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A note on the solution of a two-point boundary value problem frequently
encountered in rational expectations models.

I Introduction

This note analyses the solution of systems of linear differential
equations with constant coefficients for which boundary conditions are
given at two points in time. Two—-point boundary value problems
were originally developed for engineering and natural science applications.
They first became familiar to economists studying continuous time dfnamic
optimization problems using Hamiltonian methods. To obtain the control
variables as functions of time one has to solve for the time paths of the
co~state variables. This means solving a two-point boundary value problem
with initial boundary conditions for the state variables and terminal

boundary conditions for the co-state variables.

In recent years the scale of application has been extended greatly
through the widespread use of the rational expectations assumption and
the efficient markets hypothesis in macroeconomics. Analytical treatment
has generally been limited to systems of two dynamic equations, which
permit heuristic graphical analysis, although a few studies of systems
with three or more dynamic equations exist (Calvo [1979], Obstfeld [1980],
Dixit [1980]). Also recently, Lipton, Poterba, Sachs and Summers [19801],
have presented algorithms for numerically calculating the saddlepoint
paths that represent the solution of many rational expectations models.
As their methods apply to non-linear as well as linear models, they have
the advantage of a considerable degree of generality. This note is much
less ambitious in that it considers only systems of linear differential
equations (see Blanchard and Kahn [1980] for a treatment of linear

difference equations systems). This means that, provided the state




transition matrix is of full rank and provided n linearly independent
boundary conditions are given, there are no problems of non-uniqueness. 1/
Non-uniqueness problems are especially baffling in rational expectations

models with "forward-looking" state variables such as asset prices determined in
efficient markets, which incorporate and reflect information about the

current and anticipated future behaviour of the exogenous variables. It

isn't even clear conceptually how one would approach rational expectations

models whose solutions are characterized by sequences of multiple temporary

or momentary equilibria.

The main contribution of this note is in the treatment of ﬁhe boundary
conditions for the "forward-looking" state variables i.e. those that
cannot be treated as predetermined. Typically, in economic applications,
the terminal conditions that complement the initial conditions for the
predetermined or "backward-looking" variables involve an infinite time
horizon. The most common assumption, considered in this paper, is that
the system converges (asymptotically) to a steady state equilibrium.
Numerical algorithms aren't very sympathetic to terminal conditions at
t =4+ o, The usual response of practitioners is to hope that a large
but finite time horizon will approximate adequately the infinite horizon.
In Section IV of this note we consider the case where the number of
predetermined variables equals the number of stable eigenvalues (those
with negative real parts) and the number of forward-looking or jump '
variables equals the number of unstable eigenvalues (those with positive
real parts). Conditions are given under which a set of linear restrictions
on the state vector at some finite future time, t = tf , is exactly
equivalent to the condition of asymptotic convergence to the steady-state

equilibrium. The initial conditions, at t = to £ t_. , on the pre-

£

determined state variables can of course alsoc be expressed as a set of




linear restrictions on the state vector, at t = tO . In Section V I show
how the boundary conditions for a third kind of state variable, which
combines aspects of the pure backward-looking and forward-looking state
variables, can be expressed as the sum of a set of initial conditions at

t

to and a linear function of the wvalues of the pure jump variables at

t =t . Other ways of obtaining a unique solution when there are "too many"
o)

stable eigenvalues are also considered.

This specification of the boundary conditons has two advantages.
First, solutions for linear two-point boundary value problems exist when
the boundary conditions are expressed as sets of linear restrictions on
the state vector at an initial date and at a finite terminal date.

Two such methods, the "method of adjoints" and the "forward sweep"
solution are sketched briefly in Section III. Second,; numerical
algorithms exist for two-point boundary value problems that require the
boundary conditions to be entered this way. An example is the NAG

Routine DOZ2AFF (NAG [1977]).

II. The state-space representation of differential equation systems

The general structural form of the differential equation system

we shall analyse is given in equations (1) and (2). D 1if the differential
operator, i.e. D x(t) = é%-x(t) . All vectors are column vectors.

aT denctes the transpose of a .

(1) ‘Pl x(t) + F2 D x(t) + T3 y(t) + T4 z(t) =0

(2) F5 x{t) + P6 y(t) + T, z(t) =0 .

7




x 1s an n vector of state variables. y(t) is a g vector of

output variables, z{t) 1is an m vector of exogenous or forcing

variables. I, , 1 =1, ... 7 are matrices with constant cocefficients.
i

If P2 and F6 are of full rank, (1) and (2) have the state-space or

dvnamic reduce form representation of (1') and (2').

(L') D x(t) = A x(t) + B z(t)

(2") y(t) = C x(t) + D z(t)

where

(3a) &= -7 {Fl - T FSj
() 3 = 1,7 [?3 T Ty - F4]
(3e) c= -1t r,

(&) b= 71

We shall henceforth work with the state-space representation of
(1') and (2"). Given a solution for x(t) using (1') and a set of
boundary conditions for x , y(t) can be obtained simply by repeatedly

solving a system of linear equations. We therefore focus on (1').




