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ABSTRACT

This note describes an algorithm for the solution of rational expectations
models with saddlepoint stability properties. The algorithm is based on the
method of multiple shooting, which is widely used to solve mathematically
similar problems in the physical sciences. Potential applications to economics
include models of capital accumulation and valuation, money and growth, exchange
rate determination, and macroeconomic activity. In general, whenever an asset
price incorporates information about the future path of key variables, solution

algorithms of the type we consider are applicable.
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The assumption of rational expectations or perfect foresight
has been found useful in many fields of economics. While rational
expectations models have received extensive theoretical attention
to date, there have been relatively few applications.l In part,
this has been due to the difficulty of numerically calculating the
saddlepoint paths, which typically represent the solution of these
models. Blanchard and Kahn (1980) present an algorithm for the solu-
tion of linear rational expectations models. In this note we extend
their analysis by presenting an algorithm for the solution of general
non-linear rational expectations models.

Formally, rational expectations models pose two-point boundary
value problems, which are common in optimal control, engineering,
and the physical sciences. When the system under study is linear,
an analytic solution for the two-point boundary value problem can
be found. For non-linear systems, this is not possible and numerical
. techniques are almost always necessary. This note shows how the
method of multiple shooting, utilized in the physical sciences, can
be used to solve a wide variety of economié models. The first
section describes some. of the economic contexts in which two-point
boundary value problems arise. The method of multiple shooting and
its application to economic models are examined in the second section.

There is a brief conclusion.

I. Economic Application of Two-Point Boundary Value Problems

The class of two-point boundary value problems considered

here has the form:
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The dynamic economic system is defined by (1) and (2).
Equation (2) defines boundary conditions at the beginning and end
of the intérval of interest.2 Because the problem involves a mixture
of initial and terminal conditions it is referred to as a two-point
boundary value problem. The exogenous variables entering the model
are represented by  z_ , with the entire sequence {zi} i=0, T
given. We allow for the possibility that F may be time dependent,
(i.e., non—éutonomous). In many economic problems the time horizon is
infinite. The boundary value conditions are not given by Vo = v
but rathef lim Ve = vV . We assume throughout that the latter case

o _

can be adequ::ely approximated by the former for sufficiently large T.

Models of the type illustréted by (1) and (2) have widespread
application in economics. A simple example is provided by a standard
model of capital accummulation.4 Arbitrage réquires that the yield

on capital equal the return on the alternative asset. That is:

\ b
£'(K) K ! (3a)




or

Py = rPg - f'(K) (3b)

where ' £'(K) is the marginal product of capital, and Pg is its
price. The supply of new capital goods depends on their price Pg +

according to the investment schedule

R = I(py) I'>0 i(l) =0 (4)

where the normalization I({l) = 0 is chosen for convenience. The
path of capital accummulation and valuation may be found by solving
the pair of differential equations (3b) and (4). The boundary condi-
tions are provided by the initial capital stock KO and the require-

ment that the model converge to a steady state so that 1lim Pg = 1.
t+o

Since boundary conditions are imposed at both the beginning and end
of the solution interval, the model fits the form of the canonical
two-point value problem (1) and (2). This example is particularly
simple since there are no exogenous variables and the behavioral
functions are non-autonomous.

In addition to models Qf capital accummulation and valuation,
a wide range of economic models from many fields present two-point
boundary value problems. Whenever an asset price or shadow price
incorporates information about the future path of key | variables,
solution algorithms of the type we consider are applicable. Any
intertemporal optimization problem with constraints falls within
the two-point boundary value class. Solving such problems requires
initial conditions on the state variables, and terminal condiﬁions

on the costate variables corresponding to the constraints. Other
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applications include models of money and growth of the type considered
by Sargent and Wallace (1973), exchange rate determihafion as discussed
in Dornbusch (1976), and macro-economic activity of the type described
in Blanchard (1978) and Fair (1979).

Previous attempts to solve rational expectations models which
pose two-point boundary value problems include Blanchard and Kahn
(1980) and Fair (1979). Blanchard and Kahn present an explicit
analytical solution for linear models, which is implemented computa-
tionally in Blanchard (1979). Fair uses a numerical version of his
econometric model. His method may be difficult to apply to problems

with more than a very small number of terminal conditions.

II. The following is an informal summary of the method of multiple
shooting. Detailed presentations of multiple shooting may be found
in Roberts and Shipman (1972) and Keller (1968). As Roberts and
Shipman indicate, all shooting algorithms for two-point bounaary
value problems have the following basic structure:

(A) set of values of the unspecified conditions
at the initial point of the interval ("missing
initial conditions") is assumed, and the diffe-
rential equations are numerically integrated

to the terminal point ("shooting" at the target
terminal points). If the computed terminal values
satisfy the specified terminal conditions the
problem has been solved. If they do not (the
normal course of events), the differences
between the computed and specified terminal
conditions (the "miss distances") are used

to adjust the missing initial conditions.

