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1
Estimating Agglomeration 
Economies with History, 
Geology, and Worker Effects

Pierre- Philippe Combes, Gilles Duranton, 
Laurent Gobillon, and Sébastien Roux

1.1   Introduction

Productivity and wages are higher in larger cities and denser areas. This 
fact was fi rst noted by Adam Smith (1776) and Alfred Marshall (1890) and 
has been confi rmed by the modern empirical literature on this topic (see 
Rosenthal and Strange [2004] for a review). The measured elasticity of local 
productivity with respect to employment density is typically between 0.04 
and 0.10. We confi rm this on French data. Panel A of fi gure 1.1 plots mean 
log wages against employment density over 1976 to 1996 for 306 French 
employment areas. The measured density elasticity of wages is 0.05. Panel B 
of fi gure 1.1 conducts a similar exercise using log of total factor productivity 
(TFP) for the same 306 employment areas over 1994 to 2002. The measured 
density elasticity of TFP is 0.04.

To draw inference from fi gure 1.1, two fundamental identifi cation prob-
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lems must be dealt with. First, density and measures of productivity (wage 
or TFP) may be simultaneously determined. This could happen because 
more productive places tend to attract more workers and as a result become 
denser. An alternative explanation, albeit equivalent from an econometric 
perspective, is that there may be a missing local variable that is correlated 
with both density and productivity. We refer to this issue as the “endogenous 
quantity of labor” problem. Since Ciccone and Hall (1996), a standard way 
to tackle this problem has been to use instrumental variables (IV).

The second major identifi cation problem is that more productive work-
ers may sort into denser areas. This may occur for a variety of reasons. For 
instance, skilled workers may have a stronger preference for high density, 
perhaps because density leads to better cultural amenities. Alternatively, 
the productivity benefi ts of high density may be stronger for skilled work-
ers. These explanations suggest that it is not only density that we expect to 
be simultaneously determined with productivity but also the characteristics 
of  the local workforce. To make matters worse, we expect characteristics 
that are not usually observed by the statistician, such as ambition or work 
discipline, to matter and to be spatially unevenly distributed. For instance, 
French university professors may have similar observable characteristics 
everywhere, but a disproportionate fraction of the better ones are working 
in or around Paris. We refer to this problem as the “endogenous quality of 
labor” problem. Since Glaeser and Maré (2001), a standard way to tackle 
this problem has been to use the longitudinal dimension of the data.

One may also be concerned that density affects productivity in a myriad 
of ways, directly and indirectly (see Duranton and Puga [2004] for a review). 
Denser markets allow for a more efficient sharing of indivisible facilities (e.g., 
local infrastructure), risks, and the gains from variety and specialization. 
Next, denser markets also allow for a better matching between employers 

Fig. 1.1  Productivity and employment density in France: A, wages and employ-
ment density (306 employment areas, 1976 to 1996 average); B, TFP (Olley- Pakes) 
and employment density (306 employment areas, 1994 to 2002 average)
Source: DADS, BRN, RSI, SIREN, and authors’ calculations.
Note: All variables are centered around their mean. The R2 is 56 percent in panel A and 61 
percent in panel B. See the rest of  the chapter for the details of  the calculations.

A B
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and employees, buyers and suppliers, partners in joint projects, or entrepre-
neurs and fi nanciers. This can occur through both a higher probability of 
fi nding a match and a better quality of matches when they occur. Finally, 
denser markets can facilitate learning about new technologies, market evo-
lutions, or new forms of  organization. Some of  these mechanisms (e.g., 
matching) may have instantaneous effects, while others (e.g., learning) may 
take time to materialize.1

Our chapter addresses the issues of endogenous quantity and endogenous 
quality of  labor. We do not attempt to distinguish between the different 
channels through which density could affect productivity and only aim at 
estimating a total net effect of density on wages. To deal with the endogenous 
quantity of labor problem, we take an IV approach, using both history and 
geology as sources of exogenous variation for population. To deal with the 
endogenous quantity of labor problem, we proceed as in Combes, Duran-
ton, and Gobillon (2008) and use the longitudinal dimension of extremely 
rich wage data. We impose individual fi xed effects and local time- varying 
fi xed effects in a wage regression. This allows us to separate local from indi-
vidual effects and to reconstruct some local wages net of individual observed 
and unobserved effects. Note that both approaches are necessary to identify 
the effect of density on productivity. Neither approach on its own would be 
sufficient.

