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In this paper, we investigate the problem of estimating distributed
lags in short panels. Estimates of the parameter of distributed lag
relationships based on single time-series of observations have been usually
rather imprecise, The promise of panel data in this context is in the N
repetitions of the time that it contains which should allow one to estimate
the identified lag parameters with greater precision. On the other hand,
panels tend to track their observations only over a relatively short time
interval. Thus, some assumptions will have to be made on the contributions
of the unobserved presample x's to the current values of y before any lag
parameters can be identified from such data. In this paper we suggest two
such assumptions; both of which are, at least in part, testable, and outline
appropriate estimation techniques. The first-places reasonable restrictions
on the relationship between the presample and insample x's, while the second
imposes conventional functional form constraints on the lag coefficients

associated with the presample x's.
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The Estimation of Distributed Lags in Short Panels

Introduction*

The problem we will be dealing with in this paper arises, as
is often the case in econometrics, because we do not have all the
data that we would like to have. In many contexts, we expect our
independent variables to '"work" only after a relatively long lag
while at the same time wishing to discover such effects from a

relatively short time series. Consider a very simple model

= +
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where we have suppressed the constant term for simplicity of exposi-
tion. Here m + 1 is the total length of the lag structure and

the problem arises if m is large relative to T, the total number of

observations ony, or relatively to T + @, where ©is the available

number of lagged observations on x. A typical example might be
T=20, m=26, and 6 = 2. 1I.e., 20 observations on y, 22 observa-
tions on x, and the necessity to estimate 7 w coefficients.

In this case one would have to give up 4 observations on y to get
the whole lag "in," and estimate 7 parameters on the basis of 13

degrees of freedom (allowing for the loss of 1 d.f. for the

*This work is part of the NBER's Program on Productivity and Technical
Change and has been supported by NSF Grants PRA 79-13740 and SOC
79-04279. We are grateful to Gary Chamberlain, Lung-fei Lee and
Christopher Sims for helpful comments and to John Bound and Bronwyn
Hall for research assistance and valuable suggestions.
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estimation of the constant term). Obviously the results will not
be very good. One solution is to impose additional structure on
the w's, choosing the form of the lag a priori -- polynomial, geo-
metric, etc. Another solution, and the one we will be concerned
with in this paper, is to increase the sample in another dimension,
adding more individuals, states or commodities. The sample becomes
then a time-series "panel" with N x T degrees of freedom.

There has recently been a significant increase in the number of
panel data sets available. Though N in these data sets is often
quite large, it is not clear just yet whether such data will result
in "better" estimates of distributed lag coefficients. Part of
the problem lies in the fact that panel data sets usually track their
observations only over a rather short time interval. Thus, if in
the example introduced above T + 0 was less than seven while m > 7,
then there would be no way we could use the panel data to estimate
all m + 1 w coefficients. Nor could we estimate even seven coeffi-
cients consistently (as N grows large) without either simpiifying
the model further (assuming a particular lag structure) or bringing
in additional information about the missing observations on the
independent variable. On the other hand, if it were reasonable to
assume some form for the relationship between the missing and the
observed data, and if the assumed form allowed for the identification
of at least some of the lag coefficients, then the large size of N
in panel data may allow for more precise estimates of the identifiable
lag coefficients than would be possible from the information in
a single time series. Of course, if we are going to build such a
functional relationship into our estimating technique then it is
desirable to have some way of testing whether or not it is a

reasonable approximation for the problem at hand.
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Let us now go back to the substantive issue of what types of
questions about the w's one may want answers to. One is, what is
the "total" effect of a change in x on y? That is, what is

m
T Wj ? Unfortunately, as Sims (1974) has shown long ago, that is
=

j
not really knowable without the imposition of a priori constraints.
A more modest question is: can one estimate any (how many?) of the
w's consistently even if one cannot estimate the unseen tail of the
lag distribution? This question is of interest because the shape of
the lag structure is of interest on its own merit; indeed, it may
be essential to the'understanding of the phenomena we are interested
in. Moreover, if one could get good estimates of the individual wj 's
one might discover that they do follow a particular pattern which is
consistent with a particular lag structure, and one might be willing
to impose this structure in further investigations to provide an
answer also to the first question.

To recapitulate we are interested in estimating at least some
of the distributed lag parameters when the tail of the lag
distribution is not directly observable. For a single time series
this issue has been discussed previously and solved by Klein (1958),
Dhrymes (1971), Madalla and Rao (1971) and Pesaran (1973) in the
context of an assumed given lag structure form (e.g., geometric or
Péscal). Because panel data tend to have many more degrees of
freedom, we would like to solve the same problem without imposing a
particular functional form a priori. This transforms the problem
into one of estimating a system of multivariate regressions when
there is a left out variable in each one and using an assumption about

the relationship between the left out and the observed variables to
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identify some of the coefficients of interest. Thus our models

fit rather nicely into the general panel data analysis framework
outlined by Chamberlain (1978). If Zi is the T element vector

of observations on y for individual i, and 51 is the T + © element
vector of observations on x for the same individual, and if we
assume (Ki’fi) are random drawings from a larger population of
interest, then a fairly general starting point for panel data
analysis is the multivariate 'wide-sense' expectation or projection
of y on x; that 1is, E*[y}x] = [Ix. T has T(T + 6) elements.

In the models we discuss R wilfwbe gomposed of a mixture of two
types of coefficients. One set consists of parameters from the lag
distribution we are interested in. The other consists of coeficients
in the regression of the 'left out" contribution of the unobserved
presample x's to the current value of y,on the observed or insample
x's. The specific form of this regression function depends, of
course, on how the unobserved x's and w's are generated.

The assumptions which we will consider lead always to a null hypo-
theses that restrict 1 to have less than T(T + &) free parameters

n,
and are therefore testable, at least in part, by comparing the restricted

to the unrestricted estimates of E.

