NBER TECHNICAL PAPER SERIES

ASYMPTOTIC PROPERTIES OF QUASI-MAXIMUM
LIKELIHOOD ESTIMATORS AND TEST STATISTICS

Thomas E. MaCurdy

Technical Paper No. 1k

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge MA 02138

June 1981

Portions of this paper were presented at the Econometric Society
Meetings held in Montreal, Canada, June 1979. I am grateful to Tom
Mroz for comments. The research reported here is part of the
NBER's research programin Labor Studies,Any opinions expressed are
those of the author and not those of the National Bureau of
Economic Research.



e

L

NBER Technical Working Paper #l4
June, 1981

Asymptotic Properties of Quasi-Maximum
Likelihood Estimators and Test Statistics
Abstract

This paper examines the consequences of using maximum likelihood
estimation techniques based on the assumption of joint normality when the
error distribution does not necessarily belong to the family of normal
distributions. A nonlinear seemingly unrelated regression model with
covariance restrictions provides the basic statistical framework considered
in this analysis. 1In addition to discussing methods where one simultaneously
estimates all parameters, this study examines computationally efficient
procedures designed to estimate only regression coefficients or only
parameters of the covariance matrix. All estimation methods are shown to
generate’estimators that are consistent and normally distributed in large
samples even in the absence of normality. The following analysis also
derives the general asymptotic properties of statistics typically used to
test composite hypotheses in a large sample setting, including the Wald,
the likelihood ratio, and the Lagrange multiplier test statistics. Without
the assumption of normality the likelihood ratio and Lagrange multiplier
statistics still converge to the usual chi-squared distribution when used
to test restrictions on regression coefficients, but diverge from this
distribution when used to test any sort of covariance restrictions.

Professor Thomas E. MaCurdy
Department of Economics
Stanford University
Stanford, Ca. 94305

(415) 497-3983



Introduction

When analyzing a multivariate regression model with nonlinearities
in variables and parameters, a researcher typically assumes that disturbances
follow a normal distribution and applies the theory of maximum likelihood to
estimate parameters and to test hypotheses. The purpose of this paper is to
examine the asymptotic properties of the estimators and the test statistics
derived from this estimation method when disturbances are not in fact normally
distributed.

The following discussion shows that these "quasi-maximum likelihood"
estimators, including those for parameters of the covariance matrix, are
consistent and are also asymptotically normally distributed. Falsely assuming
that error vectors follow a multivariate normal distribution leads to the
incorrect computation of standard errors for some parameter estimates, but it
does not invalidate many of the large sample properties usually associated
with maximum likelihood estimators.

In addition to examiﬁing the asymptotic properties of estimators
derived from full-information methods where one simultaneously estimates
regression coefficients and covariance parameters, this study also explores
the properties of estimators derived from "conditional" or limited-information
quasi-maximum likelihood procedures designed to estimate only subsets of
parameters. One such procedure substitutes consistent estimates for the
regression coefficients and estimates only parameters of the covariance matrix.
Estimates based on this procedure are shown to have the same asymptotic distri-

bution as the estimator derived from full-information methods. Thus, when



estimating parameters of the covariance matrix, it is possible to treat
residuals as if they are the true values of the disturbances. Similar
procedures are examined for the estimation of regression coefficients.

An important by-product of these findings concerns the use of
quasi-maximum likelihood techniques as a general method for estimating the
parameters of a system of nonlinear seemingly unrelated regression equations
with covariance restrictions. While there are well known procedures for
estimating the regression coefficients of such a model which do not rely
on specific distributional assumptions for large sample properties, the
estimation of covariance parameters is another matter. The theoretical
results developed below offer robust procedures for estimating both regres-
sion coefficients and covariance parameters accounting for all nonlinear
restrictions, including those relating regression coefficients and elements
of the covariance matrix. The limited-information procedures offer a
computationally efficient method of estimation.

One of these procedures is especially attractive since it provides
for the estimation of regression coefficients in the presence of arbitrary
and unknown forms of heteroscedasticity.  Application of this method of

estimation does not require any assumptions concerning the form or the

absence of heteroscedasticity. The large sample .properties of the estimators

and the standard errors computed by this procedure remain valid no matter
what the actual form of the heteroscedasticity.
When applying the theory of maximum likelihood to test hypotheses,
a researcher is led to one of three test statistics: the Wald test, the

likelihood ratio test, and the Rao or the Lagrange multiplier test. This
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study examines the asymptotic properties of these tests when disturbances
do not follow a multivariate normal distribution. 1In many instances,

the large sample distribution associated with these test statistics is
unaffected when the normality assumption is violated.

Section I outlines the basic statistical model considered in this
paper. Section II develops the asymptotic properties of quasi-maximum
likelihood estimators including those derived from both full—- and limited-
information procedures. Section III explores the large sample properties

of various test statistics.



I. A Nonlinear Multivariate Regression
Model with Heteroscedasticity

The basic model considered in this study consists of the

following system of T equations

(v, (] [£@, %@, vp] (e, @)

(1) ’ = ’ + i=1,...,N,
pLCO) I EICNS S CONRHO) I HED
where Yi(j), j=1,...,T, is the dependent variable associated with

equation j and observation i, the Xi(j)'s are vectors of exogenous
variables, the yj's are parameter vectors, f(j, Xi(j), Yj) is the

expectation of Yi(j) conditional on Xi(j)’ and the Ei(j)'s are disturbances

distributed independently across the observations,i = 1,...,N, but correlated
across equations for a given observation. In vector notation we may write
(1) as

Y, = + ,

; - EXy Y) +eg

or simply as

(2) Y, = £, + €. i=1,...,N,

where Xi and y are vectors including all the unique elements of the Xi(j)'s

and the yj's, respectively, and Yi’ f(Xi, ), fi’ and €5 are T x 1 vectors

: 1 — 7 ] t -
defined by Y (&i(l),...,Yi(T)), £l f (xi, v) (£(1, Xi(l), vl),.--,

' o= . i hat
£(T, Xi(t)’ YT)), and € (ei(l), ,Ei(T)) It is assumed tha
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6] otherwise,

where w is a‘vector of parameters, and Q(-,:) is a matrix of functions
of Xi and w forming a T x T positive definite symmetric matrix for each
observation i. 1In the general case, the parameter vectors Y and w may
contain common elements, or there may exist nonlinear restrictions
relating the components of Yy and w.

Model (2) combined with (3) constitutes a system of nonlinear
seemingly unrelated regression equations with heteroscedasticity and

covariance restrictions. This system of equations provides a rich

statistical framework, and it accommodates many models familiar in econo-
metrics including models with random coefficients and simultaneocus equatio

models which are linear in endogenous variables. The dependent variables

Yi(j) may be either continuous or discrete in nature. Hence, it is

possible to analyze models of discrete choice or quantal response within

the framework of model (2), including some models that relate discrete and

continuous endogenous variables.
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1I. Estimation Methods

The technique usually applied to estimate models like (2) where
one is also interested in estimating parameters of a covariance matrix
is the method of maximum likelihood. Typically, a researcher assumes
that disturbances are normally distributed and computes estimates
by maximizing the kernel of a multivariate normal density function. Such
a procedure provides for the simultaneous estimation of regression coeffi-
cients and covariance parameters; it permits the imposition of almost any
sort of restrictions including constraints relating elements of the
covariance matrix and regression coefficients; and it provides an estima-
tion method when heteroscedasticity is present.

