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ABSTRACT.

A solution method and an estimation method for nonlinear rational
expectations models are presented in this paper. The solution method can
be used in forecasting and policy applications and can handle models with
serial correlation and multiple viewpoint dates. When applied to linear
models, the solution method yields the same results as those obtained from
currently available methods that are designed specifically for linear models.
It is, however, more flexible and general thaﬁ these methods. For large
nonlinear models the results in this paper indicate that the method works

quite well,

The estimation method is based on the maximum likelihood principal.
It is, as far as we know, the only method available for obtaining maximum
likelihood estimates for nonlinear rational expectations models. The
method has the advantage of being applicable to a wide range of models,
including, as a special case, linear models. The method can also handle
different assumptions about the expectations of the exogenous variables,

something which is not true of currently available approaches to linear models.
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SOLUTION AND MAXIMUM LIKELIHOOD ESTIMATION

OF DYNAMIC NONLINEAR RATIONAL EXPECTATIONS MODELS

by

Ray C. Fair and John B. Taylor*

1. Introduction

In this paper we consider the solution and maximum l1ikelihood
estimation of nonlinear rational expectations models. A general repre-
sentation of the class of models we consider is given by
D £ Yeqr s Yys BV EY iseeey Ey o, x, 0) =u,, ,

ive? Jt-1 t-p’ 0t Tt Yoyt et e it

i=1, ..., n,

where Ve is an n-dimensional vector of endogenous variables at time

t, L is a vector of exogenous variables at time ¢t , E is the
t-1

“conditional expectations operator based on the model and on information
through period t-1 , oy is a vector of parameters, and u . is a
stationary scalar random variable which has mean zero and which may be
correlated across equations (Euitujt #0 for i # j) and over time
(Euituis # 0 for t #s) . The model is nonlinear in that the function
fi may be nonlinear in the variables, parameters, and expectations,
although we will require certain regularity conditions on these functions

and their derivatives with respect to Ve and oy - It is a rational

expectations model in that expectations of future endogenous variables

*
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are conditional forecasts based on the model itself, and it is dynamic
in that lags and expected leads of the endogenous variables appear in
the equat:lons.1 The two main objectives of this paper are to describe
and analyze: (1) a method for solving the model for the

vectorxr Y, in terms of its past values and the values of the exogenous
variables x_, and (2) a method for obtaining the maximum likelihood

t

estimates of the parameters a, and the covariance structure of the

given a series of observations on Ye and x

t 9 t=l’ .IO’ T.

et
The solution method is an extension of the iterative technique
used in Fair (1979). The extensioﬁ involves an additional iterative
round to insure numerical convergence to the rational expectations solu-
tion without the need for off-line sensitivity checks. As will be seen,
the solution method must be used to solve a given mode; a large
numbers of times in any single estimation problem, and so it is necessary
that convergence be as automatic as possible. In addition, the technique

is extended to handle serial correlation of the errors and multiple

Qiewpoint dates for the expectations variables.

1By appropriate construction of the functions fi it is possible to
make some elements of the vector Ye nonlinear functions of other

2
elements of Ve - For example, if Yor = %21Y1¢ + 8yo¥ip ° then the

appearance of E Yor in one of the equations indicates that agents
t-1

are concerned not only with the conditionally expected mean but also

with the conditionally expected variance of Yie ° This may be appro-

priate in an asset demand equation, for example, where Vit represents

a rate of return. Hence, although the representation of the model in
(1) may appear to involve only expectations of linear functions of the
endogenous variables, such transformations permit one to consider ex-
pectations of nonlinear functions. It should also be noted that the
estimation technique we consider permits nonlinear restrictions on the
@, parameters both within and across equations.




The estimation method is an extension to the nonlinear case of
full information maximum likelihood techniques previously designed for
linear rational expectations models. Wallis (1980) and Hansen and Sargent
(1980a, 1980b) have described mefhods for estimating linear models using
full information maximum likelihood techniques,2 and applicatioﬁs to
particular economic problems are found in Sargent (1978) and Taylor (1980).
Full information- estimation techniques afe particularly useful for
rational expectations models because of the importance of cross equation
restrictions, where most of the testable implications of the rational
expectations hypothesis lie.

For linear models one can explicitly calculate a reduced form of
model (1), in which the expectations variables are eliminated and non-
linear restrictions are placed on the parameters. This restricted re-
duced form usually has a vector ARMA represen£ation that can be used
for forecasting, policy evaluation, and estimation. Under the assumption
that the u,, are nofmally distributed, the likelihood function can
‘be evaluated in terms of the structural parameters. Maximum likelihood
estimation then entails finding the maximum of this function with respect
to the sfructural parameters, using numerical nonlinear maximization
routines. This, for example, is the approach used by Taylor (1980) for

estimating small linear rational expectations models.

21n the applications considered by Hansen and Sargent the £, represent

i
first order conditions for a linear-quadratic optimization problem.

Chow (1980) has proposed an alternative approach to estimating parameters
in the type of linear—quadratic problem considered by Hansen and Sargent.
His technique bypasses the step of obtaining first order conditions,

as in Hansen and Sargent, and instead directly computes the likelihood
function by matrix Riccati iteration. Because of this, the comnection
between Chow's problem and ours is not so transparent. Chow, has, how-
ever, demonstrated that his approach leads to the same functional rela-
tionship between the structural parameters and the likelihood function
as does the Hansen and Sargent approach.



For nonlinear models the reduced form cannot be calculated explicitly.
It is possible, however, using the solution method described in this
paper, to solve a nonlinear model numerically taking into account the
reétrictions imposed by rational expectations. The estimation st;ategy
proposed in this paper is to replace the calculation of the restricted
reduced form in linear models with numerical solution in nonlinear models.
This permits one to evaluate the likelihood function iﬁ terms of the
unknown structural parameters, much like in the linear case, even though
the restricted reduced form is never explicitly calculated.

While the nonlinear solution and estimation methods described
here should expand the range of economic problems that can be approached
using ratiopal expectations, there are two approximations that may affect
their general applicability. TFirst, we assume (as an approximation)
that the economic agents being described by the model have kﬁowledge of
the parameters a, and the functions fi and use this information in
computing forecasts. When the solution method is used for forecasting
"or policy simulations, this assumption pertains to the simulation period.
When the method is used for estimatién, the assumption pertains to the
entire sample period. Taken literally, this is a strong assumption,
for it ignores the learning of agents as observations accumulate. Some
attempts have been made to avoid the approximation in empirical work by
using rolling regressions or Bayes procedures to obtain expectations
proxies in the first stage of limited information estimation methods.
The appropriate treatment of learning in a full information setup,
however, does not yet appear practical. Most previous research has relied
on this approximation. Sargént (1979) outlines some of the complications

that arise when the assumption is relaxed in a full information context.