The rest of this paper is organized as follows. The next
section considers first the case of estimating the parameters of an
unrestricted lag structure when the process generating the x's can
be assumed to have a finite memory. By this we mean that the dis-
tribution of the recent x's conditioned on the whole past history of
x depends only on a small number of such x's. Further on we add an

individual specific constant term to allow for unobserved hetero-

geneity in the x-process. These assumptions will be appropriate if
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the x's can be approximated by an integrated autoregressive process
(where the order of the integration plus the order of the autoregres-
sion is p) or by a mixture process consisting of individual and time
specific factors plus an autoregressive deviate. The autoregressive
process need not be homogeneous over time; i.e., its parameters can
change from year to year. We show that in this case one can test for
p, the length of the memory in the x process, and that the model is
capable of producing consistent estimates of the T + 6 - p leading
lag coefficients. Implicitly it amounts to finding the "backcasting"
function which determines the projection of the unobserved presample
x's onto the observed or insample ones, and using this function to
solve the truncation remainder problem.

The third section considers the case when the "unseen" w's have
geometric or some other relatively simple autoregressive structure.
Implicitly this amounts to backcasting the w's rather than the x's.
We show that in the panel data context this model reduces itself to
the single or several left-out factors case considered by Griliches
(1974) and Keifer (1979). More generally, we show that a "solution"
to the truncation remainder problem requires either simple assumptions
about the lag structure or alternatively about the stochastic process
generating the x's. The virtue of our approach is that it provides
us with ways of testing some of these assumptions before proceeding

to impose them on the data.



II. Distributed Lags from Panel Data with Prior Structure on

the x-Process.

All models discussed in this paper are special cases of the

distributed lag model:

Yie T 5 WX, -t YUt
where

E[ui,tldt’ai and Xi.s for alli and s] = 0 1)
and

if i=j
v

Elnirj) 0 if i#j
where

IR U
and

i=l,...,N and t=

A brief discussion of the maintained hypothesis in (1) is

worthwhile before proceeding.

of distributed lag models which could be estimated from panel

First, it is not the most general

data. The fact that there are repetitions on the distributed lag

relationship for the same individual over different time periods,

and for the same time period over different individuals, implies

that one need not assume constancy of the lag parameters either
over time or over individuals.

individual and time specific constant terms.

The model does allow, however,

The presence of

the individual specific (time specific) effects allows for

for both
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the possibility of unobserved factors which are fairly constant
over time (over individuals) and impact both on y and on the
choice of x . The time specific effects (the dt ) pose no
particular estimation problems in what follows. The relevant
limiting dimension for deriving the asymptotic properties of
estimators from panel data sets is N , the number of individuals,
and as N grows large we shall always be able to estimate the
dt exactly. To keep our notation as simple as possible, then,
we shall not consider the dt explicitly in the discussion below.
Allowing for the individual specific factors (the a, ) does,
however, complicate matters. In both this and .the next

section, we will first develop estimation techniques for

the simpler case where there are no individual specific effects
( a;=a for all i ) and then indicate the extension required to
allow for this factor. The extended models allow one to test the
hypothesis that in fact there are no such effects in the

data.

Two points should be noted about the assumptions we have
made on the disturbances. First we are assuming that conditional
on the unobserved factors strict exogeneity holds. Second the
disturbance vectors [the Ui, i=1,...N] are assumed to be a
random drawing from a larger population of such vectors but are
allowed to possess a free covariance matrix. Thus the nature of
the panel allows for a relatively straightforward solution to
the rather troublesome problem of determining the time-dependence

structure of the disturbances in distributed lag models. One
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simply allows that  structure to be free and estimates it along
with the other parameters of the model.

In some applications the maintained assumption of (conditional)
strict exogeneity and of the constancy of the lag parameters may
be too restrictive. Since, as we shall show, they are in fact
testable assumptions one may wish to relax them in a particular
context. Model (1) is adequate, however, for exhibiting
our basic results concerning estimation in the presence of trunca-
tion remainders.

The essence of the truncation remainder problem can be seen
rather clearly from (1). Panels are usually quite short. If 6
is the number of observations on x before the first observation on
y and one is unwilling to assume that m<T+€ then, none of the lag
parameters can be estimated consistently (as N grows large) from
(1) without some further restrictions on the model.2 On the other
hand, if there are a set of reasonable restrictions which do
allow for the identification of some of the lag coefficients then
the fact that N is usually gquite large may allow one to estimate
them fairly precisely. This section will consider the estimation
of lag coefficients when it is reasonable to restrict the auxiliary

regression of the presample x's (xi for all 0<g<m-6) on a set of

»y~0-q
individual effects and the vector of observed or insample
x's (Ki) to have zero coefficients on the last T+0-p observed x's.
This restriction captures the notion frequently found in time series
models of economic variables that (conditional on the heterogeneity

introduced by the individual specific effects) linear predictors

of future x's



depend only on the x's observed in the recent past. The next

section will consider estimating distributed lags from panel data

“when it is reasonable to restrict the lag parameters themselves.
We begin by considering the simplest case where there are

no individual effects (ai = a for all i). Then if E* is the

"wide-sense" expectation, or projection,operator our restriction

on the auxiliary regression of the unobserved or presample x's on

*
Xi is written as:

E* (x, x.) =

P
(q)
,'9'q|mi i Py X (2)

j=1 J i,j-0-1
for 0<q<mBO, and i =1,...,N.

If the x sequences are random drawings from a larger population
of interest then a sufficient condition for (2) to be true
is that in this population the distribution of e sons x;e+p, given

X_g and x_e_q is independent of x_e_q for all

x-e+p—l, “« s ey
0<g<m-6; that is the distribution of future x's depends only upon

the last p realizations of x. This does not require the process

to be homogeneous over time. Thus changes in the economic environ-
ment may cause different functions of the last p observed values of

X to be used as the predictors of future x's in different years.