If the differential equations and boundary
conditions are linear, the adjustment need

only be made once, but if the differential equa-
tions or the boundary conditions are nonlinear,
the adjustment of the missing initial conditions
is an iterative procedure.

(p. xiii)
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In the standard shooting method, the system is integrated all
the way from the initial period to the terminal period. 1In explosive,
saddlepoint-stable systems, this integration or other aspects of
the shooting procedure may break down. Multiple shooting provides a
more robust procedure for these difficult cases. In multiple shooting,
the interval of interest is subdivided, auxilliary variables are
defined and duxilliary intermediate-point conditions are imposed.
Guesses of initial conditions are made not just for the beginning
period, but for many intermediate periods as well. By breaking up
the shooting problem into stages, the explosive character of saddle-
point systems may be numerically brought under control.

Shooting methods apply to both differential and difference
equation systems. Indeed the numerical solutions for the former are
typically found after discretization of the system. We will summa-
rize here the procedure for difference equation models.

By repeated function composition, we may integrate (1)

forward to write:

X

p = Hlxgi {23}, 4 ol . (5)

Our goal is to find a v* such that:

xp =HvE, Wl 5 (2.} o p)= [V, wel . (6)

Corresponding to each root VB of this equation is a solution
of the two-point boundary value problem.5 Thus the solution of the
differential equation system (1) and (2) can be reduced to the
solution of the set of non-linear equations specified in (6). A
standard approach to finding the solutions of (6) is the application

of Newton's method as described below.
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Consider the function H™ mapping domain of H into the
first m elements of its range. Then,

v, = Hm[x0 ; {zi}] = Hm[vo, w ; {zi}] . We write H™ in this way

t

to stress the functional dependence of Vp ©Oon v, . For given w

and {zi} H® maps R"> R®, from v, to v By a first-order

T L]
Taylor approximation, we have:

~ m ~
Mrv .1 + H_ (v, - v

0 Bvo 0 (7)

vp(vy) = H'lvgl = B o)

where Vo is the point around which o' is linearized.
‘ oH™ | ' -
(Thus, oo is evaluated at v .) (Note that w and z, have
0
been suppressed in the notation.) By definition, vt(vs) =v .

Using (7), we have:

~ 9H ~ .
* - v o (vk -
vT(vo) VT(VO) BVO(V0 vo) . Thus assuming
sp®| -1 ,
v exists,
0
~ sp®| 1 ~
* o~ - —_— — *
vy v avo [VT(VO) VT(VO)] (8)

If H 1is linear, the Taylor expansion is exact, and (8) is a
strict equality. If not, the equation suggests an iterative

procedure. Starting with a guess vé for VB r we compute for all

. ‘ . -1
i+l _ i 9y H™ - i
VO = VO - (a—i') [v - VT (Vo)] (9)
v
0
Here aHm is evaluated each iteration at [vi w {z.} ] L6
5v ~ ' or Wr Yor 'Z373.0,7"

0

i,
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conditions on H for the convergence of this process may be found

in Roberts and Shipman (Chapter 6).

Multiple Shooting

The simple Newton search typically fails for dynamic systems

with saddlepoint stability. Incorrect guesses of v are magnified

JH
T * v

0

through time, so that huge errors are recorded in v may

0

become ill-conditioned, or the first-order Taylor approximation

may be so poor as to cause the iterations to move in the wrong direc-
tion. Also, it may become impossible to solve the

F function at some intermediate step, before T is reached.v A
better-behaved algorithm is established by breaking the required
‘search into stages. The algorithm purchases improved stability at

the cost of increasing the size of the system of nonlinear equations
which must be solved. Now divide the interval [0,T] into intervals:
0,71 , I[Ty,Tyl +oey [Ty _4,Ty] , with Ty =T . Using (1), the

N

following implicit functions may be characterized:

)y = Hl(vo; GO’ J([Vo, wo]) , {zi}i=0,Tl) (10)

Hy (x5 J(xq, {2, 1), {zi})

Vip (xN_l) = HN(xN_l; J(xN_l, {zi}), {zi})

The notation in (10) is important. The X i=1,...,N are values

of the x vector at the beginning of interval (i + 1) . Thus, Xy
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is the starting vector of interval [Tl, T2] . The X (xi_l) are

the final values of x in interval i , written as implicit functions

of the X: 1

1<i<N, Hi maps R" + ]Rn, and HN maps R > ®R®. Defining the

. The dimensions of the Hi_differ: Hl maps r™ > Rn,

stacked (column) vectors X = [VO’xl’XZ""’XN] , and
o

n, . .
X = [X, /Xy seeesVy 1, (10) may be concisely written as:
T,'"T Ty ' ,

1 2

X = H(X) with m . rNoH) g (Nnim) (11)
N Ny n
" v

It is convenient to define X = [xl,xz,...,G] , and
Y
M=3%-%= [X, ~X,X_ -X.,X. -X Vo, =V]
- T 1T 2% 3reccr iy :

