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Introduction

This paper derives a set of identification conditiqus for a class of
models with rational expectations. _ |
'~ The model analyzed in the paper is a first-order linear model. The
analysis applies therefore to the class of models that can be reduced to
this form; as examples will show, this class is sufficiently large to be
of interest. The analysis can be applied to ad hoc models, i.e., models
not explicitly derived from optimization or to models derived expiiéitly
from a linear quadratic optimization problem ([5], [7] for recent examples).
In this last case however, the first-order linear model is simply the
canonical difference system associated with the optimization problem [9] and
has additional structure. This structure allows an alternative and sometimes
more direct derivation of ideﬁtification conditions than the one given in
this paper. This derivation has been given by Chow [4].
| The set of identification conditions derived in the paper is as follows.
Define the.first-order form of the system, in which éxpectations appear, as
the "structural form." It is characterized by an information structure and
a pair (A, I) where A is a matrix of parameters and I a variance covariance
matrix of disturbances. This system can be solved to give an observable
"réduced form," characterized by a pair (N, ©) where I is a matrix of
parameters, © a covariance matrix and where Il and © are identified. The
identification problem is the derivation of the set of restrictions on
(A, I) imposed by (I, ©). As in the standard simultaneous equation model,
in the absence of prior restrictions on I, the set of restrictions on A
aepends on II and not on ©; it is this set of restrictions that is derived
in the paper. As in the standard model, prior restrictions on I, if they

yield additional restrictions} yield restrictions that are often intractable.




The gnswér to this restricted identification problem turns out to be
simple: although the mapping from A to I is highly nonlinear, knowledge of
T imposes linear restrictions on the elements of A. Checking identification
of one or a set of parameters is therefore usually feasible and qttaightférward.
The paper is organized as follows. - Section I introQucés the framework
.by using a. simple example. Section IvaFesents the general model. . Sections

III and IV characterize identification in various cases.,




Section I. An Overview

It is easier to introduce the terminology, the framework and the issues

involved by using a simple example:

Tﬁe model

e P o — g oy ey e —

t t-1 €2t | a1 (@) a;,(a)
(1.1) = |A(a) + ; A(a) =

B(apy19,) % € 21(®) apy(e)
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€ and eqt are scalar white noise processes. Their covariance structure

satisfies either Ala or Alb:

(Ala): E( ) =0 if t = s, 0 otherwise

ezteqs zq

(Alb): = E( Y =0 for all t, s

ezteqs

The information set Qt satisfies either A2a or A2b:

a2a): 4, = {e,s €510 "0 3 Eqpr Eqeapr 07
(A2b): e =1 €ue-10 *°° 5 Sqr Cqe-1’ ese}

Equaiion (1.1) gives the structural form of the model. 'Even if the
system is not derived from a control problem, it is convenient to use the

control terminology. Thus we refer to z, as the state variable, to q, as

the coétate variable and to the first equation in (1.1), which does not

involve expectations, as the transition equation for zt.2




. We refer to the elements of A as the structural parameters. The set of
parameters of interest may however not be A but a set (a) of '"deep" parameters
(this expression is due to Sargent [7]). We do not specify the mappihg from |
(¢) to A; as a result we can only characterize identification of A altﬁough'
the ultimate goal is identification of (a).

To show the importance of covafiance and information assumptions for
identification, we allow for alternative assumptions. The cross correlation

between disturbances may or may not be zero. The realization of €,, may or

t
may not be part of the information at time t.

Many examples in the economic literature--or at least linear approxima-
tions to them-~fit this model. It could be a model of money and growth, with
z, being the capital stock and q, being the price level. It could be a model
of an asset market, with z, being the stock and q, being the price of this
asset; the first equafion would be an accumulation equation, the second an
arbitrage relationm.

Suppose we have observations on 9, and z,. What are the restrictions

t
imposed on A and ultimately on (a)? The first step is to solve (1.1) to
obtain an observable reduced form, with identified parameters.

