NBER TECHNICAL PAPER SERIES

USING INFORMATION ON THE MOMENTS OF DISTURBANCES
TO INCREASE THE EFFICIENCY OF ESTIMATION

Thomas E. MaCurdy

Technical Paper No. 22

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge MA 02138

May 1982

This work was support by NSF grant No. SES-8023043. Special thanks
are given to Takeshi Amemiya for many valuable discussions on the
contents of this paper. The research reported here is part of the
NBER's research program in Labor Studies. Any opinions expressed
are those of the author and not those of the National Bureau of
Economic Research.



NBER Technical Working Paper #22
May 1982

Using the Information on the Moments of Disturbances
To Increase the Efficiency of Estimation

Abstract

This study considers the estimation of both regression and
simultaneous equations that may involve nonlinearities in parameters
and variables. For a wide range of assumptions concerning the distributional
properties of disturbances, this analysis develops new estimators whose
efficiencies dominate those associated with the estimators obtained by
familiar least squares and instrumental variable procedures. Essentially
the only time one cannot improve the efficiency of estimation using the
methods proposed in this paper corresponds to those special situations in

which the familiar procedures yield estimators that are asymptotically

efficient.

Professor Thomas E. MaCurdy
Department of Economics
Stanford University
Stanford, Ca. 94305

(415) 497-3983



Introduction

This study develops new estimators for regression and simultaneous
equations that are in general strictly efficient relative to the conventional
least squares and two-stage least squares estimators. The analysis encompasses
both linear and nonlinear estimation in situations where random variables are
distributed independently across observations. The discussion deals with many
alternative assumptions concerning the specific distributional properties of
the disturbances associated with the equation under consideration, ranging
from a situation in which the variances of diéturbances vary across observations
in an unknown and arbitrary fashion, to one in which errors are identically
distributed over the sample. For each of these distributional assumptions,
estimation procedures are formulated that yield a gain in efficiency over the
familiar ordinary, weighted, and two-stage least squares procedures except when
these latter procedures correspond directly to the application of maximum
likelihood methods. Thus, unless the exact distribution of random variables
is known, one can improve the efficiency of estimation using the procedures
described here.

The properties of the second and higher order moments of the disturbances
constitutes the source of information used to improve the efficiency of estimation
in this analysis. Estimators are formulated by jointly estimating the regression
or simultaneous equation under consideration with various transformations of
this equation which are obtained by weighting schemes and/or by raising both
sides of an equation to a power (e.g., squaring or cubing both sides). The

particular transformations included in the joint estimation procedure are chosen



in a way to exploit the distributional properties of the disturbances for
the sample under investigation. As a by-product of this work, general
methods are developed for testing the hypotheses that any particular moment
or combination of moments of the disturbances are constant across observations
for both the cases of regression and simultaneous equations. This analysis
also provides a natural framework for discussing recent important contributions
by Chamberlain (1982), related work by Amemiya (1982), and results reported
in White (1982).

Section I presents notation and results used throughout the paper.
Section 11 discusses estimating the parameters of a linear multiple regression
model, and Section III considers the general problem of estimating the

parameters of a nonlinear simultaneous equation.



I. Combining Information to Compute Estimators

This section reviews a familiar procedure for computing parameter
estimates that optimally combines information and constraints from various
sources. The purpose of this discussion is to establish the notation and

derive formulas used in the subsequent analysis.

Suppose one is interested in obtaining a consistent estimate of
the "true'" value of a p x 1 parameter vector 6 that is an unknown determinant
of the distribution generating a random vector Y. Denote this true value as
60 which is assumed to be an interior point in a compact set 0, and let Yi
and Zi’ i=1,...,N, denote N observations on Y and on a vector of measured
characteristics Z. The Yi’s are assumed to be independently distributed
across observations after conditioning on the Zi's, or when these character-
istics are treated as known constants.

The most widely used method for computing a consistent estimate for
60 is to solve a system of equations that implicitly defines a value for 8
and is known to be satisfied when 6 = 80 as the sample size goes to infinity.
In particular, let Qi(e) = (8, Yi’ Zi)’ i=1,...,N, represent a r x 1 vector

of known functions with r > p, and consider the system of equations

Il &~ 2

zi(e) = 0.

2|

(1 1156) =

i=1

Assuming each Ri possesses a sufficiently well-behaved distribution and is

chosen so that E(Ri(eo)) = 0, one can show that setting 8 = 60 solves (1) in



the sense that LN(SO) converges in probability to zero as the sample

size goes to infinity. TFor most estimation procedures, the li's are
gradient vectors associated with the optimization of a particular function
of the data defined over the parameter space ©. By introducing additional
assumptions which guaranteee the satisfaction of a set of regularity
conditions, one may further demonstrate that computing a solution to (1)

yields a strongly consistent estimate for 80 that is asymptotically normally

distributed.

Some notation and assumptions are needed for the following discussion.
L,

The matrices of first partials -

i |, . X
—, 1 =1,...,N, are assumed to exist with
30

each element uniformly continuous in 6. Denote the average of these partials

N 3%,
by SN = % z Sg%, assumed to possess full column rank. Define the matrix
i=1
1 N
VN(e) = N z zi(e)zi(e) as an average of outer products; and further define
i=1

L(8) = lim E(LN(_B)), s(e) zlm}:(sN(e)), and V(8) = lim E(VN(e)) with limits
computed as N + =, To derive the asymptotic results cited below, the
distributions associated with the Ri's and the matrices of first partials

cannot have too much weight in the tails.l Given such distributional assumptions
and the independence of the Qi's, one may show the following strong convergence
results: LN(B) 3 L(8); SN g S(8): and VN(G) 5 v(g), where s designates almost
sure convergence with these results holding for each 8 ¢ 0. Thus, if E(QN(QOD =
0, it follows that LN(BO) £ 0 implying eo solves (1) as the sample size goes

to infinity. Furthermore, one may show that /ﬁ—LN(eo) g N(O, V(eo)),where 4

denotes convergence in distribution, and N(-,-) signifies a normal probability



law. In many applications, one cannot rule out the possibility that
values of 6 other than 80 may also satisfy (1) in the limit. One can,
however, easily resolve this issue for the estimation problems considered
below, and for simplicity this analysis assumes the solution to (1) is
unique. To prove consistency and asymptotic normality of this solution,

the convergence of LN’ SN, and V_ to their respective limits must be uniform

N
in 6, and this assumption is maintained throughout the discussion.

When the number of equations in (1) used to compute estimates
exceeds the number of parameters, one requires a weighting scheme for comparing
the errors obtained in solving the various equations; one cannot typically
find a value for 6 that solves all equations exactly in finite samples. This
is, of course, a familiar problem in statistics. The theory of ordinary
least squares derives an estimate for 8 by minimizing the sum of squared
errors associated with the r equations appearing in (1), which implies
minimization of the quantity Lﬁ(B)LN(G). It is well known, however, that
applying generalized least squares yields a more efficient parameter estimate.
According to this procedure, one solves equation (1) by choosing 6 to minimize
the quantity Lﬁ(e)[E(VN(GO))]-l LN(S), where this expression uses the relation
E(LN(GO)L&(BO)) = % E(VN(GO)) following from the independence of observations.
The matrix E(VN(BO)) is unknown, but, as with many generalized least squares
analyses, a consistent estimate for this matrix is easily constructed and
the asymptotic properties of estimators are unaffected if one substitutes
this consistent estimate for the true value of the matrix. Accordingly, when

computing an estimate for 80, one sacrifices no estimation efficiency by instead

minimizing the quadratic form

2) MORMBNON



where VN = VN(e) with 6 representing any strongly consistent estimate for
. . o8
60 implying VN > V(BO). Essentially any solution to (1) or to any subset

~

of this system of equations may serve as 6. Let é denote that value of 8§
minimizing (2).

