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ABSTRACT

We consider the sensitivity of the Tobit estimator to heteroscedasticity.
Our single independent variable is a dummy variable whose
coefficient is a difference between group means, and the error variance differs
between groups. Heteroscedasticity biases the Tobit estimate of the two means
in opposite directions, so the bias in estimating their difference can be
significant. This bias is not monotonically related to the true difference,
and is greatly increased if the limit observations are not available. Perhaps

surprisingly, the Tobit estimates are sometimes more severely biased than are

OLS estimates,
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I. INTRODUCTION

In two recently published papers, Hurd (1979) and Arabmazar and Schmidt
(1981) have examined the sensitivity of Tobit estimates to the presence of
heteroscedasticity. Hurd found the estimates to be quite sensitive, but
Arabmazar and Schmidt, pointing out that Hurd examined only the case in which
the 1imit observations are not used, found considerably less sensitivity.
However, Arabmazar and Schhidt examined only the sensitivity of.the estimated
mean of the normal distribution to heteroscedasticity, whereas,in economics, we

are almost always concerned with regression coefficients. In this paper, we

report the results of examining the sensitivity to heteroscedasticify of the
Tobit estimator of the coefficient of a single dummy independent variable (i.e.,
a difference between means), and find results considerably less reassuring than
Arabmazar and Schmidt. Essentially this is because estimates of the two means
ére biased in opposite directions, making the coefficient more sensitive to
heteroscedasticity than a single mean. We also examine the effect'on the co-
efficient estimate of excluding the 1imit observations (we find this increases
the bias); of using OLS (we find, surprisingly, that sometimes OLS is better);
and of uéfhg the Greene (1981) procedure (we find it is also sometimes better,

~- though less often than OLS). We present our main simulations in the first

- section below; then compare fhem with truncated estimators in the next section;

and conclude with a brief summary.]




II. THE EFFECT OF HETEROSCEDASTICITY IN THE TOBIT MODEL

The Tobit model we wish to investigate is the following:
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where j indexes the observations and Dj is a dummy variable equal to zero for

N1 observations and equal to one for N2 observations. We assume that
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is an intercept and a single independent variable, the dummy variable Dj’ with

~ N(O, °$) and e,. ~ N(O, o This model is equivalent to one in which there

coefficient Gy = Oy == the model as described in the introduction. The log
likelihood function that must be maximized with respect to Ays Gos Oy, and 9y

is the following:

1 Yy - o 2 1 Yi - oy \2
g (Y g (e
N+ 1 + 2

1 N, (2)

+

- N

+ 0 M 0 ~%2
Tog oy - N, log oy + Ny log F(—E;) + N, log F(raz)
where F is the normal c.d.f. and where N: is the number of positive observations
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The function is maximized at the solutions to the four normal equations:

in subsample i(i = 1, 2) and N; is the corresponding number of zero observations.

2 Ly - (3)
Y: - a¥) - =% =0 i= .l, 2 3
+
N, a* f(-a*/s¥)
ar)2 - 1 40 1 et = 0 i=1,2 (4)

i 5?2 F(-a?/s?)




3
where f is the unit normal density function. The consistency of the estimators

of the model has been proven by Amemiya (1973). However, if the model is
assumed to have a single error term distributed N(O, 02), the log 1ikelihood

function is:

(5)
+ y N? log F(-ai/o)

i=1,2
The three normal equations for the three coefficient estimators, 3y, 3y, and s,

are the fbl]dwing:
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It is clear that the estimators in equation (6) will not be those of-a? in
equation (3). Each equation in (6) will generate a solution value for an a;
given a value of s which satisfies all three equations (6)-(7). But these
values cannot be those obtained for the a? in equations (3) since the latter
are each a function of the two different estimators s? # s. And since s? are
consistent estimators of the oy, the s? cannot equal s, Moreover, it can be
seen from inspection that the difference (a] - az), which is the main object
of interest, will bear no linear relationship to (a? - ag) in equation (3) as

a result of the nonlinearity of the normal distribution. Consequently the

difference in means will also be inconsistently estimated.
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The question we wish to consider is the magnitude of the asymptotic bias

under various values of the true parameters. The true parameters‘will determine
the mean and variance of the Y5 and the N, in equations (6)-(7) in large samples
and hence will determine the estimated values of 3y, 25, and s, Letting

N = N] + N2 be the total sample size, note that in large samples we will have:
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and where Pi is the fraction of the sample in category i (Johnson and Kotz,
1972). Dividing equations (6)-(7) through by N and using the above large-sample

values we can rewrite the normal equations as:
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Rewritten in this fashion the equations show implicitly the relationship of
the estimated values of a1, 35, and s to the underiying values Oys Gps Ty o,
and the Pi (P] =1 - P2). Note that the sample proportions, the Pi’ do not
directly affect the estimates of the R in equations (8). Rather, they enter
indirectly through equation (9), where they act as weights determining the
value of s.