III Solutions of the two-point boundary value problem for linear
differential equations with linear boundary conditions.

a) The method of adjoints

Consider the linear differential equation system (1'), reproduced
again for ease of reference, with n linear boundary conditions as given

in (4).

(1') D x(t) = A x(t) + B z(t)

n n

: =p. ] = 2, e ; 2
(4) L M. Xi(to) + Z \)]l xl(tf) p] J 1, [ r tf t
= i=1

x., ,i=1, 2, ..., n 1is the ith component of the state vector x. The

U.. vji and pj are known constants. Equation (12) can be rewritten as:

o)

(4') M x(t ) + N x(£.) =
o) £

i
-
<
——t

M is an nxn matrix, M = {uji} ; N is an nxn matrix, N and

ji

R is an n-vector, R = (pl, ceer PLr eeeers pn)T .

3

Consider the adjoint system to (1').
T
(5) D Y(t) = - A" ¥(t)

Integrate the adjoint equations backward from t = tf , once for each

xi(tf) appearing in (4), using as the terminal boundary conditions:

(6) ¢(J)(tf) = V., i, 3 1, 2, oo, n .

i ji




£l . .
for the j ! backward integration

th

. &
Fj)(t ) is the l-h component at t =t

wl £

£

of the adjoint equation. Thus, if v§ denotes the transpose of the j

row of N in eqguation (4'), we solve

5 -(eeal
t) = e vj ]

(
(7) ¥l

L, 2, ..., n

Note that for any matrix W

(8) eW = I+ W+ iL.wz + jL-W3 + ...

2! 3!
Setting t = t_ in (7) we obtain wj(to) .
The fundamental identity for the method of adjoints is:
(Roberts and Shipman [1972, pp 17-22 and pp 39-401)
n . £
(3)

(9)'2 Wi (tf) xi(tf) .
i=1 i

ey x. (¢ ) = (
1 (@] 1 Q

.j%t) b,z(t)dt
i i

L]

n
vy
1 i=

i=1

(t — (T

{3 e =]

[¢]

i=1, 2, ceeer R

bi is the ith row of the matrix B, i.e.

Substituting for wi(tf) from (6) into (9) and using (4) yields:




n Do) ;f n(3)
. = I M., x,(t) Loys(t ) x, (k) = LY, () b,z(t)dt
ST R R I T 1
i =1, 2, caee, nn .
oY
t
o (3) En5)
(10) T tu.. + 9,71t ))x.(t ) = p [ £y 1t) b,z(t)dt
i=1 \ Ji i o i o £ i=1 i i
(o]

j=1,2, ceeuy n .

Equation (10Q) constitutes a set of n equations in the n unknowns

xi(to) , i=1, 2, ...., n . If they are linearly independent they will

yvield a unique solution for x(to) . Given x(to) equation (1') can be
o)
solved as a standard initial value problem. The solution is:i/
(t-t )A t -
t-1
an xo =e  © xt) + [ TP rmar
t
o)

Note that this problem can be solved in one "pass", i.e. without iterations.

In all macroeconomic applications that I am aware of, the boundary
conditions (4) and (4') specialize to the separable case of linear boundary

conditions at each boundary:

n
(4a) .Z uji xi(to) = 6j Jo=1, 2, «e.ey nl nl £n
i=1
and
n
' AY = 1 = —
(4a )iil )ji Xi(tf) sj 3 1, 2, ««.ey n ny

We now integrate the adjoint equations (5) backwards n - n, times

(one for each specified terminal boundary condition in (4a')), using as

terminal conditions:




(j) —_ ] = «s s
(6a) v ey = v, 3 L

Consider the first summation in (9). Using

n (3) n
E . = J — —
= wj (tf) xi(tf) z xi(tf) £ ] 1, 2,
i=1 i=]1
Equation (9) can now be rewritten as
D o)
(1oa) £ 9. Mt ) x.(t) =¢c. - f T ¢t b.z(r)at j =
. i o i o j ot . i i
i=1 o i=1
The n, initial linear boundary conditions in (4a) and the n

(10a) provide n equations in the n unknowns xi(to) i

If they are linearly independent they will determine a unique
x(t)

for at t =t .
o

b) The "forward-sweep" method

If the

restrictions on x(to)

(4a') and (6a)

we obtain:

n-n

n-n

equations

- n

initial value

boundary conditions are separable into a set of linear

and a set of linear restrictions on x(tf) , as in

(4a, a'), the following sclution method can be applied (Bryson and Ho

{1975, p. 176]).

(1') D x(t) = A x(t) + B z(t)

(l2a) K

it

x(to) a

1

(12b) K2 x(tf) =Db .