Identifying the asymptotic properties of the estimator é is a
straightforward task once one recognizes that (2) is in the form of the
quantities minimized to compute conventional nonlinear two- and three-stage
least squares estimators. Following the work of Amemiya (1974, 1977), who
initiated the study of this class of estimators, one can readily verify that

~ 8
6 > 6 and
o

N oo d ' -1 -1
(3) . /N (8 -8 ) >N, [S'(8 )V (8 )S(6 )] 7).
Thus, the approximate distribution for é in large samples is

PO Iras i
6 v N8 ,2dSg Vi SylTh).
where §N = SN(é). Recent work by Hansen (1981) also examines this method for

computing estimators and derives (3) using an alternative set of assumptions.

The interesting problem in estimation concerns the choice of the
equations included in system (1). When the distributions of random variables
are known, setting LN equal to the gradient associated with the log of the
likelihood function is well known to produce an estimator that is asymptotically
efficient. In this instance, adding more equations to (1) obviously provides
for no gain in estimation efficiency, and changing any one of the equations
leads, in general, to a loss in efficiency. Without knowledge of distributions,

however, the choice of equations used to compute estimators is an open question.



The subsequent analysis examines the strategy of adding equations to those
typically used in the conventiqnal application of least squares or instru-
mental variable estimation methods as a way of deriving more efficient estimators.
To determine the gain in efficiency as one introduces more informa-
tion or equations to compute estimators, suppose one has two sets of equations
available for estimating a parameter vector o: one system of equations
associated with the ith'observation consists of the vector of functions
gi(a, 1) which also depends on unknown parameters Y; and a second system
consists of the vector of functions hi(a, V) depending on a third set of
parameters Y. The expectations of both g and hi are assumed to vanish at
the true parameter values for each i, making it possible to use the averages
of either vector to compute a consistent estimate for o Combining these
equations to ebtain a single estimate for ays one sets B8' = (a', ', V")
and Qi = (gi, hi), and minimizes (2) with respect to 8. According to (3), the

1 S]_l, where

covariance matrix associated with the resulting estimate is [S' v
the argument 60 indicating the point of evaluation is dropped for notational

convenience. Consider the following partitions of the matrices S and V:

F_lrgagi lrgagi lrgagiT
1 N gy N L sa’ N Ly o N Loy
s=limElS J oo |=LimE| 7 8 6 6
i=1 5 N sh, ° N o, °©° N sh, °
o 1 z i 1 z i 1 Z i
N 21 da' N i1 ou' N is1 g’
8 6 8
- o o 0]
511 512 0
= H
S91 0 593




and

V =

lim E 1

N
N

izl 2 (0 )25 (8)

=TI

= lim E

1 =

1t

N
2

i=1

1

N
L

1

11

21

gi(eo)gi(eo)

hi(eo)gi(eo)

12

22

A

Al

I~

i=1

N

2

i=1

-

gi(eo)hi(eo)

hi(eo)hi(eo)

—

The matrix V is assumed to be nonsingular, which in essence requires each

of the functions added to the analysis contained in hi to constitute a unique

. . . - : - _ -1
piece of information. Defining the matrices V22-1 z V22 V21V11V12 and
-1 -1
E - z i z - F =
F (521 0) V21V11(S11 812) (G Fé) with G 821 V21V11811 and )
-1 , . it S
—V21V11812, use of the partion inverse formula for V = yields
B
' v Y g1 y -1 N r ¢
rS11 s21 I v11V12 V11 0 OW S11 s12 0 }
vyl -1 = '
[s'" vV 7 5] S12 0
0 s! 0 I o vl {l-v,vil 1| |s 0 S
23 22-1 21711 21 23
_:S‘ —_1
11 -1 o1 11
s1,] 1180812 FF 00" F¥)2.1523
v o1 v oyl
523V22.1F S23¥22:1523




Given this partition, the implied precision matrix (i.e., the inverse of the

covariance matrix) associated with estimates for o and u is

] A
(4) 511 . G
o V11081 8100 . A(G F,)
12 2
. | R T 4 ' -1 -1 _, -1 . , ,
with A = V22-1 V22°1 823(523 V22-1 823) 823 V22-1' Since the first matrix

in this expression is the precision matrix obtained if one uses only the
vector of functions gi’to estimate the parameters a and u, the second matrix
shows the gain in precision achieved in estimating a and p by also using the
equations hi in the computation of estimates. In particular, the matrix
determining the efficiency gain in estimating the parameters of interest a is
G' A G. Assuming the new parameters y appearing in the functions included
in hi are identified, the matrix 823 possesses full column rank; and assuming
the inclusion of hi in computing estimates adds more equations than new
parameters into the analysis (i.e., the number of elements in the vector hi
exceeds the number in y), the matrix A is positive definite.2 Thus, using
the additional information conveyed in the hi's to estimate aoleads to increased

efficiency unless the matrix G is of rank zero, which essentially occurs only

when

_ -1 _
(5) G = 321 V21 V11 S11 0.
It is clear from this analysis, then, that introducing more information to

compute estimates never results in a loss of efficiency and achieves a gain in

efficiency unless condition (5) is satisfied.
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In a situation where the hi's do not depend on a new set of

parameters y, one can readily verify that the above formulas indicating

1

efficiency gains are applicable if one simply sets A = V;Z-l'

Thus, condition
(5) once again determines whether there is an increase in the precision of

estimation.
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IT. Least Squares Estimation

Suppose observations on the random variable Y are generated by the
multiple repression model

= ' s =
(6) Y, XiByt e i=1,...,N,

i
where Xi is a column vector of explanatory variables selected from a set of
measured characteristics Zi associated with the ith observation, BO is an
unknown parameter vector, and the ei's are independently distributed errors
with E(ei) = 0 where expectations here implicitly condition on the Zi's. The
following analysis primarily considers two distinct assumptions relating to
the distributional properties of the disturbances: first, the ei's are not
identically distributed with variances Oi = E(e?) differing across observa-

tions; and, second, variance and higher order moments of the errors are constant

across observations.

Using Exclusion Restrictions to Gain Efficiency

In the presence 6f heteroscedasticity, Chamberlain (1982) develops
the first estimator of which I am aware that is efficient relative to the
least squares estimator and whose computation does not rely on specific
knowledge or modeling of the form taken by the heteroscedasticity. A discussion
of this estimator offers a convenient opportunity for emphasizing several
features of the estimation framework outlined in the previous section before

proceeding to the alternative estimators proposed below. Amemiya (1982) offers
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a more straightforward interpretation and derivation of Chamberlain's
estimator, and it is Amemiya's simpler formulation of this estimator
that is presented here.

