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The introduction of the hypothesis of rational expectations has
raised a host of new conceptual and technical issues. This paper is con-
cerned with a subset of the technical issues, namely those associated with
the solﬁtion and simulation of models under rational expectations. 1Its
purpose is to introduce the principal methods of solution to potential
builders and users of such models. The paper is in the nature of a survey
but is not encyclopedic: some methods are excluded because their properties
are not yet fully understood; some may not be included simply because of
ignorance on my part. All the methods described have been used in empirical
economic applications.

' Solving a dynamic RE (rational expectations) model is usually more
difficult than solving a standard dynamic model. A standard model has
as many initial conditions as endogenous variables and can be solved recur-
sively forward using the equations of motion. A typical RE model, however,
lacks initial conditions for some of the endogenous variables. Additional
conditions therefore have to be used; they are usually terminal or "trans-
versality” conditions. Wwhether and where the use of such transversality
conditions is justified and whether their use leads to the existence of a
unique solution has been the subject of much research and debate. Although
this debate is not the focus of the paper, it needs to be briefly presented
so that the status of these additional conditions is undersﬁood. This is
done in Section I. The rest of the paper takes as‘given that these trans-
versality conditions can be applied.

Solving a dynamic RE model then becomes a problem of finding a
solution which satisfies the equations of motion, initial conditions for
some of the variables and transversality conditions for the others. The

combination of uncertainty and non-linearity makes this problem difficult



if not impossible to solve in all but a few cases. Two approaches have
therefore been followed. The first has been to remove uncertainty and
consider perfect foresight paths; the problem is then a standard two point
boundary value problem for which numerical methods have been developed.

The second approach has been to remove non-linearity. Various methods

have been developed; some apply to general linear models, others exploit
the specific structure of some models, such as the equivalence of the model
to the set of necessary conditions of an optimization problem. Section II

describes these methods.
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Section I. The Role of Transversality Conditions

In dynamic RE models, i.e. in models in which both current values
and expectations of future values of endogenous variables appear, some
endogenous variables do not have natural initial conditions. Thus, in the
absence of other conditions or restrictions on these variables, these models
admit an infinity of solutions. Finding "the™ solution then requires the
use of additional conditions; the additional conditions usually imposed
are in the nature of transversality conditions.

The nature of the problem and the role of the transversality condi-

tions can be made more precise by considering the following simple example:
= . <
1) P, aE (pt+1|szt) +hz ; a<l.

E ('th) denotes the expectation conditional on the information set Qt'

which contains current and lagged values of z Assume further that z

t° t

does not explode% namely:

ii: Bi.E(thrith) = 0 ¥B<1l, %t

This example is often used for discussions of issues in RE models
and susceptible of many interpretations. For example, arbitrage between
the return on a share and a constant interest rate r gives such a relation
with p, as the price of a share, z, as the dividend and a = (l+r)-l.
Other interpretations are as the reduced form of Cagan's money model
(sargent-wWallace (1973) and many others) or.the reduced form of Samuelson's

overlapping generation model with money

A solution to (1) is:
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p* = b J alE(z
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t+i

Under the above share price interpretation, this solution gives the
price of a share as the expected present discounted value of dividends.
By extension, this solution has sométimes been referred to as the “"market
fundamental®™ solution. It ié not, however, the only one. The set of

solutions is given by:

-1
@) Py = gt B,y [8) = a’n

Thus a solution may differ from p; by a term n, which satisfies
the second part of (2). Various authors have shown that, if n, is not
identically zero, p, may then depend on extraneous variables, i.e. on
variables not affecting P; (Taylor (1977), Shiller (1978)), p, may be
subject to "bubbles", "crashes" (Flood and Garber (1980), Blanchard and
Watsonb(1982)), or that pt may depend directly on past values of Zys beyond
the effects of such past values on the expectations of future z. (Taylor
(1977), Blanchard (1979)).