Kl is an nlxn matrix, K, an (n—nl) Xxn matrix, a an nl vector
2 .

and b an n—nl vector. nl <n. It is assumed that Ki and K2
contain n linearly independent restrictions, i.e. that the nxn matrix

K
is invertible.

A 'forward-sweep" soluticn to (1'), (l2a) and (12b) is obtained by

considering the system of equation (13).

(13) Kl x(t) = S(t) K2 x(t) + m(t) .

S(t) is an nlx(n—nl) matrix and m(t) an n vector. They are obtained

by seolving the initial value problem of equations (l4a,b) and (l5a,b).

(l4a) D s(t) = F, S{t) - s{t) F - S(t) F3 s(t) + F

1 4 2

(14b) S(t ) =0
. (
(15a) D m(t) = (Fl - s(t) F3> m(t) + \Kl - S{(t) K,|B z(t)

(15b) m(t ) = a
o

where
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Equations (l4a,b) and (15a,b) represent a non-linear single point

boundary value problem or initial value problem. Using standard

initial value problem algorithms, they can be integrated forward

in time from-the initial conditions for S§ and m at t = to given
3/

in (14b) and (15b).~ At t = tf this yields (using (13) and 12b))

(17) X x(tf)

1 S(tf)b + m(tf)

H
o

(12b) K2 X(tf)

(17) and (12b) represent n linearly independent equations that uniquely
determine x(tf). Denote this solution for x(tf) by §(tf) . The
two-point boundary value problem has again been transformed into a single-

point boundary value problem. We can now solve for x(t) , to gtg tf

by integrating (1') backwards from ;(tf). The solution is given by:

(t-t_)A t
(11') x(t) = e X(tf) - jf e(t—T)A

t

Y
t
\Y
ps

Bz(T)dar t

Note that the boundary conditions (12a) and (12b) are a special case

of the boundary conditions in (4) and (4'),as (l2a, b) can be rewritten as

» ORI N
1 n_xn
+ 1 =
O(n—-n ) xn K2 b
1
O, . denotes the 1ixj 2zero matrix.

ixj
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In Section IV we show how, in models whose state variables are either
pure backward-looking (or predetermined) or pure forward-looking (or jump)
variables, the boundary conditions can be expressed as in (l2a) and (12b)
and therefore also as in (4) or (4"). In Section V it is shown how in
models containing one or more "mixed" backward-looking and forward-loocking
state variables, the boundary conditions can again be expressed either in

terms of (1l2a, b) or in terms of (4) or 4').

Iv The representation of the boundary conditions in rational expectations
models as linear restrictions on the state vector: +the number of
predetermined variables equals the number of stable eigenvalues.

In many rational expectations models the vector of state variables,
X , can be partitioned into a set of nl backward-looking or predetermined

variables lx and a set of n - nl forward-looking or jump variables,

2x , 1.e.

T TT
(18) x = (lx o )

lx is an nl vector, 2x an (n - nl) vector. Predetermined variables
are differentiable functions of time; their values are given at a point

in time by past history. The stock of physical capital, the stock of

net claims on the rest of the world in an open economy and, in some Keynesian
models, the money wage and the price level are examples.

The boundary conditions for these nl predetermined variables take the

form of the assignment of initial values at t = to .
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(19) |x (t) = li (t)
Jump variables are variables whose values are not given at a

point in time by past history. In rational expectations models prices

determined in efficient markets such as financial asset prices often

fall into this category. If the price of an asset depends on its

expected rate of change, its current value can be obtained by solving

for the entire expected future path of the price. The current price

can therefore make discrete jumps at a point in time in response to

"news", that is in response to new information about the current or

future behaviour of the forcing variables. This means that the left-

hand side and right-hand side time derivatives of 2x(t) need not coincide

and that the left-hand side time dsrivative need not be bounded.

The terminal boundary conditions for these "jump" variables generally take

the form of a transversality condition: the system is required to converge
ch s 4

asymptotically to its steady state equlllbrlum.—/ We shall make these

intuitive notions more precise as follows.

Assumption 1. After some point in time tf 2 tO , the forcing

variables are constant. If this weren't so, no stationary equilibrium

would exist for x . Thus, there exists a tf 2 tO such that

(20) z(t) =z for t 2 te

Given (20) there exists a stationary equilibrium value of x given by
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Assumption 2. A 1is invertible. There is no significant loss

of generality here. Given Assumption 2, the steady-state value of «x

is given by

(21) x = -~ A "B z .

The second boundary condition, complementing (19) that we impose is

(22) 1lim x(t) = - A"~ B

t>c0

NI

Note that this does not rule out convergence to the steady state in finite time.

We will now derive conditions under which (19) and (22) provide n
linearly independent boundary conditions on x , thus guaranteeing a unique
solution. At the same time we show how the boundary (22) condition at
t = » can be transformed into a boundary condition at tf < o

which is of the general form given in (12a, b).