The solution

. The solptioﬁ.to (1.1) gives the costate variable q  as a function of
variables in the_information set at time t. It is well known ([1l] for
example and references therein) that the solution to (l.l) is not‘pniqgeé
If however, in this case, A has eigenvalues with absolute value on each‘
side of unity, there is a unique stationary solution for 9, and zZ,. We
shall assume that the eigenvalue condition is satisfied; it would necessarily
be satisfied if (1.1) followed from an optimization problem [9]. We choose

the stationary solution and refer to it as ''the' solution.3




In this simple case, the method of undetermined coefficients can be used

and gives:

_ — o — - - - -
Lo=apZe] 1211 9f|%e-1 €2t
(1.2) = +
0 1 {|q, L LI fSE(eztIQt)
where
; 2 P
(1.3) ™, such that a,,7, + (all-—azz)ﬂ1 -8, =03 Ix1| <1
T, = (¥,a,, - a ).-1
2 "1712 22
o -1,
Ty = - (ma, - ey M
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Let us define the reduced form as the form in which matrix parameters--
in this case a1 a9 nlw—énd the covariance matrix are identified.
Inspection of (1.2) shows it to be a reduced form only if the covariance
ﬁatrix is diagonal, as in this case (1.2) is a recursive system. This, in
turn, depends on the assumptions about the structural covariance matrix and

the information set.:

The recursive case

éuppose that €, and eqt are uncorrelated and that € is not in Qt’
so that Alb and A2b hold. 1In this case, the system (1.2) is recursive and
therefore is the reduced form. T, and the parameters of the transition
equation, a5 and a;,, are identified. Equation (1.3) imposes, giﬁen

T + 0, one additional linear restriction on the elements of A. There are

no further restrictions on A from the reduced form covariance matrix. Thus,

in the absence of prior restricﬁions, A is underidentified but, depending




" on the mapping from (a) to A, A and (a) may be identified.

-The simultaneous case

1f either assumption Alb or assumption A2b does not Hold, the?covarian;e
matrix in (1.2) is not diagonal, (1.2) i§ not recursive and thus is not the
reduced form. Suppose for egample that the structural covariance matrix is
unrestricted and that € is known at time t, so that Ala and A2a hold. In

this case, E(sztlﬂt) =€, The reduced form is obtained by eliminating qé

£

from the first equation to get:

= = - -~ — o —
Zel 101 O)|Zec1|  [212M2fqe t (3ppm3 * Dey,
(1.4) - .
9 LR I L] Tofqr ¥ T35,
L1 L JdbL- 4 L i
(1.5) \¢1 = éll +a;,m

‘iﬁ tﬁié case, ¢, and 7, are identified, imposing if ™ %+ 0 the two
linear restriétions on A given by (1.3) and (1.5). There are no further
festfictions ffom the reduced form covariance matrix. Identificatiéﬁ of A
and (o) depends again on the specific mapping of (a) to A.

Thisvleavgs us with two pairs of assumptioms to considef. I1f sét.is
corrélated with eq but its realization is unknown, so that Ala and A2b
hold, identificatioﬁ resﬁrictions on A are the same as above, namely.(1.3)
and (1.5). There are no further restrictions from the reduced form
covariance matrix.4 if however €, and eqt are uncorrelated‘but aré both
known at time t, so tﬁat AlB and A2a hold, there is in addition to (1.3)

and (1.5) a restriction on A from the reduced form covariance matrix. Let

this matfix be:
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Then the additional restriction is:

2 2
I alzez)/(eq - a

L -1
qz 12%q2) = (1 = appmydmy 5 1y = = (mpay) = ay,) " m;

It is highly nomnlinear. Thus, restrictions on the covariance of disturbances
whose realizations are known at time t lead to restrictions on A from ©; such
restrictions are hard to use and this case will not be analyzed further.

Unobservable costate variables

We have assumed until now that both z and q are observable. It is
sometimes the case however that not all costate variables are observable.
This arises in three gircumstances. First, the time series on some costate
variables may simply be unavailable; there is little that can be said in
general in this case ([2] gives an exampie of a market in which even in the
absence of a time series for prices the "deep" parameters are identified up
to a,scalar). The second case arises in the control problem where costate
vafiables are unobservable; in this case however control variables, which
are linearly related to them but possibly less in number, are observable.
As mentioned in the introduction, there is a more direct approach to
identification in control problems and we shall not treat this case

explicitly. The third case, which we shall study, arises when higher

order systems are reduced to the required first-order form.