Instead of directly estimating equation (7), Chamberlain suggests
adding variables to this equation and forming a constrained estimator using
a particular variant of the procedure outlined in Section I. 1In particular,
letting Qi denote a vector of measured variables linearly independent of Xi’

consider the expanded model

7 Y, = X! + Q! + i=1,...,N

(7) i iBo ¥ Qv *toegs seeesN,

where Yo = 0 according to (7). In terms of the notation of the previous
section, with Zi = (Xi, Qi), one can view constrained least squares estimation of

(7) with the restriction y = 0 as choosing an estimate for BO by minimizing a

quadratic form like (2) with 21(8) = Zi(Yi - Xis) and with the matrix VN in (2)
N

= l '
replaced by MN =N 121 Zizi'

Chamberlain in effect uses the same expressions for the Qi(B)'s, but derives

~

his estimator by directly minimizing (2) with no substitution for VN. For
N ~ N
-~ 1 - 1 ~9 R
i == 2! == z.2!
this problem, VN N izl Zi(B) i(8) N izl %14 where €y represents a
residual consistent for Yi - XiBO' For the class of estimators defined by

minimizing a quadratic form in the vector L the use of (2) and the matrix

N!

VN produces the most efficient estimate for BO when constraints make it
impossible to solve the equations LN = 0 exactly. A standard application of
- N
s
asymptotic theory implies VN > lim{% z ZiZiogJ. When the variances of
i=1

disturbances vary across observations, it is evident that the matrices VN and MN

- ~

do not have asymptotic limits that are proportional to one another; and, as a

consequence, the use of constrained least squares implies an efficiency loss.
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Since unconstrained least squares estimation of (6) and constrained least
squares estimation of (7) produces the same estimate for 80, it follows
that Chamberlain's estimator in ceneral achieves creater efficiencr than

the conventional least squares estimator when heteroscedasticity exists.

Identifying the exact gain in efficiency is easily accomplished
using the results of the previous section. Unconstrained least squares
applied to equation (6) in effect computes an estimate for BO by minimizing
the quadratic form given by (2) with the vector of functions gi(B) = Xi(Yi - XiB)
used in place of the Zi's. One may, then, view Chamberlain's
procedure as combining these gi's with the information contained in the
relations hi(B) = Qi(Yi - XiB) and minimizing (2) with 2; =
(gi, hi). According to formula (4), the matrix G' A G shows the gain in
precision achieved by including the hi's in the computation of an estimate

for BO. For this problem, G is the asymptotic limit of the matrix

N N N -1 N

1 J_L sl IR ! ],

N .Z QX4 N .Z QX% | [N .Z X;%i% N .Z X &i|
i=1 i=1 i=1 i=1

and A is the asymptotic limit of

-1

N N N -1 N
l ] 2 _l_ [3 2 __1; 1] 2 l \i 2
i=1 1 1

i= i=1 i=1

Obviously, when the oi's are constant across observations, G = 0, and there
is no gain in precision as expected.
A major deficiency with this approach concerns the absence of

a strategy for choosing the variables to be included in Q; it is unclear
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how to go about choosing an optimal Q. For this reason, the following

estimation procedure offers an attractive alternative to the above arproach.

Weighted Regressions

With heteroscedasticity present, the most familiar method for improving
the efficiency of estimating 80 is to consider a weighted version of equation
(6) and apply least squares to this new equation. Let the variables Wy i=1,...,N,
denote measured quantities depending on the characteristics Z and on a set of

known or estimated coefficients. Using the wi's to weight (6) yields the equations

= ' i =1,...,N.
(8) ini wiXiBO + wiess i 1,

Obviously, if one knows how the Gi's vary across observations and chooses the

mi's to adjust for this variation, then least squares estimation of equation (8)
rather than (6) generates the more efficient estimate for BO.
Without this knowledge, however, or given an arbitrary choice for the wi's,
there is no a priori reason for preferring either the weighted or the ordinary
least squares estimate on efficiency grounds.

Combining the information used to compute these distinct estimates
offers an alternative procedure for constructing an estimate for 80. In terms
of the framework outlined in Section I, unconstrained least squares estimation

of equation (6) computes an estimate for Bo using the vector of functions

g.(B) = Xi(Yi - Xis)-and weighted least squares uses the vectors
1 ’
hi(B) = wiXi(Yi - X:'LB).3 To compute a single estimate for BO that combines these

different relations, one sets Qi = (gi, h!) and minimizes (2). Satisfaction of
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condition (5) determines whether adding the hi's leads to a more efficient
estimator. For this problem, the matrix G appearing in this condition is
the asymptotic limit of

N N N -1 N

1 2 1 221 [1 2 1

- X X!t | - | X.X'wiol] |3 X X! - ‘
[ N izl i1 i_J N i__z_l iti%1% EI izl %1% N __z_ Xi%i |

which does not in general equal the zero matrix unless 0? = og for all 1i.
i

In the presence of heteroscedasticity, then, the néw estimator produced by

jointly estimating equations (6) and (9) is strictly more efficient than the
ordinary least squares estimator. Furthermore, it is evident that this new
estimator also possesses greater efficiency than the familiar weighted least

L,

squares estimator unless the weights are optimally chosen (i.e., w; =

Q

i
In contrast to the previous approach based on the use of exclusion
restrictions, this procedure for computing an estimator offers a natural
strategy for choosing the weights and the additional relations to be combined
with those used in conventional least squares estimation. While an optimal choice
for the weights is assumed not to be an option in this analysis,
one intuitively wants to choose
each w; SO that it approximates %T as close as possible. One procedure for obtaining
i
such weights involves a simple regression analysis. In particular, letting bi = (Zi,)
denote a function designed to capture the suspected variability of the oi's
across observations, a regression of the squared least squares residuals ;i on
b(+) estimates the unknown parameters XA and provides for the construction of
a fitted value bi and a weight wg = 1//5;.
To the extent that this choice for the weights fails to adjust for
the variability of the oi's, one may construct an estimator for BO with improved

efficiency by introducing yet another weighted variant of the regression equation.

Joint least squares estimation of this new equation along with (6) and (9)
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using the above procedure to combine the relations defining the individual
least squares estimates for each equation provides the framework for computing
this new estimator. A natural choice for this new equation is to consider a
weighted version of (8) with the new weights chosen to reduce the variation

, . 2 .
in the variances wioi associated with the disturbances of this equation.

Using Higher Order Moments

When disturbances are homoscedastic, there are other equations one
may jointly estimate along with the regression equation to obtain an estimator
more efficient than the one produced by ordinary
least squares. This analysis works directly with equation (6) presuming that
weights are not needed to induce homoscedasticity. If this presumption is false,
then one must interpret equation (6) in this discussion as the appropriately
weighted variant of thé original regression equation. Squaring both sides of

equation (6) yields

2 _ 42 g )2 i =1,...,N
(9 Y1—00+(XiBO) +\)i, 1 PRI R ]

_ 2 2, .
where oé is an intercept term, and vy F Z(X;BO)Ei + €5 ~ % is a disturbance

N
s . 1 2 2 =
with mean zero. Assuming the orthogonality conditions lim E(y ) XiXi(ei - 00)) =0,
i=1
which obviously follows if ci = og for all i, nonlinear constrained least squares

applied to (9) offers an alternative method for computing a consistent estimate

of 80. Except for a sign convention, the components of 8 are in general identified
using the information of equation (9) alome assuming Xi includes more than an
intercept; fixing the sign of one nonzero component of B solves the sign convention
problem. While least squares estimation of (9) yields a less efficient estimate

for BO than the one obtained by least squares applied to (6), combining the

relations used to compute these distinct estimates provides for the formulation
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of a new estimator that is in general efficient relative to either of the
estimators computed using a single equation alone.

