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ABSTRACT

Introductory lectures on capital theory often begin by analyzing
the following problem: I have a tree which will be worth X(ﬁ) if cut
down at time t. If the discount rate is r, when should the tree be cut
down? What is the present value of such a tree? The answers to these
questions are straightforward. Since at time t a tree which I plan to

t

cut down at time T is worth e’ e_rTX(T), I should choose the cutting

date T* to maximize e_rTX(T); at t < T* a tree is worth erte-rT*X(T*).
In this paper we analyze how the answers to these questions of timing
and evaluation change when the tree’s growth is stochastic rather than
deterministic. Suppose a tree will be worth X(t,w) if cut down at

time t when X(t,w) is a stochastic proéess. When should it be cut down?

What is its present value?

We study these questions for trees which grow according to both
discrete and continuous stochastic processes. The approach to continuous
time stochastic processes contrasts with much of the finance literature
in two respects. First, we obtain sharp comparative statics results
without restricting ourselves to particular stochastic specifications.
Second, while the option pricing literature seems to imply that increases
in variance always increase value, we show that an increase in the

variance of a tree’s growth has ambiguous effects on its value.
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by

W. A. Brock, M. Rothschild and J. E. Stiglitz '

l. Introduction.

Introductory lectures on capital theory often begin by anélyzing
the following problem: I have a tree which will be worth X(t) if cut
down at time t. If the discount rate is r, when should the tree be cut
down? What is the present value of such a tree? The answers to these
questions are straightforward. Since at time t a tree which I plan to

t

cut down at time T is worth e’ e—rTX(T), I should choose the cutting

- *
E~TT*x (1%,

date T* to maximize e_rTX(T); at t < T* a tree is worth e’
On this simple foundation most of capital theory can be built. It is

our purpose in this paper to analyze how the answers to these questions
of timing and evaluation change when the'tree's growth is stochastic
rather than deterministic. Suppose a tree will be worth X(t,w) if cut
down at time t when X(t, ) is a stochastic process. When should it be
cut down? What is its present value? We ask these questions not because
we are intrinsically interested in optimal policies for managing forests
(although we would gladly aécept research support from the Sierra Club

or the Weyerhauser Corporation), but because we believe that, as in

the certainty case, one can use such an analysis to answer many other

questions of valuation and timing.




In this paper we show how to pose and analyze the basic problem
of stochastic capital theory. The sequel to this paper will apply the
techniques developed here to several problems of economic interest.
Our main concern here is with the effect of uncertainty on the value
of an asset whose instantaneous market value evolves stochastically
but which may be marketed at a time and under conditions determined by
its owner. We will use the standard metaphors of Austrian capital
theory in this paper and call the asset a tree; the time at which an
owner sells a tree is the tree’s cutting time.

In the next section we analyze a tree whose growth follows a
discrete time stochastic process and obtain three main results.

First, for processes which are strictly increasing, as uncertainty
increases so does the value of the tree; however, the size at which it
is cut down is not affected by ﬁncertainty. Secondly, for processes
which can decrease, the reverse may be the case. Third, the results

for discrete time processes, particularly those which can decrease,

are not as sharp as we would like them to be because they are confounded
by round off problems. Trees which follow a discrete time process
necessarily grow by leaps and bounds. They cannot be cut down and
harvested at an exact size. These problems of overshooting and
undershooting make it difficult to obtain the kind of strong qualitative
results we are looking for. Thus we turn in Section 3 to an analysis

of trees whose growth path are continuous, i.e., they are governed by
diffusion processes.

Diffusion processes can decrease as well as increase. Thus, tg

analyze the value of a tree whose growth is governed by a diffusion




process, it is necessary to specify how it behaves when it reaches

some lower boundary. In this paper we focus on absorbing boundaries.
When the tree reaches a fixed size Q its growth stops and it is sold
for Q. We find this boundary condition the most economically ‘appealing
-~ an Appendix briefly treats other boundary conditions. The results
of our analysis of the comparative statics of trees whose growth is
described by a stationary diffusion process are as follows. The tree’s
growth path is completely described by an instantaneous variance 02(x)
and an instantaneous mean b(x) where x is the current size of the tree.
The other parameters of the problem are Q, the level of the absorbing
barrier and r, the discount rate. Suppose for simplicity that the .
expected growth rate, b(x) is a decreasing function of x. Then the
optimal rule is to cut down the tree the first time it reaches a size y*.
Under these conditions y* is always greater than ;, the solution

to b(y)/y = r« If its growth were certain, the tree would be cut down
at ;} uncertainty increases the cutting size of the tree.

Let w(x) be the expected discounted value of a tree of size x
which will be cut down when it first reaches y* (unless it hits Q
before it reaches y*, in which case it will be cut down at Q). Both
y* and w(x) are functions of the parameters of the problem =-- 02(x),
b(x), Q and r. Any parametric change which increases w(x) at a point
x increases w(x) for all x. Such a change also increases y*. Thus
all changes are either good, in which case they increase value uniformly
and they increase the optimal cutting size, or bad, in which case they
decrease value uniformly and cause the tree to be cut down when smaller.

Increases in the growth rate are good. Increases in the discount rate




and the absorbing barrier are bad. Whether increases in variance,
az(x), are good or bad depend onvwhere they take place. If the

value function w(x) is convex near x, a local increase in variance at
x is good, it increases value and cutting size. If the value function
is conéave near x, then an increase in variance is bad. Near y*, w(x)
is convex but there always is a region below y* where w(x) is concave.
In many cases this region will include Q, so that the interval (Q,y*)
is broken up into two regions. There is a Z such that for x(Q,2),

. w(x) is concave and increases in variance are bad. For xe(Z,y%*)
increases in variance are good. A sufficient (but not necessary)
condition for this to happen is that b(x) be decreasihg. The ambiguous
effects of variance increases in value stand in sharp contrast to the
option pricing literature. Increases in the variance of an asset
increase the value of most financial options (like calls) written on

that asset.

2. Discrete time.

This section contains observations about trees which grow accord-
ing to discrete time stochastic processes. We believe these examples
and observations provide considerable intuition about the way in which
uncertainty affects value and cutting time. They also indicate why
we have chosen to analyze continuous processes at greater length in
succeeding sections of this paper.

In all the examples of this section we will assume that the
tree’s size follows a discrete time Markov process which we write as:

Xl, XZ’ coey Xt' The tree’s owner is trying to pick a stopping




time T to maximize the expected present discounted value of the tree.

That is, he seeks a stopping time which will maximize EXTe-rT.

Example 1.

Let
() X‘ = X +¢

The €, are independent, identically distributed (i.i.d.) random

variables with
Pr {et = 2} = Pr {et =0}y = 1/2.

Let r = .1 so e T = .905. Suppose I have a tree of size 8 and
I plan to cut it down the first time it is size 10. Then V10(8),

its present value, must satisfy the equation

V10(8) .905[(1/2)V10(8) + (1/2)10]

or

(2) V10(8) = .826.