Our main results are the following. The raw elasticity of mean wages to 
density is slightly below 0.05. Controlling only for the endogenous quantity 
of labor bias lowers this estimate to around 0.04. Historical and geologi-
cal instruments lead to roughly the same answer. Controlling only for the 
endogenous quality of labor bias yields an even lower density elasticity of 
0.033. Controlling for both source of biases leads to a coefficient of 0.027. 
When we also control for the fact that agglomeration economies spill over 
the spatial units boundaries, our preferred estimate for the elasticity of wages 
to local density stands at 0.02. These results are broadly confi rmed when we 
use an alternative measure of productivity, TFP, rather than wages.

We draw a number of  conclusions from this work. First, even though 
we control for two major sources of  bias, we still fi nd evidence of  small 
but signifi cant agglomeration effects. Second, the sorting of workers across 
places is a quantitatively more important issue than their indiscriminate 
agglomeration in highly productive locations. Third, the importance of 
unobserved labor quality implies that wages should be favored over TFP 
and other productivity measures, since wage data are our main hope to deal 
with unobserved worker characteristics.

The rest of this chapter is as follows. Section 1.2 provides a simple model 
of productivity and wages in cities and discusses the two main estimation 
issues. Section 1.3 presents the wage data and our approach to the endog-

1. Even if  the overall effect is positive, there may also be many negative effects of density on 
productivity due to crowding or congestion.
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enous quality of labor bias. Section 1.4 presents our instruments and dis-
cusses the details of our instrumentation strategy. Our results for wages are 
presented in section 1.5, while those for productivity follow in section 1.6. 
Finally, section 1.7 concludes.

1.2   Identifi cation Issues when Estimating Agglomeration Effects

We consider a simple theoretical model of the relationship between local 
characteristics and wages or productivity. Take a competitive fi rm i operat-
ing under constant returns to scale. Its output yi depends on the amounts of 
capital ki and labor li it uses and its total factor productivity Ai:

(1) yi � Aiki
�li

1��.

If  all fi rms face the same interest rate r, the fi rst- order conditions for profi t 
maximization imply that the wage rate is given by:

(2) wi � (1 � �)��
�
r �

�/ (1��)
Ai

1/ (1��).

Taking logs directly leads to

(3) ln wi � Constant � 
1

�
1 � �

 ln Ai.

The whole focus of the agglomeration literature, then, is on how the local 
characteristics of  area a where fi rm i is located determine productivity. 
We assume that TFP depends on a vector of local characteristics Xa and 
(observed and unobserved) fi rm characteristics �i:

(4) ln Ai � Xa(i)� � �i.

Inserting into equation (3) implies:

(5) ln wi � Constant � 
1

�
1 � �

(Xa(i)� � �i).

This equation can in principle be estimated using wage data and local char-
acteristics. An alternative strategy is to insert equation (4) into equation (1), 
take logs, and estimate:

(6) ln yi � � ln ki � (1 � �) ln li � Xa(i)� � �i.

Hence, both wage-  and fi rm- level (TFP) data can be used to estimate the 
coefficients of interest in the vector � or �/ (1 –  �).2 The fi rst identifi cation 
problem when estimating equation (5) or (6) is that the effect of local char-
acteristics, Xa(i), on wages and productivity may not be causal (endogenous 

2. Combes, Mayer, and Thisse (2008, chapter 11) provide a more complete model of local 
productivity and a precise discussion of a number of issues, including those that relate to the 
prices of factors, intermediates, and fi nal output.
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quantity of labor bias). In other words, unobserved local determinants of 
fi rm productivity that are part of the error term �i may well be correlated 
with Xa(i). Second, local characteristics of workers that are not observed and 
therefore not included in Xa(i) may not be comparable across areas (endog-
enous quality of labor bias). Again, this creates some correlation between 
�i and Xa(i).

3

To provide further justifi cation for equations (5) and (6) and to clarify 
some issues regarding endogenous quantity of labor bias, we note that the 
literature on the microfoundations of agglomeration (e.g., Duranton and 
Puga 2004) typically leads to equilibria, where the wage in area a, wa, depends 
on a local productivity shifter, Ba, and the local workforce, Na:

(7) wa � BaN 	
a.