Jointly estimating equations (6) and (9) without restricting the B
coefficients to be equal for the two equations provides sufficient information
to test: (i) whether the second moments of disturbances satisfy the orthgonality
conditons needed to justify an equality restriction for the estimates of B across
equations; and (ii) whether the variances of disturbances are constant over the

sample. Least squares applied to equation (6) uses the vector of functions gi(Bl) =

2 2
. . - * = _ - []
Xi(Yi - xisl) to compute an estimate for 80, and, with V¥ = Yi o (XiBZ) ,
nonlinear least squares applied to (9) calculates estimates for 60 and cé using
the relations
]
I St
20 _ 1 4 _ 22 . 2
h, (B,, ¢7) = 2 Te ) (Yi ¢ (XiBZ) ).
32| .
G )

Joint least squares estimation of these equations means in this analysis that

] 2 - 1 ] . . . 3
one sets 11(81, 82, c7) = (gi, hi) and minimizes (2) with respect to Bl, 82,

and 0. Using the implied joint asymptotic distribution for the estimates Bl
and éz given by (3), one mav use a standard Wald statistic to test the null
hypothesis that the probability limit of él - éz is zero. Acceptance of this
hypothesis indicates that the moments E(si) satisfy the orthogonality conditions
needed for éz 5 BO. However, more is required to test the assumption of homo-
scedasticity because the restriction 81 = 82 does not rule out the possibility
that the variances oi may depend on a set of measured variables that are
orthogonal to xixi. Including these other variables in equation (9) permits

one to estimate their relationship to the ci's. A test for homoscedasticity,
then, involves a null hypothesis with two parts: the quantity él - éz converges
in probability to zero; and other variables assumed to determine the oi's have

4

zero coefficients when entered into equation (9).
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Rejection of the restriction 81 = 82 means that one cannot
use information from equation (9) to attain an efficiency gain for the
estimate of 80. At the same time, however, rejection of this hypothesis
ensures that the joint estimation scheme described above combining the
regression equation and its weighted variants yields an improvement in
efficiency over conventional least squares estimation.

Acceptance of the restriction Bl = 32 indicates that one can
carry out joint estimation of equations (6) and (9) imposing this equality con-
straint. In particular, one sets 2;(8,02) = (gi(B), hi(B, 02)) using the
specifications of 8, and hi cited directly above and minimizes quadratic form
(2) with respect to B and 02. Since ordinary least squares only uses the 3
reiations to compute an estimate for 80, forming the matrix G identifies the
conditions under which this joint estimation procedure leads to an efficiency
gain over the usual least squares procedure. The implied specification for G

is the asymptotic limit of

— _ -1+~
4(x}8,) 7% X! 2(X}8)X, X! | |
N i i i N iT07i i N N
1
) -1 ) E(e,v.) 1 Y X X'E(Ez) . )
N5 NS iVi7| N Ly TN N LA
2(X'B )X’ 1 X! L = e
i’ 0771 i
L 1L | 1 L

Given the definition of v., E(e.,v.,) = 2(X!B )E(s?) + E(e?). In the presence of
i i1 i 0 i i

homoscedasticity with E(ei) = for all i, G # 0 if E(ei) # 0; so, one achieves

o
0
an efficiency gain if the third moments of disturbances are nonzero. In those
rare situations where the disturbances €i are heteroscedastic and still satisfy
the orthogonality conditions needed to estimate BO consistently using equation

(9), G # 0 even if E(ei) = 0, implying that joint estimation in these instances

virtually always leads to a gain in efficiency over conventional least squares.
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Accounting for the heteroscedasticity associated with the disturbances

of the equations used in this joint estimation procedure provides for the

formulation of an even more efficient estimator 60. The covariance matrix
associated with the errors of equations (6) and (9) for the ith observation is

Ty 7 B 2 2 3 ]

' +
£y E(si) 2(XiBO)E(si) E(Ei)
@i = E (Ei\)i) = .
1 2 3 ' 2 2 ' 3 4
Lvi Z(XiSO)E(Ei) + E(ei) 4(XiBO) E(si) + 2(XiBO)E(si) + E(ei)

The disturbances of the squared regression equation have nonconstant variances

by construction. In addition, there exists several other potential sources of

heteroscedasticity: the moments E(ei) and E(ei) may vary across observations}

and, as noted above, the ability to use the information from equation (9) in

computing an estimate for BO does not rule out the possibility that the second

moments E(Ei) are nonconstant. One method of improving the efficiency of estimation

by introducing adjustments for heteroscedasticity involves the implementation

of an approach like the one followed above; that is, in addition to equations

(6) and (9), one may also use information from weighted variants of these

equations in the computation of an estimate for BO.
If one is willing to assume that the disturbances €y have constant moments

up to fourth order, then there exists a more efficient method of accounting for the

remaining heteroscedasticity in estimation. Treating equations (6) and (9) as a

seemingly unrelated regression model, one can estimate the parameters of these

equations by joint generalized least squares. Using least squares residuals

and fitted values, one can easily form consistent estimates for the parameters

E(ez), E(€3), and E(EA), and for the quantities X£BO' With these estimates,

it is possible to construct a consistent estimate for each covariance matrix ¢i,
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- . 2 2 2
d ted .. i * = - X! % = - _ 1 . e
enoted by @1 Defining e¥ (Yi XiB) and v} (Yi o (XiB) ), joint

generalized least squares in effect sets

' —
sﬁ] X, 2%, (X}8) (Y, - X;8)
pler v -1
LB, o) = - Yy v?J = lo 1 Jéi ol - 6% - x'e)d)
3 2 1 1 1
o]

. 2
and computes an estimate for BO and o

0 by minimizing (2). While this procedure

vields a more efficient estimator for BO than the one based on the joint least
squares estimation of (6) and (9), it is still necessary for third moments to
be nonzero before an efficiency gain is attained over the conventional least
squares estimator.

As soon as one assumes that moments of the ei's above second order
are constant across observations, there are even more sources of information
available for improving estimation efficiency. The constancy of third moments

suggests consideration of a cubic version of the regression equation. Cubing

both sides of (7) yields

3 _ ' 2 N oo
(10) Y, =19t 3(XiBO)c0 + (XiBO) + . i=1,...,N,

- 2 _ . 2 R 2 2
= + -
where T and 00 are unknown parameters, and ni 3(XiBO) Ei 3(Xibo)(ei 00)

+ (Ei - TO) is a disturbance with zero mean. Nonlinear least squares applied

to (10) yields consistent estimates for BO’ og and T assuming satisfaction
N
2 2

of the orthogonality conditions lim E(% Z XiXi(XiBO)(ei - cn)) = 0 and

N i=1
lim E(l' )X X'N(X!8 )(e? - 1.)) = 0. These orthogonality conditions obviously

Ni=lil i™0 i 0
also

follow if E(Ei) and E(ez) do not vary with i. It is/interesting to note that these

conditions necessarily follow in those situations where the combined estimation of
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(6) and (9) produces a consistent estimate for 80, but yields no efficiency
gain.