Second, we approximate the conditional expectations that appear

in (1) by setting the fﬁture disturbances u equal to their condi-

it
tional means in a deterministic simulation of the model. 1In nonlinear
models the conditional expectations will in principle involve higher
order moments of the u,  in addition to their means. A better approxi-
mation of the conditional forecasts would therefore require stochastic
simulation, but this is computétionally expensive., A strict interpre-
tation of rational expectations clearly requires taking into account

the higher order moments. This is the interpretation given to rational
expectations in the theoretical nonlinear model of Lucas and Prescott
(1970), for example. For many applications, however, the less expensive
approximation may be fairly good. Some evidence that this is true is
contained in Fair (1980a), where differences between forecasts using
stochastic simulation and determinisfic simulation are very small in

a nonlinear model without rational expectations. We plan in future
research to explore the effects of taking the higher order moments into
.account in rational expectations models, but for the solution and esti-
mation methods described in this paper the less expensive approximation
is used.

The paper proceeds as follows. In Section 2 the solution method

is described and the results of some experiments using the method on

3It should be also noted that model (1) is not general enough to include
expectations based on current period (t) information. The incorporation
of such variables does not cause difficulties for the solu-

tion of the model, but it does cause difficulties for estimation since

the Jacobian of the transformation from the u, to the Ve is altered.

We are able to handle the case where expectations at different viewpoint

dates (e.g., E Ve o E yt') appear in the same model, as long as
t-1 t-2 '

the viewpoint dates are not period t . Serial correlation of the

U, leads to models with different viewpoint dates.



a large nonlinear model are reported. 1In Section 3 the method when

applied to linear models is shown to converge to the rational expecta-
tions solution from an arbitrary set of initial guesses under a fairly
general set of conditions. In Secfion 4 the maximum likelihood estima-
tion method is described and the results of some experiments using the

method on a small linear model are reported.

2. A Numerical Method for Solving Nonlinear Rational Expectations Models

In this section Qe considér the numerical solution of model (1)
for a particular period s and for a given set of values of the ay
parameters. The model without serial correlation of the errors is con-
sidered first, and then the modifications neéded for the serial correlation
case are discussed.

In the following discussion E x_,. will be used to denote the

t-1 t+j

expected value of x based on information through period t-1 . Both

t+j
the actual realizations of X, and the expected values are assumed to
-be known. If there are any exogenous variables that are not known but
can be described by a known stochastic process; then these are treated
as endogenous and incorporated in the Ve vector. As mentioned earlier,
all simulations of the model are deterministic.

2.1. Models without Serial Correlation

1

If one were given numerical values for the expected endogenous

variables in model (1) in all periods, then it would be straightforward
to solve the model using the Gauss-Seidel iterative technique, as is
typically done in nonlinear econometric models. However, unless these
numerical values were equal to the rational expectations values, the

predictions from the model would be inconsistent with these values.



The numerical method described here entailé a series of iterations that

move away from an arbitrary and generally inconsistent set of expectations

(the initial guesses) toward a consistent set of rational expectations.

Throughout these iterations the model is solved repeatedly using the

- .Gauss-Seidel technique, each time for a different set of expectation-

values.

The solution method applied to a given period s can be defined

in terms of the following 5 computational steps:

[1]

[2]

[3]

Choose an iteger k , which is the number of periods beyond

the horizon h for which expectations are to be computed,

and guess an initial set of values for E y s

str
s-1

r=20,1, ..., k+2h . Call these initial values er(i,k) s
r=0,1, ..., kt+2h , where i =1 represents the first
guess.

Obtain a new set of guesses for E r=0,1, ..., k+h

s-1
by solving the model dynamically for Yegr °

ys+r ’

.r=0,1, ..., kth . This is done by setting the disturbances

to zero, using the values sflxs, cens s§1x5+h+k in place

of the actual x's , and using the values er(i,k) in place

of Call these new guesseé er(i+l, k) ,

S_I::lys+r :
r=0,1, ..., kth . If the model is nonlinear, then the
solution for each period requires a series of Gauss-Seidel
iterations. Call each of these a Type I iteration.

Compute for each expectation variable and each period the

absolute. value of the difference between the new guess and

the previous guess, i.e., compute the absolute value of the



difference 'between each element of the er(i+1, k) vector
and the corresponding element of the er(i,k) vector for
r=0, 1, esey htk . If any of these differences are not
less than the prescribed tolerance level (i.e., if convergence
has not been achieved), increase 1 by 1 and return to step
[2]. If convergence has been achieved, go to step [4]. Call
this iteration (performing steps [2] and [3]) a Type 11
iteration.4 Let er(k) be the vector of the convergence
Qalues of a series of Type II iterations (r =0, 1, ..., k+h) .
[4] Repeat steps [1] through [4] replacing k by k+l , using
as initial guesses e?(l, k+l) = er(k) s T=0,1, ..., k+2h ,

and an initial guess for E Compute the absolute

s-1

value of the difference between each element of the er(k+1)

Ys4+2h+k+1 *

vector and the corresponding element of the er(k) vector,
r=20,1, ..., h'. If any of these differences are not less
than a prescribed tolerance level, increase k by 1 and

repeat steps [1] through [4]. If convergence has been achieved,
go to step [5]. Call this iteration (performaing steps [1]
through [4]) a Type III iteration. Let e. be the vector

of the convergent values of a series of Type III iterations

(r=0,1, ..., h) .

4Npte that in this process the initial guesses- er(l,k) ,

r = kth+l, ..., k+tZh never get changed. They are merely used to allow

the model to be solved through period s+h+k . There is, however,

nothing wrong with changing these values after each Type II iteration

(to, say, the last predicted values E y ). As will be seen, the
: s-1 s+htk

final solution values are not sensitive to end-of-horizon assumptions.



r=0,1, ..., h , and the actual

[5] Use e. for f Yeir *

s-1

values for x, to solve the model for period s . This
gives the desired solution, say is , and concludes the

steps.

It is illustrative and useful for judging computation costs to
examine the total number of '"passes" through the model required to obtain
a solution. A "pass" is simply a single evaluation of the "left hand
side" endogenous variables in terms of the "right hand side" variables.
The computation time for one pass is directly related to the number of
basic arithmetic operations required for a single evaluation, which in
turn depends on the size and complexity of the model. Note that one
Type I (Gauss-Seidel) iteration requires one pass through the model.

Let N1 be the number of Type I iterations required for convergence,
and let N2 be the number of Type II iterations required for convergence.

Then the number of passes through the model required for one Type III

iteration 1is given by N2 X N1 X (h+k+l) , where h is the expecta-

-

tions horizon and k is the number of additional periods for which the
model is solved. This number is the product of the number of passes for
one Type II iteration (N1 x (h+tk+1)) and the number of Type II iter-
ations required for convergence (NZ) . The total number of passes through
the model to obtain Type III convergence is given by the sum of this
expression from k to k-+N3-l , Wwhere N3 is the number of Type III
iterations required for convergence. 1In other‘words, Type III convergence

requires

qZ‘k [Ny x Ny x (htq+1) ] = Np x Ny x Ny x (heHlehl) + Ny XNy x————




10

passes through the model. For example, if N, = 10 , N2 =3, and

1
N3 = 2 gtarting from k = 10 , then a model with an expectations horizon
h =5 would require 990 passes. The final evaluation for the solution
(step [S]), after fype III convergence is achieved, would require an
additional Nl = 10 passes.