Assumption 3. A has nl eigenvalues with negative real parts

and n - n, eigenvalues with positive real parts.
This condition that the number of stable eigenvalues equal the
number of predetermined variables and the number of unstable eigenvalues
equal the number of jump variables will turn out to be useful in guaranteeing

a unique solution to (1'), (19) and (22).

Assumption 4. A has n distinct eigenvalues. This assumption

5/

greatly simplifies the analysis.~
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If the nxn matrix A has n distinct eigenvalues it can be reduced

to diagonal form by means of a similarity transformation. Let A be the
diagonal matrix whose diagonal elements are the eigenvalues of A , i.e.
- I
23 A
(23) 1 6]
- A
A= i
A
0 n
The Ai » 1 =1, ..., n are the solutions to the characteristic equation

s o

Let V be the nxn matrix whose columns are the right eigenvectors of A , i.e.

(24) v = [Vl...vi...vn]

vi is the right eigenvector corresponding to Ai

r i.e. it is obtained by
solving,

(25) av, = X, v
i i
It then follows that
_ -1
(26a) A =v AV

or
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(26p) A =v tav
Let

(27a) p = VT x
or

(27p) X =V p

Then (1') can be transformed into

(28) Dp(t) = A p(t) + VEB z(t) .

Without loss of generality A and P can be rearranged and conformably

partitioned as follows:

(29a) A 0

A is the n, xn, diagonal matrix whose diagonal elements are the

1 1

eigenvalues ©of A with negative real parts. A2 is the (n - nl)x(n—nl)

1

diagonal matrix whose diagonal elements are the eigenvalues ©f A that have

positive real parts. py is an ny vector and p, an (n - nl) vector .




Let

(30) w(t) =

We partition W(t)

- 16 -

V—l

B z(t)

into its first nl

(31a) Wl(t)
W(t) =
W2(t)_
Thus Wl and w2 are nl , respectively n - n

(31b) Wl(t) =

and

(31lc) W2

(t) = |

vlB z(t)

In On x{n-n_)
1 1 1

-1
Lo(n_nl)an In_nl] vV - B z(t) .

Ir is the identity matrix of order «r .

Using (2%9a, b) and (31a),

(32a) D Pl(t)

(32b) D p,(t)

For t 2t
f

Al pl(t) + wl(t)

1l

A2 pz(t) + wz(t)

(32b) becomes, using (31lc) and (20)

elements and its last

(28) can be rewritten as

n-—nl

1 vectors defined by:

elements
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_ r Jvtas
(33) D py(t) = A, py(t) + Lo(n-nl)xnl In-nlJ VB z

All the diagonal elements of the diagonal matrix A2 have positive
real parts.  Therefore, for the system to converge to its steady state
equilibrium it is necessary that pz(tf) assumes the value required to
ensure that D p2(tf) = 0. At t = tf the system must be on the
nl-dimensional stable manifold, the subspace spanned by the eigen vectors
associated with the eigen values that have negative real parts, where it
will stay for all ¢t 2 tf , 1f the system is to converge to the steady-
state equilibrium. The asymptotic convergence condition in (22) can

before be replaced by a set of linear restrictions on pz(t) at t = tf .

(34) p,(ty) = - Az'l [ r lvlsi
l -

We can transform (34) into an equivalent set of linear restrictions on

x(t) at t = tf . From (27a) and (29b) we see that

(35) |p

Py

Partition V”l into its first nl and its last n - nl rows, as follows

o )
l

-1 , .
<§‘)L is an nlxn matrix and (Y /b an (n—nl)xn matrix.

From (35) and (36) we get
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oxr

N\
(37) p,(®) =G"l)2 % (t)
/

At t = tf , using (34) and (37) we then have:

g N\
-1 - =
(38) (v //2x(tf) = - A Lo<n-nl)xnl In_nl} VB z

This is a set of linear restrictions on x(tf) of the type considered in
equation (12b). It is of course trivial to express the initial conditions

on the predetermined variables X , given in (19) as a set of linear

1

restrictions on x at t=tO . (19) can be expressed in the format of

equation (4) as follows:

x(to) = X (to)

(39) In On
1 1

1
x(n-nl)J

For any path of z(t) , tO £ t < tf (with 2z an integrable function

of time) the solution of the two-point boundary value problem
D x(t) = A x(t) + B z(t) with boundary conditions (38) and (39) can now
be found for the interval tO £ t £ tf using the method of adjoints or the

forward sweep method of Section III.