The rest of the paper is as follows. Section II gives the structural
form and solution of the general first-order model. Section III analyzes
identification in the recursive and the simultaneous cases. Section IV

analyzes identification when some costate variables are unobservable.




10

Section II. The Model and Its Solution

The structural model is:

¥y Yeo1 €ut
(kx1)|. (kx1) (kx1)
(2.1) e | = |a@ || Fe-1{ + | Sxt
(nx1) (nx1) (nxl)
EPn1 P €pt
(mx1) (mx1) (mx1)
_ I _ _ I -
: A"l’l(a) 0 b0
Ay A (@ (ok) () | (ko)
(k+n)X(k+n)|(k+n)Xm i 3
- . | Wxy x X
A(a) = , | S All(a) All(a) l Alz(a)
:_ . (nxk)- (axn) | (nxm) |
_____ _ N i i
Ay 1Ay, (a) Ay (@) Ay (@) 1Ay, (a)
mx (k+n) | mxm (mxk) (mxn) | (mxm)
xt-l’ wt-l predetermined with respect to EWt’ €xp? e?t. eWt’ €r? Ept are

vector white noise processes. Their covariance matrix satisfies either A3a

or A3b:
— —_— p— - !
Cpel|us
(A3a): E 13 € =7 if s = t, 0 otherwise
xt|| xs
€ot eps
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— - - - -
€ €.,
vel| Vs Ex O
A(3b): E € € = if s = t, 0 otherwise
xt XS 0 z , i i
» i
ept Eps

in (2.1), EPt+1 s E(Pt+1l9t)' The information set Qt satisfies either Ada

or A4b:

(A4a): Q = {ewt’ pt=1® *°'3 Exed Exea1’ T3 Sppr Spe-1r vee}

(A4b): Q = {

ewt—l’ saes ext—l’ ceey ept’ apt-l’ ses}

This model is a straightforward extension of the example of the previous
section. There are (k+n) transition equations in (k+n) state variables. It
is now useful to distinguish between state exogenous variables, Wt, and étate
endogenous variables, Xt. Corresponding blocks of zeros in the matrix A are
a;sociated with the state exogenous variables. There are m costate variables.
A is the matrix of structural parameters, depending on a set (a) of deep
parameters. Assumptions on covariance and information are extensions of
those of Section I.

The solution

The solution to this model has been derived in [1] to which the reader

3 Let I be the eigenvector matrix and J

is referred for proof and details.
be the eigenvalue--or Jordan if need be--matrix associated with A. Order J
by increasing absolute value of the eigenvalues and partition Il and J

conformably to the partition of A so that:
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|
"
[
o
=
=

11 712§ (711 712 1 11 712
(2.2) =

21 72211721 22 211721 22

A stationary solution for Pt exists and is uniqué if and only if the
diagonal elements of J2 are outside the unit circle. As the focus of this
paper is neither on existence nor on uniqueness, this condition will be
assumed to hold and we shall choose this solution, referring to it as "the"

solution.

The solution gives (¥, X, P) as linear functions of variables in Q.

The equations for ¥ Xt are simply the transition equations for Wt and Xt,

t’
i.e., the first (k+n) lines of (2.1). The equations for Pt are given by:

v

-1 t-1]  _-1.-1 ot
(2.3)  Bpo= - Ml x,_ |7 222 |TaiBlle 19| + Mpaepe

This characterizatidn of the solution is the most convenient to study
identification. As it does not however use any information on the structure
of A and does not exploit the difference between Wt and Xt, it is not the
most efficient way of computing the solution. The particular structure of A
allows in this case recursive computation first of the coefficients on Xt—l
(feedback), then of the coefficients on ?t—l (feedforward) (see [1] and [5]).
Furthermore, if A derives from a control problem an alternative computation

of (2.3) is the use of Ricatti equations (the solution above is simply an

algebraic solution to a Ricatti equation in this case).
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Whether the matrix parameters and the covariance matrix of the system
composed of the transition equations and equation (2.3) are identifiéd, i.e.,
whether the system is the reduced form of (2.1), depends again om whether
this system is recursive. This in ﬁurn depends on the specific assumptions
about I and Q. We now turn to identification under the different éets of

assumptions.
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Section III. Observable State and Costate Variables