Type 1II iterations are used to insure that the guesses about the
distant future have a negligible effect on thé predicted (i.e., expected)
values through period s+h . This is shown for linear models in Section
3 below. Given Type III convergencé, the solution for a linear model
is exact, subject to the tolerance criteria. For nonlinear models the
solution is only approximate because of the bias introduced by the
deterministic simulation. As noted in the Introduction, this bias appears
to be small for many econometric applicatioms.

Two further points about the solution metho& should be noted.
First, it can be easily modified to handle the case in which the expec-
tations afe baséd on information through period s rather than through

period s-1 . Just replace E by E everywhere. Second, if the
s-1 s

expectations horizon is infinite (h = ») , then it must be truncated
first. For most models the error introduced by this truncation for
reasonably large values of' h 1is likely to be small. A large value
of h means, of course, that a large number of calculations are required
per Type II iteration, and so in practice there may be a tradeoff between
truncatioﬁ error and computational cost,

The method just described is an extension of the technique used
in Fair (1979), where only Type I and Type II iterations were performed.
The technique was used to solve a model that had an infinite expectations.

horizon (h = =) , -‘and for solution purposes particular assumptions were
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made about the expectation values beyond a certain future date. Although
in this case, as reported in Fair (1979, p. 550), a sensitivity analysis
showed that the solution values were not sensitive to the assumptions, in
general there is no way of insuring this without achieving 'i‘ype III convergence.
It is sometimes necessary when using the Gauss-Seidel technique
to solve models to "damp" the successive solution values in order to
achieve convergence. In other words, it is sometimes necessary to take
the value of a variab1e>at, say, the start of iteration n to be some
fraction of the difference between the value actually computed on
iteration n-1 and the valﬁe used at the start of iteration n-1.
This type of damping can also be done for the various iterations involved
in the present solution method, including the extensions of the method

discussed in the next two sectionmns.

2.2, Models with Serial Correlation: Forecasting and Policy Applications
We focus on the case where the error terms can be described by

the first order process:

(2) u

it = Pi%e 1 + €i¢ > i=1l], ..., n,

where the p; are serial correlation coefficignts. In this section the
solution method is modified for applications‘where there are enough data
prior to the solution period s to permit calculation of the solution

values with only a negligible effect of the errors prior to period s-1 .
This situation is likely to occur in forecasting or policy applications,

where a large sample prior to the simulation period is usuaily available.
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In Section 2.3 the method is modified for estimation applications, where
sufficient prior data are generally not available.

First note that (1) and (2) can be combined to yield:

(3) fi(yt’ Yegs oo yt—p' yt—p—l’ tf]_yt, -]:: Yig1s oo f Yetn?

t-1 t-1

E

e EVer orer EVeamons Xes Xege 0ps pg) < gy s

t-2 t-2

i=1, ..., n,

where the py can be thought of as structural coefficients. The modell
(3) differs from (1) by having more variables (the extra lagged values)
and more honlinear restrictions on the coefficients (because of the
treatment of the p; as structural coefficients). These differences
are not fundamental, however, in the sense that model (1) already includes
an arbitrary number of lags and nonlinear constraints on thé coefficients.
For solution purposes the important difference between (1) and (3) is
the addition in (3) of an extra viewpoint date (t-2) . This requires
-an additional iterative procedure.

Some intuition behind this additional iterative procedure can
be gained by noting that if one were given the expectations with view-
point date s-2 , then the model could be solved using steps [1]-[5]
in Section 2.1. Model (3) would be in precisely the same form as model
(1). The difficulty is that expectations with viewpoint date s-2 are
not known. These expectations could be obtained by solving the model
one period earlier at time s-1 , but this would require expectations
with viewpoint date s-3 . Obtaining these expectations would require
solving the model in period 52 » Wwhich in turn would require expecta-
tions at s-4 , and so on. By working backwards in this way, however,

it is possible to push the unknown information back to a time where
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(assuming the model is stable and back data are available) it would have
negligible influence on the current period s . The iterative procedure
that will now be described is designed to insure that enough back periods
héve been uéed to satisfy fhis negligibility criterion.
The procedure is as follows:
[a] Choose an integer j , which is the number of periods before
period s for which the model is to be solved, and guess

an initial set of values for E y

e H4
s—j-2 s=j-l4r

r=0,1, ..., h.

[b] Given the guesses from [a], solve the model for period s-j
using steps [1]-[4] in Section 2.1. For this solution the
viewpoint date for the expectations for xs—j and beyond
is s-j-1 . Actual values are used for xs—j-Z . The solution

yields values for E y r=0,1, ..., h .

s-j-1

[c]. Given the expectations with viewpoint date s-j-1 from [b],

s=j+r ?

solve the model for period s-j+1 wusing steps [1]-[4].
For this solution the viewpoint date for the expectations

for x and beyond is s-j . Actual values are used

s—-j+1

for x ., . This solution yields values for

i Ey_._ ’
s-j-1 s-j s=j+l+r

'r=0,1, ..., h . Continue this procedure (using steps
[1]-[4] to solve for the next period, given the solved-for
expectations from the previous period) through period s .

The solution for period s yields values for E Yoir °
s-1

r=0,1, ..., h
[d] Increase j by 1 and repeat [al-[c]. This yields new values

for Ey » r=20,1, ..., h . Compare these values
o1 str
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to the values obtained by using the smaller j . If any
new value is not within a prescribed tolerance level of the
old value, increase j by 1 and repeat steps [al-[c]. Keep
doing this until convergence is reached. Call this itera-
 tion (performing steps [a] through [c]) a Type IV iteration.

[e] After Type IV convergence, one has final values of E y
o s-1

r=0,1, ..., h . Use these values and

s+r

and Evy
s-2 7

" the actual values of xS and xs-l to solve the model for

l4r °

period s .

The Type IV iterations are needed to insure that the guesses about
the distant past have a negligible effect on the solution for period s .
If convergence were reached after N4 Type IV iterations, then the model

would have been solved for

j+N4-1
) qzj (q+1) = 3N, + N, (N, +1)/2
periods (where j denotes the first j chosen). The total number of
passes would be this nﬁmber times the number of passes required for
Type III convergence. ‘If j = 6 and N4 = 2, this would be
15 x 990 = 14850 passes for the example considered above. This compares
to only 990 passes for the case of no serial correlation. The serial
correlation case is thus considerably more expensive than the non-serial
correlation case when solving for one period. However, no additional‘
Type IV iterations are required for solving the model for periods later
than s , once the solution for period s has been obtained. The

forecasts with viewpoint date s-1 are known after solving for period
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'8 (up to the approximation defined by the tolerance criteria) and can
be used in solving for fetiod s+l ; and similarly for later periods.