If, however, the x's are generated by a time-invariant process then
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(2) will be true under the familiar assumptions of x's that follow
an integrated autoregressive process where the order of the inte-

gration is k while the order of the autoregression is p-k.4

It will now be shown that if (2) is true then one can
estimate lag coefficients from (1) without imposing any structure
on either the form or the length of the lag distribution. The
underlying logic of this point is really quite simple. Divide the
Xx's appearing as independent variables in the equation determining
yt into the observed or insample x's and the presample x's. Now
consider the projection of Yy on all the observed x's. This will
not identify the desired lag coefficients due to the correlation
between the presample and the insample x's. However it follows from (2)
that the partial correlation of the presample x's with all but the
last p observed values of x will be zero. Thus the distributed
lag coefficients corresponding to the leading lag coefficients
will be identified.

To be more explicit rewrite (1) as:

t+0
Yije = ZVp¥ieer tPip Y Ui (3)
where
m-t
bi,t = T=g+1wt+TXi'-T' that is bi,t is the

contribution of the presample x's to y; .. the truncation remainder
14

in period t.
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Now consider the projection of Y; ¢ on the vector of all
’

insample observations on x for individual i, Xie It will contain
*
the term E [bi tIkgi] which is just a linear combination of the
’
*
E [x;, _qe0l2:]
have from (2) above that:

Dropping the subscript i, for convenience, we

* P
E [b, |x] j£l¢t,j-6-lxj-6—l (4)
where
m- (t+8)
%t,j-6-1 = I wt+6+quq)
v q=1 J

for j=1,...,;, and t =1,...,T.

The projection of any unobserved or presample x, and therefore
of any linear combination of all the presample x's, on the insample
x's has zero coefficients on all but the first p observed values

of x. One can now use (4) to derive the projection of

y' = [yyr---rygdor x , that is;
E [y, |x] t+g—p 7 ¥
Yy = w _ + « a_1X:_p-
t é_ reg T E-T =1 t,j-6-17j-6-1 (5)
where

Ye,5-0-1 = Yewo+1-5 T P¢,5-6-1

for
t=1,...,T.
(5) shows how the panel can be used to derive consistent
estimates of the T + 6 - p leading coefficients from an unconstrained

lag distribution. A model is constructed where each Yy is regressed
on all previous insample values of the x's. The last p values of

¥ in each equation are correlated with the contribution of the
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presample x's to the current value of y. Hence their coefficients
do not provide consistent estimates of parameters from the lag
distribution. The first t + 6 - p regression coefficients estimated
in the equationiknryt are, however, consistent estimates of the
leading t + 8 - p lag coefficients. As t increases,the lag
structure we want to estimate is gradually built up.

Of course if T + 06 is small relative to p we will not be
able to build up much information on the tail of the lag distribu-
tion. This simply reflects the fact that short panels, by their
very nature, do not contain unconstrained information on that tail.
However, even in cases with small T + 6 the initial consistent
estimates of the first few lag coefficients provided by (5) may
contain enough information on the lag structure to allow one to
restrict it to be a member of a family of distributions which
depend on a small number of parameters and concentrate on estimating

these parameters thereafter.

3
1f one is willing to assume that E [y.|x.] = E[yilx.] and that
’\.rl ’\:1 n '\41
V(xi|§i) = Q, a constant matrix (this will be true, for example
if, given (1), the x's distribute joint normally) then consistent
and efficient estimators of (5) are extremely easy to obtain.
In this case (5) is just a linear multivariate regression model

and can be programmed into most existing econometric software packages
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(suchas TSP or SAS). Of course one can derive more efficient para-
meter estimates if, in addition, it can be assumed that the x's are
generated by one of the simpler stochastic processes which generate
equation (2). In this case there will be information in the
observed x sequences which helps to estimate the lag coeffic-
ients and there will, in general, be a set of nonlinear con-
straints connecting the ¥ and the w coefficients. Then it will

be reasonable to consider maximizing the joint likelihood of

X; and Xi rather than the conditional likelihood of Xi given Ki,
and to impose this set of nonlinear constraints.5 If the assumptions
that E*[XiIKi] = E[Xilxi] and V(XiIKi) =  are not reasonable for
the problem at hand, then, though the maximum likelihood (or
asymptotically equivalent) estimators discussed above will still
provide consistent estimates of the lag coefficients, a more
efficient estimator can be obtained by minimizing the distance
function discussed in Chamberlain (1980).

How does the model of equations (5) fit into the general
panel data analysis framework discussed in the introduction?
Letting I be defined by the projection E*(xi|§i) = JXi» then the
model in (5) implies that

1= H + ¥ (6)

\

where W is the matrix of lag coefficients that would be obtained

if none of the truncation remainders were correlated with the
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observed x's, that is;

0...:D‘y0...we
= )
0.
0uerrrrnnnWpeT-1
L. -

and
¥ contains the coefficients of the auxiliary regression of
the truncation remainders on the observed x's; that is, given

equation (2), ¥ has zero vectors in the first T+6-p of its columns;

T+6-p . P

L o€
1

Since the last p lag coefficients (WT+G-p-1,...,wT+B-1)

are not identified from (6), ¥ + ¥ contains only T + p(T-1) + 6
parameters. As noted above, the unrestricted panel data model
contains (T+8)T of them, so that (5) places T(T+6-p-1) + p - 6
testable restrictions on the 1y matrix. Moreover, it follows from

(6) that both p, the length of the memory of the x process, and m,
the length of the lag, can be inferred from the properties of the
observed m matrix. p is determined by the number of non-zero columns

n,

of ¥.; while both w_ and the row vector ¥, should be close to zero
n n
for t > mand t > m respectively.6

If, in fact, there are correlated effects then equation (2) is
no longer likely to provide a good approximation to the auxiliary

regression of the presample on the insample x's. If y conditional
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on all past x's has an individual specific mean, and the diverse
unobserved factors which lead to that mean have an impact on the
insample x's, then these same factors are likely to have an impact
on presample x's. The simplest way for allowing for this phenomenon
is to add a component to the auxiliary regression of the presample
on the insample x's which does depend on . Though this procedure
would allow for individual specific differences in both the y and x
sequences, it would restrict the differences in these two processes
to be perfectly correlated. For many examples this would seem to
be unduly restrictive, at least as an a priori assumption.7

A more general way for allowing for individual specific heterogen-
eity in the auxiliary regression of the presample on the insample
x's is to introduce a second factor into that auxiliary regression,
say m., and replace (2) with:

E*[x.