The recursive case

Suppose that ewt'and €yt 2T© uncorrelated with ept and that their
realizations are not known at time t, so that A3b and A4b hold. In this

case, the solution derived above is the reduced form. Repeating it for

convenience:
X
Yo = 81%0 t e
_ aXY b 4 b4
3.1 Xt = Allwt-l + Allxt—l + A12Pt + ext
b4
_ -1 t-1 -1.-1
Pe = CMpolh|x = 995 Togthe

t-1

The system being recursive, the matrices in the transition equations

are jdentified. What additional restrictions are imposed on A by (-H;;HZI)

which is also identified? (There are no further restrictions on A from the
»reduced’fqrm covariance matrix.)

Expand the last m rows of (2.2). This gives:

D121 * Tty = Jo0,

Ty1h12 + Moghyp = Jollyy
Premultiplying both equations by H;;'gives:

-1 - -1 -1
TyollgjApy + Ay = (y50,M) o)1,y

-1

-1
Tyalla1hAyp * Ay = (I553,0,,)
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This implies:

-1 . -1 -1 -1
(3.2) Mypllpidyg + Ayy = (Myoly )A (Mol ) + Ay, (TyHllyy)

-1
Partition (n22n21) so that:

1
2H21 = [ Qw Qx ]

-
2 (mxk) (mxn)

Equation (3.2) can be decomposed in two sets of identification restrictioms:

b4 + X - b 4
(3.3) o AT Ayy = 0 AT,0 + A0
(3.6)  oaY +o0 AV a? =04 +4,.0

yll x 11 21 X127y 227y

X

The first set (3.3) imposes linear restrictiomns across (ATZ, All’ A:l’

522). The restrictions follow from knowledge of °x only and therefore are

the only restrictions imposed on A if there are no exogenous variables.

They are (mxn) in number. Given that A?l, ATZ are identified, there are

mx (n+m) elements of A;l’ A22 to be identified in (3.3).

The second set (3.4) also imposes linear restrictions on (Aﬁl, A?T;

A¥2’ Agl, AZZ)' These restrictions are present only if there are exogenous

state variables ¥ and are (mxk) in number. Given that A?l’ A?T, ATZ

identified, there are mx(mwt+k) elements of Agl’ A22 to be identified in (3.4).

are

Simply counting the total number of restrictions on A gives (mxm) less

restrictions than nonidentically zero elements of A. This number is
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indépendent of the number of state variables and thus, in this sense,
exogenous variables do not help identification.

Exogenous variables are however often associated with prior restrictions
on A. A frequent case is the following: Suppose that the transitipn
equations for Wt are the quasi—first-order form of a kth order ‘process of
p variables ?t,.with_ip = k. This by itself imposes restrictions on Alp but

11

not on Agl' .Suppose furthermore that only current values of V¥ affect Xt

t-1
and Pt' In this case, Agl is subject to the following additional prior

restrictions:

(3.5) Ay = = [aA

0 ]
(mxk) (mx (k-k))

With these additional prior restrictions on Awl, equation (3.4) imposes

(mxk) restrictions while adding only (mxk) nonzero elements of A. The

total number of restrictions minus the number of nonzero elements of A is
équal to mx(i(p-l)—m), which for k or p 1arge enough is positive. Another
often encountered case is that of a subset of exogenous variables which

enter the model only because they help predict future values of the exogenous
variables affecting Xt and Pt; the analysis of this case parailels the one
above. This makes precise the sense in which a high order process for-;or

a large number of--exogenous variables help identification [7].

Equations (3.3) and (3.4), together with the matrices identified in the
transition equations, characterize all the restrictions on A and thus on
(a). Local identifiability if the system of;restrictions is nonlinear in
(a), and global identifiability if the system is linear in (a), can be

checked using standard rank conditions on the Jacobian (see Rothenberg [6,
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Section V]. Note that, in order to check identification of a specific CLORN
the reduced form parameters must be derived as a function of (a9) before the
rank condition can be checked. If however the purpose is only to check
necessary conditions for identification of (al), the derivation of the
reduced form parameters from (%) is not required; in this case, the system
of restrictions (3.3) and (3.4) on the elements of A can simply be assumed
to be of full rank.