Note that if A can be diagonalized, as we assume, then
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(40a) e™ = v ot oyt
where
Ry ]
(40Db) e 0
£A -, Mt |
e = e
°. Ant
LO 'e

For a unique solution to exist, the nxn matrix { defined by

(41) I

should ke of full rank. In the forward sweep solution method of Section
IITb, this shows up as the requirement that the matrix (Kl , where Kl
K
2

=

and K2 are defined in equations (l2a,b), be invertible. (Partition Qy_fl)

into its first nl columns and its last n - nl columns:

(42) (v'92= {6’_1)21 ("—1)22]

/ _1 -1
\v ;Llls an (n—nl)xnl matrix and (& )22 an (n-nl)x(n_nl) matrix: Substituting

(42) into (41l) we get

(43) [In . x(n-n. )
1 1 1
Q = _
-1 -1
L<V )21 (" )22
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i

Uniqueness therefore requires that (Y b

be of full rank, n - n1 .

To solve for x(t) for t > tf we use the condition that for

t = tf x(t) lies on the stable manifold. Thus

(t-tg)h -1 = -1 =
(44) x(t) = e (x(tf)+A Bz)—A Bz , t=zt
Given x(tf) , this is a standard initial value problem.

Nothing can be said about the behaviour of =x(t) for t < tO ’
without further information. Presumably the reason for choosing tO as
the initial date, is that at that moment new information became available
_that altered expectations concerning the current and future behaviour of
the forcing variables. To determine x(t) for +t < to , we need another
initial condition for lx(t) at, say, té < to . Given the entire
anticipated (as of t = t;) path of the forcing variables, we can use the
two point boundary value method outlined in Sections III and IV to solve
for x(t) , t £ t < to . At tO , when the "news" arrives, the rest of
this solution becomes irrelevant, and a new two-joint boundary value is
solved, corresponding to the new perceptions of z(t), t 2 tO . This
procedure is repeated every time new information leads to revisions in the
anticipated future trajectory of z(t) . The initial values of the

predetermined variables x at to are of course inherited from the

1
past; 1% does not make discrete jumps in response to new information:
lim lx(t) = lx(to) . The jump variables 2x(t) , while right-continuous
t->tO
t<t
o

everywhere, can be discontinuous at points such as to when new information

becomes available. We do not require lim 2x(t) = 2x(to) ; this is of
t->t

Q
t<t
o
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course how the two-point boundary value problem arises in the first place.
It is often convenient to assume that before t = to , the system was in
a steady state equilibrium, corresponding to a constant path z of the

forcing variables, i.e.

Consistency then of course requires that lx(to) be equal to

lx(t) r L < tO .

In a number of economic applications, to = tf . This represents
an unanticipated and immediate once and for all change in the values of
exogenous variables: the change in the future path of z occurs at the
instant that it is first anticipated. Since 2z immediately assumes
its new steady state value, ; , at t = to , the calculation of
x(tf) = x(to) is particularly simple (see Dixit [1980] and Buiter and

Miller ([1980]). Using (38) and (42) we obtain

1 - i __a 1] 1 -1 =
W o 150+ U >22 I e A
oxr
/ -1/ _ 1.-1
{ - \f —l) - 1 [ I v
(46) 2x(to) - T ka 22 T\Y /21 lx(to) * A2 O(n—nl)xnl n—nlj

x(tf) = x(to) is obtained from (46), given the initial wvalue l;—c(to) .

The rest of the solution is given in (44).

Nl
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Note that we can write Dx = Ax + Bz as
-1
Dx = V AV 'x + Bz

e -1 . . . .
Partitioning V, A and V conformably this can in turn be written as

1 -1 -1
Vg Vig | (M 0@y U D) xR
Dx = -1 -1 {
v \Y 0 A v ) ()
o1 Vi 211" 21 22
L L |
or
- -1 -l -
Dx(t) = Vi h Dy vy MO, x(t)
. ) -1
B Vo By (VD Yy Ay (VD
_ . . ~
Vig By (V)5 Typ by (Vg
+ -1 -1 x(t)+ Bz (t)
Vog Ay (V Doy Vpp 25 (V7 )9y

Using (46) this simplifies for t > tes when the system is on the stable

manifold, to:

(47)  Dx(t) = |V, A (V) VA v

V.. A (V.

+ In - Bz
-1 -1
REIRFTERFTRARRSY
or

' _ -1 \ 1 -1 -1, ]
(47') Dx(e) = vy AV Dy Y A )y, ViV VO D
- - x(t) + -1 -1 Bz

{
Var By V0 Vo by (V) Yy Y )
L
£ >t
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Thus, on the stable manifold x(t) is indeed driven only by the stable roots.