1,-e—q|76i,°‘i (7)

.] = . +
’ml] cqm1

for 0 <q < m-6and i =1,...,n.
One can now test whether in fact the unobserved heterogenity

in the y and x processes are proportional by testing whether

m. = Ka.
1 -1

A sufficient condition for (7) to be true is that the con-

ditional distribution of Xg,...,X_g,  given m, X_g+p-1 X_g is

p
independent of x_e_q for all 0 < q <m - 8; that is given the

individual specific differences that cause heterogeneity in the
process generating the x's, the distribution of future x's only
depends on the last p observed values of x. Thus, although (7) does
not require any form of stationarity, it will be true for many of

the mixture models often used to describe the evolution of a
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multiple time series of economic variables when there is a need to

allow for individual specific heterogeneity. Two of the

more familiar of these models occur when the process generating

the x's consists of an individual specific mean and a deviate

which follows a pth

this process with p = 1) and when the x process consists of an

individual specific mean plus a deviate which follows an integrated

autoregressive process where the order of the integration is k

while the order of the integration is p - k.8 In what follows

we will work with the simpler model where m; = Koy and then

indicate the extension required to deal with the case of free mi's.
Given (7), a modified version of the argument which led

to the identification of the T + 6 - p leading lag coefficients

from the distributed lag model without correlated effects can now

be used to identify these coefficients in the presence of such

effects. Project both sides of (1) onto Xi and o, and define

Ti = Y¥i- E*[Xi|§i’ai]’ where E*[éilxi’ai] = 0 by construction.

Then using (7) we have:

t+6-p P .
Yi,e T St YT WXy o I V¢ -8-1%1,5-8-1 * Fit
t=0 j=1
where
m-t-96
= *® 3
Cy [la=§ wt+6+ch] and the wt,j-e-l are defined analogously
to the g 5-8-1 in equation (4) above.
?

Compared to traditional panel data models which allow for
correlated effects, the only real novelty in (8) is that the

correlated effect will have a coefficient, or a price, which changes

order autoregression (Lillard and Weiss, 1979, use

(8)
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over time. Note that for t > m - 6. There is no truncation
remainder and therefore the coefficient of the unobserved @y
(ct) will be unity. 1If, however, T < m - 6 then (8) is a
single factor model with free '"factor loadings.'" Such a model
is only identified up to a single normalization, and a normal-
ization which is consistent with the possibility that T >m - 9,
and therefore the normalization we choose in what follows,
is ¢, = 1.

To see that the leading lag coefficients are in fact
identified from (8) note that we can use Yj1 @s an error-ridden

indicator of the % and rewrite the system in (8) as:

_ t-1 1+6-p
yi,‘l: " Ctyi,l - TEOWTXi’t—T * Tit (wT_CtWT-t+1)xi’t_T (9)
g ( * R
+ - -C . . + - C
i=1 Vt,j-0-17%t%1,5-0-10%4,5-6-1 T Tip T Sefin
where
Cy = S¢/C
for t=2,...,T.

(9) is a standard simultaneous equations model and it will
identify the leading lag coefficients provided that there
exists, for at least one t, an instrument which is excluded
from the equation determining Ye ° Etyl, is uncorrelated with
Ly - Etcl’ but is correlated with y;. If T > 3,

Xz,...,Xp aTe excluded from the equation determining y, - T,Y¥;,

and provided that they are correlated with the as, that is
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provided there are correlated effects, these variables will
possess the properties required of instruments.
*

(8) defines E [Xilai,§i]' However, since a, is not observed
the matrix of coefficients from this projection cannot be directly
estimated. The coefficient matrix which can be

. . * * *® .
estimated is E [Xi|§i] = E {E [yilai,§i]{xi}. Taking the

wide-sense expectation of o given Xi in (8) we find that:

* T t+6-p P =
E [y;elx;] = celZoXs, ol 2 M Nite 7 jil‘”t,j—e-lxi,j*evl
where the a_ are defined by the projection (10)
* T
E [o;]%;] T it

Here again if one is willing to assume that E*[xi|§i]=ﬁ[xi|§i]
and V(Xi|§i)= Q (and, given equation (1), this will be true if
a; and the sequence of x's distribute joint normally) then
maximum likelihood @t an asymptotically = equivalent estimation
procedure) will yield consistent and efficient estimates of
the parameter in (10). Though (10) is nonlinear it can easily
be programmed into several existent maximum likelihood estimation
packages (see, for example, Joreskog and Sordom, 1976, and Hall,
1979) and so should not be too difficult to estimate in practice.
It should be noted, however, that maximum likelihood, if
applied, ought to be applied to the model in (10) and not to
the model in (8). The system in (8) contains a set of
"incidental paramters,” a set of parameters whose members enter
into the probability laws governing a finite number of sample

points, the numbers of members of that set growing with sample
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size (the ai), and therefore the maximum likelihood estimators of
(8) do not have desirable properties. By going from (8) to (10) we

have, in effect, constructed the density of Y conditional on X and
n N

the vector y of all the structural parameters of the model (the
1Y

parameters which enter into the density function governing the dis-

tribution of each sample point which includes the W, the vt j-8-1°
b

the c, and the o parameters), but which is marginal to the model's

incidental parameters. That is we have implicitly produced the
density of Y3 conditional on ;iand y by taking the density of Y3
' A N N

N,

conditional on X, ¥ and the<ﬁ, multiplying it by the density of a,
N Y]
conditional on X, and vy , and then integrating out the .. The maxi-
n

N
mum likelihood estimator obtained from (10) are found by maximizing
this latter density with respect to I, and are therefore identical
to the marginal maximum.likelihood estimator for the incidental
parameter problem introduced by Keifer and Wolfowitz (1956).9’10

If E*[Zilfi] # E[{ilfi] and/or V(Zilii) is not constant over
individuals, then the maximum likelihood estimators of (10) though
still consistent, will no longer be efficient. Once again we refer
the reader to the minimum distance estimator discussed in Chamberlain
(1980) to derive efficient parameter estimates in this case.