Under the assumption of joint normality, the maximum likelihood
estimates of the regression coefficients and the covariance parameters of

model (2) are defined as those values of v and w that maximize the function

il
Zl=
I ~12
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where 9, is the function of v, w, Yi’ and Xi defined by the second
expression for QN.l The function QN has as its arguments the p elements
of the parameter vector 8' = (y', w') which is assumed to lie in the

interior of a convex parameter space ©. 1In the following analysis, it

1The reader will immediately recognize that QN is proportional
to the kernel of a multivariate density function.
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is important to distinguish between the vector of parameters 8 which

can take any value in the set @, and the true value of 8, denoted below
as 60, which actually generates the data. Formally, in the specification
of the system of equations assumed to generate Yi given by (1) and (2)

and in the specification of the covariance matrix associated with the
disturbance vector €5 given by (3), the vector 80, (i.e., Yo and wo)
should appear rather than 8.1 To simplify the following exposition, it

is initially assumed that y and w contain no common elements, and there
are no constraints relating the components of these vectors. Furthermore,
it is convenient to introduce the following notation: denote the gradient
vector associated with QN evaluated at vy = v* and w = w* and partitioned

subvectors of this gradiant vector as

’zy<y*, wk) N
3Q,, 3y ’e*
*) = —= = =
£E6%*) = 55 ok - ;
Lo(y*, w*x) aQN
w ow S*J

denote minus the matrix of second partials and partitioned submatrices as

— .2 2
H . (v%, w%) B (v, w*) "N Y
2 Y Yw - ayay'l ayaw',
0 QN g* 0%
HE6™) = - S55e7| = =12 2
e HwY(Y*’ w*) How % %) - E_EE_ - ° Y
Bway"e* Bwaw"e*

lOnly at y = Yo and w = wy will the vector €5 have zero mean.

Unfortunately, the notation 6 is sometimes used to represent an unknown parameter
vector and, at other times, it is used to denote the true values of these
parameters. To avoid confusion, 8 and 80 will be sharply distinguished in the

remaining analysis.




and denote the matrix of outer partials as

N 3 3
G(8%*) = 1 2 _Ei. _Ei
N Lo 28 36"
i=1 B* o*
~ P P N ey Py
G Y(Y*’ w*) GW(Y*, w*) | X ) Fonl BNy N ) v rwe
Y | i=1 oY le* Y .e* i=1 ‘e* ‘8*
N 3q, 99, N 3q, = 9q
1 i i 1 i i
G (y*, w¥) G (y*, w*) = ) == = = ) —
L_wy W | Lf 121 dw 0% Y le* N ie1 Jdw ‘6* dw ‘8%_

The function QN must satisfy a set of regularity conditions in order to
prove that the estimate for 8 obtained by maximizing QN has the asymptotic
properties omne usually associated with maximum likelihood estimators. The
analysis below assumes the following two conditions:

0q

(1) The gradient vector for each observation EEL exists and is uniformly

. . 1 . . .
continuous in 6,  and any linear combination of these vectors denoted as

aq.,
z, = At 5633 where ) is any conformable vector of real constants, satisfies
N
+
1im -% Z Elzi - E(zi)l2 § < ®
Nveo i=1
for some & > 0 and all 6 € O; and
2
3 q.

(I1) The matrix of second partials EET%T'eXiStS and is uniformly continuous
c

in 6 with each element of this matrix, denoted as hi’ satisfving

1im %
N i

Il o~

Elh,| <« for all € ¢ O,
1t

1A function f(a)>is said to be uniformly continuous on the set A
if, for every ¢ > O, there exists a vector a > 0 such that \f(a+a) - f(a)l < 9
for any |al< 4, and for any a € A.
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Z - H(6) satisfies

I o~
[+ 5]

and the average of these matrices

N . 836
1

lim E(H) = H(8) for all 6 ¢ O,
N->o
where ﬁ(e) is a nonsingular matrix whose elements are strictly less than

infinity in absolute value.

It is important to emphasize that the above conditions restrict
the form of the parameter space 0 and, in general, limit O to be a closed
ball in RP where p is the dimension of 8.1 These two conditions guarantee
that one can apply the asymptotic theorems cited below. While these
conditions are sufficient to prove most of the following results, they are
not necessary.2 They are, however, satisfied for most problems. Their main

attraction over weaker conditions concerns the fact that they are typically

éasier to verify in most applications.

lThe assumption that moments exist for first and second partials for
all 6 ¢ O restricts O to be strictly bounded from above, at least in some
dimensions, and requires other dimensions to be bounded away from zero. A more
subtle, but possibly more important limitation on the form on the set 0 is
imposed by the assumption that the matrix of second partials -H(6) is nonsingular
for all 8 ¢ ©. This assumption rules out the possibility that the function Q_(8)
(formally its limit) possesses more than one maximum on the convex set © where
oQ

EY 0. If there were two points, 81 and 62, satisfying this property, then,

according to Rolle's theorem, we know there exists a 63 € 0 such QN(G) achieves

a minimum. If this were true, then ﬁ(e) must switch from being positive to
negative definite which ensures that it is singular from some 6 ¢ ©. Thus,

the regularity conditions require O to be defined so that QN(G) achieves at most
one maximum in the interior of 8.

2To prove consistency of estimators, for example, one does not require
the existence of any moments or partial derivatives. Using theorems due to
Amemiya (1973) and Jenrich (1969), consistency of an estimator 6 that maximizes
Q,(8) follows if Q. (6) converges. in probability to a function Q(8) uniformly in
8, and Q(6) attains a unique maximum in the interior of 6. This paper follows a
more traditional method of analysis of the sort found in Rao (1973, Ch. 6) to
prove both consistency and asymptotic normality.



10

Combining the above conditions with the assumption that the
disturbance vectors e, are jointly normally distributed, two well known
results can be shown to follow. Letting é denote the maximum likelihood
estimator for 6 dervied by maximizing QN’ the first result states that é

is consistent for 80; or

plim{é} =8,

The second result asserts that the random vector YN(8 - 80) possesses an

asymptotic normal distribution; in particular,
(5) a1im{/R(6 - 6)) = N0, ﬁ'l(eo),

where the notation dlim denotes convergence in distribution, ﬁ(@o) =
plim(H(eo)) is the probability limit of the matrix of second partialé known
as the information matrix, and N(u, V) signifies distribution according to

a multivariate normal probability law with mean vector p and covariance matrix
V. On the basis of result (5), one concludes that in large samples

. 1 -1.-
(6) 8 [eo, y B (e)];

~

or, 6 is approximately normally distributed with a mean vector equal to the
true values of the parameters and a covariance matrix equal to minus the
inverse of the matrix of second partials evaluated at the maximum likelihood
estimates divided by the sample size. All maximum likelihood computer packages
report standard errors and test statistics based on (6), and it is these

quantities that most researchers use in their empirical analyses.
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The following discussion examines the asymptotic properties of é
without the assumption that the disturbance vectors are distributed
according to a multivariate normal distribution. Instead, it only
assumes that the ei's are independently distributed across the observa-
tions i = 1,...,N, and the two regularity conditions specified above.
These conditions, of course, do restrict the distribution generating
the ei's. The second condition, for example, requires some absolute
moment greater than fourth order to exist for any linear combination of
the ai's. This condition ensures that one can apply the multivariate
central limit theorems used in the following analysis; it essentially
limits the amount of weight in the tails of the distribution functions

generating the random vectors Yi and Xi'

Full-Information Estimation

Using the relation for Yi given by model (2), which formally
should be written as Y. = fq + €, where fQ = f(X., v,) is a vector of
i i i i i 0
conditional means evaluated at the true parameter values, one can eliminate
Yi in the expression of QN to obtain

N
0 ro Lo eg0
QN - l Z (_ inQl! _ ((fl - fl) + gi) Ql ((fl - f1)+ Ei)).