§ ’ .
If I have a tree of size 10 and plan to cut it down at size 12, then

its present value, V12(10), satisfies
V12(10) = .905[(1/2)V12(10) + (1/2)12;
so that
(3) V12(10) = 9.91 < 10.
A comparison of (2) and (3) suggests that an optimal policy is

to cut down the tree when it first reaches size 10. (That this is

so is a consequence of Proposition 2 below). It is interesting to




note that this is the rule which would be followed if the tree grew
constantly at a speed equal to its mean. In this case we would have

in the notation of the previous section X°(t) = 1, so the optimal
X X*’
cutoff size X* satisfies * = T

of size X < 10 would be worth W(X) = 10 e

.1 or X = 10 and a tree

-.1(10-X)

Thus
(4) w(8) = 8.19.

Comparing (4) and (2) we see that uncertainty increases the
value of the tree. Given the form of the optimal stopping rule —--
harvest the tree when it first reaches the optimal cutting size X%
~- this is quite reasonable. The tree’s expected present discounted

“TTyy
value is then just EX* e where Ty is the first time
the tree reaches the size X*. The only uncertain quantity in this
expression is TX* and our valuation function is the expected value
of a convex function of this random variable. Since uncertainty
increases the expected value of convex functions it is not surprising

that uncertainty should increase the value of the tree. The next

example shows that this intuition is not always correct.

Example 2.

Consider a tree which grows according to the same rules as
the tree in Example l. Its present size is 9.5. As its owner, I
can either sell it now or let it grow. Since the tree grows two
units at a time, if I elect to let it grow, I must wait until it is

at least 1l.5 units tall. It is easy to calculate that

V11.5(9.5) = 9,501




so that it is worthwhile to keep the tree. Since V13 5(11.5) =
11.15 < 11.5 it seems the best policy is to keep the tree until it
reaches 11.5. On the other hand, if growth of the tree is certain,

then

05

(5) ' W(9.5) = 10e """ = 9.512 > Vg, 5(11.5)

In this case uncertainty decreases the value of the tree. The
explanation for this anomaly 1is straightforward. As we will prove

shortly, if the tree grows according to

X

e+l - X teg

where the Et are non-negative independent, identically distributed
(iei.d.) random variables with Eet = |, an optimal policy is to cut

down the tree the first time it reaches or exceeds X where X

is the solution to

(6) X = BX+n)

or

(7) X = [(18_ s1v

and B = e T, Ig our case t = 1 and B = e~} = . 905, so

X = 9.508.

I would like to cut down the tree the first time it exceeds 9.508.
Ideally, I would cut it down when its size reached X = 9.508.

Since the tree grows in steps of 2, I cannot cut it down exactly at

X. If it is currently of a size 9.5 I can only plan to cut it




down at size 9.5 < X or at 11.5 which overshoots the optimal harvest-
~ ing size. It is not so much uncertainty per se which is responsible
for the inequality (5) as the fact that the uncertain process is
discrete and the tree cannot be cut down at its optimal size.

To see that this is correct, consider a tree now worth X. Next
period it will be Y = X + A with probability P and X with probability
(1-p). The discounted value of my expected returns if I realize Y the
first time the tree reaches Y is

v = vEe Ty

where the random variable NY is the number of periods I have to wait

until the tree reaches Y. Since ENY = §3 Jensen’s inequality implies
-rN

Ee ¥ > e-r/p. But if the tree grew at the rate 4 = pA per period

for certain, I would wait exactly 1l/p periods for it to grow to Y and
its value would be fe-f/ﬁ;' The uncertain tree is worth more -- if it
is to be cut down precisely at Y.

In the simple examples we have given so far, we have suggested

that uncertainty does not change the form of the optimal stopping

rule. If

= €
(1) Xt:+1 Xt + t

and the €, are independent, identically distributed (i.i.d.) random
variables with EEt =u and B= e ¥ is the discount factor, then we
have shown that the optimal stopping rule is to cut down the tree

the first time it reaches or exceeds a height of X when X is

the solution to

(6) X = BEX +W).




In Proposition l, we use a simple heuristic argument (for which we
are grateful to Herbert Scarf) to show that this is so if £ is strictly "
positive (and thus the tree’s size is an iﬂcreasing'process). A more
rigorous proof is also given in Proposition 2 below. Let X be the

optimal cutting time for the tree.

Proposition l. If (1) holds and if

(8) P(X, ., > X} =1

then X = X.

Proof: Let V(X) be the value of having a tree of size X assuming it
will be cut down when it reaches the optimal size. Then if % is the

cutting size it must be that

(9) V(X) = X for X > X
and
(10) V(X) > X for X < &

Also at X, the tree owner must be indifferent between cutting
the tree down now and letting it grow for a period. That is, X must

satisfy
(11) X = BE[max(X+e), V(X4e)].

However, since £ is non-negative, V(X+c¢) = X + € and (1l1)
becomes X = BE[X+e] = p(X + ) which is the same as (6). Since the

solution to (6) is unique, X = X.

If the tree may shrink as well as grow, the conclusion of Proposi- :

tion 1 may not hold. The next example shows that when €& may be negative,

uncertainty can increase the optimal cutting size of the tree.
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Example 3.

Suppose again that Xt+1 = Xt + €t but now assume that € has a

density function £(.) with support on [-1,+l1]. then the optimal

~

cutting time X exceeds X. To see this, note that in this case

(11) becomes

R 0 1,
X= B SVEX+e)f(E)de + [ (x+e)f(e)dsJ
1 0
0. | S
> B F(X4e)f(e)de + J(X+e)f(e)de
1 0 )
= B(X + 1),
o AUB u —
Thus, X > T-F8 = T = X.

The mere fact that decreasing processes can go down leads to another
reason why processes which can decrease are different from processes
which grow certainly or processes which are uncertain but increasing. A
process which can decrease can go to a region in which it is stuck or
from which it can escape only with difficulty. Uncertainty makes this
unfavorable prospect likely and thus can decrease the value of the
tree even when there is no overshooting problem. The next example

illustrates this point.

Example 4.
Suppose that we have a tree of size .5 which grows according to
(1); suppose further that B = (1.1)—1 so that r = .0953. The

average growth rate of the tree is E(€t) = U = 1. If the tree grows
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. , . D1 . . -1
at this rate for certain then it will be held until its size is r

and its present value is

-'l 1 - 05)

(12) w=rlr(r = 4.048

Sdppose instead that with probability .l the tree grows by 10
and with probability .9 it stays the same height. Then Proposition 1
states that it is optimal to hold onto the tree until its size
exceeds 10, which in this case means waiting until it grows. The

. value of the tree if this policy is followed is V, the solution to

(1.1 1.9V + .1 x 10.5)

<
]

Thus

(13) V = 5.25.