It should be emphasized that Type IV iterations can handle -
problems more general than the.case of first order autoregressive errors.
In particular, theexpéctationsvariables with viewpoint dates t-2 need
not arise solely from the presence of autoregressive errors, and there
can.be more than two viewpoint dates. If, say, viewpoint date t-3
were also included in the‘model, the.only change in the procedure would

-be the addition of initial guesses for E values in step [a]. Omne
s-j-3

would merely need to keep track of three sets of expectations instead
of two as the solutions proceeded from period s-j to period s .
Models with multiple viewpoint dates can arise from aggregation

of economic agents who make their decisions at different points in time
based on different information sets. Moreover, certain types of invest-
ment decisions ﬁeed to be made with more lead time than others because

of variations in gestation period, and this generates models with multiple
';iewpoint dates. Finally, higher order autoregressive errors gives rise
to multiple viewpoint dates through transformations similar to that
performed for model (3). Second order autoregressive errors, for example,

would introduce viewpoint date t-3 into model (3).

2.3. Models with Serial Correlation: Estimation Applications

The Type IV iterationsdiscussed in Section 2.2 require sufficient
data prior to the solution period so that the initial conditions do not
affect the solution. In most estimation problems one would not want
to lose as many observations from the beginning of the sample as would
be required for Type IV convergence. Fortunately, there is a way around

this problem, which is based on an assumption that is usually made when
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- estimating multiple equation models with moving average residuals. This

assumption is that the last presample uncorrelated error is zero; in

particular that €ig-1 = 0 in equation (2) when solving for period s .

As before, we focus on the case of first-order autoregressive errors;
‘generalization to higher orders is fairly straightforward. The method
requires data5 for period s-1 . Rather than first transforming model
(1) into the form of model (3), the method works directly with equation
(1), treating the error process (2) as another equation.

1f u, o Wwere known, then model (1) could be solved for period

s-1 and all subsequent periods using steps [1]-[5] and the fact that

. (x+2)

istr = Py uis—Z . In other words, in the dynamic simulations

Eu
s-2

tﬁat underly steps [1]-[5], one would use p(r+2)

i Y4s-2

hand side of (1). The problem then becomes one of choosing an appropriate

on the right

value for u This is where the assumption about ¢ comes

is-2 ° is-1

in. The idea is to choose uis-2 so that when the model is solved for

period s-1 , it generates a value of €ig-1 = 0 ; that is,

U TP o - The rationale for this choice is simply that 0 is the

unconditional mean of and so the actual value is likely to be

€is-1
relatively close to this value.

An iterative procedure for choosing u; .o SO that eis-l =0
can be described as follows (note that each calculation is performed
for each equation i =1, ..., n) :

[i] Guess values for the error terms his—Z .

[ii] Given the values from [i], solve the model for period s-1

5Data before period s-1 will be needed if there are lagged endogenous
or exogenous variables in the model. It is implicitly assumed here that
sufficient data for the lagged variables are available for the solution
for period s-1.
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using steps [1]-[5]. Note that E u is set to

g=2 s+r
(r+2) '
Py U2 in calculating the predicted values.

[111] Given the predicted value of Vie-1 (yis-l) from step

[11], calculate ig-1 ¥ Vigy = Vyg1 ond

Ujg-1l = PyYyg.2 t €457 » Wwhere w ., is the initial

A

guess. If ¢ is not within a prescribed tolerance level

is~-1 _
of 0, then convergence has not been reached (i.e., the solu-

tion is not comsistent with the assumption that =0).

Eis-1
[iv] "If convergence is not reached in [iii], set the new value

of gis—Z equal to ﬁi and do [ii] and [iii] over

s—l/pi
for these new values. Repeat this until convergence is reached.

[v] Using the converged iterate uis—Z s compute - W1 = puis_2 .
Given these values, solve for period s using steps [1]-[5],

' _ (x4

where in this case s§1u5+r =Py U1

is used in cal-
culating the predicted values. This completes the solution

for period s .

As was the case for the\iterative procedure in Section 2.2, once
the soiution for period s has been obtained, the solutions for periods
s+l and beyond merely require steps [1]-[5]. Again, this is because
the forecasts with viewpoint date s-1 are known after solving for .

period s .

2.4, Experiments

Some results of solving a large-scale nonlinear model by the
solution method are presented in Table 1. The model is described in
Fair (1976, 1980b). It is nonlinear in variables and coefficients, has

97 equations, 29 of which are stochastic, and has first order serial
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: correlatién-in 12 of the stochastic equations. The regular version of
the model does not have any rational expectations variables in it. The
results of solving this version for one quarter (1970I) are presented
first in Table 1. fen pésses through the model were required for Type
I convergence. |

For the second version of the model four equations were modified:
one consumption equation and three labor supply equations. The explang-
tory pr;ce and wage variables in these equations, which enter with no
lags, were replaced with the one-period-ahead expected valués of the
variables. The same coefficients were used for the expectations variables
as were used for the non-expectations variables in the regular version.
Serial correlation was not present in any of the four equations, so no
Type IV iterations were needed.6 The expected values of all the exogenous
variables in the model were assumed to be the actual values. The results
of solving this version are presented next in Table 1. As noted_in the
table, the solution required about 315 passes through the model.
For the third version of the model two additional equations were
modified: another consumption equation and an output equation. Both of
these equations have first ordér sefially correlated errors. Again, the
explanatory price and wage variables in the consumption equation were
replaced with ohe—period—ahead expected values. The current sales variable
in the output equation was replaced with the one-period-ahead expected

value of sales. 1In both equations the same coefficients were used for

6Note that Type IV iterations are needed only if there are expectations
variables with different viewpoint dates in the model. Therefore, the
existence of serial correlation in a model requires Type IV iteratioms
only if the equations with serially correlated errors have expectations
variables as explanatory variables.
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TABLE 1

Computational Summary of Experiments with the Solution Method

. on a Large Scale Nonlinear Model*
(solution period is s = 11 (1970I))

Regular Vergsion: no future expectations variables

10 Type I iterations (pésses through the model)‘for solution.

Second Version: one—ﬁeriod—ahead expectations variables (h = 1) in

1.

four equations, no serial correlation

The initial value of k was taken to be 8, so the first simu-
lation period was 11-20 ( & through s+h+k ). 3 Type II
iterations were needed for convergence for this value of k .
(Type I convergence was needed a total of 10x3 = 30 times.)

k was increased to 9, and the period 11-21 was solved. 3
Type II iterations were also needed for convergence for this
value of k . (Type I convergence was needed a total of
11x3 = 33 times.) The expected values for period 12 from
this simulation were within a prescribed tolerance level of
the values from the first simulation, so Type II¥ convergence
was achieved after 2 iteratioms.

The average number of Type I iterations required for Type I
convergence was about 5, so the:total number of passes through
the model -for this problem was 5 x (30+33) = 315.

Third Version: one-period-ahead expectations variables (h = 1) in six

1.