Differentiating QV with respect to an arbitrary element of Y and w yields
i\
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]
Qg 1 N 3y 4 1 °f; 1,0
ER A P25y 9 (g = £ Fey)
Yr i=1 Tk i=1| Yk
and
3Q N 3q, N [ L A0, A0,
a—wN°="113 ) - 1=%]— Y| tx Q,lg——l +tr Q,l-B—Jl—Q,l(f(,)—f_+a.)(f(_)—f,+e.)'
K 427 dwy 121 i Buwy i L 1o i Tiitrd i ]
-1
32nla, | _q 0%5) 9%y 199 4
where we have used the facts —§~————-= tr[ﬂ. 5*-], 5 = - 0, 5”"9. s
Wy i dwy Wy i sw, i
and tr(AB) = tr(BA). Define Qg = Q(Xi’ wo) where Wy is the true value of w.
Noting that E(Eiei) = Qg and €5 and Xi are independent which implies
E(fiﬂigi) = O for all 6¢©, one can verify that the expectations of these

derivatives are

{aQN] 1 B aqiW
D Ely) Tw L Fey,
Tk i=1 7Tk
N 5f!
=—§— 7 Ea—-}-Q,l(fg—fi+ei)
i=1 %Yk 7
N [af!
2 -1,.0
=ﬁzEalQi(fi'f1)
=1 |%'k
and
30 N (aq.
1
(8) E awN - ﬁA z E awl
k i=1 k
N [ an
=L z E tr[Q—l ——3~Q_l{ le + (£, - £, + 5.)(f9 - f, + E.)'J)
N . i Jw i i i i i i i
i=1 {_ k
N [ 30
SLY glerfelt ok o7t -ap o ) - £ - f.)'}
N i21 i awk i i i i i i i

me i
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where expectations in the last lines of (7) and (8) are computed only
with respect to the random elements of Xi (i.e., expressions for
expectations with respect to € have been explicitly substituted into
these last lines).

The estimator 6 is defined by the system of equations

- aQ
N
Q(O)EFA=O.
6

Formally, it can be shown that a solution to this system of equations lies
in the interior of the parameter space 0 with probability one which ensures

8 e O in sufficiently large samples.1 An exact first order Taylor's expan-

sion of 2(8) around the true parameter value 60 yields

I}
o

R(6g) - H(8,) (5 - 80)

where Gf lies between & and 80 and in the set 9. Selving this system of

equations for 6 - g one obtains

O’
- | 2
(9) (e - eo) = H (ef)sz(eo).
1 3Qy,
Inspection of equations (7) and (8) reveals that F 55| = 0 if
one sets® = 50 which lies in the interior of the set O. The regularity conditions
9Qy 9Qy
listed above guarantee that 55 converges strongly to E 56 | Thus, we know that
BQN
there exists at least one 8 € 0 (namely 6 = 8.) such that 5§ converges to
zero with probability one. Formally, in the following analysis we only require
A 3Q
N

that there exists a 6 ¢ @ such that plim = 0 which is assured.

a6

The following analysis formally only requires H(ef) to be nonsingular
in the limit.
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The regularity conditions specified above are sufficient to prove

N

that 6 is strongly consistent for 60. Where di’ hi’ and 8y denote elements
2

99, 94q,
of the gradient vector Egl’ the hessian matrix 355%7’ and the matrix of
3q, 99,
outer partials Sgi Y respectively, these conditions require
1 N 1 N 1 N
lim % } Eld l| <= limg Y Elhij < », and lim|% Y Elg,|| < = for
Nooo | i=1 Nowo o |1=1 Noeo N i1

each 6 € 6. Combined with the assumption of independence, these restrictions

directly imply

slim(2(8)) = ;im E(2(6)),

s1im(H(9)) = éim E(H(8)) = H(8),
and

s1im(G(8)) = lim E(G(8)) = G(6),

N>
where slim denotes strong convergence (i.e., convergence almost everywhere),

. . . . 2 .
and this convergence is uniform in 6 on the set 0. Inspection of the

1
For any sequence of random variables a;, i=1,..., the condition
N
. 1 . .
1im N Z E|ail <o implies that the quantity %- a., converges strongly
Nooo [T i=1 i=1
1 N
(or converges almost evervwhere) to lim N Z E(ai) as N goes to infinity
N i=1

(see Chung, p. 125 [19741).

2Considering for simplicity the single parameter case where H(8)
and H(®) are scalars, the quantity H(8) converges strongly to H(8) uniformly
in @ on the set © if, for each & > 0, there exists a N(8) (which does not
depend on 6) such that lH(e) - ﬁ(e)l < & for N > N with probability one. As
noted above, the regularity conditions restrict the set O. Combined with the
independence assumption, they directly imply_that, for each 6§ > 0 and 6 € O,

there exists N*(8, 8) < = such that |H(8) - fi(e)| < & for N > N* with probability

one. Uniform convergence, then, follows by taking N(8) = sup N*(8, §).
6eO

en e
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expectations of derivatives given by (7) and (8) reveals that E(Q(BO)) = 0,

s0
(10) slim(ﬂ(eo)) = 0.
Combining these results, it is possible to show that

slim(é - eo) = [slim H(ef)]'1 slim(z(eo))

= O.1

Since Gf is between 6 and eo, it is also evident that ef is strongly consistent

for 60 (i.e., slim(Gf) = 80). Furthermore, one can show that slim(H(ef)) =

slim(H(8)) = H(8_) and s1im(G(8)) = é(eo).2

1Considering for simplicity the single parameter case, verification
of_Ehis result requires that there exists for each 8§ > 0,a N(§) so
|n (ef)z(eo)l < 8, or equivalently IQ(GO)I < 6]H(6f)l, with probability one

(wpo) whenever N > N. Define b = énglﬁ(e)l and observe b > 0 since H(8) is
e

invertable by assumption for all € € 0. Given the restriction that the root 6,
and thus ef,lie in the set O wpo for sufficiently large N, slim(H(9) - H(8))

uniformly in 6 on © implies the existence of a N*(¢) for any ¢ with 0 < ¢ < b
such that IH(ef).— H(6.)| < ¢ wpo for N > N*. Since b 5]H(ef)] =

iH(ef) + ﬁ(ef) - H(ef)l < lH(ef)l + [ﬁ(ef) - H(ef)l, we have IH(ef)|> b - ¢ >
wpo for N > N*. Since slim(Q(eo)) = 0, we know there is a N#*#*(g) for any

il
o

e

£ > 0 so that IZ(BO)I < €& wpo for N > N**, Taking ¢ = &(b - ¢) and observing
£ < élH(ef)I, we see that N = max (N*, N**) < = guarantees [2(60))|< GIH(Gf)I

wpo for N > N. R

25ince slim(H(8) - ﬁ(e)) = 0 uniformly in 6 on the set 0 and B e © .
for sufficiently large N with probability one, it follows that slim(H(8) - H(®)) =
0. Given uniform continuity of ﬁ(@), one can show slim(H(8) - H(éo)) = 0.

Combining results we conclude slim(H(8) - ﬁ(eo)) = 0. The same argument applies

to show slim(H(ef) - ﬁ(eo)) = 0 and slim(G(é) - 6(60)) = 0.
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vectors which hav

satisfy the above

16

60) is an average of independently distributed random
e zero mean (see formulas (7) and (8)) and which

regularity conditions, one can apply Liapounov's

central limit theorem to obtain

a1 d1im(/R 2(8,)) = N(0, G(8y)),

where 6(60) = plimkG(eo)) is the probability limit of the matrix of

. 1
outer partials.

asymptotic theory

(12)  d1im(/N(8

~

so 9§ possesses an

~

Combining these results, a standard application of

yields

~6,) = [plin @(EN] dLmON L(80)

= N(O, H ~1 6 )G(o

0268 H

1
(63

asymptotic normal distribution. In large samples, then,

6 is approximately distributed according to a normal probability law of

the form

(13) 6 N(eo,

%»H“l(é)c(é)n"l(é)).