Joint least squares estimation of equations (6), (9) and (10), then,
imposing all the constraints implied across equations, offers yet another
procedure for coﬁstructing an és?imator for BO. Before constraining the
estimates of BO obtained from these three equations to be equal, it is a
straightforward matter to test the orthogonality conditions required for
imposing this constraint using a direct analogue of the testing procedure
described above. In particular, with the Qi relations made up of the gradient
vectors associated with least squares estimation of equations (6), (9), and (10),
and with the coefficients representing BO and 02

0

one can test the orthogonality conditions by checking for equality of the

made distinct across equations,

probability limits for the different estimates of £ and 02 using a Wald statistic

and the asymptotic distribution implied by (3). The above discussion also

indicates what is required to test the hypothesis that third moments are constant
across observations. In addition to testing the restriction that the estimates of R a

g2

obtained from equations (6), (9), and (10) are the same, a test for the constancy
of third moments also implies that any other measured variables entered into
equation (10) have zero coefficients.
As in the previous case dealing with the joint estimation of only
equations (6) and (9), several options are available for simultaneously
estimating the regression equation and its squared and cubic variants. Assuming
the ei's have constant moments across the sample up to sixth order, joint
generalized least squares offers the most efficient estimation procedure.

Treating equations (6), (9), and (10) as a seemingly unrelated regression model,

let ei = (ei, vis ni) denote the vector of disturbances associated with this
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th . , _ . . .
model for the i~ observation; define ¥, = E(eie;) as the implied covariance
matrix; let Wi represent a consistent estimate for Wi; and define ei' =

' 3 2 3 . .
(e*, v*, n%*) where n* = ¥y - 1 - 3(X'R)o” - (X!BR) . Joint generalized
i i i i i i i
least squares applied to this system of equations in effect computes

estimates for BO’ 08 and 9 by minimizing quadratic form (2) with

2 a1, A
= =1,...,N
Ri(B, g, T) Ciwi el | i 1
where
' 2 ety 2y
X, 2X.(X'R) 3X. (0" + (X!8)7)
Jex' b 11 1 1
1
= - — = 3(X]
C; z 0 1 3( 1B)
302 0 0 1
T

To discover the conditions under which this procedure yields an
improved efficiency for the estimate of BO over ordinary least squares,
it is once again convenient to check a condition like (5). Least squares
applied to (6) computes estimates using the relations gi(B) = Xi(Yi - XiB);
and joint generalized least squares applied to (6), (9), and (10) uses the
2 1

relations hi(B, o7, T) = Ci W; e? to calculate estimates. Partition the

matrix C, as C! = [C!
i i

1i

' . = 1 2 1oy 2
CZi] with Cli [Xi 2Xi(XiB) 3Xio +(Xi8) ], and let

a "o" superscript on these matrices indicate evaluation at the true parameter

values. It is possible to show that the matrix G associated with this

problem is the asymptotic limit of
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where

2.4
UOXi

g =L Zx ' E(eD)X!
K, =5 E(e,e,)X] = =5 204 (X8 XS (e})X}
% %

2 2' 3 1 '+E=‘4X‘
300(X;80) Xi + 3E(ei)(XiBO)Xi (’i) i)

This latter matrix involves both the third and the fourth moments of the si's.

Accordingly, the matrix G does not in general vanish even when the distribution

of € is symmetric, and condition (5) is typically not satisfied implying an

efficiency gain for the estimate of BO. In one special case, it is possible

to show that G = 0 and the gain in efficiency is lost. Not surprisingly, this

case corresponds to a situation in which disturbances are normally distributed,
O

. . 3, _ 5, _ 4 _ 4 -
implying E(ei) = E(Ei) = 0, E(ei) 300, and Ki Cli as a

consequence. According to this analysis, then, joint estimation of the regression

equation and its squared and cubed variants yields an estimator for 80 that is
strictly efficient relative to the conventional least squares estimator in

essentially every instance except when least squares corresponds to the application

of maximum likelihood.

One can, of course, continue and consider a quartic variant and higher
order powers of the regression equation. Joint least squares estimation of
these new equations along with those introduced above without constraints across
equations offers a framework for testing: (i) whether one can justify imposing
an equality restriction for the estimates of B obtained from the different
equations; and (ii) whether one can accept the stronger hypotheses that fourth
and possibly higher order moments of the disturbances are constant across

observations. If the estimates of 8 computed using the different equations are
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all consistent for 60, then joint estimation of these equations constraining

all the estimates of B to be equal will almost certainly lead to a more efficient
estimator for 80 than the one computed using fewer equations and, consequently,
less information on the moments of disturbances. Knowing the ei's have constant
moments across the sample offers yet another source of information to attain

further gains in efficiency. Such information makes it possible to estimate

at least a subset of the equations under consideration by generalized rather

than least squares procedures.

Nonlinear Regression

All the procedures outlined in this section for improving on the
least squares estimate may be applied in the nonlinear regression case as well.
In particular, instead of (6), suppose observations on Y are generated by the

equation
(11) Y, = ¢(Xi, 80) + €, i=1,...,N,

where ¢(+) is a known function. One may readily verify that the results and

the relations derived above remain valid after making the following
modifications: replace X!g and X!8. by ¢(X,, B) and ¢(X,, B,.), respectively;
36 i i70 i i 0

. i . . P .
and substitute ——,. for X, where the point of evaluation B8 is consistent

a8 8
for 80.5 Thus, when the ei's are heteroscedastic, joint nonlinear least
squares estimation of (11) and weighted versions of this equation yields a
more efficient estimator for 80 than conventional nonlinear least squares.
If, on the other hand, the ei's have moments above first order that satisfy
the orthogonality conditions associated with the nonlinear model or that are

constant across observations, then joint least or generalized least squares
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estimation of (11) and its squared and cubic variants creates an estimator
for BO whose efficiency in general dominates the one obtained from a standard
application of nonlinear least squares. Because the demonstration of these
results for nonlinear regression involves no new concepts and follows directly
from the previous analysis, the discussion instead considers the applications
of the above estimation procedures to a more general representation of a
nonlinear equation of the sort encountered in simultaneous equation analysis

which nests (11) as a special case.
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ITI. Instrumental Variable Estimation

Suppose observations on a random vector Y obey the equation

(12) f(Yi’ X YO) = €4 i=1,...,N,

where f(+) is a known function, and Yo is an unknown parameter vector. As

in the previous analysis, the ei's are assumed to be distributed independently
across observations with E(ei) = 0 and E(Ei) = oi where expectations are
calculated given a measured set of characteristics Z.

Given a vector of instruments 9, for each observation, nonlinear two-
stage least squares estimation of (12) uses the orthogonality conditions
E(qif(Yi, Xi’ YO)) = 0 to compute an estimate for Yo+ Formally, the elements
of q; may depend on estimated coefficients as well as on the measured charac-

teristics Z as long as they are asymptotically nonstochastic. A standard

application of nonlinear two-stage least squares sets Ei(y) = qifi with

fi = f(Yi, Xi’ y) and calculates an estimate by minimizing a quadratic
N

form like (2) with the matrix B, = = Z q.q, replacing the matrix V..
N N =1 11 N N
Observing that the implied specification for VN is %- z qiqiei where €

i=1
is a residual consistent for f(Yi’ Xi’ yo), it is not surprising to find

that the direct minimization of (2) in general yields a more efficient
estimator for Yo- Referring to the discussion of Chamberlain's approach for
improving on least squares estimation, it is evident that conventional
instrumental variable techniques construct estimators in a way analogous to

constrained least squares procedures and, thus, suffer from the same deficiencies.
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In particular, one can demonstrate that conventional two-stage least squares
yields a less efficient estimator for Yo than the one obtained by directly
minimizing (2) when disturbances are heteroscedastic and there are exclusion
or over-identifying restrictions. Chamberlain (1982), White (1982) and
Amemiya (1982) each propose estimators for linear simultaneous equations that
exploit exactly this observation. Clearly, one can exploit this same source
of efficiency gain when constructing estimators for nonlinear simultaneous

equations as well.