Note that, as a\-l >1, if nt is not equal to zero the expectéd
value of nt+i in (2) goes to infinity as i increases. Thus, adding the
condition that P, does not explode, for example that lim Bi E(p

i+
¥t , ¥8 < 1 is enough to leave only one solution, p;. Imposing this trans-

t+i|Qt) =0
versality condition leads to the choice of a unique solution% this raises
two questions:

The first is whether imposing such a condition is justifiéd. In
some cases, in particular if the model is derived from an optimization
problem, transversality conditions are part of the characterization of the

solution. 1In other cases, the implications of the explosion
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of an endogenous variable are inconsistent with some assumption of the
model. (In the well known example of Hahn (1966), some price becomes
negative in finite time if any solution other than the fundamental solution
is chosen). 1In the remaining cases, however, the transversality condition
has to be imposed by the economist himself. There seems to be general
agreement among macroeconomists that, unless the focus is on bubble-type
phenomen&, imposition of a transversality condition is a reasonable way to
proceed (some have expressed reservations; see Gourieroux, Laffont and
Monfort (1982) for example). This still leaves open the exact specification
of such a condition: various possibilities exist, such as a non explosion
condition as above, stationarity of p if z is stationary, boundedness
in mean of p... (See Gourieroux et al (1982)). 1In our case all three
coincide to give p* as the unique solution. A different criterion has been
suggested by McCallum (198l); in effect, it requires that p depend only
on variables which affect expectations of z and leads here also to the
choice of p*.

The second question is whether the use of a transversality condition
always yields a unique solution. This is the case in the above example
as long as a < 1: The effect of expected future p on current p has to be
less than unity, a plausible restriction. In more general models, the
conditions under which transversality conditions yield a unique solution
are extensions of this simple condition. Heuristically, they require
that the effects of the past and the expected future on the current variables
not be too large. More precisely, they require the models to have a saddle
point structure; the exact condition will be given in the next section.
This condition is plausible and is satisfied in most existing theoretical

and empirical models. Nevertheless, examples of theoretical and



estimated empirical models in which it fails have also been given. What
should be done in such models is unclear.

In what follows, we whall assume that "non explosion" transversality
conditions can be imposed. The use of a different type of condition might

require minor changes in the results and methods presented below.



Section IXI. Methods of Solution

Dynamic models which combine uncertainty, non-linearity and two
types of boundary conditions — initial conditions for some variables,
transversality conditions for the others — are usually difficult, if not
impossible, to solve even numerically. Only ingenious restrictions on
functional forms and distributions of the exogenous variables allow the
derivation of a solution. If such restrictions are not imposed, either
uncertainty or non-linearity must be abandoned for the model to be solved.
We first consider methods to solve non linear models under certainty, then

methods to solve linear models under uncertainty.

A. Non Linear Models

Consider the following model:

(3) f(x =0 , t=0,...,®

t41 * Peyr ¢ Xp ¢ Pye 2)

X, is nxl , p_ is mxl , z_ is kxl £:R R, e

lim Btz =0 w8 <1
t o

Xy = %y 3 lithpt = 0 Ww<1
400

zt is a vector of exogenous variables, x, and pt are vectors of

t
endogenous variables. X, is predetermined at any time t and subject to
initial conditions at’t=0. P is not predetermined and thus subject
instead to transversality conditions; as explained in the previous section,
the specific form of this condition may differ from model to model. An
example of such a model would be a model of money and growth, with Xy

being capital, 1 being the price level and z, being nominal money.
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The solution is a sequence (xt,pt) t=0,...,® which satisfies (3),
for a given sequence (zt) t=0,...,2. The implicit assumption is that
agents know at time t=0 the complete sequence of future z or, equivalently,
hold at time t=0 expectations of future z with subjective certainty. 1In
this last case, if at time t > 0, there is an unanticipated change in the

remaining sequence (zt) + @ new solution must be derived for

t=t,...,
E;...,w. Computation of such "perfect foresight" paths has proved useful
in understanding the dynamic effects of anticipated and unanticipated
changes in policy or other exogenous variables (for example Sachs (1982),
Summers (198l)); whether these paths are reliable guides to the case of
uncertainty is, especially if non-linearities are essential, an open
question.