[

Suppose that the tree can shrink as well as decline, that the
probability of an increase of 10 is 1/7 and of a decrease of .5 is
6/7. Then the average gain is again l. Suppose further that if the
tree’s value declines to 0 it is worthless. (This is meant to catch
in as strong a way as possib;e the nﬁtion that a decline in value may
be disastrous =-- more realistic examples.with this property appear in

Section 3 below. Then, the value of a tree is
(14) z = (..1)"L1/7)10.5 = 1.36.
Comparing these results we see that

V>W>Z




12

so that one kind of uncertainty increases the value of the tree while

another kind decreases it.

These examples give rise to something of a dilemma for the
researcher who wants to build simple but general models to analyze the
effect.of uncertain growth on such Austrian éssets as trees and wine.
Comparison of Examples 1 and 2 suggests that continuous models will
yield the most easily interpretable results. For if the asset’s value
or the tree’s size is continuous, then it can be stoppped at any
point. Problems of overshooting -- which are responsible for the
anomalous results of Example 2 —- will be avoided. On the other hand,
Examples 3 and 4 suggest that strictly increasing processes behave
veryqdifferently from processes which can decrease. Unfortunately,
processes with continuous sample paths cannot be both genuinely
stochastic and increasing. The only non-deterministic processes
with continuous sample paths are diffusions and such processes behave
locally like Brownian motion. They can go up and they can go down.
It is impossible to use continuous models to examine increasing
processes.l We have resolved this problem by focussing largely on

continuous (and thus possibly decreasing) processes.

We conclude this section with two observations about increasing
discrete processes. We first prove a general version of Proposition 1
which shows that if Xt is increasing, and satisfies some regularity
conditions (which are equivalent to the second-order conditions in the
non-stochastic case), then uncertainty does not affect the optimal

stopping size.
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Proposition 2. Let Xt be a stochastic process such that

Py 2% = 1
and let X satisfy
E[BX . - %, | xtzi] <0
E[BX ) - X | % <X] > 0.
Let Yt = Bt Xt and 7?Zb§ the set of Markov times for Xt.
Define
W(X) = suwp E Y .

Te WML X

Then W(X) = Ey Y g where T (X) = inf {t]|X_> X}

. . . T g 3
Proof: Clearly, if -t < T (X), E[Yt+l ’ Xt] > Yt so it cannot be
optimal to stop if ¢t <T (X). Conversely, if t > T (X) we will show
that Yt is a super-martingale. Then the optimal stopping theorem [Chow,
Robbins and Siegmund, 2, p. 21] states that if 0 is any stopping time such

that ¢ > t, E[Y5 [t > T (X)] < Y. . We must show that for all s

> X] < O.

E[Y +s|xt -

t+s+l T ¢

However, since Y -y = Bt+s( BX

t+s+1 t+s e+l T Xt+s)’ it suffices to

observe that

E X - X1 = : X
(B st XeeslXe > X] = E [E[ B boe1 ~ Xt:+s|xt:+s]‘|Xt: > X]

= E [E[ BX X X

t+s+1 ~ “t+s

X X|>o0.
t+s>‘<]lxt >X]_0
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Proposition 2 states that the imtroduction of uncertainty does
not change the cutting size of trees which increase. They will be cut
down when the first reach heightli, whether the increments in their
size are certain or stochastic. What is uncertain is T(i), the number
of periods it will take to reach X. The expected present discounted
value of such a tree is X E BT(E). Since BT is a convex function of T,
Jensen’s inequality implies that uncertainty should increase the
expected value of trees. If overshooting problems are absent, this
intuition is correct, as is demonstrated in Proposition 3.

To avoid overshooting, we analyze a stationary process which at
each step either grows a fixed amount (which can vary from step to
step), or stays constant. Let {Yn} n=90, ..., be an increasing

sequence and consider a Markov process on the points {Yn} defined as

follows:
Pr {Xt+1 =Y

Pr{X_, =Y | X =Y)=1-8

Let T(K,N) = inf(tIXt = YNIXO = YK); then T(K,N) is a random

variable with

Proposition 3. The expected value of a tree which grows according to

this process and will be cut down when it first reaches Yﬁ is

greater than the present value of the corresponding certain continuous

process which will be cut down at YN.
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Proof: The corresponding certain continuous process is one which

grows at a rate equal to the mean of the uncertain process,

My = By (Y - 1)

N N+1

when it is between Y_ and

N YN+1' It may be defined by

Z(0) = Y0
Z°(t) = for0<t:<P"1
0 - 0
n=-1 -1 n -1
2°(t) =w  for I p<t< I p;
i=1 i=1
n-1 -1
(L p;7) =Y,
i=0
N-1 1 K-1 1 N-1 1
i = - - = z - - z - = z -
Thus, if Z(tl) YK and Z(tz) YN’ t2 tl Py " Py Pi

i=0 i=0 i=K

= T(K,N). The value of a tree of size.YK which will be cut down at

if it grows according to the uncertain process. If it grows according

to the certain process, its value is

W = YN e-rT(K,N)

and Jensen’s inequality implies V > W.

It is hard to know whether this observation is a trivial tautology
or an important insight. The discrete process is a very special case and
not in itself of much interest. However, to generalize it we must either

deal with overshooting problems or with processes which can decrease.
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It is our view that the former problems defy useful analysis while, as
we see in the next section, an analysis of diffusion processes suggests
that the conclusion that uncertainty increases the value and cutting
time of trees is quite robust and general. The important exceptions

to this rule come about because trees can decrease.

3. Diffusion Processes.
In this section we analyze the value of a tree whose size (or market
value if cut down and sold) at t evolves according to
t t

(1 X, =X + J’O(xs)dws + 0./'b(xs)ds

where Ws is a Weiner process. A common shorthand notation for (1) is

(2) dx = a(x)dW + b(x)dt
where
(3) a@)=%czuy

The meaning of equations (1) and (2) is roughly that X, behaves

locally like Brownian Motion with instantaneous drift b(x) and instantaneous

variance 0(x). Thus, if Ax = xt+At - X,
(4) . EAx T b(x)At
(5) E(x)? = 0%(x)At

Many texts have explained in detail the meaning of equations like (1)

and (2). Two excellent examples are Arnold [l] and Karlin and Taylor [4].
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The techniques we use for analyzing value and optimal cutting time of a

tree are largely taken from Krylov [5].

a. Remarks on generality.

The most general continuous time stochastic processes which ha&e
sample paths continuous with probability one can be written in the
form (1) or (2) with the requirement that the coefficients a( ) and b( )
satisfy some regularity conditions. See Karlin and Taylor [4, Section
15.1] and Wentzell [9, Chapter 11] for a discussion of the necessary
regularity conditions. We makg two significant restrictions by assuming
that a( ) and b( )vare functions of the tree’s current size glone. |
First, we assume that the process which affects the tree’s growth is
stationary; growth is not a function of time. Second we assume that the
only factor which determines the tree’s growth is its size. This is
quite a severe restriction. One might naturally suppose that the value
of a tree was a function of its monetary value Mt = Ptxt where
Pt’ the price of lumber in board feet, also follows a diffusion
process. While we believe that the techniques discussed below —— which
are, as noted above, mainly taken from Krylov [5] =~ can be used to
solve these problems, we are not optimistic that any general qualitative
results -- like those of Propositions 5 through 9 -- can be obtained
except in special cases.