The optimal choice for the vectors of instruments varies according to

whether disturbances are homoscedastic or heteroscedastic. For the class of

estimators defined by minimizing (2) with Zi = qifi’ Amemiva (1975) shows that
of ,
setting q equal to E S;L or to a consistent estimate of this quantity
Y
0

yields the most efficient estimator for Yo when errors are homoscedastic. An
estimator with approximately the same efficiency is obtained if one instead

sets 9y equal to any vector of explanatory variables W, where a regression of

i
of |
the elements of S;AI on Wi would in principal produce fitted values that
Yo |af, 6
closely approximate E S?l . While these alternative choices for the
Y
0

vector of instruments are essentially equivalent in the homoscedastic case,

choosing q; = wi will in general yield the more efficient parameter estimate in
3f .

. . i
the heteroscedastic case. Using q; = E 5;—

¥
L 0
(i.e., the dimensions of q and y are equal), and minimizing (2) for such a model

creates a just-identified model

yields the same estimator for YO regardless of whether or not errors are
heteroscedastic. The use of Wi as instruments, on the other hand, typically
involves some degree of over-identification, and as noted above the minimization

of (2) exploits over-identifying restrictions in the presence of heteroscedasticity
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to develop an estimator with greater efficiency than one that ignores
of ,

such restrictions. While one can argue that Wi dominates E §;l as

instruments in the heteroscedastic case, there is, unfortunately,YO

no clear strategy for choosing the optimal Wi in this case if one purely

views the problem as introducing over-identifying restrictioms.

The following analysis applies the strategies proposed in the previous
section to formulate estimators for Yo that possess greater efficiency than
those obtained from the application of conventional two-stage least squares.
In this analysis, the optimal choice for instruments is the same as in the
homoscedastic case. Thus, it is assumed throughout this discussion that one
sets the vector of instruments equal either to the expected value of the

gradient vector associated with the nonlinear equation under consideration or

to a vector Wi designed to predict this gradient vector accurately.

Non-constant Moments Case

To construct an estimator for Yo with improved efficiency when the
disturbances of equation (12) are heteroscedastic, one may jointly estimate
(12) and a weighted variant of this equation. Letting the weights Wy represent
asymptotically nonstochastic variables designed to eliminate the variation in

the transformed variances wiei across observations, weighting (12) yields
(13) wif(Yi, Xi’ YO) = Wi i=1,...,N.

Nonlinear two-stage least squares applied to (12) uses the vector of functions
gi(y) = qifi to compute an estimate for Yo' and applying this procedure to

estimate (13) uses the vector of functions hi(y) = wiqifi. Joint two-stage
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least squares estimation of equations (12) and (13) in this analysis means
that one sets 2; = (gi, hi) and minimizes (2) with respect to v.
The resulting estimator is strictly efficient relative to the
conventional two-stage least squares estimator in the presence of heteroscedasticity;
and it also dominates the weighted two-stage least squares estimator unless the
weighté are optimally chosen (i.e., w, = %T) in which case the efficiencies
of these two estimators are the same. Similar to the analysis above, one only
needs to consider the form of the matrix G to verify these propositions
concerning efficiency. The matrix G for this problem is the asymptotic

limit of

N

1y 2 LT Izq 20 org?

N Lo Y% ey Lo 9393959 .
i=1 i=1 i

£
a1’ N oty

; 111 121 3y

2|

i t~1 2
=)
2|
~1
[

As expected, given an optimal choice for the vector of instruments 9; =
of ,

E 5;3 s, G = 0 when variances are constant across observations implying no
"o

efficiency gain. In general, however, G # 0 and the joint estimation of
equations (12) and (13) leads to an improvement in efficiency over the estimation
of equation (12) alone.

As noted previously, regressing the squared residuals ;i on a function
of explanatory variables and treating the resulting fitted values as a measure
of l/wi offers a simple and natural procedure for forming the weights used in
(13). 1If this choice for the weights fails to adjust for the variability of the
oi's, one may introduce a weighted version of equation (13) and jointly estimate

this new equation along with the others to obtain a further improvement in

efficiency.
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Constant Moments Case

Given the knowledge that the disturbances of the equation under
consideration are homoscedastic, the analysis of the previous section
suggests that jointly estimating this equation along with its squared
variant will typically produce an increased efficiency in estimating the
parameters of interest. Squaring both sides of equation (12) and introducing

an intercept yields

2 2 _ .
(14) f (Yi’ X, YO) - 9y T g i=1,...,N,
_ 2 2 . ,
where ui = Ei - 00. If the variances of the Ei S are constant across

observations and equal to cé, then E(ui) = 0 and (14) is in the form of a
nonlinear structural equation. One must exercise caution, however, in

applying a nonlinear two-stage least squares routine to estimate the parameters
of this equation. Such a routine uses the vector of functions Ri(y, 02) =
q:(fi - 02) to compute estimates for Yo and US with qi representing a vector

of instruments. A problem encountered with implementing this routine relates
to the properties of the matrix of the averaged partial derivatives associated
with vectors of functions Qi(y, 02). As noted in the discussion of this
general class of estimation schemes in Section I, application of these schemes

1 N 238,

requires the matrix SN =N Z 56% to possess full column rank over the
i=

relevant portion of the parameter space. For the estimation problem considered

o _
here, the form of this matrix evaluated at the true parameter values is SN =
N
2, _1 S v ' ' .
SN(YO, GO) N L qiri, where ri (rli rZi) denotes a row vector with
afi o
r; = 2€i 5?- and Ty, = -1. It is easy to find cases for which SN possesses
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less than full column rank in the limit. Such situations arise, for example,

whenever equation (14) refers to a: regression relation (e.g., f(Yi’ X,y Ya) =
4 v

= . . . . o s -s
Yi—XiyO or —NYi—¢(Xi,yo)), in which case E(rli) = 0 implying SN +> [0 q°] where
q® = lim L Z S
4 - N Lo Y

i=1

While difficulties may arise with regard to the direct estimation of

equation (14), forming a linear combination of equations (12) and (14) creates
an estimable specification that depends on the squared representation of the

structural equation and incorporates second moment information. Instead

of (14), then, consider the linear combination

2 2
(15) f (Yi, X'f YO) - 0o + aif(Yi’ Xi’

=u, + a.c. i=1,...,N
i ) i ii’ ? 7

Yo

where the ai's denote asymptotically nonstochastic variables. Nonlinear two-

stage least squares applied to (15) uses the vectors of functions Qi(y, 02) =

a,_2 2 . 2
qi(fi - o + aifi) to calculate estimates for Yo and 9

a vector of instruments. Assuming the original structural equation given by

. a .
with 9y representing

(12) is estimable and the ai's are nonzero, one may readily verify that the

matrix of averaged partials S, associated with this estimation problem possesses

N

full column rank. Equation (15), then, may be directly estimated using nonlinear
two-stage least squares, and this routine produces consistent estimates for

2 .
Yo and % if the ei's are homoscedastic. If one sets the ai's equal to the

constant a, the optimal choice for instruments is
r of | af \

i _
—_— + —_—
2E Eiay , a E 3y

2 -
a(fi -0+ afi)