Provided Vll and (V_l)ll are of full rank, the state matrix in (47) and
(47') has rank n. The behaviour of the pradetermined variables lx(t) is
given by:

, -1
Dlx(t) Vi Al v )

..1 _1 =
[%11 vy vy )1%} Bz

but from (46), for t > tg

11 lx(t) + V11 Al (v )122x(t)

+

N -1 -1 -1 -1 =
Therefore, for t > tf
D.x(t) =V, A r~(v") - wh (v ]—l(v_li x(t)
1 11 t_ i 12 22 a1l 1%
-1 -1 -1 B -1
FV L) A D I 001y Dy, (VD
-1 - }
-~ -1 -1 CoepT] 157
A (v )12[(V Yool Ay U ) 9o 1Bz
or
B -1
Dyx(t) =V, AV ) o x(t)
ey @ sy _l(v"> &Yo@ g
1 11 A 12t 221 M 2 1270 12t% Va2
.-1 _l -
A2 (v )22}Bz
-1
Dyx(t)= - [(v 1),.] .. D
1 22 21 Ppx(t)

For computational purposes this may well be superior to working with (1')
directly, because it ensures that the inevitable numerical inaccuracies in

the calculation of x(tf) will not put the systemon a divergent trajectory.
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Finally, if we analyse the behaviour of x in terms of deviations of x

-1 =

from its new steady state equilibrium x=-A Bz, i.e.

X = [—i Zx - X , we get for t > te
1

X

2
Di(E) = V), AI(V”)-I (6
N -1 - -
2X(t) = = [(V )22] (V )21 lx(t) .

If the deviation of the output vector y from its new steady state equi-

librium ; = [~ CA-1 B + D] z is defined by y = y—? then, for t > te

§ =Cx .
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v The representation of the boundary conditions in rational expectations
models as linear restrictions on the state vector: the number of stable
eigenvalues exceeds the number of predetermined variables.

The issues addressed in this Section can k= convenientl;,; introduced with

the help of the following example:

(48a) m - p = ky - Ar k, A >0
(48b) y = §(e=-p) § >0
(48c¢c) p = aw + (l-a)e O0<a <1
(48d) Dw = dy + I $>o0
(48e) De =r - r*

(48f) DI = B(Dp-II) g >0
(48qg) 1 Im-w

(48h) c e -w

Equations (48 a-f) describe a small open economy with perfect international
capital mobility, perfect substitutability between domestic and foreign
bands and risk neutrality. The notation is as follows: m is the

nominal money stock, p the domestic price level, y real output,

r the domestic nominal interest rate, e the exchange rate (number of
units of domesticcurrency per unit of foreign éurrency), w the money
wage, II the underlying or "core" rate of inflation, r* the world
interest rate. Equation (48%4) is the LM curve. Equation (48b) describes
the IS curve. Equation (48c) says that the price of domestic output is

a mark-up on unit labour cost and unit import costs. The augmented wage
Phillips curve is in equation (484). The international interest differential
equals the expected rate of exchange depreciation (equation 48e). The

underlying or core rate of inflation adjusts adaptatively to the excess




of the actual rate of inflation over the underlying rate of inflation

(equation 48f). All variables except r , r* and 1 are in logarithms.

A minimal representation of the dynamic system involves 3 state
variables. We choose @I , £ (real money balances) and a ¢ (competitiveness)
The state-space representation, using the format of equations (1') and (2')

is given in (48a, b).

(49a){ DL 0 -pasd -1 2 1 o
-1 -1
De |= |-A -\ T (a8 (OA-Kk) +a~1) -1 cl+{o -1
-1 2 -1 _
DIl -B(1-a) A Bla“ds+A™ " (1-a) (1-a(l-8k))] =B(l-a)|f & 0 -B(l-w)
- . - -~ J L. —
B ! -1 ) C T )
(49b)| r - A T [kad+1-a] 0] 2 0O O
v 0 o8 0 c|{+{ 0 O
pw| =|o0 ads 1 n 0o 0
-1 2 -1 .
Dp AT (=) at¢S+AT T (1-a) {1-a(1-6k)) o 0 -(1-a)
De a7t A7 kas+1-a] 0 0 -1

The money wage, w , is a predetermined or backward-looking variable. We
also assume m(t) to be a differentiable function of time. 2 Zm-w 1is

therefore a predetermined variable. Its boundary condition is

(50) 2(t ) =m(t) - wlt ) = 2(t)
o] O [0} @]

-
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The nominal exchange rate, e , is a forward-looking or jump variable.