Given a
with zero means,
1 MN
lim =5 |=—| = 0 fo
N SN

(see Loeve [1977,
satisfaction of t
3q.,

sequence of independent random variables a., 1 = l,.-+»
application of this central limit theorem réequires
N N
1 248 _ 1 2
r & > 0 where Mg =3 .z Elail and Sy = y .z E(ai)_
i=1 i=1
p. 287)). The regularity conditions specified above ensure
his requirement for all linear combinations of the random

i . . . .
vectors &=, so one can apply a multivariate version of this theorem (see

Rao, p. 128 [1973]).

[ B SR
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If disturbances are distributed according to a multivariate
normal distribution, then we have the well known result E(G(OO)) =
E(H(SO)) which directly implies 5(60) = E(BO). In this case the
asymptotic covariance matrix for /ﬁ(é - 60) reduces to H _1(60) and the
asymptotic distribution assumed in maximum likelihood estimation given
by (5) applies. Most researchers assume normality and draw inferences
using output from a standard maximum likelihood computer package which
reports %-H_l(é) as the approximate covariance matrix for parameter estimates.
Using instead the covariance matrix % H—l(é)G(é)H_l(é) ~- which is readily
computable -- avoids the need for any specific distributional assumptions.

While use of the matrix H_l(é) leads to the incorrect computation
of standard errors for the estimates ; of the covariance parameters in the
absence of normality, it produces the correct standard errors for the
estimates ; of the regression coefficients. Even without normality of
disturbances, one can easily verify that the matrices GYY(YO’ wo),

HYY(YO’ wo), and Hyw(YO’ wo), defined in the above partitions of G(BO)
and H(@O), satisfy E(HYw(yO, wo)) = 0 and E(GYY(YO’ wo)) = E(HYY(YO’ wo)).

Given the above regularity conditions, it follows that

(14) ﬁw(eo) = Slim(HYw(eo)) =0
and
(15) c';w(eo) = Slim(GYY(yO, Q;O)) = Slim(HYY(YO, wo)) = HYY(GO).

The first relation implies
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__1 _

and combining this result with the second relation yields

b

ﬁ:(eo) ﬁ;i(eo)éw(eo)ﬁ;})(eo)
=1 = ==1 _
a7 H (GO)G(GO)H (8y) =
-1, \= =-1 -1, \7 —-1
L?ww(eo)GwY(GO)HYY(eO) wa(GO)wa(eO)me(eO{‘

On the basis of these formulas, we see that using the matrix %—H—l(e) rather

than %-H_l(G)G(e)H—l(G) gives a valid approximation for the asymptotic

~ ~

covariance matrix associated with v, but the wrong approximation for w.

One also obtains the wrong approximation for the covariance between ; and & unless

third moments of all linear combinations of the disturbances are zero in which case

@Yw(eo) = 0, and the off diagonal blocks of the matrix in (16) and (17) are equal,
This finding provides the basis for a simple proof of tﬁe well known

proposition that maximum l1ikelihood estimation of a linear simultaneous

equations model yields consistent estimates of structural coefficients and

standard errors for these estimates that are asymptotically valid even if

disturbances are not in fact normally distributed.1 Consider the system of

simultaneous equations

(18) T Yi =1 xi + v, i=1,...,N,

where T and T are matrices containing the structural coefficients, and vy

1This result was first shown by Anderson-Rubin (1949).

[0 I e
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is a disturbance vector with E(vivj) = ¢ if i j and = (0 otherwise.

The implied reduced form associated with (18) is clearly in the form

of model (2) with f = lnx, e =17} v, and 9 =170 o 71y,
Maximum likelihood estimation of (18) amounts to applying the estimation
procedure outlined above. A limited-information maximum likelihood
method estimates the parameters of the reduced form model imposing the
restrictions implied by a single structural equation,

and full-information methods impose restrictions implied by several
structural equations when estimating these parameters. Typically, all
identifying restrictions are introduced through the matrices T' and T,

. . . . . -1
and the covariance matrix ¢ is left unrestricted. Since fi =T T X.,

i
we see that the parameter vector y includes all the coefficients of T and
I as its elements, and the usual type of identifving restrictions limits
the number of elements in y and constrains the form of the expected value
fi. There are two choices for the parameterization of the vector
w: one may include the coefficients of T and ¢ as elements of w and treat

. . . . -1 "11
{¢ in estimation as a function of the form Q = T ¢ T ; Oor, one may

simply include the elements of § in w and estimate § directly forcing the

matrix T Q@ T'' to satisfy the same restrictions as the matrix ¢. As long

as one accounts for all constraints in estimation, maximization of the

function QN vields exactly the same vy and covariance matrix for these

. . 1
estimates no matter how one chooses to parameterize w. This observation

reflects the well known invariance property of maximum likelihood estimates.

1 . .
To verify this result, let the parameter vector ¢ include all
the unknown elements of ¢ and define o' = (v', ¢'). The parameter vectors
Y
6 and o are related by the tunctions 6 = r(g) = where u = b(y, &)
b (¥, 9)

is determined by the system of equations ) = F—I o F_l'. Define the matrix
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Considering the latter parameterization of w, the absence of restrictions on
the covariance matrix ¢ implies that there are no constraints relating the
elements of y and w. In this case, since vy is the maximum likelihood estimate

of T and 1T, it follows immediately from the results derived above that maximum

likelihood estimation of (18) produces consistent estimates and appropriate large

sample standard errors for structural coefficients even in the absence of
normally distributed error terms. It is further evident that this
proposition remains valid for any simultaneous equations model that is
linear in endogenous variables; in particular, one can generalize (18) to
permit heteroscedasticity and nonlinearities in parameters and in exogenous
variables. If, however, there are any sort of restrictions on the covariance
matrix ® which translate into constraints relating the elements of y to those
of w, then the proposition no longer holds, and one must use the asymptotic
distribution for estimates given by (13) which does not rely on the normality
assumption.

Permitting the existence of constraints relating the elements of
v and w introduces no significant complications in the above analysis. No
modifications are required in the derivation of the asymptotic properties
of the full-information estimator é. The approximate distribution given

by (12) and (13) still applies with partials computed accounting for the

I B '
or! ( vl - 3b! 3b
: - e S thB =——and B = , and
of first partials R(0) Py wi » 3y ¢ 30

denoteaihe reparameterized ”1ikelihood”miunction as LN(o) z QN(r(o)).
Since S—H- R £(¢) and R is nonsingular, “UN = 0 only when £(6) = 0, which
o} Y

r(a). Thus, maximizing QN with respect to 6 yields exactly the

il

implies 6 =

same value for y as maximizing LN with respect to o. Furthermore, one can
2

3 L A

; = R(c)H(B)R(c)' using the fact g(e) = 0.
9030 |0

readily verify that K(c) = -

. -1, -1,"
Letting V, and V, denote the (1, 1) block of the matrices K (o) and H (o),

1
respectivelv, which correspond to the covariance matrices of y for the
) '

alternative parameterizations, it is possible to show that V1 5
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Testrictions relating y and w. The imposition of such restrictions invalidates
relations (14) and (15), and it, of course, in general yields more efficient
parameter estimates.

