. A linear-
quadratic example based on the work of Miller and Salmon is used for
simplicity. To derive the time-consistent rational expectations (or
subgame-perfect) solution we first characterize the optimal solution made
familiar e.g. through the work of Calvo. The time-consistent solution is
then obtained by modifying the optimal solution through the requirement
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algorithms can be used to obtain the behaviour of the system under optimal
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1. INTRODUCTION

In this note the method of Hamiltonian dynamics is used to
characterise the time-consistent solution to the optimal control
problem in a deterministic continuous time rational expectations
model. A linear-quadratic example based on the work of Miller and
Salmon {1982, 1983] is used for simplicity. To derive the time-
consistent rational expectations (or subgame-perfect) solution we
first characterise the optimal solution made familiar e.g. through
the work of Calvo [1978]. The time-consistent solution is then
obtained by modifying the optimal solution through the reguirement
that the co-state variables (shadow prices) of the non-predetermined
variables be zero at each instant. Existing solution methods and
computational algorithms can‘be used to obtain the behaviour of the

system under optimal policy and under time-consistent policy.



2. THE MODEL AND THE OBJECTIVE FUNCTIONAL

Consider the non-stochastic continuous time linear rational

expectations model of eguation (1)
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X is an ny vector of predetermined variables, ie state variables such as

the economy-wide capital stock for which the boundary conditions take the

form of initial conditions. Yo is a n-n, vector of non-predetermined
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variables for which the boundary conditions take the form of terminal
or transversality conditions. Examples are asset prices whose current

values are functions of their expected rates of change. u, is a k vector

of policy instruments or controls and z, an r vector of exogenous variables.
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F are constant
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matrices partitioned conformably with x and y. Et is the rational
expectation operator conditional on the information set at time t. Since
the model is non-stochastic, rational expectations of y(t) are forecasts
based on the correct model, given in (1), conditional on subjective
expectations of future values of u(t) and z(t) which are held with complete

certainty. We make the standard assumptions that

E, y(s) = yi(s) st iiie.. (2a)

and

EtEsy(T) = Ety(r) tsgsst iiee.. (2b)
The boundary conditions are given in (3a,b,c). The exogenous variables are

assumed not to explode 'too fast'. The same convergence condition



characterises the non-predeterminal variables
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The objective functional to be minimized is the familiar quadratic

1/

and given in (4)
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Q is a symmetric positive semi-definite matrix. Like the
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vector w it is partitioned conformably with x,y,u and z

Quu is a symmetric, positive definite matrix.

T
1. m~ denotes the transpose of m.



3. OPTIMAL POLICIES

The natural interpretation of this optimal contrel problem is that
of a non-co-operative Stackelberg leader-follower game. Equation (1)
represents the 'reaction function' of the follower, who takes as given
the current and anticipated future actions of the controller who is the

leader.
To derive the optimal policy we define the Hamiltonian H
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A(%)is the nl vector of co-state variables corresponding to the predetermined

state variables x(t) while A(%) is the n-n, vector of co-state variables

corresponding to the non-predetermined state variables y(t).

The first~order conditions for an optimum are given by the equations

of motion (1) and (7a, b, c¢)
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Defining the current value co-state variables (shadow prices)

we can solve (7a) for the optimum instrument values as in (9)
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Substituting for u(t) from (8) into (1) and into (7b, c) the
behaviour of the state variables and the co-state variables under optimal

control is given in (10).
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2. Ik is the k x k identity matrix
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The 2n boundary conditions take the form:

x(t)) = =) L (1la)
lim e'BEIy(t) = 0 ¥B>0, ¥ e . (1lb)
toeo s

T
lim uy (&) x(ty =0 i, . (1lc)
e
uy(to) = 0 ceee.. (11)

The crucial boundary condition is the one relating to the initial
values of the co-state variables corresponding to the non-predetermined
state variables given in (11d). Since y(to) is free, it will be set
optimally, ie, the wvalues af the co-state variables uy at the initial date,
tor which measure the marginal contribution of y(to) to the objective

functional will be zero. (See Bryson and Ho (1975, p.55-59), Calvo (1978)).

The dynamic system under optimal control, given in (lo) therefore
contains n predetermined variables (x, the predetermined state variables
and y__ the shadow prices of the non-predetermined state variables) and n
non-predetermined variables (y, the non-predetermined state variables and

Mo s the shadow prices of the predetermined state variables). Following
Miller and Salmon [1982, 1983], we rearrange (10) by grouping together
the predetermined and non-predetermined variables and by subsuming the

Wb
1

constant vector under the exogenous variables. Letting z =

we obtain
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and from (9)
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If A can be diagonalised and if it has n stable and n unstable
characteristic roots, a unique solution exists to (11, 12) given by

(see Buiter (1983)).
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3. The matrices 51 and 52 are each n x (r+l)



Al is a diagonal matrix whose diagonal elements are the n stable

characteristic roots of A and A2 is a diagonal matrix whose diagonal

elements are the n unstable characteristic roots of A.