‘equations, two with first order autoregressive errors

This problem was solved using the Type IV iterative procedure
described in Section 2.2. The initial yvalue of j was taken
to be 6, and the initial value of k was taken to be 8. The
first simulation period was 5-14 ( s-j through s-j+h+k ).

5 Type II iterations were needed for convergence. k was in-
creased to 9, and the period 5-15 was solved. 6 Type II iter-
ations were needed for convergence. Type III convergence was
achieved.

The second simulation period was 6-15. Type III convergence

was again achieved after 2 iterations. This process was re-

peated period by period through period 11-20, Each time, Type

II1 convergence was achieved after 2 iterations. The average

number of Type II iterations needed for Type II convergence
each time was about 5.

*The model is described in Fair (1976, 1980b) and is summarized in the
text. The regular version of the model has 97 equations, 29 of which
are stochastic, and has first order serial correlation in 12 equations.
The approximate time for one pass through the model on the Yale
IBM370-158 is 0.05 seconds.
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TABLE 1 {(continued)

J was increased to 7, and the entire process was repeated.
The first simulation period in this case was 4-13. The ex-
pected values for period 12 from the simulation that began

‘'with period 11 (the process starting with j =7 ) were

within a prescribed tolerance level of the previous values
(the process starting with j = 6 ), so Type IV convergence
was achieved after 2 iterations.

The first Type IV iteration required Type III convergence 7
times, and the second Type IV iteration required Type III
convergence 8 times, Each time Type III convergence was
achieved after 2 iterations. Each Type III iteration required
about 5 Type II iterations. The total number of Type II
iterations was thus about 15x2 x5 = 150. The average length
of the simulation period for a Type II iteration was 10.5
periods, and the average number of Type I iterations needed
for each period was about 5. The total number of passes
through the model for this problem was thus about
150x10.5x5 = 7875.
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the expectations variables as were used for the variables in the regular
version. The results of solving this version are presented last in
Table 1. In this case the solution required about 7875 passes through
the model. |

Note from Tafle 1 that Type III and Type IV convergence were
always reached in two iterations (the minimum possible). This means
that cost savings may have resulted by using smaller starting values
for k and j . In practice one should try to choose values of k
and j no larger than the smallestbvalues needed to allow Type III and
Type IV convergence to be attained in 2 iterations. No experimentation
with alternative values of k and 3j was done for the present example.
Note also that the average number of Type I iterations (passes through
the model) needed for convergence for the second and third versions of
the model was smaller than the 10 iterations needed for the first version.
This is because better starting values are generally available for the
first Type I iteration for each period when the model is solved many

‘times than when it is solved only once.

3. Convergence Conditions

In this sectioﬁ we establish conditions under which the solution
method will converge from an arbitrary set of initial guesses to the
rational 'expectations solution for a linear model. Because the results
are confined to the linear case, they can only.be applied locally to
general nonlinear models--within a neighborhood of the solution for
which a first order approximation is sufficiently accurate. It would
be useful to establish globai convergenée conditions for nonlinear models,
but this would likely entail restrictions on the fi that are not satis-

fied in all economic applications. As a practical matter, there is
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likely to be no guarantee that the solution method converges for general
nonlinear models. A miﬁimum requirement, however, would seem to be that
convergence is guaranteed in the linegr case. In addition, by examining
the linear case it is possible to relate the numerical method suggested
here to certain analytic techniquesﬁthat have been used in previous re-
search for solving and estimating rational expectations models.

It will be éonvenient to work through a simple scalar example.

Multivariate generalizétions are fairly straightforward. A linear ver-

sion of model (1) with serial correlation is given by

(%) Ve = “tflytﬂ + thlxt."' Yie >

(5) x, = Axt_l + €yp o

(6) “1e T PYe-1 t a0

where ¢, Y, A, and p are scalar parameters and (elt, €2t) is

"a serially uncorrelated vector. Equations (5) and (6) are assumed to
be stable: |A| <1 and |p] <1. Equatiohs (4) and (5) correspond
to (1) Qhen the exogenous variable x, is assumed to follow a known
stochastic process, and equation (6) corresponds directly to the auto-
regressive error assumption made in equation (2).

A rational expectations solution of equations (4) through (6) can

be derived analytically as follows.7 Take expectations on both sides

of (4) and use the lag operator to obtain:

7'I‘he analytic techniques used here are discussed in Hansen and Sargent
(1980b) and Taylor (1980).
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7 -aH Ey =vEx + Eu,,
t-1 t-1 t-1
B o . -
where L " Ey_= Ey . Applying the operator (l-aoL ~) to both
t-1 & g1 tH

sides of (7) ylelds:

-1
1

(v E x + Eu

(8) ' f Ye L E lt)

(1-ol
t-1 A

n

v o1
Y o« (y E X 44t Eu )

i=0  t-1 g1 tH

¥ z aill+lxt_1 + z “ipi+lu1t_1
i=0 i=0

- YA p
T Tmant-1 ¥ Togp%e-1 "

Note that the last equality in (8) requires that Iakl <1 and
Iap[ <1, which under the stability assumptions made for (5) and (6)
_y{ii be satisfied if |a] < 1 . In other words, the condition on the
model necessary for this analytic derivation is that |&| <1l.
Equation (8) is the rational expectation of Ve given X1
éﬁd' hlt-l . Because it is ratiomal, it is also the current period
forecasf of Ye based on the model. Our objective is to show that the
numerical solution method generates the same solution value as that given

in (8). To correspond with the notation in Section 2, let period s

be the solution period. We need to show that §S compufed from steps

[1]-]5] is:
A~ _ o} P
(9 Yo = Tman¥e-1 ¥ Toop™s-1 °
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(Note that when Yo q is known,the procedure described in steps [1]-[5]
can be used for serial correlation. In the following proof we take U1

as given. A procedure for calculating u is described subsequently.)

1s-1

Recall that er(i,k) is the guess of E y
) s-1

ation 1 and Type III iteration k . We start each Type III iteration

Y

g4r 0 Type II iter-

with an initial set of guesses er(l,k) s, T=0,1, ..., k+¥2 (h=1

in this example). We need to show that 1lim eo(i,k) equals the right
1,k

hand side of (9).
For a fixed k , the Type II iterations can be described by the

set of equations

(10) er(i+1, k) = a (i,k) + yArxs_l + pru

er+1 1s-1°

r=0,1, ..., k1 . That is, given an initial set of guesses er(l,k)
we obtain a new set er(2,k) by solving (10). We then replace the old
set er(l,k) with er(Z,k) and obtain er(3,k), and so on. Note that
'EkAQ(i’k) = ek+2(1,k) for all i >1 . This implies that

ek+1(i,k) = ek+1(2’k) for all i > 2 , which in turn implies that

ek(i,k) = ek(3,k) for 1 > 3. More generélly we have that

(11) e (1,k) = e (k+3-r, k) for i >kt3r, r=0,1,...,k#2,

/£

and in particular that eo(i,k) = eo(k+3, k) for i > k+3 . Hence, the
Type II iterations converge after k+3 iterations in this example.
This fact can be used to determine the limit of these iterations by

picking out the convergent equations from (10); that is
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eo(k+3, k) = ael(k+2, k) + YAx__, + PY