We next discuss quasi-maximum likelihood techniques that can be
applied to estimate subsets of parameters rather than all parameters simul-
taneously. These limited-information procedures are particularly useful if
the aim of an analysis is to estimate only covariance parameters or only
regression coefficients. These methods decrease the amount of computational

burden required to estimate either the elements of w or vy, and, in the absence

of constraints relating vy and w, these limited-information procedures
permit one to subdivide the estimation problem and estimate w conditioning

on a value of y and vise verse.

Estimating Covariance Parameters

Consider first a simple limited-information procedure for obtaining

an estimate of w. Given any consistent estimate of Yoo denoted as v,

define the distance function

19) Q) = Qu(y , w)
N - -
-1 (- o] + E!Q,li,)
N . i i i i
i=1
where Ei = Yi - f(Xi’ v) is a vector of fitted residuals. A standard

nonlinear least squares estimator is a logical candidate for y. The

function QN loocks 1like QN except that known residuals €5 replace unknown

disturbances Yi - fi' QN may be interpreted as a ""likelihood function'

that treats residuals as if they were the true values of the disturbances.

Below we investigate the asymptotic properties of the estimator w derived
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- ~ ~

by maximizing the function QN. w is easier to compute than w defined
above because one does not simultaneously calculate estimates for v;
optimization is carried out over fewer parameters.

Given the same conditions assumed in proving (12), one can show

that w is a consistent estimate for the true parameter values Wy and it

possesses an asymptotic normal distribution. The estimator w is determined
by the system of equations
0 0
QN QN

= 2 = 0.
- - w(Y, w)y =0
Y, W

W ow

An exact first order Taylor's expansion admits a solution of the form

S Wy -
(20) G- wg) = H(n 6 ) (0 (s ) = B (s u ) (v = 1g))

where wg and Yg lie between w and Wo and between vy and Yoo respectively,

2" g 1
and we have used the obvious facts - + = H and — = H .
. Quwow ww dway wy

The above regularity conditions, relation (10), and the consistency of

the estimator vy directly lead to the conclusion

plim(w) = wo.z

This convergence is strong (i.e., slim(w) = wo) if slim(;) = Yy rather than

lExpanding 2 (v, w) = 0 around w, yields (w - w,) = H_l(y W)
~ w ~ 0 0 ww' g
2 (v, wo), and expanding 2(vy, mo) around Yo yields (20).

Because slim(H ) = 0, the second regularity condition specifying
slim(H) is a nonsingular matrix necessarily implies that slim(3 ) = H is
nonsingular which is required to prove the consistency and the ww
asymptotic normality of w.



23

plim(y) = Yo Combining this result with relations (11) and (14) further
implies

(21)  dlim(N(e - wy)) = N(O, ﬁ;i(eo)éww(eo)ﬁ;i(eo))

where wa(eo) = slim(me(YO, wo))and waG)O) = slim(wa(yo, wo)). The

estimator w, then, in large samples is approximately normally distributed.

In particular,

Y. 1l . -1- = N
(22) w N(wo, N B, O w)wa(Y, w)wa(Y, w)).

There are two characteristics of this distribution that are
important to recognize. First, notice that one can compute an estimate
of the covariance matrix of ; neglecting the fact that ; is an estimated
value of Yo- The covariance matrix appearing in (21) and (22) depends
only on the matrix of second partials and the average of the matrix of
outer partials associated with the function éN' It is, then, possible
to treat ; as if it were the true value of vy, and residuals may be treated

as if they were the true disturbances. In fact, inspection of (21) reveals

that there would be no gain in estimation efficiency if Yo were actually

known.

Second, the limited-information estimator w has the same asymptotic
distribution as the full-information estimator w whose distribution is given
by (13). Both estimators of w are equally efficient, so there is no gain

in simultaneously estimating the elements of y and w.

Estimating Regression Coefficients

There is an analogous procedure for obtaining an estimate of Y.

This procedure is, of course, ncothing more than nonlinear generalized least squares.
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The nonlinear generalized least square estimate of vy, denoted as

vy*, is defined as that value of y that maximizes the function

(23)  Q(n) = oy, w®)

1

2=

N
z [- enlo,, vl - @, - ED'T(X, wR) (¥, - )]

i=1

where w* is any consistent estimate of Wy Instead, then, of evaluating
QN as a consistent estimate of Yo as ve did above to obtain the estimate

w, we evaluate it at a consistent estimate of W+ Switching the roles

of y and w in the above derivation of w and using relations (14) and (15),

one can easily verify the well known large sample result

. 1 ..-1
* fol * *
(24) v* v Nlvgs § HW(Y , wW¥))

where HYY is minus the Hessian matrix of the function Qﬁ(y).

Similar to &, the nonlinear generalized least squares estimator
v* has the same asymptotic distribution as its full-information counterpart
;. Also, one neglects the fact that w* is an estimated quantity when
computing the covariance matrix of y*. None of these results assumes that
the estimates y to be asymptotically uncorrelated or independent of the
estimates of w. The estimates of y and w obtained by any of the procedures
outlined above will not be independently distributed in large samples unless
the third moments of all linear combinations of disturbances are zero.
The crucial fact responsible for the equivalent asymptotic properties of
limited- and full-information estimators is that the matrix of cross partials

evaluated at the true parameter values, HYm(yO, mo) converges to zero in

probability.
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Estimating Regression Coefficients with
Unknown Forms of Heteroscedasticity

Often the functional form of the covariance matrix QX,, w) is
i
unknown, and a researcher wants to obtain consistent estimates of the

regression coefficients and the appropriate standard errors of these

estimates without making invalid or arbitrary assumptions concerning
the covariance structure of disturbances. The above analysis provides
a methodology for accomplishing this task.
A nonlinear least Squares procedure offers a natural method
for estimating y without the need for any specification of the covariance
matrix. Instead of the distance function QN given by (14), set Qi =1

for all i in QN,and define the new function

i
2

N
(25) M (y) N
=1

1

1 '
TN ¥ - £ v, - £5)

It~

i=1

where mi is the function of Y, Yi’ and Xi defined by the second expression
for MN. Maximizing the function MN with respect to y yields the nonlinear
least squares estimator ;*. Following the steps presented above in the
derivation of the asymptotic properties of the full-information estimator

with MN’ m, and y*replacing QN’ 9y and 6, respectively, it is straight-

forward to show that

. me TN am. am, T R
(26) Y"‘&NYO’%“aa'A %Zal“a}* BTN
o [P T T

~

According to this formula, the large-sample covariance matrix of Y*

depends simply on the matrix of second partials and the average of the
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matrix of outer partials associated with the function MN evaluated at

the nonlinear least squares estimate y*. In contrast to the function QN

for the function MN we in general have

om, am, 82

slim 1 z # slim|-

1 3 N .
N 5, 8y iy* ay";* Byay";* ’
so the covariance matrix associated with estimates of regression
coefficients does not simplify as it did in the previous analysis.
The result given by (26) represents a multi-equation
extension of a result due to White (1980).