The -real exchange rate, e - w is therefore also a jump variable. The
core rate of inflation, however, falls into neither category. First

note that the determinant of the state matrix in (49a), i.e. the determinant

of A 1in (1') 1is positive

'Al = B-l¢6a >0

=5

Since |a| =
i

Ai , this means that we either have three roots with
1

positive real parts or one root with a positive real part and two roots
with negative real parts. If there are three unstable roots, the model
is completely unstable and nothing much can be said about it. However,

for plausible values of the parameters, there will be two stable and one

unstable root. Consider e.g. the parameter values k =1, a = .75,

8 =+5,A=2, 8§ ="-5and ¢ = *5, With these parameter values the
n

trace of the state matrix in (4%a) is zero. Since tr A = [ Ai p
i=1

]A| >0 and tr A £ O 1imply two stable roots and one unstable root if

6/

n=3,—

Since there are two stable and one unstable root, should I be
treated as predetermined? This would yield a partition of the state
vector into two predetermined variables, £ and I and one jump variable
c . With the right number of stable and unstable roots, the methods
of Section IV could be applied. It is clear, however, that @I is not
a predetermined variable. From (48f), DI depends on Dp . From (48c)
P 1is a function of e . e can make discontinuous jumps and so, therefore

can p . Dp will not be defined at such points of discontinuity of e




and p (the left hand side derivative of p(t) becomes infinite). Thus 1
can jump in response to news but it will do so if and only if e (and
therefore p and ¢ ) jumps. This suggests that the jump in 1 will be
a (linear) function of the jump in e (or in p or c¢ ). The following

argument shows that this is indeed the case.

Equation (48f) can be rewritten as follows:

(51) D(Ii(t)exp(Bt)) = BDp(t)exp(Bt)
or
T T
[D(I(t)exp(Bt))dt = BfDp(t)exp(Bt)dt E
t t
O O

This can be written as

T
(52) N(T)exp (BT)~N(t )exp(Bt ) =8 Dp(t)exp(Bt)dt

t
o

Noting that Dp(t) = aDw(t) + (l-a)De(t)

(l-0)Dc(t) - DL(t) + Dm(t)

we can rewrite (52) as

m

(53) T(Texp(BT) - N(t )exp(Bt ) = B(1l-a) fDc(t)exp(Bt)dt

t
o
T
- BIDZ(t)exp(Bt)dt
t
o

m

+ afDm(t)exp(Bt)dt

t
o

Integrating the terms on the right-~hand side of (53) by parts we get
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(54)  T(T)exp(BT) - H(to)exp(Bto) = B(1-a) [ c(T)exp(BT) - c(to)exp(Bto)

T
- fe(t)gexp(Bt)at]

t
o

T
BIe(T)exp (BT) - p(t )exp(Bt ) - [2(t) Bexp (Bt) dt]

t
o

+ Blm(T)Yexp(BT) - m(to)exp(BtO) - }m(t)Bexp(Bt)dt]

t
o
Taking the limit as T+to (54) becomes
+ +
(55)  M(t_ ) - M(t) = B(l-o)[e(t ) - c(t )]
o o o o
or
+ +
(55") T(t ) =TI(t ) + B(l-a)[c(t ) - c(t )]
ol o o fo}
+
Where x(to ) = 2im  x(t).
t->t
e}
t>t
o
+
To obtain (55 we have used exp(Bto ) = exp(Bto) and the assumption that m(t)
+
and w(t) (and therefore 2(t)) are predetermined, i.e. Z(tO ) = l(to) and

+ +
m(t ) =m(t ). (55) shows that the jump in T at t =t , [I(t ) - N(t ) is a
o o ) o o o}
+
linear function of the jump in c, c(to ) - c(to). (t) becomes a pure
predetermined variable if the exchange rate has no direct effect on the price
level, i.e.if o = 1. Note that a boundary condition such as (55) fits into the

general framework of (4) and (4'}, as it can be rewritten as follows.

(56) 1 M(t T) - B(l-a)e(t T) +0 8(t ) + 0 M(t.) + Oc(t.) + OR(t.) =
[o) o} o) £ £ £

Mt ) - B(l-a)c(t )
o o
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The third boundary condition, in addition to (50) and (55) or (56) is the

condition that a t = tf the system be on the 2-dimensional stable manifold. This

-1
will be a condition like (38). In the current example(y /l is a (1x3) matrix and

'Az is a scalar.

Note, that although the boundary conditions involve c(t) at t = tO and at

t =t they can still be written as in (l2a, b) because c(to) and c(tf) do not

f’

occur in the same boundary condition. The analogue to (12a, b) is

gt )1| ()
1 0 0 °. _ °
o -8(1-a) 1 clt, >| nee) - Bwee )l
+ | O_J
me ) -
. 9 ]
and
l/v'l) Tae)] = - ‘l[o o 1j v‘lBrﬁmm
v /2 fl 2 J _
c(tf)| i r*
H(tf)J

A2 is the unstable eigenvalue. (&122, V_l and B are as defined in Section IV.

Dm and ;* are the constant values of Dm(t) and r*(t) for t 2 :f.
This can be generalized easily. An n-dimensional state vector could be
partitioned into nl pure predetermined variables, n2 pure jump variables or
jump variables whose jumps are linearly independent and n - n, - n, jump
variables whose jumps are linear combinations of the jumps in the pure jump
variables, the "mixed" state variables. There no longer is equality between
the number of predetermined variables and the number of stable eigenvalues.