There are very few analytic relationships between the true parameters and
the estimated parameters derivable from equations (8)-(9). Therefore we shall
assume various values for the true parameters and solve equations (8)-(9) for
the estimates of ay,s Ay, and s for each assumed set, with our main interest
focusing on 2, and a, and their difference in relation to the true difference.
Some normalization is necessary, so we set oy = 1 throughout.2 We then allow
o and @, to each take on the values -1.0, 0.0, and 1.0, and we allow 9y to
take on the values 0.5, 0.8, 1.25, and 2.0, We also vary the P.i by .25, .50,
and .75. These ranges generate a wide range of truncation points and hence
generate samples with wide ranges of truncation percentages. Since it is the
implied truncation percentage that will be the most important underlying driving
force in the size of the bias magnitude, these ranges should span the situations
faced by most data analysts.

The results are shown in Table 1 under the "Tobit" columns. The table shows
the difference between the esfimated (a] - a2) and the true (a] - az) for each value
of Y with P] = P2 = 0.5 for the time being. When oy = 1, there is no bias since the
variances are equal; this case is therefore not shown. Several patterns
appear in the table. (1) The bias is positive if o5 > oy and negative if

Oy > Oy and it grows with the absolute value of the difference in the variances.
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This arises because our simulated values of s (not shown in the table) are always
weighted averages of 51 and Jy s and hence always fall between them.3 We find,
without exception, that if Gy >S > 07, then a, > o, and a; < ogs giving a
negative bias in ay - a,. The opposite occurs when oy > s > 0, . (2) There

is no simple relation between the size of 4 = oy and the amount of bias.
Rathef, it depends upon the amount of truncation involved. Either holding oy
constant and decreasing a, (hence increasing oy - a2) or holding a, constant

and decreasing o (hence decreasing o - az), the bias grows in absolute value.
In both of these cases, the amount of truncation is increased, distorting the
estimates of the untruncated means even further. (3) For the same reason, hold-
ing o - a, constant, the bias grows as the level of each falls.

The relationship between the extent of bias and the degree of truncation
thus depends on how the latter is changed. Increasing truncation by decreasing
ay Or o, increases the bias, but increasing truncation by changing gy is more

. complicated. Moving o, away from 1.0 (i.e., away from o]) increases the bias,

whether truncation is increasing (a2 < 0 and o, < 1 or oy > 0 and oy > 1) or

decreasing (az > 0 and gy < 1 or ay < 0 and oy < 1).

The more important question is when the absolute amount of the bias is
large. The table confirms what has already been hinted at: it is large when
the values of oy and a, are low and hence the truncation percentages afe large.
For example, six of bias values in the table are .99 or greater in absolute
value. Of these, three have 98 percent zeros for one of the subsamples, and
the other three have 84 percent zeros for one of the subsamp]esﬁ Thus the
truncation is extreme. If the two subsamples each havelat least 30 percent
positives, the largest biases in the table are -.60 and 4.67, which occur when

the true difference is fairly large (one or two) and when the 9y is at its

largest value. Hence the largest biases seem to occur when the truncation is
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extreme or when Jy is double o - In other cases, the bias does not seem large

at all. If at least 50 percent of the two subsamples are positive, and if Ty

is 0.8 or 1.25, the bias never exceeds .12 in absolute value, and is genera]]y

less than .10. Recall that these numbers are in units relative to oy = 1.
The effect of different sample proportions are not shown in the table.

We found that different proportions have uniform effects when the true

ay = @y = 0. In this case, increasing the proportion of the sample in the

category with the larger variance always decreases the bias. In general,

however, with unequal alphas, therg is no regular pattern to the effects of

sample proportions on the bias. However, letting P] equal .25 or f75 does

not radically alter the entries in Table 1.