It will be useful to provide an explicit formula for the I

4V

matrix when correlated effects are allowed for. To do so we first

relax the assumption that there is only a single unobserved

factor that affects both y and -the choice of x; that is

relax the assumption that my = Koy for all i. To find the 1
N

matrix for the two factor model simply substitute (4) into
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(1) and take E:,m {E*[Zilﬁi’ s, mi]|§f of the resulting equations.
In this model it will be the m, which receives a variable co-
efficient over time and for t > m - 6, that coefficient, say

Cys will equal zero. Thus a normalization consistent with

the possibility that T > m - 6 in the two factor model is

*®
c, = 1. 1In the two factor model, however, we require two

normalizations, so that we will also set My = 1, where Mo is
T

*
defined by the projection E [miiﬁi] = I mrxr.11 Given this
r:-
notation the I matrix for the two factor model is written as:
N
. *
T =W + y*+ jg' + cm' (12a)
ny N N Yy NNy

where % is a T + 6 element unit vector % and y* are defined
N

analogously to W and ¥ in equation 6, mt = [m-e,...mT-1,11

x!

% *
g = [1’C2,...,CT]’ and %' = [a_e aT].

g o v oy

If a one-factor medel is an adequate summary of the unobserved
heterogeneity in the y and x processes, that is if m; = kO,

then (12a) collapses into:

+ ca'

=W+\i}
NN Qv (12b)

It
\

where ¢' = [c1 1].

,-o.,CT-l’
The leading T + 6 - p lag coefficients will be identified

from (12a) provided T > 4, and from (12b) provided that T > 3.

Neither of the models will ever identify the last p of the w,

the o or the m coefficients.
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Given these points it is straightforward to compare the
1 matrices in cases which do allow for unobserved heterogeneity in the
x process [(12a) and (12b)] to the J matrix in the case which does
not [(6)]. If there are no individual specific factors generating the
x's then the elements of Jl = [wtr] should be zero for all r > t,
and should have a "stationary" structure, that is should depend
only ont - r, for r > p - 6. Thus, if there were no hetero-
geneity and we project each Yi,t on X., then the '"leads,"
the xi,r for r > t, should have small insignificant coefficients,
and the coefficients of X{,t-1 for ¢ > t+0-p should
be approximately the same for different t. If there are
individual specific differences in the process generating the
x's then one would expect both significant leads and non-
stationary. The two factor model (12a) allows this non-stationary
to take on a more complicated form than the one factor model (12b).

More formally, for T > 4_all these distributed lag models
are nested to the general panel data model with a free ] matrix.
Thus one would first test to see if (12a) were a reasonable
approximation to the data, and then test whether, given (12a),
(12b) is a simplification that the data accepts. If it does
we would go on to test whether there was reason to allow for
any unobserved heterogeneity in the auxiliary regression of the
presample on the insample x's; that is we would test (6)
maintaining the null hypothesis in (12a).

Though all our discussion has been concerned with a
distributed lag model which contains only a single regressor,

it is straightforward to generalize our results to the case
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of many regressors. If there were no individual specific effects
the model for the (multivariate) auxiliary regression of the
vectors of the presample f's at different dates on the insample 5'5
].

A time inhomogeneous pth order vector autoregression, or integrated

X

* ‘ 3
| x, = E*[x i,-6,...,31,-0+p

® . P
would be E [?\Si’_e_q N]_,-G,...,?él,T] n1;9-q

| x
n,

vector autoregression where the sum of the order of the integration
plus the order of the autoregression wa§ p, would be examples of
stochastic processes which generate this auxiliary regression.
Similarly, if we were to allow for individual specific heterogeneity
in the process generating X, the auxiliary regression would be written
].12

@, X. X = E*[x. . X.
"e'qlml’r\,1>'e’- .. :'\;1,1'] ['\ala_e'ql'\:lﬁf\al"e"'p

In either of these cases the g matrix would allow for free

< *
as E [5i

coefficients on the earliest p values of each regressor in each
year. This would be true whether or not there was more than one
distributed lag in the original model.

We began this paper by noting that the recent proliferation
of panel data sets holds out the promise of estimating lag coeffi-
cients which can be identified more precisely than had been possible
in the past. A major problem with using these panels to estimate
distributed lags is that they are characteristically rather short.
Thus some assumption must be made on the relationship between the
truncation remainder and the observed x's before any lag coeffi-
cients can be consistently estimated from panel data. This section
showed that if the distribution of future x's conditionalonall
past x's (or if there is heterogeneity, then conditional on all
past x's plus the source of this heterogeneity) depends only
on the last p realizations of x (or of the last p realizations

plus the source of the heterogeneity) then the panel can be used to
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estimate the leading T + e - p 1lag coefficients from an uncon-
strained lag distribution. The assumption on the x process ought
to be a fair approximation for most economic time series.13 Thus
the procedure outlined in this section should prove useful
when there is little prior information on the structure of the lag
coefficients. There is the problem, though, that in short panels
this procedure will not allow one to infer much about the tail of
the lag distribution. Unfortunately, short panels, by their very
nature, do not contain unconstrained information on this tail.
If, on the other hand, one is willing to impose enough prior struc-
ture on this tail then panel data can be used to estimate the
entire lag distribution. As we show in the next section, when
such prior information on the lag coefficients is available there
is less need to assume a special structure for the relationship

between the presample and the insample Xx's.
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I11I. Distributed Lags from Panel Data When the

Truncation Remainder Follows an Exact Autoregression

'In this section we describe a technique for estimating
distributed lag coefficients from panel data when, after a few
free lags, the lag distribution can be assumed to follow an
exact autoregression. We focus on this lag structure because
of its previous wide use (see, for example, Nerlove [1972],
Dhrymes [1971] and Griliches [1967]). The simplest example is,
of course, the modified geometric or Koyck lag which can be

written as:

w for v < 8

for v > 8 (13)
and |68] < 114

If we use (13) to constrain the coefficients in. the general
distributed lag model without correlated effects (equation 1n,
jt is clear that with the modified geometric lag structure the
contribution of the presample x's to the current value of y, or

the truncation remainder, becomes an unobserved factor which

follows an exact first order autoregression (i.e., bit = Abi t—l)'
i »