A numerical method which is well adapted to solve systems with a
saddle point structure and two types of boundary conditions is the method
of "parallel" or "multiple" shooting (see Keller (1968), Section 2-4; a
simple description and economic examples are given in Lipton, Poterba,
Sachs and Summers (1982)). 1Two modifications must be made to the initial
model (3) before the method can be used. The first is an additional
assumption on z, namely that z converges over time to some value z.

The second is the replacement of the infinite time transversality condition
by a finite time condition;.a natural condition is that by time T where T
is large, Pn has converged to the steady state value E'associated with

Z. Thus, the method is used to solve the modified problem:

(3') f(}‘t+1 'Pt+1 'xt ,Pt 'zt) = 0 ’ t=0,-oo'T

zT'_‘; i ;I;lf(;I;I;ISI_) = 0

X0 =%y ¥ Pp =P



A simple method, or method of *shooting"” would be to choose an
initial guess for Py solve forward — "shoot" — using the equations of
motion in (3') to derive the implied value of Pp and then revise the initial
guess according to the difference between Py and 5: Formally, let

p._ = H(po) be the relation implied by (3') when solved forward from 0 to T,

T

where the effects of Eb and the sequence of z are subsumed in the H function.
Then starting with the initial guess p;, we could use Newton's method and

iterate the following system until approximate convergence:

.l o i s -
@  py -y = WITGE-p ) spy = HEY).

§-1
o -

The Jacobian HP may be computed at'p; or at each iteration at p
This method, however, does not work well in saddle point systems: small
deviations of initial guesses lead to very large deviations of Py from
5} Hb may have very large elements; in the example of the previous section,
HP = a_T . @ <1l, BAs a result, overflow problems usually prevent computa-
tion and iteration of (4).

The method of multiple shooting modifies the above method to treat
such cases. It divides the period {0,T] into I intervals. It guesses not
only PO but also intermediate values for x and p at the beginning of each
interval i, i = 2,...,I. Using the equations of motion, it solves forward
for each interval — "multiple shoots" — to derive intermediate values
and terminal values for x and p. Differences between initial guesses and
implied values of intermediate x and p, and between the implied terminal
value of p and E'are then used to revise initial guesses. Formally, denote

values of x and p at the beginning of interval i by X1 and Pi 3 and

define the following vectors:
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5.
B, -91 | 5, ] [ P, - B ]
% 1 % x - %
b | s s s
P11 voE Pr1 Vs Brafl M % |Pr1 B
_'ﬁx-l ] *1-1 ﬁ:-l *a "%
Pr | | p | Pp-P |

~

P is the vector of "guesses", Y the vector implied by @ and the
equations of motion. M is the vector of "misses". Y is a function of
@ and so is M. A solution $ is such that M(ﬁ) = 0. This suggests iterating

the following system until approximate convergence:

A '__1

Po= P gt wd?h

v

where MW is the Jacobian of M(ﬁ), evaluated either at $l or at each evalua-
tion at @j-l. As this method now solves (3') forward over shorter intervals,
the problem of explosion is reduced; the number of intervals must be chosen
so0 as to eliminate explosion and overflow problems. The method implies
the inversion of a large Jacobian matrix (of rank m + (I-1) (m+n)) but this
matrix has a band diagonal structure which facilitates inversion. An
algorithm correséonding to this method has been written by Lipton et al
(1982). |

when a numerical method such as multiple shooting is used, the
uniqueness of the solution or the saddle-point structure of the system cannot

be checked. Two partial checks are, however, feasible and desirable.
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The first is a check of local saddle point structure around steady state,
by linearizing the system around its steady state values; the precise
condition on the Jacobian is given in the next subsection., The second

is a check of the sensitivity of Py to changes in either E-or T. If the
system has a saddle point structure, po should be approximately insensitive

to such changes.

B. General Linear Models: No Lagged Expectations

The approach above eliminates uncertainty and maintains non-linearity.
The alternative is to either specify models as linear — or else to linearize
non-linear models around their steady state — and to maintain uncertainty.