The table also shows the OLS estimates of the equation (estimated on the
positive values only). Surprisingly, the Tobit estimator does
not always do better than OLS. OLS is sometimes a bit better, and occasionally
very much better (less than 50 percent of the Tobit bjas). The occasions where
this occurs are again where the truncation percentages are high: where oy and
@, are Tow or where the variances are double one another. Apparently the
distortion in the shape of the normal d{stribution resulting from the equal-
variance assumption is great enough in these cases to make a simple comparison
of truncated means a superior estimate of the untruncated means than Tobit.

We also computed the estimates suggested by Greene (1981). for the Tobit
mbde]. Greene has shown that if the independent variables are jointly normally
distributed, asymptotically unbiased estimates of the coefficients can be
obtained by dividing the OLS coefficients (estimated on the entire sample) by

the mean sample proportion positive.5

Again, 1ike OLS, the Greene estimator
occasionally showed less bias than the Tobit estimator, but in fewer cases
than OLS. There was some tendency for it to do better than Tobit again in

extreme cases of truncation, but this pattern was much less apparent than in QLS.




III. COMPARISON WITH PREVIOUS STUDIES

A previous study of heteroscedasticity in the Tobit model by Hurd (1979)
differs fromours primarily in that Hurd examined estimates using only the
truncated sample (i.e., zeros excluded), whereas we have considered the complete
sample. Since Hurd found that heteroscedasticity effects are much larger than
ours, we have repeated our analysis using only the truncated
sample. The points made in the previous section in regard to the inconsistency
of estimators in the presence of heteroscedasticity all apply equally in this
case, but the likelihood function differs. In the truncated case, each individual
probability density is conditioned upon being positive and hence is divided by
the probability of being positive (see Hurd).6

Table 2 shows the biases in the Tobit estimators repeated from Table 1
along with the biases obtained when using the truncated sample only. As the
table shows, the biases in the truncated sample are indeed much larger than
those in the complete sample. In ratio terms, the bias in the truncated
estimator is up to 10 times larger than the bias in the complete sample.
Moreover, the truncated estimator is much more sensitive to the bias-inducing
characteristics we noted in the last section. A1l the factors that make for
a more serious bias -- larger percentages truncated, larger differences in
the variances holding constant o, and Gos and so on -- have a much greater
absolute effect on the truncated estimators. In the worst case of bias in
the complete sample, the bias is -1.07 compared to -5.24 for the truncated
estimator, a large absolute difference. Apparently the extra statistical
information on the shape of the distribution provided by the Timit

observations has a large effect in stabilizing the estimates.




We conclude two things from this examination, First, if the complete
sample is available to the analyst, there is much less cause for concern from
heteroscedasticity that if only the truncated sample is available. Second,
the large difference in the two estimators suggests that, where possible,
estimates be obtained with and without using the 1imit observations, as an
informal test of specification. If the underlying distributional assumptions
(normality with homoscedasticity) are correct, the estimators should be close.
But if either of these assumptions fails, the "test statistic" of the difference
in the truncated and complete sample estimators may be large. Fortunately,
Table 2 suggests that the difference in the estimators (equal to the difference
in the biases given in Table 2) will tend to be largest when the bias from
using either is most pronounced.

Arabmazar and Schmidt (1981, p. 258) also found that including limit
observations reduced the bias due to heteroscedasticity--so much so that they
"conjecture . . . that moderate heteroscedasticity (say, variance differing by a
factor of two) is not likely to cause substantial inconsistency unless the sample
is heavily censored (say, more than half of the observations at the limit)." Our
results are less comforting. For example, when ay = o, a, = 1, and g, = 2,
sixty percent of the sample will have nonlimit observations but the estimate of
ay - o, converges to -1.41 instead of -1.0. The bias of -0.41 would certainly
be regarded as severe in some contexts; in any case, it is nearly double the

bias from OLS for the same parameter values.
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IV. CONCLUSIONS

We have considered the sensitivity of the Tobit estimate of the coeffi-
cient of an independent variable to heteroscedasticity. We conclude from our
study that (1) the coefficient is inconsistently estimated when heteroscedasticity
is present; (2) estimates of the coefficient (essentially a difference between
means) is a good deal more sensitive than the estimate of a single mean as
reported in Arabmazar and Schmidt (1981); (3) the amount of the bias s not
monotonically related to the size of the true coefficient, but rather depends,
in a complicated way, on the amount of truncation in the sample; (4) both the
OLS and the Greene (1981) estimators sometimes do better than Tobit when hetero-
scedasticity is present, with OLS a bit better of the two; (5) excluding the
1imit observations as Hurd (1979) did greatly increases the bias in the Tobit
coefficient; and (6) an informal specification test is suggested. in which

estimates on both the truncated and untruncated samples are obtained.