That is given (13), (1) may be written as:15
6 B+t
_ -6 t-1
where
> -8
b. = w r 8T ¥k,
i 6 =6+1 i,1-T,

that is bi is the truncation remainder in period (1).
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Generalizations to (13) which allow the lag coefficients
to follow second or higher order autoregressions, and therefore

allow for more flexible lag structures, are written as:

W for 1T < 8
w_ = T -
T Q (15)
qzlaqwr-q for t > 6

where the pairs of conjugate roots to the equation

Q
1 - L dqlq all lie outside the unit circle. If (15) is
q=1

substituted into the distributed lag model for panel data the
contribution of presample x's to the current value of y can be

shown to follow an exact ch

order autoregression. For our
purposes, however, it is simpler to treat the truncation

remainder in this case as a system of Q difference equations

each of which follows an exact first order autoregression. Since
the econometric issues involved in estimating the model with Q
geometrically decaying factors are, for the most part, straight-
forward extensions of the model with a single factor, we will con-

centrate on the simpler model below. The model obtained from using

(15) to restrict the lag parameter will be identified provided that

T 2 Q+1 when there are no correlated effects, and provided that

T 2 Q+2 when there are such effects.1®

The problems which arise in estimatiﬁg (modified) geometric
lag structures from panel data differ somewhat from the problems
which arise in estimating them from a single time series of
observations on x and y. 1In the context of a single time series

the relevant limiting dimension for deriving the asymptotic
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properties of one's estimators is T, and as T gets longer

the contribution of the initial value of the truncation remainder,
bi’ to VE_l times the derivative of the log-likelihood function
goes to zero. Thus the value chosen for bi will not, in this
case, affect the maximum likelihood (ML) estimates of the main
parameters of interest [see Dhrymes, 1971]. This conclusion,
however, is crucially dependent on the length of T}j In the

panel data context T 1is characteristically quite short and

therefore the contribution of bi to the likelihood of any given

Zi is non-negligible. Of course, the relevant limiting dimension
in panel data is N and as N grows large there is a set of the
bi; but given the fact that T 1is short it is not surprising

that the properties of their distribution will affect the properties

of the estimators of the lag parameters.

We begin our discussion of estimating equation (14) by
providing a simple, consistent (as N grows large), estimator
of its parameters. Later, it will be shown that if it is reasonable

to assume that (zi, Xi’ bi) distribute joint normally, then this
estimator will also be asymptotically efficient.

Subtract the equation for Gyt_l from that for Vi for
t =2,...,T in equation system (14 ). This panel data modification

of Liviatan's (1963) suggestion for estimating distributed lags

produces the system of equations:

0
Vi - Syt_l = WX + § (w_ - ¢
- (16)
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If one adds the projection of ¥y onto all the insample x's

(and allows the disturbance from that projection to be freely
correlated with the e, - 8e, ;) to (16) then this system becomes
a standard simultaneous equations model in the parameters

Wy Wy - Gwo,..., Wo41 T 6we,5 s the coefficients of the yq
projection,and the variance covariance matrix of disturbances.
These parameters will be identified provided there exists at least
one variable which is excluded from the equation determining Yo
uncorrelated with the disturbances, and is correlated with Yoy
However, if T > 1, that is if the proxy for b is observed

t

for at least one t, then is observed for all t > 1

Xt_0-1

and satisfies the requirements of an appropriate instrument. Thus
as long as T > 1 one can obtain consistent, as N grows large,

estimates of WyoWy = Sw W, - 6w § and a one to one

1 0’270 e-1°
transformation of these estimators provides consistent estimates
of the parameters needed to define the entire lag distribution.
Had we started out with the model which allowed for correlated
effects then one would begin by first differencing the y sequence

to eliminate the s, and then use G(yt_l - ) as an indicator

Ye-2

for bt - bt—l in the equation determining Ve = Yeo1® The system

of equations derived in this manner is:

(yt - yt—l) - G(yt_l - yt-2) = wox, ¥ [w:L - w0(1+6)]xt_1 +
0

I [w, - (1+8dw, _4 + W

toug - RSy g+ fug (17)
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Now one must add the equations for the projections of both

Yo = ¥ and yi onto all the insample x's to the system in
(17),and allow the disturbances from these projections to be
freely correlated with the other disturbances in the system in
order to derive a standard simultaneous equations model in the
parameters 6, w w

0° W1 - w0(1+6), Wy - (1+68) Wy + Woseoos

Wg - (1+6)we_l = Wg_go the projection coefficients, and the
variance-covariance matrix of disturbances. This system will be

identified provided that the proxy for bt - b that is

t-1’

Yioy = Yieopo exists for at least one t, that is provided

T > 2.18

We now consider the implications of the modified geometric
lag structure on the E matrix. TFor these models the g matrix
is obtained by substituting equation (13) into (1) and then finding

the projection of the resulting system of equations onto X, , or
o

e as & % .
by finding E o,b {E (Zilzi’ o bi)lzi}' For the model without

correlated effects (ai =aq for i=1,...,N) the T matrix
n,
will be the sum of two terms, one of which, say W%, contains
"
the matrix of coefficients that would be obtained from that projec-

tion if the truncation remainders were uncorrelated with the

observed x's, while the other contains the coefficients obtained

from the projection of the truncation remainders onto X . Since
4"
b. = 8b. for all i and t, the subsequent rows of the
i,t i,t-1

latter matrix will all be proportional to each other with factor

of proportionality &8.  Thus in this case:
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I = W¥ + 687
v "y

n,

where . -

uh 0....0 wo....we

n O'ZZOyO""'WOSWG

0r .’
. i -1
Lwe....weswe...ﬁ Wb_ (18)

and

8% = [1,8,82,....6 1]

n,

E‘ = [B—G’ ....... . BT]

where the PB's are defined by the projection

B x.