. ‘ 2
e (K42, k) = ae,(kHl, k) + °x_, + p’u

1s-1

(12) e,(k+l, k) = ae,(k,h) + yk3x + p3u

.2 ’ 3 s~1 1s-1

| - k+2_ k+2 .
Cler(Zok) = 0o (LI + AT ) oy
.
By repeated substitution we obtain
k+1 k+1
+ k42 h h

(13) eo(k+3, k) = (a) ek+2(1,k)-hylhzl(ak) X161 + phzl(ap)'uls_1 .

which is the converged iterate of the Type II iterations for a fixed k .
Note that (13) is not equal to the right hand side of (9). Hence, we
could nbt expect the Type II iterations to lead to convergence to the
rational expectations solution, even if these iterations converged.' In
this case there is convergence, but to the wrong value. Note #lso, how-
ever, that if Ial <1, then the limit of eo(k+3, k) as k -+« is
.equal to the right hand side of (9).( Hence, Type III iterations do con-
verge to the rational expectations solution.v

Note that the condition for this convergence (Ja] < 1) 1is
identical to the condition needed for the analytic derivation of the
solution. It is also useful to note that this condition is identical
to the one needed tb obtain unique saddle path solutions in rational
expectations mbdels (see Taylor (1977), for example). This indicates
that the numerical method will work effectively in the wide class of
rational expectations models for which unique saddle path coﬁditions
hold. This result is qualified by the fact that our argument is essen-
‘tially a local one, since it is restricted to the linear case.

Since the model analyzed in this section has a serially correlated
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error, it can be used to derive the relationship between the procedure

described in Section 2.3 (designed to choose initial conditions for esti-

mation applications) and.the usual épproach to choosing initial conditions

in estimation based oﬁ linear ARMA models. This felationship will be

useful in the discussion of maximum likelihood estimation in the next section.
Substituting (8) into (4) results in |

’ . 2. P
(14) Y T T ®e-1 Y M-t e

Subtracting the lagged value of (14) multiplied by p from (14) results
in the "quasi-differenced" expression
2
ap

- YX _
(15) Ye = Py P Tan (e T Px ) t 1 5Ep1 6

which when coﬁbined with (5) gives a two-dimensional vector ARMA(2,1)
model with nonlinear constraints on the parameters. For estimation of
the parameters of this ARMA model it is necessary to calculate the
-residuals (elt, Ezt) in terms of the data and the parameters. In prac-
tice, this calculation is usually started by setting €1g-1 = 0 .énd

taking Yg-1 ° X, g > and x,_, as given, where s is the beginning

of the estimation period. The residual ¢ is then computed by sub-

1s
tracting (15) with these values from the actual observation Vg - The
residuals for later periods are calculated recursively using this computed
residual €45 + In general an ARMA(p,q) model requires p initial
endogenous variable values and q initial residuals set to zero. Because
of these initial conditions, the célculated residuals are referred to

as "conditional," and the likelihood function based on these residuals

is .called the "conditional” likelihood function.

The procedure described in Section 2.3 is designed to calculate
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these "conditional" residuals numerically for linear as well as nonlinear

models. This can be illustrated by showing that

s - YA -
(16) Yg = P¥go1 * Toan (%1 = PXg_2)

when the value uls-l in (9) is chosen according té the'procedure out-
lined in steps [i] through [v] in Section 2.3. We know from (9) that

the basic numerical solution method will generate

: . A _ _aX p
a7 Ys-1 = T-ar*s-2 T T-ap ls-2

when applied in period s-1 , . as indicated in step [ii]. Iterating
steps [iii] and [iv] will yield a converged iterate of U o that has

the property that Vo1 = y _1 ¥ €157 = 0 to within the tolerance level.

S

From (17) this value of u is given by

1s-2
= 1-op . . 2.5

A (18) Ye-2 © P [ys-l l—ans—Z]

“and therefore

(19) U1s-1 = PYsp = (@ “p)[ys—l 1—axxs-2) .

Substituting (19) into (9) yields (16), which is what is to be shown.

Note that when analytic techniques can be used, it is trivial to choose

U o according to (18), but when the solutions are calculated numerically,
0.

it is necessary to search for the value u that gives

1s-2 £1s-1 T

In any case, this analysis has shown that when the procedure described
in Section 2.3 is used to calculate residuals, the results will be
equivalent fo the "conditional" residuals used for "conditional" maximum
likelihood estimation of multivariate ARMA models. This in fact is

our main rationalefor the procedure.
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4. Maximum Likelihood Estimation

Assume that the first m equations of the model (1) are stochastic,

with the remaining u, (4 = m#l, ...., n) identically zero for all

it
t . Given the model (1), let ‘It be the n xn Jacobian matrix whose

1§ element is 2,/9y,, (1, 3=1, ..., n) , and let § be the mxm
’ T
matrix whose 1ij element is 1 Z u, u (14, =1, ..., m) . Also, let
T L, it it

o denote the véctor of all the unknown coefficients in the model. If

the u,, are normglly and independently distributed, then the Full In-

formation Maximum Likelihood (FIML) estimates of o are obtained by ;
maximizing

T
(20) L= --g log |S| + zllog EA

t=

with respect to o . An estimate of the covariance matrix of these esti-

mates (say V ) is

-1

- 2
A 9L
1) V= "[8asa|
where the derivatives are evaluated at the optimum. If the u,, are
it = Pi%e-1 + Eig o where the

correlated according to the relation u
€jp 2are normally and ihdependently distributed, then the FIML estimates

are obtained by maximizing (20) with S replaced by the matrix whose

. The maximization is then with respect to

Il o~13

. 1
ij element is Tt eitejt

1

o and p = (pl, cesy png » and the derivatives are taken with respect

to o and p in estimating. V.
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4.1. Evaluating and Maximizing the Likelihood Function

CGiven the solution method in Section 2, it is straightforward to
compute L for a given value of & for rational expectations models.
If there is no serial correlation, then for a given value of a one can

solve for Ey_, E Yg410 *++» E Yoy for s =1, 2, ..., T using
s-1 s-1 s-1

steps [1]-[4] in Section 2.1. This requires that steps [11-[4] be done

T times, once for each period of the sample. These values can then

be used in conjunction with the y and x data to compute values of

u (s =1,2, ..., T) and thﬁs the matrix S . The Jacobian deter-
minants can also be computed, thereby completing the determination of

L in (20). The extra work involved in the calculation of L for rational
expectations models thus cdnsists of using the solution method to compute
the expected values for each of the T viewpoint dates. For models
without rational expectations none of these calculations are needed.

Given this extra work, however, FIML estimates can be obtained in the
usual way by maximizing L numerically with respect to a .