We will impose the mild regularity conditions that a(x) and b(x)
are bounded and satisfy a Lipschitz condition. We will also insist that
the process be genuinely stochastic so that a(x) is bounded away from O

for all x.
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b. Heuristics and Boundary Conditions.
To begin our analysis we assume that the optimal stopping rule is
of the form: harvest the tree when it first reaches height y. Then the

tree’s value is

' : -rT
(6) H(x,y) = Ely e 7 ]x(0) = x]

where
Ty = 1nf{t|xt =y}

Let us suppress y for a minute and consider the value of the tree as a
function of the tree’s current size alone. The valuation functional,

w(x) must satisfy the linear second-order differential equation
Liw] =0

where

(7) Llul (x) = ru(x) - b(x)u’ (x) - a(x)u"(x).

That this is so follows from general results stated in Krylov [5]
or Shiryayev [7]. We give a heuristic argument on which the more

rigorous proofs are based. Suppose X, << y. Since X, is continuous,

if 8t is sufficiently small we may be sure that x < y and the

t+At

tree will not be cut down before t+At. Thus

1A

(8) wix) = e T8 Elw(x )x, = x]

t+At

Use (3), (4) and (5) to expand the right-hand side of (8) in a Taylor

series so that
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w(x) = e-rtE[W(x) +w (x)( x) + %-w"(x)(Ax)2 +eeo T

(1 = rAt + e00) (w(x) + w (x)b(x)At + w"(x)a(X)At + «es )e

Rearrange and discard all terms of order (At)2 and higher to get (8).

Another condition which w( ) must satisfy is that
(9) w(y) =y

which is an immediate coﬁsequence of (6). Another consequence of (6) is

that if v is chosen optimally

(10) ‘ w(y) = 1.

Rigorous proofs of the necessity of (10) -- known as the smooth
pasting condition -- can be found in Krylov [5] and Shiryayev [7]. We
give a heuristic argument which holds only for the special case where

the function H(x,y) of (6) can be written in the form
(11) w(x) = H(x,y) = £(x) g(y).

(We will observe shortly that (l1) holds for some interesting special

cases.) In this case it follows from (9) that

w(y) = £(y)g(y) =y

so that g(y) = —JL— and

£(y)
- vy
(12) w(x) f(x) )
and
(13) wi(x) = £7(x) —4— .

f(y)
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However, if y is chosen optimally, y must maximize ¥%§7 so that

(14) £(y) - £°(3)y = O.

Using (14) to evaluate (13) at y we obtain (10).

We have thus argued that the valuation functional w must satisfy
a second-order differential equation L([w] = 0 and the two boundary
conditions (9) and (10). This might at first sight seem to determine
w completely'as the two boundary conditions determine a unique solution
to a second-order differential equation. However, this reasoning is
incorrect since (9) and (10) are meant to determine the optimal stop-
ping time y while for every y there is a solution to the differential
equation L[u] = 0 satisfying u’(y) =y, u’'(y) = 1.3 Obviously all y
cannot be optimal cutting sizes so the problem must be rethought. The
most straightforward approach is to look for another boundary condition.
We stated that a distinctive aspect of diffusion processes was that
they could go down as well as up. A natural question to ask is whether
there is some obvious lower bound to the size of the tree and if there
is, what the value of the tree should be if it ever reaches that size.

One possible answer to this question is to suppose that there is
no natural lower boﬁnd to the size of the tree. Then we must be
prepared to evaluate trees of any size; w(x) must make sense for
arbitrarily large negative x. This requirement turns out to prévide
the needed missing boundary condition. To see this most easily,

consider the constant coefficients case where a(x) = a and b(x) = b.

Then the requirement that L ([w] 0 implies that

(15) W - bw’ - aw" =0
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or

le)\x + A eux

(16) w(x) = A 2

where A and M are roots of the characteristic equation of (15). Thus

2
(17a) A== b + (b™ - 4ar) > 0
2a

- b - (b2 - 4ar)
2a

(17b) H o=

It follows from (6) that for all x, w(x) < y so that if we are
going to consider arbitrarily large negative values of x we must require
that w(x) remain bounded as x - -«. From (16) and (17) it follows then

that A2 = 0 and w(x) is of the form

(18) . w(x) = Alexx.

Note that (18) is of the form (ll) with the constant A1 playing
the role of g(y). We can repeat the analysis given above observing that
=
if the tree is cut down at size y, we must have A1 = ye y’ so that

Ay

-A(y-x)' so

w(x) = ye If y is chosen optimally it maximizes ye—

that y = At and
(19) w(x) = X "e .

Note that since x > 1-1, w(x), as given by (19), is a decreasing
function of A.
If the coefficients a(x) and b(x) are not constant, the same

results hold. It follows from general results of Hartman {7: Chapter
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XI, Section 6] that if a(x) and b(x) satisfy the conditions set forth
in Section 3a above, then there is a solution w(x) to L{w] = 0 which

satisfies

(20) lim jw(x)| < =

X FT=c
Furthermore, if w(x) is a solution to L[w] = 0 satisfying (20), so is
Aw(x) for any constant A. Once again these solutions satisfy (11). The
optimal boundary y is determined in the same way as in the constant
coefficient case.

While consistent, this analysis is obviously incomplete. On both
economic and biological grounds, it makes sense to suppose sometimes
that a lower bound to tree size exists, that there is some value Q
below which the tree cannot sink. We must ask what determines this
boundary and what the value of the tree is if it ever hits this
boundary. The most straightforward procedure is to assume that when
the tree becomes of size Q, it dies and is worth nothing. 1In this

case we add to the conditions (9) and (10) the condition
(21) w(Q) = 0.

Note ;hat if w(x) is a solution of L{w] = 0 which satisfies (21), so
is Aw(x). Although this may have biological appeal, a little thought
will make clear that (21) is suspect on economic grounds. In the
first place, since we are measuring tree size in market value rather
than board feet, (21) simply makes no sense unless Q > 0. However, if
{Q > 0], it is not clear that the optimal policy is simply to let the

tree die if it reaches Q. It would seem better to sell it at size Q + €
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and get Q + € where € > 0 is small. Since € can be arbitrarily small,
Wwe can approximate arbitrarily closely a tree which has boundary

condition
(22) - w(Q) =Q

instead of (21); a tree which grows according to this boundary condition
is more valuable than one with boundary condition (21).