E*[b.|x.] =
i'ai ri,r .

r

n ™A

-0

Note that the model leading to (18) does not restrict the
auxiliary regression of the presample onto the insample x's in

any way. Thus, in general, if we projected each y;4 oOnto the

Xi we would expect to pick up both nonzero leads and a nonstationary
coefficient matrix simply because we do not have enough lagged x's

in the estimating equation. If, however, it were reasonable to

assume that the presample x's have a nonzero partial correlation
with only the earliest p observed values of x (equation (2) of
the last section) then, it can be shown that Bq = Bp_y Z5--:s F

= B—O+p = 0. In this case the coefficients of the x's which

lead y ought to be near zero, and (18) will be nested to (6),

the @ matrix for the model which allows for a free lag distribution,

V)
but assumes that the x's have the Markovian property of equation (2).
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If we allow for correlated effects in the model which
assumes a modified geometric lag structure, then an additional
term must be added to the E matrix in (18) in order to pick
up the correlation of o, and the observed x's. Thus, in this

case we have:

I o= Whegpt v iy
where
% is the T + © element unit vector
and
%? = La_gseees qT] (19)

where the a's are defined by the projection

T
E*a.|x.1 = I
1 a1

o X.
o T i»r .

Once again (19) imposes no restrictions on the auxiliary
regression of presample on insample x. It is interesting to note
however, that, even so, (19) is a restricted version of (12a),
that is of the model which allows for a free lag structure but
assumes that the auxiliary regression of the presample on the
insample x's and the m. (the unobserved individual specific
heterogeneity in the x-process) to have zero coefficients on
all but the earliest p observed values of x (equation (7) of
the last section). This, however, would not be true if we were

to allow for a more complicated structure for the lag coefficients
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(equation (15) with Q > 1). Still, provided that the auxiliary regression
of the presample x's on the insample x's and the mg. is well
approximated by (7), then the models generated by (15) will always
be nested to (12a); and we will be able to derive more precise
estimates of the lag coefficients in those models by imposing the

restrictions implied by (7). With Q = 1 these restrictions are

BT = BT_l = 9 v o s 9 = B—O"’P =

Next consider maximum likelihood estimators of the parameters
of the model. These estimators will be efficient if E*[yilxi] =
n n

=E[Xil§i] and V[Xilﬁi] is a constant matrix; they will be efficient,

then, if, given (1), X5 a. and bi distribute joint normally.
(19) contains several nonlinear constraints on the parameters of interest,
and therefore maximum likelihood estimates of the g matrix in this
case will be difficult to obtain. Thus, estimation will be simpler if we go back tc
the transformation in equation (17),that is if we consider the model generated

¥ = . . - V. . - V. - . - V. .
by i [yl,l, y1,2 yl,l, y1,3 y1,2 6(y1,2 yl,l)’ }

)]. Note that y¥% = Ay. where
’\:l '\:l

vi,r - Yi,1-1 - 8Wi -1 7 Yi,T-2
the determinant of A is independent of the parameters of the

model (it equals unity), and recall both that there are no nonlinear
constraints connecting the parameters defining the distribution of
Z% , and that a one to one transformation of those parameters
defines all the parameters of the model. Thus efficient estimates
of the model's parameters can be obtained by maximizing the likeli-
hood of yi , and that can be done in any standard simultaneous

4V]
19
equations package. Two additional points are worthy of note.
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First the likelihood function we are maximizing is the likelihood

of s conditional on x. but marginal to the a., and the b,

A Al i i?

that is marginal to the two sets of incidental parameters in the
model. Since no incidental parameters appear in this likelihood,
the estimators we obtain will possess all the standard desirable

properties of maximum likelihood estimators (see Keifer and

Wolfowitz (1956)).- Second, in the panel data context the distri-
bution of the truncation remainders, or of the "impact of past
history" will affect the ML estimations of the lag parameters
unless E = 0, that is unless bi has a zero partial correlation
with each observed x, a condition which is very close to the

requirement that the =x's be serially uncorrelated. Finally,

once again we note that if E*[y.|x.] # Ely.|x.] and/or
Al Al Al Al

V[yilxi] depends on the index 1, then more efficient estimates
NN
of the models parameters can be obtained by using the minimum

distance estimation described in Chamberlin (1980).
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FOOTNOTES

Thus all equations could be interpreted as applying to variables

that have been prefiltered to eliminate all time specific means.

If e<m<T+6 then, without further restrictions, only the fraction
m-0/T of the NT observations available could be used to derive
consistent estimators of the lag coefficients. That is, one
would have to drop m-©6 observations for each of the N

individuals.

Equation (2) may have a set of time-specific constant terms
that will be removed by filtering out year specific averages,

see footnote 2, above.

There is, of course, the issue of determining whether (2) is a
good approximation for the problem one is investigating. For-
mally the only tests of (2) which will be considered in this
paper are tests which are conditional on the distributed lag
model we are estimating, that is on equation (1) in the text.
Given (1), (2) implies certain restrictions on the multivariate
projection of Zi on Xy (see the discussion below). If,
however, one is willing to assume that the leads which receive
zero coefficients in the projections of past x's onto future
x's are independent of time then one could test (2) rather
directly, by regressing the early observed values of x on the
later ones. This type of preliminary analysis of the properties

of the x-sequence is likely to be quite useful as it will also

suggest a plausible range of values for p.
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5 - .
In all these cases the joint density of y; and X4 is obtained
N

rather straightforwardly by multiplying the den:ity of Vi
conditional on 51, (the density of the model in (5)), and the
marginal density of the X5, which will depend on the process
assumed to generate the ;'s. For example, if the x's can be
assumed to be generated by a stationary autoregressive process

of order p, with partial correlations PyoseeesPy and variance

p
02, then one simply multiplies the density of the model in (5)
by the density of N realizations of T+8 consecutive observa-
tions on an AR(p) process; see Anderson, 1978. In the autore-
gressive case Box and Jenkins, 1976, provide the formula for

the 'backcasting' function which determines thepgq) coefficients
in equation (2), and therefore the nonlinear constraints in

the model. These coefficients will follow the recursion

+1 . . .
p§q ) - pjpgq) + p§3i , Where it is understood that pg ) - 0

for all j>p. The p initial conditions required to solve this

system are pgl) = Py » for j=1,...,pP.