Consider the following model:

X4l B B % L6
(5) = + zZ, ;s £t=0,...,®
A P Y. t
E(p,,, |2) 21 Poal [P 2
X is nxi, p, is mxl1, zt is kxl

Xeo Pyr Zy and lagged values € Qt

. i
lim B E(zt+ilﬂt) = 0 ¥ <1, %t
30

X =x_ ; 1lim 8* E(p

) = o wB <1, wt.
0 0 {00 t !

t+i
Definitions of Z,r Pys X, are as before. E(°|Qt) denotes an expecta-
tion conditional on the information set Qt. The certainty transversality

conditions for exogenous variables z_ and endogenous variables P, are

t

replaced by transversality conditions on their conditional expectation.

Models with either variables lagged more than once or expectations
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of variables more than one period ahead are easily reduced to the above

form by the introduction of auxiliary variables (Blanchard and Kahn (1980)).
However, models with lagged expectations of past, current and future
endogenous variables usually cannot be reduced to form (5). We shall consider
them in the next subsection and show how the method used to solve (5) can

be extended to such models.

The condition for existence of a unique sclution to (5) has been
derived by Blanchard and Kahn (1980): The number of eigenvalues of the
matrix A outside the unit circle must be equal to m, the number of non-
predetermined variables. If this condition holds, the solution may be
characterized explicitly:

Let J be the diagonal matrix to which A is similar, with diagonal
elements, which are the eigenvalues of A, ordered by increasing absolute
value? let C be the matrix of eigenvectors and partition J and C

conformably to A:

- - - 1=l r a“r .
A Ao €1 2 Iy 0 €1 G2
(nxn) (nxm) (nxn) {nxm) (nxn) (nxm) {(nxn) (nxm)
A Ay €1 oY) 0 I, 1 G
| (mxn)  (mxm) ] | (mxn)  (mxm) ] | (mxn) (moam) | | (men)  (mam) |
Then:
) x. = Ay x 3 +tAL,P Lyt
_ -1 ol y -~
(M pp = -C, Gy % -Gy izo I, (Cpy Yy +CpYp Bz, L, 19)

P, can be expressed as a function of the predetermined variables

X, and the sequence of expected future z.
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Equations (6) and (7) may be used to compute the sequence

(x ) t=0,...,~ associated with a given sequence (zt) t=0,...,%

t'Pe

They may alternatively be used to characterize the stochastic process

of x, and P, for a given stochastic process z Suppose for example that

t t’
2z is a subvector of Z,

t e’ which follows a first order vector autoregressive

_process; z

" would typically include lagged values of z, and current and

lagged values of variables which help predict L Assume, further, that

zZ, € Qt. Thus :

t
® z, =11 0 Jzg, 3 2,5 = Bz, + €. 1 Bl ,]9) = 0
kxl kxk kx (2-k) x1
This implies:
(9) E@, .|9) = (o) B Z
t+i t
Replacing (9) in (7) gives p, as a function of x, and E;:
1 1 7 .—(i+1) i
- - - l —
(10) By = -Gy Cp X -Gy LT (Cy1Yq¥CppY,p) [T O1 B 2,

i=0

The problem of computing the second term in (10) is similar to the
problem of computation of autocovariance matrices in linear systems (Chow
(1975) , Chapter 3). It is notationally tedious but straightforward. Assume
that B is similar to a diagonal matrix A, so that B = D-lA D. Define

F = J;l(c )[I 0]D"1. The sum on the right-hand side of (10)

21Y1%C25Y2

becomes:

( ] 3tr ahyoz,
i=0

The only remaining problem is thus the evaluation of the sum in parentheses.
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J2 is a diagonal matrix, with typical element j@ . 0=1 Ais a

see.M,

diagonal matrix, with typical element Ao. F is an (mx{)

og=1,...,%

[+ ]
matrix with typical element fog+ Then ( ) J;lF Ai) has typical element
120
-1 -1
f@o(l-j@ AG) . Collecting terms gives an expression for p, as a function

of x, and E;. This, together with (6) and (8) characterizes the joint

process of (xt, P+ zt).