The simultaneous case

If either assumption A3b or A4b does not hold, conditional expectations
of €t and e¢t are not identically zerc. The system composed of transition
equations and equation (2.3) is thus not the reduced form, as the costate
variables Pt are in general correlated with the disturbances €t in the
transition equations for the state variables Xt' The reduced form is then
obtained by eliminating Pt from the tramsition eﬁuations for Xt'

Sﬁppose that the structural covariance matrix is unrestricted and that
€t and £¢t afé'known at tipe t, so that assumptions A3a and A4a hold. The

reduced form is then:

| .
et At T

X, =T “’ﬁ-l Xt ke T A?znzi"? To3 ?t MRUTAN

(3.6) v xt P
-
-1.-1 N
Po=o¥ -0k T Tydy |y ext_l MY
A
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(3.7) r oz A%V _ %

L]
e

(3.8) Ty

¥
Aps

impose (mwtn)x(k+n)+(kxk) restrictions on the (mn)x(k+n+m)+(kxk) nonidentically

Pw, Tx, ¢¢, ¢x are identified. Thus (3.3), (3.4), (3.7), (3.8)

zero elements of A. There are therefore (min)xm less restrictions than
nonzero elements; this number is independent of the number of exogenous
variables and is increasing with the number of endogenous state and costaté
variables. Prior restrictions associated with exogenous variables may again
yield identification. There are no further restrictions on A from the
reduced form covariance matrix.

1f €t and Ewt are not known at time t, but there are no restrictions
on the structural covariance métrix, i.e., if assumptions A3a and A4b hold,
the restrictions on A are exactly the same as above. If however A3b and Ada
"hold, so that there are restrictions on the structural covariance matrix and
€xe? ewt are known at time t, there is in addition to the above restrictionms,
a set of restrictions on A from the reduced form covariance matrix; these
restrictions have no simple form and such prior restrictions on the covariance
structure of disturbances whose realizations are in Qt at time t are not
considered further.

We now illustrate these results with an example similar to a model by
Taylor [8]:

Example. The scalar random variable Xe satisfies:




€, and n, are white noise processes; their covariance structure satisfies:

exogenous with respect to €.

(3.9)

model.
Note also that,the transition equation for Xt is an identity and involves

no unknown parameters or disturbances.

19

E(kp4y [9) + axg + DXy ¥ e+, =0 5B t0

L L e A

o = {n, n_

E(Etns) =0 Vt,s

Suppose first that ¢

t+l

Note that ¥

form for Xe is:

ot.;e’e

t

oY

and n,_ are uncorrelated, so that ¥ is strictly

t t

I
(k-1)x(k-1)

t-1

o

t-1

eer}

E(etns) = g

il |

o

§
[

if t = s, 0 otherwise.

is a state variable while

t

The above model can be rewritten as:

This satisfies the assumptions of the recursive case of the general

is a costate variable.

Using equation (3.1), the reduced
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Xe =7 Okey T by Tt T Ve oS
Equations (3.3) and (3.4) impose the following restrictions on (a,b,c):

(3.10) % -ap +b - =0
X X

(3.11) ¢w1(¢x - a) $ ,a. +¢ . -¢

p1®1 T %2

¥3

ka_l(éx - a) = leak—l + ka

sz(éx - a) ¢w1a2 + &

¢¢k(¢x - a) = °wlak

Therefore only if Wt follows a second or higher order autoregressive
process may (a,b,c) be identified.