If we consider not trees but stocks bought on margin, the condition
(22) has appeal. Suppose I buy one share of stock on margin. When I
buy it, its price is x and I pay P < x, borrowing x - P fromAmy broker.
If the price gets so low that the amount I have borrowed is greater
than or equal to Y times the current value of the stock, my broker
will sell me out at the current market price. Thus I will get sold
out at price Q = lZiEl . When a sale is made at price S at time T
(either voluntarily by me or involuntarily by my broke?) I receive §
and pay off my loan. If I can borrow at my discount rate r, then I

must pay back a sum of (x-P)erT which has a present value of

(x-P). Thus the value of the tramnsaction to me will be

ye_rT - (x=P)

if I sell voluntarily and

Qe_rT - (x=P)

if I am sold out. Since the term (x~P) is a constant independent of
anything I do, this case corresponds to the boundary condition (22).

Unfortunately, while (22) is appealing on economic grounds, it
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does not have the appealing homogeneity property which the previous
conditions we have discussed had. That is, it is not true that if w(x)
is a solution to L[w] = 0 which satisfies (22), so is Aw(x). Equation
(11) does not hold. However, powerful techniques exist which allow us
to analyze processes which satisfy (22).

We close this subsection by mentioning one boundary condition
which is homogeneous. Probabilists who analyze diffusion processes
often consider reflecting barriers. This corresponds to a tree which
when it hits a size Q simply bounces off Q and starts again. As can be
proved by a Taylor series argument [Cox and Miller, 2] if there is a

reflecting barrier at Q, then
(23) w (Q) = 0.

It is difficult to imagine cases where (23) makes sense where
(1) represents the value of a tree or other assets. However, it is not
hard to imagine p;ocesses which could be modeled by diffusion processes
for which the boundary condition (23) is appropriate. In models of
invention (23) corresponds to "Oh well, back to the drawing board."
(This case might also be modeled by a process wﬁich stuck on the boundary

for a random period of time before it bounced back.)

c. Comparative Statics

In this section we will amalyze how the tree’s value and cutting size

change as we change the parameters of the problem.

i. Constant coefficients; no absorbing barrier. To illustrate

the kind of results we seek it will be well to begin with the constant
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coefficient case which is bounded at -«. As we saw the optimal cutting

- -] Ax-
size is y = A 1 and the value of a tree of size x is w(x) = A 1e x-1

where A is given by (l7a). Since w(x) is a decreasing function of A,
the parameters of the problem (a, b, and r) affect value and cutting

time through their effect on A. It is straightforward to calculate that

ar d
dr db

and cutting time while increases in the growth rate b have the opposite

> 03 < 0 so that increases in the discount rate decrease value

effect. Similarly, gﬁ > 0 so that increased variance increases both
cutting time and value. This result is consistent with the observations
we made in the preceding section that barring overshooting problems and
the possibility of falling into a disaster, uncertainty should increase
value and cutting time because e "% is a convex function of t.

In the Appendix we analyze the effects of parameter changes
on trees with boundary conditions (20) and (23) (reflecting barriers
and bounded at - «). Our analysis is not confined to the constant
coefficient case and we consider the effects of local parameter changes
as described in the next section. In general, the conclusions described
above hold. Increases in the interest rate, and decreases in the

growth rate decrease value and cutting time. Oftemn, but not always,

increases in variance increase value and cutting time.

ii. Absorbing barriers. In this section we present a complete

analysis of the absorbing barrier case. That is, we consider a process

whose growth is controlled by

t t
(1) ‘ X, = X, +0f0 (x)dW_ + (f) b(x)ds
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on_the interval I = [Q,Z]. 'Let a(x) = %‘[G(x)]2 and Y > 0 be the

first exit time of x,_ from I. Let ij be the set of stopping times

t
for X, and define
(24) w(x) = ?3§.Exx(vAr)e-r(YAT)
where
alb = Min(a,b)
and

Exf(xt) = E[f(xt)lx0 = x].

The meaning of (24) is that when the process is stopped according
to T or when it exits from I the tree owner gets the value of the tree
at that time. If the tree exits from I at Q, he gets Q =-- in accord
with boundary condition (22); if it exits at Z, he gets Z and if it is
stopped at T he gets QT. The upper boundary Z is added to the statement
of the problem because this is the way in which Krylov’s results are
stated. It has no significance as we can make Z arbitrarily large. We
give conditions below which guarantee that it is never optimal to stop
but the examples are pathological.

In this section, we analyze the effects of parameter changes --
that is, changes in the functions a( ), b( ) and the numbers Q and r
on the valuation function w(x) and the optimal stopping rule. Though
the analysis is somewhat intricate, the results -- which are summarized
in the introduction -- are rather clean.

Krylov [4: Section l.5] shows that if a(x), a(x)"1 and b(x) are
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bounded and satisfy a Lipschitz condition on I, then we may divide I

into two disjoint regions:
(a) A closed set zéfcalled the stopping region on which w(x) = x.
(b) An open set (? on which w(x) > x.
Furthermore
(¢) Lwl =0 for x € (i
(@) wi(x) =1 for xe4jjf](Q,Z).

(e) The optimal stopping rule is to stop on the first entry into
the region djﬁ. (1If x, eféfthe tree should be cut down

immediately).

These conditions are sufficient as well as necessary. If there is a

function ; and regions (i and /Cfsatisfying (a), (b), (), and (d),
and if ; is absolutely continuous on I, then ; = w and (e) describe
the optimal stopping rule.

These conditions are best understood graphically. In Figure 1
we have drawn the function w(x). The continuation region corresponds
" to the areas where w(x) is above the 45° line. On the stopping
region /ji w(x) = x and thus coincides with the 45° line. There are
two boundaries of (f in Figure 1. The first is at Q and there it is
not true that w'(x) = x. We will call such a situation a coerced
boundary. There is a free boundary at y and at that point, w'(y) =y
(in accordance with condition (d)). While other possible arrangements
of continuation regions and stopping regions are possible, we will

show below the condition that b(x)/x is decreasing is sufficient to

insure that Figure 1 describes the problems. Some other examples of
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Figure 1

w(x)

Coerced Boundary at Q, Free Boundary at y
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possible boundaries and continuation regions are shown in Figures 2
through 5. Figure 2 corresponds to two free boundaries (the boundary
at Q is not a binding constraint), Figure 3 to a disconnected continua-
tion region, Figure 4 to a tree which will never be cut down and
Figure 5 to a tree which is always cut down immediately.

We begin our analysis of the optimal stopping time with a result
which implies that in general trees are kept until they are at least

as big under uncertainty as they are under certainty.

Proposition 4 . Consider the region

a= {xel; b(x)/x > r}

then

(a) CX/ - <f:

(b) Each interval of Cﬁcontains an interval of (ji In
particular if Cz_consists of a single interval, (fl

consists of a single interval.