1
NOTES

1. Nelson (1979) also simulated heteroscedasticity biases, although again only
with a single mean. See also Peterson and Waldman (1981) for an example of a
Tobit model estimated with (and without) correction for heteroscedasticity. We
should note the separate literature examining the effect of non-normality on the
Tobit estimators (Arabmazar ahd Schmidt, 1982; Goldberger, 1980; Olsen, 1982) and

the general specification test provided by Nelson (1981).

2. The necessity for normalization can be seen by noting that doubling both
the true parameters and the estimators in equations (8) and (9) will leave the

equalities intact.

3. The weights on the two variances are complicated functions of the oy and

i but are approximately equal to the sample proportions, the Pi‘

4. Specifically, 98 percent of the observations in Sample 2 are zero if
a, = -1, g, = .5, and ay = 1, 0, or -1. For ay = -1, o, = 2, and o, = 1, 0, or -1,

84 percent of observations in Sample 1 are zero.

5., Greenealso found empirically that his coefficient estimates on dummy

variables 1like ours, though not normally distributed, were quite accurate.

6. Hurd's simulations differ from ours in several ways. For example, his
singie independent variable was continuous rather than dichotomous. He simulated
by drawing pseudo random numbers on this variable and on the size of the

variance for each value of the variable. He deleted any observation simulated

to be a 1limit observation. He also summarized his results by multiple regres-

sion analysis, since he simulated many more observations than we have.
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TABLE 1

BIAS IN ESTIMATES OF a1-a§
0y 0.5 oy 0.8 gy = 1.25 gy = 2.0
Ay oy 0qT0, Tobit OLS Tobit OLS Tobit  OLS Tobit OLS
1 1 0 .03 .26 .02 a2 - .04 - .17 - .19 - .73
1 0 1 A9 -1 .07 - .35 - .09 -.71 - .33 -1.31
1 -1 2 1.02 -.50 .26 -1.09 - .22 -1.42 - .60 -2.00
0 1 -1 .16 7 .07 .64 - .09 .34 - .41 - .22
0 O 0 .24 .40 .10 .16 - .12 -.20 - .49 - .80
0 -1 1 1.01 -.39 .25 - .59 - .22 - 9N - .67 -1.48
-1 1 -2 .51 1.50 .21 1.36 - .26 1.07 -1.06 .51
-1 0 -1 50 1.13 .20 .89 - .26 .53, -1.05 - .07
-1 -1 0 .99 .34 .26 .14 - .28 - .18 -1.07 - .76
*Numbers shown are values of (a]-az) - (a]-az). P] = P2 = 0.5, 0, = 1. The

fraction of observations above zero is F(“i/°i):

ai/oi F(ai/oi)
0 .50
0.5 .69
0.8 .79
1.0 .84
1.25 .89
2.00 .98




TABLE 2
COMPARISON OF BIASES IN TRUNCATED AND
COMPLETE SAMPLES®

02=0 5 02=0 8 02=1 .25 02=2.0

% % M™% C T C T c T C T
10 0 .03 .36 .02 .19 .04 -29 =19 -1.49
1 0 1 19 1.66 07 .46 -.09  -.44 -.33  -1.62
1 -1 2 1.02  3.99 26 .91 -2 -7 -.60 -1.99
o 1 -1 16 .68 .07 .35 -.09 -.57 -.41  -3.19
0 0 0 .24 1.48 .10 .45 -.12  -.57 -.49  -2.97
0 -1 1 1.01  3.82 .25 .89 -2 =72 -.67 -2.75
11 =2 51 1.27 .21 .63 -.26 -1.02 -1.06 -5.49
-1 0 -1 50 1.40 .20 .63 -.26  -.99 -1.05  -5.39
-1 - 0 99  3.22 26 .84 -.28  -.95 -1.07  -5.24

aC=Comp1ete sample, T = truncated sample. Biases defined as in Table 1,

P]=P2=.5,o-|='l.