YO)OO
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Notice that the squared variant of the linear regression equation considered
in the previous section given by (9) is in the form of (15) with fi =
Yi - X£80 and a; = ZXiBO'

Jointly estimating equations (12) and (13) without constraints across
equations provides a framework for testing both: (i) the orthogonality
conditions needed for the estimate of vy computed using equation (13) alone
to be consistent for Yo$ and (ii) whether the disturbances of the original
structural equation have constant variances across observations. Joint nonlinear
two-stage least squares estimation of these equations means that one sets

2

2 2 a
2' = ' * 1 { = = -
i(Yl, Yos O ) (gi,hi) with gi\Yl) qifi and hi(Yz, o) qi(fi

02 + aifi),
where Yq and Yo represent distinct coefficient vectors, and minimizes (2) with
respect to Y10 Yoo and 02. The orthogonality conditions imply that the estimates
;1 and ;2 have the same probability limits, and one may test this hypothesis

by computing a Wald statistic using the asymptotic distribution of estimates
implied by (3). 1In addition to this equality restriction, a homoscedasticity
assumption also implies that no other function of the explanatory variables enters
equation (13). If one considers only relationships between the oi's and the
explanatory variables that may be described by functions linear in parameters,
then checking for homoscedasticity amounts to performing tests of hypotheses

consisting of the constraint y, = and zero restrictions for all parameters
g 1 P

Y2
other than Y10 Yoo and 02. O?ce again, then, standard Wald statistics offer a
simple method for testing the homoscedasticity assumption in the case of
simultaneous equations.

Given acceptance of the equality restriction for the y coefficients

across equations, joint nonlinear two-stage least squares estimation of

equations (12) and (15) imposing the constraint Yy <Y, generates an estimator



33

for Yo that is typically more efficient than the conventional two-stage least
squares estimator. Inspecting the matrix G for the choice of g and h used
by this estimation procedure reveals the exact conditions needed to achieve

this efficiency gain. Assuming a; = 1 for all i, G is the asymptotic limit of

N 3f —I N N ) N of

a i 1 a 3 2411 2 1 '
Y q?E|(2e,+1) —F - 12T Bqeed | |2 .q EG:D| & E|—t
5 1 i YO—J N jop 1ATTAATN 'Zl i i N z 4

A

i i=1

2
Evaluating this expression assuming E(ei) = 0, and for the optimal choice of
instruments (i.e.,

_ o|2f a' _ ,a' a . a _
i = EGy and q; = (qp; q,;) with q;; = 2Eje; o0
Yo Yo

it is evident that G1 # 0 if at least one of the following conditions are
of
. e , 3 . i
satisfied: (i) E(ei) # 0; or (ii)E €4 E;l- 4 0. 1In contrast, then, to
Yo
the above findings on least squares estimation, jointly estimating a structural
equation and its squared variants in the presence of homoscedasticity can yield
a more efficient estimator for the parameters of interest even if the third
moments of the ei's are zero for all observations; a nonzero correlation between
Bfi :
ey and the gradient vector — also implies that joint estimation yields an

3y
Yo
efficiency gain.

Extending the analysis to consider cubic and higher order powers of the
structural relation involves no concepts not already discussed above. Joint
nonlinear two-stage least squares estimation of these new equations along with
(12) and (15) without equality constraints across equations offers a framework
for testing the appropriateness of imposing such constraints. Given one can

justify these equality restrictions, joint estimation imposing these constraints



34

will yield further efficiency gains for the resulting estimator of Yo
One may also test hypotheses concerning the constancy of third and higher
order moments of the disturbances using this joint estimation framework.
As outlined above, hypotheses of this nature translate into equality constraints
across equations and into zero restrictions for the effects of any other
explanatory variables one might choose to include in these equations. Information
of this nature determines whether it is possible to attain additional improvements
in efficiency by applying three-stage rather than two-stage least squares
procedures. Knowing, for example, that moments of the ei's up to fourth order
are constant permits one to estimate equations (12) and (15) using nonlinear
three-stage least squares, which makes the choice for the ai's irrelevant and
provides for an optimal combination of these equations in the calculation of
estimates.

To illustrate the use of nonlinear three-stage leastsquares procedures
in this analysis, consider the joint estimation of the original specification
of the structural equation given by (12), its squared representation given
by (14), and its cubic variant given by

3

(16) f (Yi’ Xi’ Yo) - T0 = Vi, i = 1,..-,N,

ei - 7. Stacking equations (12), (14), and (16) creates a model

where v,
i 0

. . . .th .
with (ei uy vi) representing the disturbance vector for the i~ observation.
, . , . . k
This disturbance vector is homoscedastic assuming the moments E(ei) for k < 6

are constant across the sample. Letting Q. denote the covariance

0
matrix associated with this disturbance vector, and  denote a consistent
estimate for QO, nonlinear three-stage least squares applied to this three

, . 2 e i s
equation model computes estimates for the parameters Yo* 99’ and To by minimizing

quadratic form (2) with



ff \
i
2 _ o oa-1l2 2
Qi(y, gs, T) Ri Q fi o
f? - T
i
and
B s c |
4y 914 911
_ s
Ri 0 cP 0 ,
c
0 0 94

s c . . . .
where q,, q.., and q;., are vectors of instruments with the same dimension
i 1i 1i

S c . .
as vy, and 994 and q,; are scalar instruments. According to the results of

of ,
Amemiya (1977), the optimal choice for these instruments is q; = E g;l s
of of %
S _ on i c _ 2 i s _ ¢ _ _ 0
qli 2E €y > > dy4 3E e; 5y , and do4 494 1. To
0 Yo

id@ntify the conditions under which this three-stage procedure yields an
efficiency gain over conventional two-stage least squares estimation of
equation (12), one may set g; = 4y fi (used in the estimation of (12)), hi

to the specification for Ei listed directly above, and determine the form for
the matrix G. When evaluated at the optimal choice for instruments, this

matrix is the asymptotic limit of

N
1
N L
1:

I c~12

L
Ri(qi 0 0)

1

-1 s C 1
Ry 95 (a; ay4 ay5) 2
1 oON i

Except in those cases where two-stage least squares estimation of (12)
corresponds directly to the application of maximum likelihood, this matrix

does not vanish. Thus, one again finds that using information on the higher
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order moments of the disturbances provides for an increase in the

efficiency of estimation.

Conclusion

The overall estimation strategy suggested by this analysis may be
summarized as follows. Starting with a form of the regression (or simultaneous)
equation whose disturbances are believed to be homoscedastic, one introduces
a new equation obtained by squaring both sides of this equation. Joint
unconstrained estimation of the regression equation and its squared variant
offers a framework for testing: (i) whether the second moments of disturbances
satisfy the orthogonality conditions needed to justify the imposition of
equality constraints across equations; and (ii) whether one can accept the
stronger hypothesis that disturbances have constant variances across observations.

Given rejection of the equality restrictions relating the parameters
of the regression equation and its squared variant implied by hypothesis (i),
one eliminates the equation relating the squares of variables from the analysis
and implements the procedure that jointly estimates the regression equation
and weighted variants of this equation. More than one weighted regression
equation may be included in this joint estimation procedure. While one in
principal wants to choose weights in a way to induce homoscedasticity, it is
unnecessary to know the form of heteroscedasticity to implement this procedure,
and almost any choice for weights will yield an improvement in the efficiency
of estimation.