Supppse now.that Y is not strictly exogenous with respect to €. (3.9)
does not satisfy the assumptions of the general model as its first-order
autocovariance matrix is not identically zero. The model can however be

rewritten as:
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N B t Il 1 n
¥ | ! e 3 0 0¥ e
Yeu1 0 | Yoo 0
: I }
(k-1)x(k-1) l
(3.12) ¥ - o 0,0y, |+
|
X, 0 o o, 1|lx,, 0
_________________ 4= |-=
]
E(xt+1|9t) —ca;  cceee -ca, -b |-aflx, -, - en,
|
—L b —— e e S vl

This satisfies the assumptions of the simultaneous case of the general
model. The reduced form for Xe is, using (3.5):
Xe == %Xeop " qya¥ear T T fpadteer T %S T e
Because, in this ékample, the transition equation for the state variable X¢
invol#es no unknown parameters, all the elements of the firét (k+1) lines of

A are still identified. Equations (3.3) and (3.4) impose the following

restrictions on (a,b,c):
2

(3.13) " - ad_ + b = (
X x

(3.14) ¢w1(¢x - a) =& .a, + ¢ - ca, ’

pi®1 T %2

. L]

ka—l(Qx - a) = leak-l + @wk - ca

k%% ~ a) = 13k T3y
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The form of the festrictions is different from above but‘;hgi:_'
implication is the same as above: only if ?t follows a second-q;‘higher
order. process may a,b,c be identified. The similarity of results in this
case follows from the absence of unknown parameters in the transition

equation for X
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Section IV. Uﬁobservable Costate Variables

If the system (2.1) is derived from a higher order system, some of the
costate variables arebthemselves"expectations and not observable. To analyze
this case we take as the initial model not the form (2.1) but the original

higher order model. The system we consider is:

m n
ileiE(yt+i‘9t) + By, + izls_iyt_i + DY+ Cor = 0

(4.1)

Ve and Wt are vectors of p ﬁnd k random variaBles respectively; eyt and swt

are vector white noise processes and their covariance structure satisfies:

E( =0 Vt, s

“yttys
The information set is given by

Q. = {e

t yt? Syt-1? °°73 Eper Speerr U0}

Bm is of full rank.

The assumption that Bm is invertible is not restrictive. Bm will not
be invertible if for example expectations of a subset of Ve do not appear
in (4.1); in this case however, the initial system can be reduced to a lower
order system in more variables satisfying the assumptions of (4.1).6

Note also that ?t in (4.1) could itself be given by:
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' '
m -

n
Y= [HEC 0) +H2Z + ] Hoi%eey 3
i=1 | i=1
Zy SHZL | * €y
Q= {eyt’ Eyt-1* *°73 Sz¢0 Speo1 eec}

This would be reduced to the above form by solving for future expectations,:
E(Zt+i|9t) = HiZt and defining lagged values of Z as state variables.

- Note finally that Y is assumed strictly exogenous with respect to € .
This can easily be relaxed as in the example of the previous sectionm.

The system (4.1) can be rewritten in quasi-first-order form as follows:

_ - -~ - - -
Y B 0 0 0 0 ¥, -
Ye-n+l Ye-n ¥
L] I »
° (n-l)p .
w2 Pe |=| 0 0 Ve-1
EY 41 Ve
. 0 0 0 I(p-1 . 0
Ey 2" pl-pls  -p7lz |-m B(’ln ? E -l
Yetm m m -n m -l m m m-1] | t+m-1 m yt

This satisfies the assumptions of the recursive case of the general model.

Note that only Ve in the vector of costate variables is observable.

The reduced form gives Yo *°°s Eyt+m—1 as functions of Wt, Yeen® °°°

Partition the reduced form matrix H-IH

220, as in Section II to get:

Ye-1°
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]

¢
[<b:<bx]§;
mpxk mpxnp ym

The identification restrictions are still given by equations (3.3) and

(3.4). Equation (3.3) gives here:

1% 02 """11"’11“"‘I> 12 0 a1 %y
(4.3 10 1%01 11100 =10 -1 7 %om-1
m-1 m-1
1 -1 -1 -1 -1
¢lm§n1 iZOBm B1¢n1+1 Ql ¢11+1203 Bi 1i+l Bm B—n ¢nmem B—n+1 °2m+Bm B—
L. e b

As only Ve is observable, only (@ ) is directly'identified.