Proof: This result is due to Miroshnichenko [6] and it is only
necessary to adapt his proof to our special case. To prove (a)

consider a point x E/éf. Then

(25) w(x) = sup E e-r(YAT)x =X
teg X yAT
-r(thv) .
thus, for any t > 0, E e Xype £ X But, applying Ito’s
rt

lemma to h(x,t) = e ' 'x we have, for any stopping time T

T
h(x ,T) = h(x,0) + / dh
T 0
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Figure 2

w(x)
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Free Boundaries at L and y
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Figure 3

w(x)

Disconnected Continuation Region
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Figure 4

w(x)

32

Unbounded Cutting Size
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Figure 5

w(x)

33

w(x) coincides with the 45° line.
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T
=x + [dh
0
T T
=x + é‘[a(xs)hX + b(xs)hx - rhlds + C.,fa(xs)hxdwS

Taking expectations and observing that hXX = 0 while the second
integral is -- by the definition of the Ito integral -- a martingale,
we have

T

-rs
Exh(xT,T) = X + Eé'e [b(xs) - rxS]ds

T
By (25) we have 0 > Ex fé_rs[b(xs) - rxs)]ds. Since b is
0

continuous, if b(:) > r, then we could choose T as the first t
b(x.) R
such that " =rand T = YAT . But then we would have
t

T ars
E J e [b(x ) = rx_ ] ds < 0
X, s s

s s b(x
a contradiction. Thus we must have that —ﬁ—l.§ T.

Miroshnichenko’s proof of part (b) applies without change.

Since b(x) is the average rate of change of the tree, b(x)/x is
its (expected) growth rate; if b(x)/x > r, the ‘expected growth rate of
the tree is greater than the interest rate. The rule for cutting down
the tree under certainty is to let it grow as long as the growth rate
exceeds the interest rate. Proposition 4 generalizes and strengthens

this rule. We note some obvious consequences of Proposition 4.
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(-4

Corollary 1. (a) If b(x)/x > r for all x I, then <_ = (Q,Z), and

n ’ et

_ {(Q),(Z)}. (b) If b(x)/x <r for all x I, then /zf”= I.

%

Proof: Obvious.
Note that (a) corresponds to Figure 1 and (b) to Figure 5. The
next result gives necessary conditions for Figure 1 to describe the

stopping region.

Corollary 2. If

(26) b(x)/x 1is decreasing and b(Q)/Q > r

then the continuation region consists of a single interval. Furthermore,

there is a coerced boundary of C?at Q.
Proof: Obviouse.

Our approach to comparative statics will consist of changing
the parameters a(x) and b(x) in a small interval JC I and leaving
them unchanged outside of J. Specifically, we increase both instan-
taneous mean b(x) and instantaneous variance a(x) and ask whether this
will increase the value of the tree. To analyze this question we use
Krylov’s [4] discussion of the optimal control of diffusion processes.
Krylov shows that if a diffusion evolves according to

j't t

% =X+ . 0(xs,as)-dws +0.fb(xs,as)ds
where o is a control variable, then on the continuation region the

value function w(c) satisfies
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(27) a(x,0%(x))w'"(x ) + b(x,a*x))w’ (x) = w(x) =0

where o*(x) is chosen to maximize the left hand side of (27). This
implies that if increases in o correspond to increases in variance
[a(x,a) is increasing in while b(x,a) is independent of a] o will be
set as high as possible if the value function is convex near x, if
w'(x) < 0, then o will be set as low as possible. Since choosing to
set o high means voluntarily accepting more variance, whether or not
local increases in variance increase or decrease value depeéds on
whether the value function is convex or concave. Similarly, increases
in mean will increase value if the valuation function is increasing --
. as we will see in Proposition 6 beiow. We now show that this heuristic
argument is correct.

Consider an optimal stopping problem on I = [Q,Z] with parameters
a(0,x) and b(O,x). Let wo(x) be the value function for this problem.
Suppose, for simplicity, that Cjﬁo = (Lo,yo), the continuation
region for this problem, is an interval. Let J = (c,d) be an interval

with L, < ¢ < d < Yo and Y > 0, such that

0

w'o(x) > Y >0, w"o(x) >Y >0 for x€J.
Let a(x,a)Aand b(x,0) be smooth functions on I x[0,1] satisfying

a(x,a) = a(x,0) for x ¢ J

b(x,a) b(x,0) for x ¢ J

while for xeJ, a(x,0) and b(x,a) are strictly increasing in o . Let
wa(x) be the payoff function and de = (Lq,ya) the interval of the

continuation region containing J, for the problem with parameters a(x,)
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and. b(x,a Y. - Since C)O is an interval, Proposition 4 implies Cu
is also an interval and COC Coz for all o.

One can show (the details are available from the authors) by
adapting the arguments Krylov [5] used to establish his lemmas 1l.4.6 and

1.5.2 that the functions a(x,a) and b(x,0) can be chosen so that
(28) W (x) > 03 w" (x) >0 for ael[0,1],xeJ .

We shall suppose that the perturbations a(x,2), b(x,%) have been

chosen sufficiently smoothly that

w’a (x) > 0; W"OL (x) >0 for x eJ.

Proposition 5. Under these conditions

(1) wl(x) > wo(x) for x ¢ CO'
(ii) Cl 2 C’O
(iii) If LO is a free boundary, L1 < LO; if Yo is a

free boundary, MATRAR AT

Proof. Consider the optimal stopping and control problem: Choose a
control rule o(t,w) and a stopping ruley to maximize (24) where X,
evolves according to

t t

+ Ofc (xs,OL)dwS + ofb(xs,a)ds.

(1) X, = X

Let w(x) and C be the payoff function and the interval of the
continuation region containing J for this problem. It follows from (28)

and Krylov’s characterization of the optimal solution to this problem
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[4:1.4.5] that a(t,w) =1 for all t, w. Thus w(x) = wl(x) and
. /C <’D

N 1’

Step 1. There is a point x € J such that wl(%) > WO(%)°

Proof: Suppose the contrary. Then for x € J, w(x) = wofx) = wl(x)

must satisfy

(29.0) a(x,0)w"(x) + b(x,0)w’ (x) = rw(x),
and
(29.1) a(x, W' (x) + b(x,w’ (x) = rw(x).

Subtract (29.0) from (29.1) to obtain
(a(x,1) - a(x,0)w"(x) + (b(x,1) - b(x,0))w’(x) = O.

But all the terms on the left-hand side of this equation are strictly

positive so it cannot hold. This contradiction proves l.

Step 2. wl(x) > wo(x) for x € <j;.

~

Proof: Note that since w(x) = WI(X) we must have
wl(x).z wo(x) for x € 1

from which it follows that (?1 ) <:i 0 We may as well assume that

-4
X € (i_o for if x ¢ C—O’ Step 2 is true by definitiom.
~2

Now fix x Ei‘, and suppose without loss of generality that x < x.

0

Let x be a point in 0 which is less than x. For i = 0,1, let

Ti be the first exit time of X, from (x,x) where
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t t
+ gc(xs,i)dws + é‘b(xs,i)ds

X =
t - %o

Then it follows from the nature of the optimal strategy (Krylov

[5:1.5.4]) and Bellman’s Principle (Krylov [5:1.4.17]) that

- —r’[o
(30) Wo(x) = Exe WO(XTO)
-t
= wy(x) E [e | x, = xl
0
- _rTo ~
+ wy(x) E_[e | XTO = x]
< wl(g) Ex[e | x. = x]
0
. -rT, .
+ w,(x) E_[e [ XTO = x].