When the - u follow a first order autoregression process, only one main
change to the above proce_&ure isnecessary. In this casesteps [i]-[iv] -

are needed to calculate the expected values for the first sample point
(say, period 2). Given these expected values, which have viewpoint date
1, the expected values for period 3 can thenbe obtained fromsteps [1]-[4].
These expected valﬁes can then be used in the calculation of the expected
values for period 4, and so on through the end of the sample period.

Since steps [1]-[4] can be used for all sample points except the first,
the only extra work in the serial correlation case pertains to the first
sample point. In other words, steps [i]-[iv] are used to calculate initial

conditions only once per solution over the entire sample period, Numerical
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maximization in this case is with respect to o and p . The analysis

of Section 3 indicates that in the linear case the numerical evaluation
of L for a given @ and p 1is equivalent (subject to the toleranée
criteria) to the evaluation of the conditional iikelihood function.

For large samples, the estimates obtained from maximizing this conditional
1ikélihood function will be.close to ghe unconditional FIML estimates.

There are a number of algorithms available for numerically maxi-
mizing a nonlinear function of parameters given a procedure to evaluate
the function for a given set of parameter values. For small models many
of these algorithms can be used to maximize L , but for large models
the only algorithm that appears capable of this is the Parke (1980) -
algorithm.8 Once the estimates have been obtained, the covariance matrix
(Zi) of the estimated parameters can be calculated by taking numerical
derivatives with respect to a and p at the optimum,

Computation time is an important consideration in evaluating the
‘proposed estimation method. We have performed limited experiments with
the method on a small linear model, which can also be estimated using
existing>linear techniques. As would be expected,the computation time
for the general nonlinear method described here is significantly greater
than it is for the estimation techniques designed explicitly for this.
linear system. The combutation time is not prohibative, however, and
the results indicate some éotential for practical applicability of the
method on small systems. Even for linear systems the flexibility of the
nonlinear method could make it attractive relative to linear techniques,

despite the greater computation costs.

8See Parke (1980) and Fair and Parke (1980) for a discussion of this and
for an application of the algorithm to the model in Fair (1976).
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The model we experimented with is a version of a wage contracting

model estimated in Taylor (1980). It can be represented as

(22) V1e T V11 Y 12712 F %13 E V1en Y 01 F e
+a,. Ey, +0a. . Evy, + a,, Ey +u._,
15,7 2e ¥ %16 F Yoes T %17 F Yoes2 Y V1e
(23) Yae = %2171¢ t ®22Y1e-1 T ®23Y1e-2 T Ype 0

with the restrictions a., =a,,=1/3, a,, =a,, =1/6

11 - %13 12 - %14 » %15 7 %16 T %13 ¢
Gy = Opgp = Opg - There are thus two free parémeters to estimate, 515

and Gpq - The data for this model were generated by simulating the model
using randomly generated errors. Normally distributed serially indepen-—

dent errors with zero correlation between equations were used to generate

the data. The true values of ¢« and a (.0333333 and ~-.333333)

15 21

were used for this purpose.

The model was first estimated using the technique described in
_Taylor (1980),-which is based on a factorization procedure that calculates
a restricted ARMA version of the model. This ARMA model is used to cal-
culate the likelihood function. Using a samﬁle of 50 observations and

9

the Davidon, Fletcher, Powell (DFP) algorithm, thebestimated parameters

were a,. = .02601 and & = -,39160 , with estimated asymptotic t-

15 21
values of 1.18 and 6.33, respectively. Each evaluation of the likelihood
function took .004 seconds of CPU time on an IBM360/91 using this factori-
zation techhique.

The likelihood function was also evaluated using the general non-

linear method discussedabove. When evaluated at the same parameter values,

thg method‘gavg the same value of the likelihood function as did the

gBecause‘of the small size of this problem, the Parke algorithm was not
used.
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factorization technique, which serves as a useful check on both procedures.
The details of the iterétions of the method when evaluating this likelihood
are summarized in the upper panel of Table 2. A total of about 27750
passes thrqugh the model were.required for one‘function evaluation, which

is estimatgd}o

‘to t;ke about 1 second on an IBM360/9l--about 250 times
slower than the linear technique.

We also evaluatéd the likelihood fﬁnction for the case where Y.
in (22) follows_a first order autoregreésive process, with Py = 0.7 .
Steps [1]-[v] in Section 2.3 were used with a.damping factor of 0.25 to
solve for the first observation, with steps [1]—{4] in Section 2.1 used
thereafter. Some initial experimentation with no damping factor for calcu-
lating the initial condition indicated that convergence would either not
be achieved or would be‘very slow. This is the only case where a damping
factor was used for the empirical results in this paper. Again, for the
same set of parameter values the same 1ikelihood value was obtained using
both the factorization technique and the method propoéed in this paper.
‘A sumﬁary of the calculétions for the method is presented in the lower
panel of Tabie 2. The required number of passes in this case (37563) is

about35percentgréaterthénthenumberrequiredforthenmdel without

serial correlation.

4.2, A Less‘Expenéive Method for Maximizing the Likelihood Function

For other than small models the estimation method proposed in
Section 4.1 may be prohibitive, depending on the speed and cost of one's

computer. The problem is that the solution method of Section 2 must

10

These computation times were estimated in order to compare the two
approaches. The actual iterations were computed on an IBM370-158. Be-
cause of the usual difficulties with such comparisons, these estimates
should be viewed as approximate.
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TABLE 2

Computational Summary of Likelihood Function Evaluation

for a Small Linear Model*®

Model with no éerial correlation . (h = 2)

4.

1. The initial value of k was taken to be 15. Type III conver-

gence was almost always achieved after 2 iterations (i.e.,
for k =16 ).

The average number of Type II iterations per Type III iteration
was about 15.

Given the expectations, the model is recursive, so only one
Type I iteration was needed for convergence each period. The
average length of the simulation period for a Type II iteration
was 18.5 periods, so the total number of Type I iterations

for the solution for the 50 observations was about:

(50 obs.) x (1 Type I iteration) x (15 Type II iterationms)
x (18.5 periods per Type II iteration) x (2 Type III iterations)
= 27750.

One Type I iteration requires about 10 multiplications and 7
additions.

Model with serial correlation (h = 2)

1. Call the first period of the éample period, period ‘s . Steps

[i]-[iv] were first used to calculate u The initial .

1s-1 °

guess for u was zero. A damping factor of 0.25 was used.

1s-2

Convergence took 18 iterations to obtain u For these

1s-1 °
calculations the initial value of k was taken to be 15, and
Type II1 convergence was always achieved after 2 iterationms.
The average number of Type II iterations per Type III iteration
was about 15. Given the expectations, the model is recursive,
and so only one Type I iteration was needed for convergence
each period. The number of passes for these calculations was
thus about

(18 iterations) x (1 Type 1) x (15 Type II)
x (18.5 periods per Type II) x (2 Type III) = 9990.

Given Uy > Step [v] was used to solve for period s . This

required 21 Type II iterations. The starting values for this
step were the values computed in 1, and convergence was achieved
after 1 Type III iteration. The number of passes for this

step was thus (21 Type II) x (18 periods per Type II) = 378.