17i=l,+¢¢,n

We first show however that the restrictions above imply that all (Q J)1 3
]

are identified. Consider the first p lines of equation (4.3). They give

n matrix equalities:

1%1 Tt % =0

o, .0 +0 . = ¢
, -1,1 -1,2 1
(4.4) 11 'n n n

%1 t o, =9
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Given (Qil)i=1,---,n’ these equalities determine recursively (Qi2)1=1,---,n'

By the same argument, the first (m-1)xp lines of equation (4.3) determine all

(2..) This reflects the special structure of A in this

¢ij

case. The last p lines impose restrictions on (Bi)

inl’-oc’n;j=l’.-oo,m.

iﬂm’ LI ) ’—n:

BmQ1m¢n1 + Bo‘pnl oo Bm—l‘bnm = B-n
Bmq’lmq’n-l,l + Boq’n-l,l toree 4 Bm—lq)n-l,m = B-n+1 + Banm
"o’y *B%yy et +B 0 =B, +Bo,

If a set (Bi)i satisfies (4.4), then for any nonsingular matrix C,
(CBi)i also satisfies (4.4): a norﬁalization such as Bo = I is required.
Once the system is normalized, the system (4.4) imposes np2 restrictions
on the (n+m)><p2 elements of (Bi)i.

Equation (3.4), which gives the restrictions imposed by the presence

of ¥, is here:

+
€
]
=4
-]

1% 2 y1

¢1m—1¢W1 + QWm = ¢?m-lB

¥l Foree 4 Bm—1¢?m = Bmovm +D

Again, only le and B are directly identified but the first (m-1)xp

lines of équation (4.5) determine, given B, ¢_. and (¢1j)

vl jel,+e,m from

above, (<I>\yi)i=2 cee The last lines impose pk restrictions but also add
: ’ H
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pk elements of D. In the absence of additional prior restrictions on D,

there are no additional restrictioms on (Bi)i from the presence of exogenous
variables. As in the previous section, prior restrictions are however likely.
Suppose for example that Yt is the quasi~first-order form of a kth order
univariate process @; and that only current @t affects Vo In this case,
after normalization, the number of linear restrictions imposed by (4.4) and
(4.5) minus the number of nonidentically zero parameters of (Bi)i and D is
pX(k-l)-mpz. Thus, if k > mp+l, the model is, subject to the rank condition,

identified.
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Conclusion

This paper has extended the study of identification in rationmal
expectations model, considered by Wallis for the static model [10] and
Chow for the dynamic control problem [4], to the first-order dynamic
linear model. The identification restrictions are linear in the structural

parameters and thus easy to use.
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Footnotes

1. Some prior restrictions, such as disturbances being identically zero if
some of the equations are identities, or block diagonality under some
'assumptions about information, do not yield additional restrictions and

will be considered in the paper.

2, Zt and q, appear with different time indices in the right-hand-side
vector. By defining Ve s it—l and substituting y for z_, on each side,
each vector would have variables with the same time index; the

specification used in (1.1) is often more natural.

3. In doing so, we implicitly use a transversality condition. This has
implications for identification. Chow [3] has recently argued that
imposing the transversality condition may not be warranted and that

identification should be studied without imposing it.

4, Identification of the structural covariance matrix requires, as there
is a conditional expectation in the reduced form, a specification of
the distribution of disturbances. If they are joint normal, so that -

E(e _|S.) = E(e

2t 1% ztleqt
+ is identified if A is identified.

) =0 0_26 s the structural covariance matrix
zq q qt

5. The model considered in [1] is more general than the one considered

here.

6. Because of the many cases and the notational complexity, the method to
achieve this is cumbersome to describe. The following example shows

how to proceed. Consider the system in two scalar variables Y1e and

Va¢?




Note that the parameters on E(y2t+2l9t) are equal to zero. Define -

2 2
b1; O |B(p4pl®) LY
+
2 1
by O |E(rye4pl®) L2S|
- - e e e

-t

—d b

E(Yyp4p190)

E(y21:+1|91;)

—

P E E(71t+1lﬂc) = Elpyyyl0) = E(E§y1c+zlgt+1)|9:))

Rewrite the system as:

-

B e 9
E(Yype 9

E(Peyy 19y)

e

= E(y)40[90)-

(o} [o)

by by 0
() [o]

byy by O
0 0 -1

If the first matrix is nonsingular, this system satisfies (4.1).
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