However, this last quantity is just the expected reward which omne
would receive if one followed the strategy of setting ¢ = 0 until the
first exit from the interval (g,ﬁ). The expected reward obtained from
following this strategy canmot be greater than wl(x), the expected

reward from following the optimal strategy. Thus, wo(x) < wl(x).

Step 3. Suppose Yo is a free boundary for the problem with parameters
a(x,0), b(x,0). Then Yo is not a free boundary for the problem with

parameters a(x,l), b(x,1). It follows that Yy > Yo

Proof: Recall that a(x,l) = a(x,0) and b(x,1l) = b(x,0) for x e(d,yol.

Thus both w,(x) and wo(x) are solutions of
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(31) a(x,0)U"(x) + b(x,0)0"(x) - rU(x) = Q

on (d,yyl. It follows that h(x) = wi(x) - wo(x) on (d,yg) is
also a solution of the homogeneous second-order equation (31).
Suppose Yo = Y1 is a free boundary for both problems. Then
wi(yy) = wylyg) =y and wi(y)) = wylyy) = 13

equivalently or
(32) h(y,) =0 and h"(yy) = 0.

But the only solution to (31) satisfying (32) is the trivial solution.
Thus h(x) = 0 for x (d,yO] or wl(x) = wo(x) on (d,yo]. This
contradicts Step 2 and establishes Step 3.

A similar argument establishes that if L0 is a free boundary
for the problem with paraméters a(x,0) and b(x,0), then L1 < L0
and this completes the proof of Proposition 5.

We may summarize Proposition 5 briefly as saying that if the |
value function is‘strictly convex in a neighborhooa of X, more
variance near X (an increase in a(x) in a neighborhood of xo)
increases value and cutting size. It is clear from the proof that if
the value function is strictly concave, then a decrease in variance
near X, has the same effect. If w 1is increasing, then an increése

in the growth rate increases value.

Corollary 3. If y is a free boundary, o) <r
y

=]

4
Proof: We know that if Ejfl >r, x €\ unless x = Q or S, for any

optimal stopping problem. We can consider any stopping problem as
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having been derived from another through an increase (or decrease) in
variance which strictiy expands the continuation region. Since
A = {x:b(x)/x > r} is contained in all continuation regiomns, every
continuation region must strictly include A.

We now show that w’(x) > 0 so that increases in the growth rate

always increase value.

Proposition 6. Let w(x) be the payoff function of an optimal stopping

problem with absorbing barriers Q and Z. Then, w’ (x) > 0 for all

x € (Q,2].

Proof: Since w'(x) =1 on ij we need only show that w’(x) > 0 for
XE <f5= (L,y). Near L, w'(x) > 1 > 0 since w(x) is increasing faster
than x on the lower boundary of the continuation region. Let X be
the first x > L such that w'(xo) = 0. Then w"(x) < 0. But since

L{w] = 0 on <j s w"(xo) = rw(xo)/a(xo) > 0. This contradiction
proves Proposition 6.

To ask whether increases in variance increase or decrease value is

to ask whether w(x) is concave or convexe.

Proposition 7. There is always an interval in each continuation region

in which w(x) is concave.

Proof: Let (i = (L,y) and consider h(x) = w(x) - x on {Ly,yl. Then h(L)
= h(y) = 0 but h(x) > 0 for x € Ci . Thus h(x) must have a relative
maximum on (c,y) so h"(x) = w"(x) must be less than 0 in a neighborhood

of this maximum.
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Proposition 8.

(a) If % is a free boundary then w"(x) > 0.

(b) If L is a coerced boundary and b(L)/L > r then w"(L) > 0.

Proof:

(a) Consider again h(x) = w(x) - x. Then h(x) satisfies
(33) a(x)h"(x) + bh' (x) - rh(x) = rx - b(x)
but if y is a free boundéry, h(x) = 0 énd h’(x) = 0. Thus
a(x)h"(x) = rx - b(x)

which is positive by Corollary 3. Since a(x) > 0 and h" (%) = w"(X), we
have that w"(x) > O.
(b) If L is a coerced boundary h(L) = 0 and w'"(L) = h"(L) =

rL = b(L) _ h'(L)
a(L) a(L)

b(L) < 0.

Taken together, the two parts of Proposition 8 imply that if
b(x)/x is decreasing, increasing variance near the lower absorbing
barrier decreases value while increasing variance near the free
barrier increases value. If one is edging gingerly avay from a
precipice, one is not pleased if required to make the trip on roller
skates. Near the free barrier the convexity of Ee-rT in T dominates
effects of increased variance on the probability of absorption.
Propositions 7 and 8 together imply that the effects of increased
variance are ambiguous. In any problem with a free boundary, the

effects of increases in variance are ambiguous. Some local increases
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in variance increase value. Others decrease it. Perhaps the most
useful condition for determining which region is which is given next
in Corollary 4.

Consider a tree with growth rates b(x) with a coerced lower
boundary Q and free upper boundary y*. Then for x near y*, w(x) is
convex while for some x, w(x) is concave. For if it were to be the
case that (Q,y*) can be split into two intervals, one near Q where
w(x) is concave and one near y* where w(x) is convex, it is necessary
and sufficient that there be a single ® such that w"(x) = 0. A
sufficient condition for this is that w"(x) = O should imply that

w" (x) > 0. Since L[w] = 0, w"(x) = 0 implies
W' (x) = (w(X)/a(x)) (r - b°(x)).
Since w’ (X)/a(x) > 0, we have proved

Corollary 4. If r - b“(x) > 0 for all x, there is a 2 such
that the continuation region (Q,y*) can be divided up into a region

(Q,Z) where w(x) is concave and a regidn (Z,y*) where w(x) is convex.

We conclude our exploration of comparative statics with the
observation that increasing the lower absorbing barrier invariably

decreases value and cutting size.

Proposition 9. Consider a problem with parameters a(x) and b(x) on

the interval [BO,Z]. Suppose b(x)/x is decreasing so that there is

a coerced boundary at B, and a free boundary at Yo Consider

0
another problem with higher absorbing barrier Bl’ For i = 0,1, let
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>

Wi(x) and (_i = (Biyi) be the value function and continuation

regions for the two problems. Then

wo(x Yy > wl(x) for x € <f1

and
yl < yO'

. Proof: 1If wl(x) and (?I is empty, the proposition is obviously true.
C,oC

It is obvious that k_o ») p and wo(x) > w,(x) for x e [B;,Z].

Consider h(x) = wo(x) - wl(x). Then on [Bl,yl] both wo(x)

and wl(x) satisfy L{w] = 0. Thus, h(x) satisfies L[w] = 0 also.