1 2 3 N

Y ~ . . o s
Since X is a function of % r M is implicitly a function of X .
n

In particular, if there exists an X*Iﬁ(%*) = 0 , then va , the
n
leading terms of X* will satisfy the terminal conditions in the
n .
differential equation system (1). Thus, our goal is to locate %* .
. - . y
Again, we turn to Newton search. With ﬁ = M(X) ,
Y]
oM

Moo R Hoo o+ W ox - ox (12)
¥ n, ~ n, n,

Since ﬁ(xf) =0,

5 oM |
X* o % - [==] [M(ﬁ)] (13)

This relation suggests the algorithm for updating guesses:

i+l i OMq v 2
X xt o 2] [Mx )] (14)
av n, : ~ N




It is instructive to examine the Jacobian a bit more carefully.

When fully written out in terms of the underlying H functions

we find:
=t -
oH
1
(Bvo _— = Ihxm m]nx(N—l)n
[ T2 ]
0 [s== - I [0
.  nxm _8§l nxm .nxm - gx(N—3)n
oM _ . : . .
5% ) ] oH, . ) (15)
Q]nx(i—l)n""[axi}l nxﬁ—%nﬂl D]nx(n—3)n
. oH
0 e1rn - - - N L
mx ( )n 8XN—l mxn

oM

90X
N

the necessary matrix inversion,

| Notice that has a band structure, which greatly facilitates

For many problems which arise in practice, it is not possible
to specify explicitly equations of motion of the form (1) . Often
the dynamics of the system are defined implicitly by a system of

equations involving other endogenous variables. That is:
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Xigy = F(X,, Yoo Zyo t) (16a)
0 = G(x., Yyr Zyr t) (16b)
Y 1s J X 1l

Fos IRn+3+K +1Rn

G - IRn+j+K +IR3

where Vi and the range of G are of equal dimension. The implicit

function theorem insures that under certain regularity conditions;

(G everywhere differentiable with non-singular Jacobian), (16)
equivalent to (1). 1In practice it may not be possible however
solve (18). 1In this case, it is necessary to use an equation

routine to solve (16) at each integration step.

III. Conclusion

The approach we have described above has proved useful in

wide variety of numerical problems.7 In view of the important

is
to

solving

a

posi-

tion which rational expectations models occupy in current economic

research, we anticipate that this approach shall find application

in many fields which we have not discussed. The authors welcome

comparisons of multiple shooting with alternative solution approaches.




- 11 -
FOOTNOTES

l. Prominent exceptions include Fair (1979) and Blanchard (1979).
2. The methods discussed can also handle far more general
boundary conditions. Any set of n linearly independent restrictions

on the { x; } is acceptable.

i=0’T

3. This approximation is made quite often in solving two point
boundary value problems. Robertson (1971) discusses some approaches
for testing the sensitivity of solutions to changes in T.

4. This model may be traced back as far as Walras. It is the
essence of two?sector theofies of investment and plays a key part
in "Keynesian" investment models based on internal adjustment costs.
A full discussion of such models may be found in Hayashi (1979).

5. A rigorous proof of this proposition along with a discussion

of necessary and sufficient conditions for a unique v, to exist may be

0
found in Kellexr (1968).

m
6. In the "modified" Newton's method, %%— is evaluated at
0

one point, vl While computationally easier, this modification may

0°
substantially slow the rate of convergence.
7. A detailed description of the algorithm is available on

request from the authors.




- 12 -

BIBLIOGRAPHY

Blanchard, 0.J. "Output, the Stock Market, and Interest Rates,”
Harvard Institute of Economic Research, Discussion Paper No. 672,
1978.

. "The Monetary Mechanism in the Light of Rational
Expectations," in Rational Expectations and Economic Policy,
S. Fischer, ed. University of Chicago Press, Chicago, 1980.

Blanchard, 0.J. and C.M. Kahn. "The Solution of Linear Difference
Models under Rational Expectations," Econometrica (1980),
forthcoming.

Dornbusch, R. "Expectations and Exchange Rate Dynamics," Journal
of Political Economy 84 (1976) 269-82.

Fair, R. "An Analysis of a Macroeconometric Model with Rational
Expectations in the Bond and Stock Markets, American Economic
Review, 69 (1979) 539-52.

Hayashi, F. "The g Theory of Investment: A Neoclassical Interpreta-
tion," forthcoming in Econometrica, 1980.

Keller, H.B. Numerical Methods for Two-Point Boundary Value
Problems. Blaisdell, Waltham, Mass., 1968.

Roberts, S.M., and J.S. Shipman. Two Point Boundary Value Problems:
Shooting Methods. American Elsevier, New York, 1972.

Robertson, T.N. "The Linear Two Point Boundary Value Problem on
an Infinite Interval," Mathematics of Computation 25 (1971) 475-81.

Sargent, T.J. and Wallace, N. "The Stability of Models of Money
and Growth with Perfect Foresight," Econometrica 41 (1973) 1043-8.