An alternative approach to the derivation of the process of X, and

Py is to rewrite (5) treating z, as state variables, so that (5) becomes:

r — - — r -
zt+l 1 r B 0 0 Zt €t+l

(1) X4l = "o P P %l 4+ | ©
{E®e 19 Y2i0 P AzzJ Pe] |0

Defining as before the eigenvalue matrix J and the matrix of eigen-
vectors C associated with the matrix in (11) and applying the same method

as before, gives:

~1 ~ |%¢

Py = =G Cy
Xt

This approach gives directly p, as a function of the state variables,

E; and xt. It, however, implies the computation of eigenvalues and eigen-

vectors of a much larger matrix and is likely to be more expensive than
the approach described before.

An algorithm which computes (6) and (7) for systems of form (5) and

a given segquence of z has been written by Buiter and Dunn (1982).
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C General Linear Models: Lagged Expectations

As mentioned above, models which include lagged expectations of either
past, current or future endogenous variables usually cannot be written in
form (5). Such models must be solved in two steps. The method described
above can be used for the first; the second step varies from model to model
and is harder to describe in general. To avoid notational complexities,
we shallishow how this can be done in a special case and indicate how the

method extends to the general model with lagged expectations. Consider:

X+l Al Bl % L1
(12)

]
+
N
o

[
o
-
.
N

8

By 4y %) Bor Paa| [Pe] o |M2

The model differs from (5) in that E(pt+1|9t_1) replaces E(pt+1|Qt),
All definitions and other assumptions are the same as in (5).
The first step is to solve for E(ptIQt_l). It uses the fact that

(12) implies:

¥4l Ba Pl %] M '
E =
. . + zt 'Qt-l
Pri 21 P22 [Pe Y,

The same method of proof as used to derive (6) and (7) in Blanchard
and Kahn can be used to solve the system inside the expectation operator.
Thus, the condition for existence of a unique solution is the same saddle

point condition on A, and in a way analogous to (7):

[- <
-1 -(i+l)
) czzizoaz (Cy1Y1+C;,Y,

- 4
3 Elp, [0, ) - CppCp B |0 VE(z,,, (9 )

o0
1 “ =l v _=(i+l)
5Cor%e czzizoaz JE(z,_, |Q

(Cpy Y1 ¥CoaY Elz 192 )

_C2
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The second step is to solve for Py itself. In this example,
E(pt+1|9t_l), derived by leading (13) and taking expectations conditional
on Qt-l’ is replaced in (12). This gives P, -

The general linear model may include expectations lagged more than
once. The first step is the same as above: Let the furthest lagged
expectation of an endogenous variable in the model be E(-Iﬂt_o). Then

by taking expectations on both sides conditional on Qt—@ the model implies:

X4l N1 Aol e Y

Pi1 Bar Poatr |Pe]  |Y2

The first order form inside the expectation operator is not restrictive
in this case: variables lagged and led more than once can be eliminated,
using auxiliary variables. Applying again the same method allows the deriva-
tion of E‘Ptlgt-e) as a function of E(xtIQt_O) and the segquence
9

E(Z t_@) ’ i = 0,...,°° .

t+i
The second step replaces the values of E(ptIQt_O)(and E(xtlﬂt_e))

so obtained in the original model to solve for Py - In models with complicated

lagged expectation structures, this step may be tedious and appears difficult

to describe in general. This suggests, as a modeling strategy, that the

lagged expectation structure of a model should be as simple as possible.

This is often feasible, as lagged expectations are likely to affect the

current equilibrium through other variables which can be introduced explicitly

and treated as endogenoﬁs variables.

D. Linear Models wWith Specific lLag Structures

In some models, the predetermined variables X, are simply lagged

t

values of P, - These models can be written as:
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(14)  ECA_ .o . +.oetBopte.#App o |0) = Bz, s £ =o0,...,0

P is mx1, z, is kx1 ; is mxm, B is mxk.