Given acceptance of the equality restrictions implied by hypothesis (i),
one acquires further information by considering cubic and possibly higher order

powers of the regression relation. Jointly estimating these new equations along
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with the regression equation and its squared variant initially without
constraints across equations allows one to test: (iii) whether third
and higher order moments of disturbances satisfy the orthogonality conditions
required to restrict the estimates associated with the different equations;
and (iv) whether disturbances have constant third and higher order moments
over the sample. Assuming tests of (iii) support the imposition of equality
restrictions across equations, carrying out joint estimation imposing these
constraints will almost always leads to a more efficient estimator for the
parameters of interest than one computed using fewer equations and, consequently,
less information on the moments of disturbances. 1If one finds that moments
vary over the sample but still satisfy conditions (i) and (iii), then one can
achieve further increases in the efficiency of estimation by also including
weighted variants of equations with heteroscedastic errors in the joint estimation
procedure as well. 1If, on the other hand, tests also support property (iv) and
the disturbances have constant moments over the sample, one can exploit this
information to improve estimation efficiency by using generalized or three-stage
least squares methods when jointly estimating equations.

Following this estimation strategy, one can literally proceed indefinitely
in finding another equation which when jointly estimated along with the
equations currently considered leads generally to a further gain in the efficiency
of estimation. Essentially, whenever it can be argued that including an equation
of one type does not yield an efficiency gain, this fact itself suggests a new
source of information that may be exploited by introducing an equation of another
type. This study offers no rule indicating where one should stop adding equations
to the joint estimation scheme. While specific distributional assumptions provide

the basis for formulating such rules, knowledge of these assumptions often means
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that it is possible to use maximum likelihood techniques to estimate parameters;
in which case, on efficiency grounds, there is no reason to consider the

estimation procedures proposed in this paper.
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Footnotes

98,

i
, . . .
Letting ji and sjki denote the j and (j, k) elements of Qi and YK

respectively, sufficient conditions restricting the tails of distributions
‘2+62 ’1+(Sl

are: Elgji < C1 < = and Elsjki < C, < = for some 61, §, >0

2 2

and all 6 ¢ O.

For the matrix algebra theorem needed here, see Rao (1973. p. 77, problem 33).

If the wi's depend on estimated coefficients, it is, of course, not in general

true that E(hi(BO)) = 0. All the consistency and asymptotic normality

results of Section I, however, remain valid in this case as long as: each

wy 2 Bi with 51 nonstochastic; and the vectors Ei = aixi(Yi - XiB) satisfy

the properties of the Qi's outlined in the previous section.

For the current problem, there is a simpler procedure for testing the hypotheses
concerning the orthogonality conditions and/or the homoscedasticity assumption that
avoids the need for jointly estimating equations (6) and (9). Following

the work of White (1980), one may carry out these tests using a multiple

regression framework with squares of residuals treated as dependent variables and
with the unique components of XiXi and possibly other explanatory variables serving
as regressors. Performing a conventional F-test of the hypothesis that
coefficients other than the intercept are zero yields an asymptotically

valid test for either of the hypotheses cited above, assuming the constancy of

the fourth moments of disturbances. One cannot, however, use this simpler

testing framework for any of the similar situations considered below, including
those concerned with testing for the constancy of third or higher order moments

in the regression case or for the constancy of any moments in the simultaneous

equation case.
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e :
Alternatively, one may substitute the vector-sg— viewed as a function of
L
g for Xi when forming the Qi's and replace Xi by 5§l| in those expressions
8
0

for the matrices G and A.

According to formula (3), the use of q; = El— to compute an estimate

’Yo

for Yo implies a covariance matrix equal to the limit of

— -1
211 N of | of ,
o. = Z E|—= 1 ; and setting q, = W, yields a covariance
OlN i=1 Ay oyt i i
B Yo "o
matrix that may be written as the asymptotic limit of the matrix
271 N -1 N of, "I N -1
= P 1 = ] ' '
OO N izl iPi where Pi -Zl 3y I Wj kZ wkwk Wi represents
L J Yo _J
the vector of fitted values obtained from regressing each of the elements
of , af
of S;l- on Wi. Thus, as stated in the text, if Pi *E S—l , these

two covariance matrices are approximately equal.



41

References

Amemiya, T. '"The Nonlinear Two-stage Least-squares Estimator." Journal

of Econometrics (1974): 105-10.

"The Nonlinear Limited-information Maximum-likelihood Estimator
and the Modified Nonlinear Two-stage Least-squares Estimator."

Journal of Econometrics (1975): 375-86.

"The Maximum Likelihood and the Nonlinear Three-stage Least
Squares Estimator in the General Nonlinear Simultaneous Equation

Model." Econometrica (May 1977): 955-68.

"Partially Generalized Least Squares and Two-stage Least Squares
Estimators.'" Technical Report No. 368, February 1982, IMSSS, Stanford
University.
Chamberlain, Gary. '"Multivariate Regression Models for Panel Data." Forthcoming

Journal of Econometrics 1982.

Hansen, Lars Peter. ‘''Large Sample Properties of Generalized Methods of Moments

1

Estimators.”" Forthcoming Econometrica. Mimeo 1981 Carnegie-Mellon

University.

Rao, C. R. Linear Statistical Inference and Its Applications, 2nd ed. New

York: John Wiley & Sons, Inc., 1973.
White, Halbert. "A Heteroskedasticity-Consistent Covariance Matrix and a Direct

Test for Heteroskedasticity." Econometrica 48 (1980): 721-46.

"Instrumental Variable Regression with Independent Observations.”

Econometrica (1982): 483-500.




Number

12

13

14

15

16

17

18

19

20

21

NBER TECHNICAL WORKING PAPER SERIES

Author

Willem H. Buiter

Willem H. Buiter

Thomas ®. MaCurdy

Gary Chamberlain and
Michael Rothschild

Mervyn A. King

Jerry A. Hausman, Bronwyn
Hall and Zvi Griliches

James N. Brown and
Harvey S. Rosen

David S. Jones and
V. Vance Roley

Willem H. Buiter

Willem H.

Buiter

Thomas E. MaCurdy

Title

A Note on the Solution of a Two-Point
Boundary Value Problem Frequently
Encountered in Rational Expectations
Models

Macroeconometric Modelling for Policy
FEvaluation and Design

Asymptotic Properties of Quasi-Maximum
Likelihood Estimators and Test
Statistics

Arbitrage and Mean-Variance Analysis on
Larze Asset Markets

Welfare Analysis of Tax Reforms Using
Household Data

FEconometric Models for Count Data with
an Application to the Patents-R&D
Relationship

M the Tstimation of Structural Hedonic
Price Models :

Bliss Points in Mean-Variance Portfolio
Models

Saddlepoint Problems in Continuous Time
Rational Fxpectations Models: A General
Method and Some Macroeconomic Examples

Predetermined and Non-Predetermined
Variables in Rational Expectations
Models

Uging Information on the Moments of
Disturbances to Increase the Efficiency
of Fstimation

Note: Copies of the above technical working papers can be obtained by sending
$1.50 per copy to Working Papers, WBER, 1050 Massachusetts Avenue, Cambridge,

MA 02138.
310.00.
Research, Inc.

Advance payment is required on orders totaling less than
Please make check payable to National Bureau of Economic

Date

6/81

6/81

6/81

7/81

7/81

8/81

11/81

12/81

2/82

3/82

5/82