Since h(x) > 0 on (Bl’yl) if there were an Xq € (Bl’yl) such

that h(x 0, Xq would be a relative minimum of h(x) and we would

o)
also have h'(xo) = 0., But this implies that h(x) is the trivial

solution to the second-order differential equation and that h(x) =0

/’3

for all x € [Bl’yl]' However, B1 € <?O since if B1 > Yor 1
is empty, a contradiction. Thus, WO(Bl) > wl(Bl) = B1 and
h(Bl) > 0. This contradiction establishes that h(x) > 0 for x €

[B’yl]'

We use a similar argument to show that Yo > yqe Suppose that
Yo = Yyq° Then Yo is a free boundary for both problems and
Wo(yl) = Yl = Wl(Yl) and w O(YI) =1=w I(YI) 80
that h(yl) = (0 and h’(yl) = 0 which again implies h(x) = 0 on

[Bl,yll. This contradiction completes the proof.




45

Appendix
Other Boundary Conditions4

In this appendix we develop heuristically the comparative statics
of trees whose growth path is governed by a diffusion process, but which
either have a boundary at infinity (Equation (20) of the text) or a
reflecting barrier at Q. Again we assume that the optimal stopping rule
is to wait until the tree reaches a given size y. As explained in the

text, the valuation function is of the form

= A
(A.1) w(x) = £(x) £(y)

where f(x) is a solution of

(A. 2) L[f] = a(x)f"(x) + b(X)Ef"(x) - rf(x) = 0
satisfying
(A.3) lin [f(x)] <=

X =>®

for a boundary at - ® or
(A d) £°(@Q) =0

for a reflecting barrier at Q. Furthermore, since y is chosen to

maximize ?%;)’ the optimal y must satisfy

(A.5) y = g—(%)

We can write Equations (A.l) and (A.5) in a more useful form

by considering
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(A.6) g(x) log £(x).
Let

(A.7) h(x)

g’ (x) = f(x)/f"(x).

Then (A.l) becomes

(A 8) w(x) =y exp [g(x) - g(y)]
y

=y exp - Jh(s)ds ,
X

while (A.5) is equivalent to

It is clear from (A.7) that a parameter change which decreases
h(s) everywhere on the path from x to y will increase the value
function w(x). It is also easy to check that second-order conditioms
for maximization require that at y, h(x) intersects 1/x from below.
Thus a decrease in h( ) increases optimal cutting size as well as
increasing value.

Further, h satisfies a simply and easily analyzed first-order

differential equation. Substitute into (A.2) to obtain

(A.10) h(x) = —— - b(x)

2
2 (%) a(x) h(x) - h™(x).

Note that since (A.10) is a first-order equation only one boundary
condition is required to specify a solution. Condition (A.4) (reflect-

ing barrier at Q) is equivalent to
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(A.11) h(Q) = 0

while it can be shown that Condition (A.3) (w(x) bounded as x -> = « )
is equivalent to
(A.12) . lim  |h(Q)] < = .

Q->=

Thus, to find the value of a tree of size x, it is only necessary
to solve (A.10), pick a particular solution, say ﬁ, by applying the
boundary condition (A.1l) or (A.12). Then integrate this ﬁ érom X
until E crosses the rectangular hyperbola at y, the optimal cutting
size. The log of the value of the tree is log y plus the value of the
integral. ‘

This suggests an easy way of getting comparative statics results.
Suppose one tree —— call it the h tree -- grows according to h while
another tree - the h tree —- grows according to ﬁ, where h(x) < ﬁ(x).
Then it is clear from (A.8) that for any arbitrary cutting size y, if
both the.h tree and the ﬁ tree are cut down at y, the h tree is worth
more because, in an obvious notation,

H(x,y) = y exp [- y(h(s)ds] > y exp [— Fﬁ(s)ds] = ﬁ(x,y).
X X

Furthermore, since it is easy to check that second-order conditions .

require that at the optimal cutting size y, h intersects the rectangular

hyperbola 1/x from below, the optimal cutting size for the h tree is
greater than the optimal cutting size for the h tree (See Figure A.l).

Thus, we see that any parameter change which uniformly decreases h( )

increases value and cutting size.




Figure A.l

Determination of the Optimal Cutting Size
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To apply this principle we need to analyze (A.10) a little more.

It is straightforward to factor (A.10) into

h7(x) = (A(x) - g(x))(g(x) - H(x))
where
2 1/2
A -b(x) + (b"(x) + 4ra(x))
(x) 22 (x) > 0
and
2 1/2
1(x) -b(x) + (b (x) + 4ra(x)) < 0

2a(x) .

Thus for h(x) > A, h”(x) < 0 while for * (x) > g(x) > W(x) h’(x) >0
and for h(x) < ¥, h’(x) < 0. The phase diagram for h is as in Figure A.2.
Since A(x) > 0 > u(x), solutions of (A.10) which correspond to reflecting
barriers are increasing. If Q < d, the solution which reflects at Q is
everywhere below the solution which reflects at Q. 1Increasing the
reflecting barrier increases both value and cutting size.

To do comparative statics with respect to the parameters Oz(x)
( = 2a(x)), b(x) and r, considér a local change of a parameter in a
small interval A . Outside A the parameters are unchanged and the
solutions are the same. Suppose we have a solution h(x). If the local
change increases h(x) in A , then on the boundary of A it will link up
with another solution ﬁ(x) which is greater than h(x) to the right
of A . Thus this local change will decrease value and cutting size.
This is illustrated in Figure A. 3. The dashed line shows how the
local change affects the path h(x) in A .

To see how local changes affect h, differentiate (A.10) to obtain
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Figure A.2

Phase Diagram for h(x)




Figure A.3

Effects of a local parameter change

h(x)
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so that increases in the mean growth rate increase value and cutting

time. Similarly

so that increases in the discount rate have the opposite effect. To see

the effect of increases in variance, note that

dh’” _ _ (r - bh)
da a2

which is negative whenever h(x) < r/b(x).

v

It is straightforward to show that solutions of (A.10) intersect
1/x from below if and only if they intersect at a point at which 1/x <
f/b(x). Thus, increased variance near the optimal cutting size will
increase value and cutting size. Similarly, increased variance near
the reflecting barrier will also increase value and cutting size (as
r/b(x) > 0). It is possible for trees with reflecting barriers to
produce solutions of (A.10) which exceed r/b(x) but it is not necessary
that they do so. Thus it is quite possible that all local increases
in variance will increase value and cutting size. This result contrasts
with the case of absorbing barriers. As is shown in the text, for
trees with absorbing barriers, some increases in variance decrease

value and cutting size, others increase value and cutting size.
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See Karlin and Taylor [4, pages 162-169], and Wentzell [9, Chapter
11].

We note here that there is an obvious generalization of Proposition
2 to non-stationary X; this does not seem to be the case for
Proposition 3.

3 See Hartman [8, pages 350-62].
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