i' i=-q,-.o'z

. lim B* E(z

Qt) = 0 ¥ <1 W%t
jreo

ey
. E Although such models can be rewritten in form (5) and solved by the
method déscribed in subsection B above, (Blanchard and Kahn (1980)), they
can also be solved by factorization methods which use their specific structure
and may therefore be cheaper.
The condition for existence of a unique solution for models of form (14)

has been derived by Whiteman (1981), assuming A
L

2 invertible. Consider the

roots of Iyl(A_qu+...+A2y- )l = 0 where y is a scalar variable. There
exists a unique solution if m of these roots are inside the unit circle.
(If (14) is rewritten in the quasi first order form (5), this condition
would be stated as a condition on the eigenvalues of A, the matrix of the
first order system. The condition would be that m of its eigenvalues be
N , outside the unit circle).
If this condition is satisfied, the solution can be derived in two
steps. (This follows closely Whiteman (1981) and Hansen and Sargent (1981)).
The first step is the factorization of the matrix polynomial
(A_qu+..-+A2L-2) where L is a lag operator. Under the above condition,

the polynomial can be factorized as:

q -
+...+ch) (Do+...+D LY

(c 2

0

where all roots of'lCo+...+quq| = 0 are on or outside the unit circle and
all roots of Iyl(D0+...+D2y-2)| are inside the unit circle. This factoriza-

tion is easy if p and therefore the Ai's, are scalars (see for example
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Taylor (1980), or Chapter 9 in Sargent (1979)). It is more difficult if
the Ai's are matrices. A special case which is easier to solve is

L=q, Ai = A—i' i=1,...,2; in this case the problem is the same as the
problem of factorization of a spectral matrix for a vector moving average
process; methods developed for spectral analysis can then be used (see
wWhittle (1963), Chapter 9). Hansen and Sargent (1981) have shown how these
methods can be extended to the case % = g, Ai = GiA_i, i=1,...,%.

With this factorization, (14) can be rewritten as:

L

q _ =%, =1
(15)  (Co#...+CL7)p, = E((Dy+...4D)L™) gztlnt)

The second step requires the expansion of the inverse of the matrix poly-

nomial in partial matrix fractions:

fm
-2 -1 -1.-1
(Dg+...#D L) = 'g M, (L-y L)
j=1
where Mj's are mxm matrices of rank one, and yj's are the roots of
IyQ(DO+...+D2y_2)| = 0. The method is an extension of the method of expan-
sion of inverse scalar polynomials (see examples in Sargent (1979), Chapter

9) and is described in Hansen and Sargent (1981). Equation (15) can then

be rewritten as:

q I -1 -1
(Co¥.e-4C LD, = E(jz_l M, (1-y,17) B_.ztIQt)' or
fm L i
CoPyte++C Py o = jzl M.i£0 ¥ BE(zt+i|Qt)

The final step is the derivation of the path of p given a path of z,
or of the process for p given a process for z. The methods described in

(B) above can be used. Alternatively, Wiener-Kolmogorov prediction formulas
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can be used (Hansen and Sargent (1980) describe their use in this context).
The method of factorization appears very convenient in the scalar

case and in the case where the lag polynomial is symmetric or quasi-symmetric,

less convenient otherwise. To my knowledge, no algorithm for solving

models of form (14) with a given process for z is yet available,

E. Linear Models as Solutions to an Optimization Problem

The model given by (5) may be the set of optimality conditions in
an optimization problem. This may be the case even if the model is derived
without reference to optimization: there may exist an artificial optimiza-
tion problem to which it corresponds (this is for example the case for the
model in Taylor (1980) as shown by Quah (1981)). 1In such cases, the system
of equations has a special structure not exploited by the method of subsection
B. We first show how linear quadratic dynamic optimization problems lead
to models in form (5) and then how they can be solved directly, by the method
of Ricatti equations.
.Consider the following optimization problem. At any time t , t = 0,...,%,

maximize the following function with respect to x and v:

L}
12 Pes] P Rraf Pen . _
a7n  E(3 [ B V9V, 190 s B <1
i=0 z N R z_ ..
t+i] [F12 Roz| |Zens

subject to:

X .
X+l O Y I B 0
(18) = + Ve ;1 t=0,...,®
Ze4l 0 Ayl 3% 0 €2t

Q symmetric negative definite, R symmetric negative semidefinite

x, is nx1, z_ is kx1, ve is fx1, £ <n

t t
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Xo = Xg 1 Zg = 255 Xeo Zpo Vy and lagged values € Qt

ezt white noise, E(c Iﬂt) = 0

zt+l
This specification distinquishes between two types of state
variables, x and z. z depends neither on x nor on the control variables
v ; x depends on both z and v. (Specification of this optimization problem
differs from author to author, in particular with respect to the time index
- of control variables in the transition equations, or the presence of controls
in the objective function. See Chow (1975)).
let P, be the nxl vector of lagrange multipliers — costate variables —

associated with the first n equations in (18). Deriving first order

conditions and rearranging gives:

-1 -
e i b B2 By *e

(19) -1 -1, -1 -1
B,y 19| [P1 RaPn Ay B T R;BQ B b

+

A

-1
211 RiaPiatRioRyo?

2e

i
lim 8 E(p, ..|R) = o0 ¥t = 0,...,° .
{00 t+4i'Tt ! ’ !
The system in (Pt'xt) is in the form of (5) and can therefore be
4
solved by the method described in (B). Note that the transversality condition
is slightly different, as B is now the same as in the objective function (17).

Once P, is obtained, Ve fdllows from:

-1
(20) Ve ®= Q Blpt
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This is the approach followed by Vaughan (1970) (Vaughan does not
distinguish between the state variables x and z and works with the canonical
system of state variables x, z and associated costate variables —— lagrange
multipliers —).

The alternative method of solution which is likely to be cheaper is
the method of Ricatti equations (see for example Chow [1975]), exploiting
the difference between the two types of state variables X, and z, (as

suggested in Hansen and Sargent (198l1)). The solution to the above optimiza-

tion problem may also be stated as:

(21). v

¢ = ~ [Fp Fpl x
zt
1 _1 [}
(22)  F, = B(Q+BB)P,;B)) "BiP A,
' -1 " ]
(23) F, = B(Q+BBlPllBl) (BlP11A12+BlP12A22)
where Pll and Plz are themselves given by:
. 1 2 1 1 -1
(24)  Pyy = BA; Py A +R),-B7A) P B, (Q+BB, P, B)) TB,Py A,
1 62 ] [} -1 [}
(25)  Pyy = BB (P A P pR,) + Ry, - B°A) P By (Q4BBIP)1B)) B, (P, A R LA)

Note that (24) and (25) give Pll and Plz only in implicit form. Pll

may, however, be found by iterating the following matrix equation, starting

with Pll = 0.

X v k-l 2.0 k-1 'kel -1 k-l
Pln = BAPy Ay + Ry - BA P, B (04BBIP)) B)) TBIP) TR,

when approximate convergence is achieved, Pll and F, can be computed.
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(Conditions for iteration to converge are stated in Hansen and Sargent
(1981) and references therein). The solution P11 can then be used in (25)
and the same iterative method can be used to derive.Plz. F, can then be
computed. This method requires only matrix addition, multiplication and
inversion of relatively small matrices as opposed to the ccmpﬁtation of

eigenvalues or roots in the methods presented in subsections B-D. It has a

long history of use in control and economics and many algorithms are available.

Conclusion

This paper has described various methods of solution for dynamic
RE models, The descriptions are necessarily sketchy and the potential user
is advised to go to the original sources to learn about the various conditiéns,
caveats and special cases associated with each method.

The issue does not seem anymore to be how to solve dynamic RE models
but at what cost. Issues of cost are important as, for example, estimation
of dynamic RE models typically implies solving models many times for different
values of the parameters. Some comparisons have been made (Hansen and

Sargent (1981)) but much remains to be done.



Footnotes

does not explode

What is needed is in fact the weaker assumption that z,

too fast, namely that:

i
lim a® E(z, . |Q) = 0 w®t
i t+i t

This assumption is needed for p: below to be finite.
If the assumption of footnote 1 is used for z, then the required
transversality condition is instead:

lim ai E(p

3 -0

i l2) = o wt

More generally, J is the Jordan matrix to which A is similar.

If the transition equations for x in (18) included a disturbance term
Exp4y’ this term would appear in the transition equations for x in (19).
As E(Ext+1 Iﬂt) = 0, the solution for Py would be the same as in the

absence of such a disturbance term and still be given by (7).
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