This is a very useful finding. The distribution for ;* given

by (26) is valid in large samples no matter what the actual form of the
covariance structure associated with disturbances. Using this distribu-
tion to compute standard errors and to test hypotheses does not rely on
any assumptions concerning the form or the absence of heteroscedasticity,
and, as with all the results developed in this section, it does not rely
on specific distributional assumptions for disturbances. Besides the
luxury of avoiding the difficulty of correctly specifying covariance
matrices, this method of estimation permits one to analyze many complicated
models that are not easily estimated using alternative procedures. An
example of such a model is one in which the dependent variables Yi(t)
appearing in (1) are nonindependent discrete random variables. Using (26),
it is possible to estimate the parameters determining the probabilities
generating these variables and to test hypotheses concerning these parameters

without modeling how these variables are correlated with one another which

requires the specification of joint probabilities.

e
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ITII. BHypothesis Tests

This section examines the general asymptotic properties of
statistics derived from the theorv of maximum likelihood to test
hypotheses in a large sample setting. Specifically, assuming the
parameter vector 6 contains p elements, we consider tests of the

hypothesis

(27) b(6) = 0,

where b is a s x 1 vector with s < p, which may equivalently be

written as

(28) 6 = r(a),

where o is a n x 1 vector of parameters with n = P - s. The components
of the vectors b and r are assumed to be functions admitting uniformly

continuous partial derivatives of the first order. Below we denote the

]
matrices of these partials as B(8%) = égr and R(a*) = ar_ .
a 0% aa ok

Tests Based on Full-Information Estimation

There are three well-known large sample tests of (27) and (28)
Justified using maximum likelihood theory: Wald's test (W), the likeli-
hood ratio test (LRT), and Rao's test also known as the Lagrange multiplier

1 . - . . -
test (LMT). Letting 6 denote the unconstrained estimator that maximizes

lThe test statistic used in this paper (see (31) below) is from
Rao (1947). 1It is, however, equivalent to the Lagrange multiplier test
developed by Silvey (1959). Maximizing QN(Q) subject to (27) is achieved

by unconstrained maximization of QN(G) + A(B(8)) where }» is a vector of
3

Lagrange multipliers. Optimality implies §§§-= B(8)AX. 1Inserting this

relation into (31) yields the test proposed by Silvey (1959).
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the function QN(G) defined by (4), and letting 6c = r(a) denote the

constrained estimator where o maximizes QN(r(a)), the statistics

associated with each of these tests are:

N b(8)' [BBIVE)B®B)' ]S b(s),

(29) W=

(30) LRT = 2810 (8) - Q8 )],

and

(31) T = N 2@ TR 26,

where V(é) in (29) is the approximate asymptotic covariance matrix of
/ﬁ(é - eo) with V(é) = H_l(é) when applying the theory of maximum likeli-
hood. The computation of W requires estimation of only the unconstrained
model, while the computation of IMT requires only estimation of the
constrained model. To calculate LRT one obviously needs to estimate
both models.

To determine the asymptotic distributions of W, LRT, and LMT,

it is convenient to write these statistics in terms of the gradient

vector Q(eo) evaluated at the true value of 6, which under the null hypothesis

satisfies the system of equations 8, = r(ao). Denote the vector of first

partials and the matrix of second partials of Q (r(a)) with respect to
N

3Qy 220,
a as ela) = — and F(a) = - —7+ , respectively. Applying the
da a daca
chain rule, we have e(a) = R{az) 2(8) where &8 = r(az). Further application

of this rule and using (10), it is possible to show that the matrix F(ul) is

asymptotically equivalent to the matrix R(aQ)H(el)R(az)' when

[ o
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plim(a1)= plim(az) = ay and plim(el) = eo (i.e., pllm[F(al) -

0).l Using the argument employed to derive (9), one

R(a,)H( DR(xy)']
~ - ~ -1

can show (o -~ ao) = F l(af)e(ao); so (a - ao) = F (af)R(aO)Z(aO).
First, consider the Wald test statistic. Expanding b(é)

around the parameter value 60, we have under the null hypothesis
b(8) = B(6,) (8 - 6p)

where Bh lies between 6 and 80. Using (9) to eliminate (é - eo) and

substituting the resulting expression into (29) yields

= '
W N 2(60) K 2(80)
with

K = H"l(ef)B(eh)' [B(é)V(é)B(é)’]—l B(eh)H‘l(e ).

f

~

Observing that eh, Gf, and 6 are all consistent for 60, it is possible

to show that the matrix K converges strongly to K where
(32) K= R 1s)BCe)" [BCs )T(5)B(6 )1 B(s )i e
0 0 0 0 0 0" "0

with V(eo) = ﬁ'l(eo) in maximum likelihood estimatiom. A standard
application of large sample theory implies that under the null hypothesis

W has the same asymptotic distribution as the statistic

(33) Wy = (VN “eo))' K(AN 2(84)) .

Consider next the test statistic LRT. An exact second order

Taylor's expansion of the function QN(B) around 6, yields

0

lTo demonstrate this result formally, one must assume that the
estimators 81, r(al), and r(az)'lie in the set 0 with probability one for

sufficiently large N, or these estimators are defined to lie in this set.
This assumption combined with the strong convergence of the matrix H(8)
to H(®) uniformlv in 6 are sufficient to prove plim[F(al) - R(aZ)H(el)R(az)'] = Q.
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where ea lies between 6 and 80. Using (9) to eliminate (6 - 60), one obtains

oy = - 1 -1 -1
0y(8) = Qu(80) + £(6) [H(8) = 5 H (8 )H(8 )H " (3)12(50).

An analogous expansion of QN(r(u)) yields

0 (r () = 0y(8) + eleg) [F (ap) = 3 FH@QF@F (ap)]eleg).
Since e(ao) = R(ao)ﬁ(eo), we have
LRT = N z(eo)' All(eo),
where

_ -1 -1 -1 ' -1
Al =2 H (Sf) - H (ef)H(ea)H (ef) - R(uo) [2F (af) -

F'l(af)p(aa)F’l(af)]R(ao).

Using the above results, it can be shown that A1 converges strongly to a

matrix A where
oy R = F L) - R [RGxgE(E R T RG@E).
0 0 0 0 0 0
Thus, under the null hypothesis, LRT is asymptotically equivalent to
(35) LRT, = (/N 2.(8))" AG/N 2(84)) -

Finally, consider the LMT statistic. Expanding 2(r(a)) around

o yields
Hr(@) = 100, - H(B R (a) (o = o)
— (1 - H(EOR(x)F (@ )R(xg))E(8))
where ed = r(ad) lies between éc = r(;) and 60. Substituting this relation

into (31), one obtains
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= I\ '
LMT m(eo) A2 2(90)
where

A, = [1 - R(ao)'F'l(af)R(ad)H(ed)]H'l(éc)[I- H(ad)R(ad)'F_l(af)R(ao)].

The matrix A2 can be shown to converge strongly to A defined by (34).

Thus, LMT is asymptotically equivalent to
(36) IMT, = (/N 2(8))" AGN 2(8,))

under the null hypothesis.

Regardless of specific distributional assumptions, we know from
the previous section that the vector /ﬁ'z(eo) converges to a normal distri-
bution as N goes to infinity with covariance matrix 5(60)(see (11)). 1Inspection
of the formulas given by (33), (35), and (36) indicates the statistics
WO’ LRTO, and LMTO are quadratic forms in the vector VN 2(60). Thus, the
problem of determining the asymptotic distribution of the test statistics
W, LRT, and IMT reduces to one of determining the distribution of a quantity
of the form n' A n where the vector nn ~ N(0O, ) and A is a symmetric
matrix of constants.

Assuming disturbances in model (2) follow a multivariate normal
distribution, it is well known that each of thesé test statistics possesses
a large sample chi-squared distribution with degrees of freedom equal to
the number of restrictions s. A necessary and sufficient condition for the

. . 2 , . .
quadratic form n'A n to be distributed as a Xk variate is for the matrix

AL = AE(nn') to be idemponent (i.e., AZ = AZAY) with tr (AL) = k.l When

lA reference to this theorem can be found in Rao (1973, p. 188).
The statement of this theorem in the text uses the fact that the rank of an

idemponent matrix equals its trace.
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error terms are normally distributed, we have 5(60) = ﬁ(eo) so the
asymptotic covariance matrix associated with /ﬁ’z(eo) is ﬁ(eo). One
can readily verify that the matrices K ﬁ(eo) and A ﬁ(eo) are each
idemponent with traces equal to s. This simple observation, then,
directly leads to the conclusion that W, LRT, and LMT converge to a
xi distribution under the null hypothesis.