11 V12 is a matrix of linearly independent left eigenvectors of A

\Y%

and {-W W its inverse.



4. TIME-CONSISTENT RATIONAL EXPECTATIONS SOLUTIONS

It is obvious from the boundary condition (1lld)and the eguations
of motion under optimal control (10) that in general if the controller

re-optimises at t=t,>t his optimal plan from time t.>t onwards will
o 1 7o

1

not be the continuation for tztl of the optimal plan derived at time to’

even if no new information about the exogenous variables has accrued

The optimal plan is not in general time consistent.

between t_ and t..
[e} 1

(See Kydland and Prescott (1977)). The reason is that while uy=0 at

t=to, it will, in general, be different from zero for t>to, given the

dynamics of equation (10). Reoptimizing at t=t >to, the controller will,

1

taking x(t,) as given, be tempted to adopt a plan for tzt. that will set

1 1

uy(tl) = 0.

Unless, under the optimal plan adopted at t=to,the value of uy at
t=tl would have been equal to zero anyway, the re-optimization at t=tl
would falsify the expectations held between to and tl by the agents
represented in the model of equation (l1). It is these expectations,
as shown in the last term on the right-hand side of (13b) that brought

a/

the system to x(t,).

1
If the agents in the model anticipate that the controller will
reoptimize at tl, taking as given their past expectations of his future
actions, they will expect uy(tl) = 0. If the controller can reoptimize
at each and every instant, they will anticipate uy(t) =0 Vt;to. The

characterization of the time-consistent rational expectations solution

(or the 'subgame perfect' solution) is then straightforward.

4. Note that the "followers" whose behaviour is given by (1) form

expectations not only of future values of z but also of future
values of u.
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Proposition

The time-consistent rational expectations solution is characterised by

zero values at each instant of the co-state variables corresponding to

the non-predetermined state variables, i.e. by uy(t) =0, t= to .
The optimality condition - §§-= ii no longer applies as the controller
overrides it by choosing u (t) = 07 (t) 0 for all t

y Ay (t)

The equations of mention under timefconsistent control are
therefore obtained by omitting the rows corresponding to ﬂy(t) and the
columns corresponding to uy(t) in (10). The behaviour of the system under

time-consistent control is given by (l1la, b, c¢) and
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_ ¥ _ L l-—-xx qu uuqu —l [Qxy quQuquu -l l-All quQuuBl CInl -| _ L ux(t)
_l _l -
+ Fp -BR_Q z(t) + !’ =By Q4w
-1 | -1
F2 BZQuuQuz l _BZ Quu wu
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__I- Xz XKu uu uz] |_ quﬂuu wu x 4 eees.(15a)
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—— 9] - - - = W i e e
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Note that while the time-consistent solution is a product of the realisation
by the agents in the model (the followers) that the controller (the leader)
will cheat if he has an incentive to do so (if uy(t)#o), there is no
cheating along the time-consistent path because the incentive to cheat

has been eliminated.

Obviously, the optimal policy will be time-consistent i.f.f. under
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the optimal policy uy(t)EO t;to. If this is not the case, precommitment

is necessary for the controller to implement the optimal solution.

The behaviour of the system under time-consistent control can be
solved for using the methods outlined for the case of optimal control,
provided the state matrix in (l5a) is diagonalizable and has n, stable

1

roots and n unstable roots.

CONCLUSION

The proposition that the time-consistent rational expectations solution
is characterised by zero shadow prices of the non-predetermined state
variables at each moment is not confined to the linear-quadratic example
analysed here. It applies to non-linear continuous time models with
general objective functionals. The analysis can also be extended in a
straightforward manner to discrete time models using the discrete time
maximum principle. The example in this note was chosen because of the
existence of simple analytical and computational solution methods for

both optimal and time-consistent policies (Austin and Buiter (1982)).

I would like to thank Marcus Miller for many extended discussions about
the subject matter of this note. A comprehensive analysis of linear-
guadratic optimal control and differential games in rational expectations
models can be found in Miller and Salmon [1982, 1983]. My interest in
characterising time-consistent solutions for continuous time dynamic
optimization problems was first stimulated by Driffill [1982].
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