Now the number of stable eigenvalues must equal the number of predetermined and

"mixed" state variables, while the number of unstable eigenvalues equals the

number of pure jump variables.
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The second and final example involves a system with two pure forward-

looking or "jump" variables which nevertheless has only one unstable root.

DX]-] a1 2y (% b,

We can think of X, and X, as asset prices determined in efficient markets.
Assume that for t < £, the system is in the steady-state equilibrium corres-
ponding to the value of the forcing variable z = z. At t = ts the news

arrives that for t > tg 2t 2 will assume the constant value z. The
condition that the system converges to the steady-state corresponding to

z is clearly insufficient to determine a unique set of starting values for

X = (XI’ x2)T at t_. Any jump of x that places it on the one~dimensional
stable manifold corresponding to z at t = te will yield a convergent trajectory:

there is a continuum of initial values for x consistent with asymptotic

convergence.

If however, the not implausible boundary condition is imposed that at t = te

the system be at the new long run equilibrium, i.e. Xl(tf) =.§ =

-1
__(;11 alé] By
35 ang by

be determined. That starting value is the only one that places the system

xz(tf)

z , a unique starting value for x at t = £, will

at the new steady state as soon as the forcing variables assume their new
stationary values. Since both X and X, are forward-looking jump variables
there would seem to be no good reason for making them "prisoners of the past".
Whatever the economic merits of the case, the'boundary conditions just given
fit the general structure of the two-point boundary value problem solution

methods described in Section ITI.




The examples bring out a guite general feature of the saddle point problems
that frequently arise in the solution of rational expectations models. If the
number of unstable characteristic roots exceeds the number of jump variables (or
equivalently, if the number of stable characteristic roots is less than the number
of predetermined variables) no convergent solution trajectory will in general
exist. It is, however, possible for the number of unstable characteristickroots to
fall short of the number of jump variables (or equivalently, for the number of

stable characteristic roots to exceed the number of predetermined variables),

without this necessarily implying that there exists an infinite number of con-
vergent solutions. A unique convergent solution can still exist provided the
boundary conditions on the n state variables yield n linearly independent
equations in (10) or (loa). In terms of equations (l2a, b), a unique solution
requires that the rank of the matrix_Kis be n.

Xl
- d

Conclusion

A class of linear two-point boundary value problems has been analysed
which has many applications inmacroeconomics. The boundary conditions have
been expressed as linear restrictions on the state vector at an initial time tO
and at a finite terminal time tf. This goes through even if the terminal
conditions involve the [@symptotic) convergence of the system to a steady state
equilibrium. A generalization is given of the condition that the number of
stable eigenvalues equals the number of predetermined or backward-looking state
variables and that the number of unstable eigenvalues egquals the number of

forward-looking or jump state variables.
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Footnotes

v

I am abstracting from two‘classes of non-uniqueness problems that arise
even in linear rational expectations meodels. These are (1) the choice
betwe;n backward or forward solutions or convex combinations of the two
and (2) the problem of extraneous noise ("sunspots") entering the
solution in addition to "market fundamentals". See Blanchard [1979],

Flood and Garber [1980], Buiter [1980].

z(t) 1is a right-continuous function of time, i.e. 1lim z(t) = z(t').
t->t!
t>t!

It is also assumed to be counded and +: have only a finite numbar of
points of discontinuity on any closed interval. z(t) is therefore an

integrable function of time.

Note that (14a) is a nonlinear matrix differential equation. It can
always be rearranged into a vector differential equation. Let Q be

an nxm matrix. vec (Q) 1is the nm-element column vector whose first
n elements are the first column of Q ; the second n elements are the

second column of Q etc. Then (14a) can be rewritten as:

Vec

TN

\
s(e) )

N’

D Vec (S(t)) = (ST(t) ®I> Vec (Fl> - (FZ ® 1
- (I@S(t) F3> Vec <S(t)> + Vec <F2>

Alternatively, it can be noted that (l4a) is a Riccati matrix

differential equation for which known solution methods exist (Reid

{19721).




Sometimes the weaker conditon is imposed that if the values of the
forcing variables z(t) are bounded, then the values of the state

variables should rxemain bounded. For practical purposes it would
seem that little generality is lost by assuming, that after some

point in time tf < = , the forcing variables remain constant.

The essential simplifying assumption we make is that A is
diagonalizable. n distinct eigenvalues for A 1is a sufficient
condition for diagonalizability. Even if A has eigenvalues with
multiplicity greater than one, it is diagonalizable as long as A has

n linearly independent elgenvectors. This will happen if and only if
there are k linearly independent eigenvectors corresponding to

each eigenvalue of multiplicity k , that is 1.f.f. for each

value A of A the multiplicity of X equals the nullity of

AI - A .

A slightly less open economy, « = +8, with a higher speed of

adjustment of I, B = %—,yields, tr A = - +0333333 ..
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