6In any given application one is likely to have fairly narrow a
priori bounds on both p and m. For p the bounds can be derived
from the properties of the observed x-sequences (see footnote 4
above); while one can only determine whether m is a member of the
closed set [0, T + 8 - p] or if it is outside of it. Thus
maximum likelihood testing criteria for the choice of p and m
ought to be adequate in most cases. If, however, p and/or m can
take on a fairly wide range of values then these criteria will
tend to choose values of p and m that are too large in the sense

that the probability of choosing the true model will be assympto-
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tically bounded away from unity. Gewke and Meese (1979) discuss
this point in more detail and provide alternative testing criteria

for the more difficult cases.

In some cases, however, it will not. Take the example where

the relationship of interest is a Cobb-Douglas production func-
tion, 7y 1is output, x is (perhaps a vector of) input, and the
oy are interfirm productivity differences that are fairly
constant over time, known to the manager of the firm, but unob-
served by the econometrician. Then the theory of derived demand

for inputs implies that the heterogeneity in the x and the Yy

processes are exactly proportional.

Both these processes may have time specific means, as can
equation (7), since these means will be filtered out together

with the year-specific averages.

9 The classic reference for the incidental parameter problem is

Neyman and Scott (1948). In our case the estimates of y found

n,
by maximizing the likelihood of Yi condtional on Xy 5 X and
4" n LY
@y with respect to y and @y will be inconsistent in y as
n n

well as in the ;- Intuitively, the reason this occurs is that
the conditional maximum likelihood estimator is based on finding
certain weighted individual specific means of all variables and
then maximizing a model based on deviations from these means.
For short panels, however, the new variables, or the deviations

from the means, will, by construction, have moving average
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components. Once such a component exists presample values of
the independent variables will have a nonzero partial correla-
tion with all insample values of the independent variables.
101f it is reasonable to assume that the x's are generated by
one of the simple mixture processes which lead to equation (7)
then more efficient parameters estimates can be obtained by
maximizing the joint likelihood of xi and X3 with respect
to Yo and by imposing certain nonlinear constraints between
the various elements of the y vector. For example, if the

4]
x's are generated by a mixture process consisting of individual

specific means and a pth order autoregressive deviate, then

the constraints discussed in footnote, 5, above continue to hold

and, in addition, a. = a for T-p>r>p-6 , while % _g+j = OT-j

for 0<j<p . The constraints on the @, are obtained by noting

that in this case the vector g Wwill be proportional to ‘Z_li .
N n

where E is the covariance matrix of the vector [x_e,...,xT] and

i is the T+6 wunit vector. Here 73 = T* +02ii'
n N " Qn,A

the covariance matrix of T+e consecutive observations on a pt

where * is
n,
h

order autoregressive process. A simple extension of the results

of Lillard and Weiss, 1979, proves that

-1 _ %1 2 %-1 .., Ao ., x -1 L
E (5 0,0, E ii' 5 %i' E ) ; from which it follows
-1, _ _*-1. 2., . %-1..-
that E i = E %el where 0, = (1 + Ga%'i lé) 1 . The formulae
for the elements of 3§ are provided in Galbraith and Galbraith,
n
1974,

11To see the need for this second normalization note that we can

always write m; = ka; + 1i where Cov(li , ai) = 0 by construction.

Projecting both sides of this equation on x; we have
n
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1 x_ , so that m. = ka, *+ 1r for

T = -6,...,T . Now from the covariance restriction it is clear

that for any variance-covariance matrix of x and any vector a ,
N

n

T T

z £ a.l_ Cov(x. X, .) = 0. That is, given V(x) and given
r=- r=-9 J * s 1s] "
a the model is only free to choose T+6-1 elements of 1 , and
n n
therefore T+0-1 elements of m.

Y]

Here, one would undoubtedly like to simplify and see whether it
were reasonable to allow for a smaller number of separate unob-
served factors. This is the multivariate analog of the

problem of testing whether m, = Koy in (7), and is discussed in
more detail in Keifer (1979).

Of courseif a different assumption on the x process were relevant
then one could work out its implications on the auxiliary regression
of the presample on the insample x's. Our point is simply that
once an appropriate approximation to the x process is found, then
one can frequently use it to provide consistent estimates of lag

coefficients from an unconstrained lag distribution.

|6] < | is required for the finiteness of the truncation
remainder for reasonable assumptions on the x sequence, while

0 £ 86 <1 may be required for lag structure to have a sensible

economic interpretation.
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We begin, as we did in the last section, with the simpler model

which does not allow for correlated effects.

The form of the model with Q geometrically decaying factors

is obtained by solving the difference equation in (15) for its
roots and its initial conditions, and then substituting that
solution into equation (1). The identification conditioés can
be derived from the matrix of coefficients obtained from the
projection of Zi onto zi. Intuitively, one cross-section is
required to estimate the projection of each of the initial values
of the factors onto X:, one cross-section is required to

N

estimate the projection of a;, onto X., and one cross-section
v

is required to estimate the parameters of the lag distribution.

When T is short the particular way one specifies the value
of bi will effect the ML estimates of the main parameters of
interest even in the time series context. See the articles by

Pesaran (1973) and Glesjer (1977).

In fact, the system is overidentified with T > 2 the number
of overidentifying restrictions being (T + ©)(T - 2) - (0 + 2).
In the model without correlated effects (equation 16) the number

of overidentifying restrictions is (T - 1)(T + ©) - (0 + 2).

Maximum likelihood of the parameters of the modified geometric
lag structure model without correlated effects, the model in (18),
are derived in a similar fashion. The simplifying transformation
in this case is defined in (16), and the model in (18) is, of

course, nested to the model with correlated affects.
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