Relaxing the normality assumption means that 5(60) # ﬁ(eo),
and this alters the asymptotic properties of the test statistics LRT
and LMT in some instances. No real problems arise with regard to the
Wald statistic. It is well known that W is distributed as a large sample
xz variate if V(é) in (29) is a consistent estimate of the asymptotic
covariance matrix of /ﬁké - 60). In the absence of normality, then,
one simply sets V(é) = H—l(é)G(é)H_l(é). Unfortunately, no simple
modifications of this sort exist for the statistics LRT and LMT. Before
examining the cases in which these two statistics diverge asvmptotically
from the XZ distribution, the following analysis first identifies those
instances where the familiar large sample properties apply.

When hypotheses involve only constraints on regression coefficients
vy and do not involve covariance parameters w, relaxing the normality assump-
tion has no effect on fhe asymptotic properties of the test statistics LRT
and LMT. Hypotheses of this nature imply that one can specialize the restric-

tions given by (27) and (28) to read

(37) b (y) =0
Y

and
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where rY(aY) is a vector of functions with a dimension equal fo that

of v, and ay and am are parameter vectors. While this analysis allows

for the existence of constraints on the covariance matrix £ which are not
part of the hypothesis, it assumes that there are no constraints relating
the elements of Q to those of y. The matrix of first'partials associated

with r(a) in (38) is

R (o) 0
R(a) = Y
0 I
ar (a )’ .
where R (o ) = » and I = — is the identity matrix. Substituting
Yoy Bay aaw -

this matrix of partials into the expression for A given by (34) and using

relations (14) and (15) to simplify the resulting expression, one obtains

A 0)
_ YY
A=
0 0
with
(39) A =G (e) - R (o )[R (o )G _(8)R (a '] IR (a_ )",
Yy vy 0 Y¥0T Ty 0T Ty 07y 0 Y v0
where ayO is the true value of ay. In this case the matrix

C(SO)K is idemponent with a trace equal to s (i.é., the number of restrictions
imposed in (37)) which implies that the statistics LRTO and LMTO converge

to a chi-squared distribution with s degrees of freedom. Thus, when tésting
hypotheses concerning regression coefficients the statistics LRT and LMT

both possess a large sample xi distribution under the null hypothesis even

when disturbances are not normally distributed.
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An interesting implication of this finding concerns the
applicability of the likelihood ratio statistic for testing hypotheses
involving structural coefficients of a simultaneous equations model.

To be concrete, consider the system of simultaneous equations given by

(18) where the matrices T and T contain the structural coefficients of

the model, and ¢ is the covariance matrix associated with disturbances.

As outlined in the previous section, both limited- and full-information
maximum likelihood estimation of a simultaneous equation model is equiv-
alent to applying the full-information estimation procedure discussed

in this paper to estimate a reduced form model in the form of (2) with

vy containing all the coefficients of T and II, and with w parameterized

to include either the elements of T and ¢ or the elements of the reduced
form covariance matrix ©. The particular parameterization chosen for

w is obviously irrelevant when computing the value of the likelihood
function QN under various hypotheses. Considering this latter parameter-
ization for w, it is evident that constraints on the coefficients of T

and T imply constraints on the elements of y, but do not iﬁply constraints
on the elements of w assuming the covariance matrix ¢ is unrestricted.

In the absence of covariance restrictions, then, all hypotheses concerning
the form of thematrices T and T translate into restrictions on Y which may
be written as (37) and (38). Thus, it follows immediately from the above
results that the LRT statistic for testing restrictions on these structural
coefficients is distributed in large samples according to the X2 distribu-
tion usually associated with this statistic as long as there are no constraints
on the covariance matrix ®. One can in effect use this LRT statistic to
test hypotheses in a simultaneous equation framework as if disturbances are

normally distributed.
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The asymptotic properties of the test statistics LRT and
LMT are fundamentally changed when used to test hypotheses concerning
covariance parameters in the absence of normality. The large sample
distrubiton of these statistics for this case can easily be determined
using theoretical results from the statistical literature on the distri-
bution of quadratic forms of normal variants. The distribution of the
quantity n' A n is known when A is a symmetric positive semi-definite
matrix, which is the case of concern for determining the distribution of
LRTO and LMTO. Defining Al,...,kk as the positive characteristics
roots of the matrix AI, the quadratic form n' A 5 with n~ N(0, I) can
be shown to have a distribution with a characteristic function given by

k ~1/2

)oI1 - 2ien,
j=1 )

For notational convenience we denote a distribution with this characteristic
function as QFD(ll,...,Ak). A comprehensive discussion of the properties of
this distribution can be found in Johnson-Kotz (1970, Ch. 29).1 While the
cumulative distribution function associated with QFD(AI,...,Ak) has a
closed-form solution, it involves an infinite series which makes it difficult
to use for computing critical values needed in hypothesis testing without
resorting to a computer. Difficulties arise in tabulating this function
because of the number of parameters involved. Each of the k roots Kl,...,Ak
constitutes a parameter which may take any positive value. Johnson-Kotz
(1970, Ch. 29) 1list several sources with tables for selected values of the
cumulative function for k < 5, and they present formulas for approximating

this function for an aribitrary. number of roots. In an article, Johnson-Kotz

1Kendall—Stuart (1969, Ch. 15) also presents a discussion of this
distribution.
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(1969) provide a computer program for calculating the cumulative function

in the general case.
Inspection of the formulas for LRTO and LMTO given by (35) and

(36) reveals that both of these statistics converge in distribution to a

QFD(Al,...,AS) distribution where Al,...,xs are the s positive character-
istic roots of the matrix A 6(60). In those cases discussed above where
A E(eo) is idemponent, all the Aj's, j=1,...,s, are equal to one and,

accordingly, LRTO and LMTO converge to a QFD(1,...,1) distribution which
is, of course, identical to a Xi distribution. When testing any sort of
covariance restrictions, however, these roots may take values other than
one, and a method is required for computing these roots. Referring to the
definition of the matrix A given by (33), it is evident that calculating

the s positive characteristics roots of the matrix
-1, e Cvmrim eyt 1 R oy 16 (8
[H7(6) - R()'"[R()H(E)IR(@)'] "R(a)]G(®)

yields consistent estimates of the parameters Al,...,ks. Using these
estimates to evaluate the cumulative distribution function associated
with a QFD(Xl,...,AS) variate, one can compute critical values that may
be compared with the realized values of the statistics LRT and IMT to
test hypotheses concerning covariance restrictions, including constraints

relating covariance parameters and regression coefficients.

Tests Based on Limited-Information Estimation

Three methods for estimating subsets of parameters are discussed

in the previous section: one is the traditional generalized least squares

fiad
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procedure; another conditions on consistent estimates of regression
coefficients and provides a technique for estimating covariance
parameters; and the third procedure amounts to a least squares method

of estimation. Below we consider the asymptotic properites of test
statistics analogous to those presented above for each of these estimation
methods.