*The model is described in equations (22) and (23) in the text.
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TABLE 2 (continued)

Given the solution for period s , the calculations for the
remaining 49 periods are essentially the same as those above
for the model with no serial correlation. These calculations
thus required about 49 x1x15x18,5x2 = 27195 passes.

The total number of passes through the model was thus about
9990 + 378 + 27195 = 37563.
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be used T times for each evaluation of L , which requires many passes
through the model; and ﬁany evaluations of L are required for any given
maximization problem. 1In this section we consider a way of modifying

the estimation method that requires fewér calls to the solution method.

This modification is as follows:

[A] Given the initial value of o , solve for

E Ye» E ys+1,'..., E Yeth for s =1, 2, ..., T by

s-1 s-1 s-1
doing steps [1]-[4] T times. Call the solution values
from this step the '"base" values.

[B] Perturb each coefficient (one at a time) from its initial
value and do steps [1]-[4] T times to get a new set of
solution values. From these values and the base values,
calculate numerically the derivatives of the expectations
with respect to the coefficients. This step requires doing
steps [1]-[4] T times‘for each coefficient.

[C] In the procedure that célculates L for a given value of
a , use the.base values and the derivatives to calculate
new expected values for each new value of o . This allows
the elimination of all step [1]-[4] calculations in the
computation of L for a given value of a .

[D] Once the maximization algorithm has found the value of o
that maximizes L , repeat steps [A]-[C] for the new value.
Keep repeating these steps until each element of a on the
last iteration is within a prescribed tolerance level of the

same element on the previous iteration.

The advantage of this modification is that once the problem is

turned over to the maximization algorithm, no further step [1]-[4] cal-
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culations are needed. The use of the baée values and derivatives in the
calculation of L 1is véry inexpensive relative to the use of steps
[1]-[4], and given that the algdrithms require many.calculations of L,
this modification is likely to result in considerable savings of time.
Therevis, of course, no guarantee that the procedure will converge.
If the expectations are not a well behaved function of o , then com-
puting the derivatives at a given poinf may not be very helpful. It
may be, in other words, that using the base values and derivatives to
calculate new expected valués yields values that ére far away from the
(correct) values that would be computed by doing steps [1]-[4] T times.
For one of the two examples discussed below the use of the derivatives
worked very well, but for the other example it did not. More experimen-
tation is thus needed before the usefulness of the modification can be
determined. |

Once the estimates have been obtained, the covariance matrix (21)
can be calculated by taking numerical derivatives of L with respect
4o o (at the optimum). It may be possible to use the derivatives of
the expectations with respect to o in the calculation of the values of
L. Thié would allow the covariance matrix to be computed without having
"to do any stép [1]-[4] calculations.
For the serial correlation case one must also calculate in step

[B] the derivative of u with respect to a (for each i ), where

is-1
s 1s the first sample point. Gis-l is a funcfion of a, and so if
steps [1]-[iv] are to be bypassed in the calculation of L , the deriva-
tive of ﬁis—l with respect to o must also be calculated and used.
Using the model in (22) and (23), some experiments with the less

expensive method were made. The true values of the parameters were used

as starting values. Using these values, the model was first solved for
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each of tﬁe 50 observat;ons. As noted earlier, this solution requires
about 27750 passes through the model. The model was then solved two more
times to calculate the derivatives of the éxpectations with respect to
fhe two coefficients. The DFP algorithm was then used to maximize

L . This required 45 calls to the spbroutine that calculates L for

a given value of the coefficient vector. As can be seen in Table 3,
convergence was essentially achieved after the first.iteration. The
program was allowed to run for three more iterations, where for each
iteration the model was solved three timés: bnce to get the base values
and twice more to get the derivatives. The results in Table 3 show that
the use of the derivatives provides a close approximation to the "true"
value of L obtained by solving the entire model. Given that the DFP
algorithm required 45 calls to the subroutine (for the first iteration),
the use of the derivatives saved a considerable amount of time. The
derivatives were also used in the calculation of the covariance matrix
after the oétimum was reached.

- While the results in Table 3 are encouraging regarding the use-
fulness of the derivatives, another set of results that we have obtained
is not. 'The procedure was also used to try to estimate the version of
the model in (22) and (23) in which v, follows a first order auto-
regressive process. The use of the derivatives in this case did not
work. The expectations did not appear to be well behaved functions of
the coefficients, and quite different derivatives were obtained for
different step sizes. The values of L computed using the derivatives
were generally not very close to the values of L computed by solving
the entire model. It thus aﬁpeared for this version that in order to

estimate the model one would have to solve it each time that a new value
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TABLE 3

Results of Estimating a Small Linear Model
Using the Less Expensive Method*

Number

Value of L Value of L  of Times

Using Expected Using Expected L Was
Values Values Computed
Computed from Computed from by the DFP
Derivatives Steps [1]-[4] Algorithm

~

L
a a

15 21

Indelal 0333333 -.333333 | 508. 6022686
Iteration 1 0252715 -.391654: '509.0471277  509.0460742 45
Iteration 2 .0260208 -.391609 509.0466651  509.0466725 39
Iteration 3  .0260046 -.391616 509.0466727  509.0466724 20
Iteration 4 .0260076 -.391612 509.0466725 71

Estimated standard error of &15 = 0.0221141 . .

Estimated standard error of &ili; 0.0618044 .

*Tpe model is described in equations (22) and (23) in the text. The method
is described in Section 4.2 in the text.
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of L was needed by the algorithm. More estimation of alternative models
is needed before determining whether these difficulties with the less ex-
pensive method are specific to this example and whether the example is

representative of the type of model that is likely to be estimated in practice.

5. Conclusion

-A numerical solution method and an estimation method for nonlinear
rationalexpgctationsmodelshavebeenpresentedinthispaper. The solution
method can be used in forecasting and policy applications aﬁd can handle
ﬁodels with serial correlation and multiple viewpoint dates. When applied
to linear models, the solution method yields the same results as those
obtained from currently available methods that are designed specifically
for linear models. It is, however, more flexible and general than these
methods. For large nonlinear models the experimental results in this
paper indicate that the method works quite well,

The estimation method is based on the maximum likelihood principal.
"It is, as far as we know, the only method available for obtaining maximum
likelihood estimates for nonlinear rational expectations models. The
method ﬁas the advantage of being applicable to a wide range of modelé,
including, as a special case, linear models. The method can also handle
different assumptions about the expectations of.the exogenous variables,
something 'which is not true of currently available approaches to linear
models.

The main disadvantage of the estimation method is that it requires
many passes through the model to obtain the estimates. We had limited
success with a modification §f the method to cut down on the number of

passes. The experimental results showed, however, that the basic method
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is not prohibitive for small models. We plan in future research to
estimate more models by the method to try to determine its practical
limits. Two other limitations of the estimation method—-that it is based
on deterministic rather than stochastic simulation and that it cannot
handle expec;ationsAwith.a current-period viewpoint date--are also .

items on our research agenda.
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