The generalized least squares procedure uses the distance
function Qﬁ(y) defined by (23) to obtain estimates of the regression
coefficients. To test hypotheses concerning the structure of y which
may be written in the form of equations (37) and (38), the statistics
corresponding to the Wald test, the likelihood ratio test, and the Lagrange

multiplier test are:

(40) WX = Nb_(y%)'[B (yFV(HyREB (v*)' 1 b (y#),
Y Y Y Y
£ = ON(Q*(v*) — QX(v%
(41)  LRT* = 2N(QE(r%) - QF(¥)),
and
5% sfop |7 aaz
(42) IMT* = N —5+ - T — »
3Y | % oy3y % 3y vk
YC YC C

where y* and yg are the unconstrained and the constrained estimates of Yo

ab
derived by maximizing the function Qﬁ(y), By(y*) = §;¥' , and V(y*) =

Y)‘c
H l(y*, w*) is the approximate asvmptotic covariance matrix associated with

the quantity vN(y* - yo).
Following the above derivations of the quadratic forms WO, LRTO,

and LMTO, one can derive similar relationships for W#, LRT*, and LMT*.
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Obtaining an expression analogous to (20) for y* and using relation

(14), it can be shown that W* is asymptotically equivalent to
wx = (VN o (6.))" K (/N ¢ (8
5= ( Y( o)) YY( Y( o))

where RYY has the same expression as K given by (32) except HYY(GO)
and By(eo) replace the matrices H(eo) and B(eo), respectively; and

LRT* and LMT* are asymptotically equivalent to
LRT* = IMT* = (VN 2 (8,))" A __ (/N
5= Ly = O 2 (80" B O 2 (80)

where KYY is given by (39). When computing the likelihood ratio statistic,
one is not required to evaluate QN at the same value of w to derive the
above equivalence relationship. 1In particular, if instead of the

expression for LRT* given by (41), one defines
X = * %) — * %
LRT 2N[Q (v*, wi) Qu (Y%, ©3)]

where wi and w§ are both consistent estimates of wy under the null
hypothesis, then LRT* is still asymptotically equivalent to LRTS.

We know that dlim(VN zy(eO)) = N(0, éw(eo)), and using (15),
one can readily verify that the matrices iYYaYY(GO) and KYYEYY(GO) are
both idemponent with traces equal to the number of restrictions. Hence,
the statistics W%, LRT*, and LMT* are clearly each distributed according
to a xz variate in large samples under the null hypothesis. In the
context of a generalized least squares procedure, then, we find once again
that asymptotic tests may be carried out as if disturbances are normally

distributed, and furthermore, one can neglect the fact that the covariance

matrix is an estimated quantity rather than equal to the true matrix.



39

The limited-information procedure for estimating covariance
parameters offers a framework for testing hypotheses concerning the
structure of w which may be written as bw(w) = 0 or as w = rw(aw).
This procedure uses the distance function 6N(w) to obtain estimates

for w and suggests the following three statistics:

(43) W= Nb @) [B @V@B @17 b @),

(44) LRT = 2N[QN(m) - QN(wC)],
and
. 3Q, 2o, | 20,
(45) LMT = dw' |w T dwiwn ' |w Sw |w
c c c

where ¢ and W, are the unconstrained and the constrained estimates of w
- - db -
derived by maximizing the function QN(w), B (w) = :f$i~, and V(w) =
e AR BRI I X e
H "(y, w)G "(y, w)E “(y, w) is the approximate asymptotic covariance
ww ww ww

0

).

matrix associated with /ﬁ(& = wg
Under the null hypothesis, ﬁ obviously possesses a large sample

xz where s is the number of restrictions being tested. Furthermore, it

follows directly from the above analysis that LéI and LﬁT are approximately

distributed as a QFD(Al,...,AS) variate, where the parameters Xl,...,AS may

be consistently estimated by computing the s positive characteristic roots

of the matrix
[ (vn o) - R (a)'[R (e )H_ (5, WE (6 )'1TR ()16, (7, o),

ar' .

with R (@ ) = —¥ . > and o determines the constrained estimate ¢ = r (a ).
ww Ja w c wow

w ja
w
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Finally, to test hypotheses concerning the regression coefficients
in the presence of heteroscedasticity of an unkﬁown form, one can use the
least squares procedure discussed above which employs the function MN(Y)
given by (25). Statistics corresponding to the Wald test, the likelihood

ratio test, and the Lagrange multiplier test are:

g% = k)" % . xyryTL y
(46) Y N bY(Y’L) [By(Y*)V(Y*)By(Y*) ] bY(Y*),

i

(47)  LRT* = N[ (v%) - M G,

and

2
X 3 3 M
(48) IMT* = N 5?11'1 Ty N

1

’

o T B
ES *
YC YC

*
YC

where v* and Yé are the unconstrained and the constrained values of Yo

that maximize MN(Y), and

[ .2 l’ 2
. 3 N  om, am, 3
V(y*) = {—“’*‘—MN 1 Z - 7 - LN

PN ~ 1]~ a Y[~
9YaY N {? 521 9Y fY* Cht ’Y* Yey 'Y*

is a consistent estimate for the asymptotic covariance matrix of N(y* - yo).

~

W* is distributed according to a xi distribution

in large samples under the null hypothesis. The'above results

further imply that the statistics LéT* and LﬁT* both converge to a
QFD(kl,...,XS) distribution, where the s positive characteristics roots

of the matrix

-1
My oM . . N 9m, om,
1 i i
R *#)Y'" R (a* = TV -
LEDTR (@) g ) i

N
3yay' ;*

- R (Q*)' R (a*) -
Y Y Y

- = N N a ~
dysy IY* j=1 °Y IY*

provide consistent estimates of the parameters Al,...,ks,

-

]
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Conclusion

We have seen that applying maximum likelihood techniques which
assume normality to estimate the parameters of a nonlinear multivariate
regression model with covariance restrictions, including general forms
of heteroscedasticity, yields parameter estimates that are both consistent
and asymptotically normally distributed under fairly general conditions.

In addition to considering full-information methods where one simultaneously
estimates all parameters, three limited—information procedures are examined
which provide for the separate estimation of regression coefficients and
covariance parameters. One procedure treats consistent estimates of
regression coefficients as true parameter values and offers a simple method
for estimating covariance parameters; and a second procedure does just the
opposite. The estimators obtained from both procedures are shown to have
the same asymptotic distribution as the full-information estimator. The
third limited-information procedure offers a robust technique for estimating
regression coefficients in the presence of arbitrary and unknown forms of
heteroscedasticity. The general asymptotic properties of several statistics
used to test composite hypotheses in a large sample setting are derived for
both full- and limited-information methods of estimation.

An important finding of this paper concerns the robustness of
results for regression coefficients. The application of standard maximum
likelihood techniques not only yields estimates for these coefficients that
are consistent and normally distributed in large samples, these techniques
also report standard errors for these estimates that are asymptotically wvalid
regardless of whether or not disturbances actually follow a joint normal

distribution. Furthermore, the normality assumption is not needed to prove
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that the likelihood ratio and the Lagrange multiplier statistics for
testing restrictions on regression coefficients are distributed according
to the large sample chi-squared distribution usually associated with
these statistics. An interesting by-product of this result concerns the
implication that one can use likelihood ratio statistics to test restric-
tions on structural coefficients of simultaneous equation models as if the
normality assumption were satisfied as long as there are no covariance
restrictions. This large sample robustness of standard errors and the
test statistics for regression coefficients holds when applying either
full-information estimation methods or standard nonlinear generalized
least squares procedures.

In contrast to the above finding, the standard errors for estimates
of covariance parameters reported by a maximum likelihood routine which
assumes joint normality are asymptotically invalid if in fact the normality
assumption is violated. Computing the appropriate standard errors in the
general case requires the use of the matrix of outer partials as well as
the inverse of the matrix of second partials. The above analysis also
explicitly derives the general asymptotic distributions of the likelihood
ratio and the Lagrange multiplier statistics associated with testing the
covariance restrictions, including restrictions relating covariance parameters
to regression coefficients. These asymptotic distributions are shown to
depend crucially on the normality assumption and will in general diverge from

the familiar chi-squared distribution.
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