This equation is consistent with equation (5) when agglomeration effects are 
such that Ai

1/ (1– �) �BaN	
ae

�i. The variable Ba can be viewed as a short- hand 
for all variables other than Na in Xa. With 	 
 0, individual wages increase 
with Na. If  Na is exogenously determined, it can be part of the vector of local 
characteristics Xa, and 	 can be appropriately estimated with ordinary least 
squares (OLS). Following Roback (1982) and subsequent literature, we may 
assume instead that workers choose their city of residence. This choice is 
determined through utility maximization by the difference between the wage 
and the local cost of living:

(8) Ua � wa � CaNa
�.

In any city, the cost of living increases with the city workforce and depends 
on other characteristics such as amenities, which have utility costs (and bene-
fi ts). A spatial equilibrium equalizes utility across cities.

Assuming � 
 	 and normalizing equilibrium utility to zero, the above 
yields:

(9) Na � � Ba
�
Ca

�1/ (� � 	)
  and  wa � Ba

�/ (��	)Ca
�	/ (��	)

At one extreme, if  there are no differences in productivity across cities other 
than those due to population difference (i.e., Ba � B) and only costs vary, 
the OLS coefficient on log workforce, when regressed against log wage, will 
be (appropriately) 	. In the opposite case where costs are the same every-
where (Ca � C ) and only productivity varies, the regression will estimate 
instead �. In the general case where both costs and productivity vary, the 
estimated coefficient on log workforce will be between 	 and �.4 The  intuition 

3. In addition, when estimating equation (6), factors might be endogenous as well. This issue 
is discussed in section 1.6.

4. Using the results from equation (9), it is easy to show that the estimated coefficient for 
log workforce will be: [�Var(ln Ba) � 	Var(ln Ca) –  (	 � �)Cov(ln Ba, ln Ca)]/ [Var(ln Ba) � 
Var(ln Ca) –  Cov(ln Ba, ln Ca)]. With zero covariance between Ba and Ca and equal variance, 
this reduces to (	 � �)/ 2.
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for that result is that if  the variation in local workforce comes solely from 
local costs, it is exogenous, and the proper coefficient is estimated. If  instead 
the workforce is determined by the variation in productivity, wages in equi-
librium only refl ect the extent to which local costs increase with the size 
of  the workforce. We need to keep this point in mind for our estimation 
strategy.

This problem actually goes deeper than that. Our model considers only 
two factors of production—labour and physical capital—the latter of which 
is mobile and its price can reasonably be taken to be constant everywhere. 
Then, the term associated with its price r enters the constant and raises no 
further problem. However, land may also enter as a factor of production. 
Unlike for capital, the price of  land varies across areas. Following again 
Roback (1982), we expect better consumption amenities to draw in more 
population and imply higher land prices. Firms will thus use less land. In 
turn, this lowers the marginal product of  labor when land and labor are 
imperfect substitutes in the production function (as might be expected). Put 
differently, nonproduction variables may affect both population patterns 
and may be capitalized into wages. To deal with this problem, we could 
attempt to control for local variables that directly affect consumer utility 
and thus land prices. However, our range of controls is limited, and we are 
reluctant to use a broad range of local amenities, since many of them are 
likely to be simultaneously determined with wages.

Faced with reverse causality and missing variables that potentially affect 
both wages and the density of employment, our strategy is to rely on instru-
mental variables.5 Hence, we are asking our instrument to deal with both the 
reverse- causality problem and the missing- variable issue highlighted here.6

Turning to the endogenous quality of labor bias, note that the quantity 
derived in equation (2) and used throughout the model is a wage rate per 

5. Alternative approaches may include focusing on groups of workers for which there is an 
element of exogeneity in their location decision. One could think, for instance, of spouses of 
military personnel. However, such groups are likely to be very specifi c. Another alternative may 
be to look at “natural experiments” that led to large- scale population and employment changes. 
Such experiments are very interesting to explore a number of issues. For instance, Davis and 
Weinstein (2008) estimate the effects of the U.S. bombing of Japanese cities during World War II 
on their specialization to provide some evidence about multiple equilibria. Redding and Sturm 
(2008) use the division of Germany after World War II to look at the effects of market potential. 
However, such natural experiments are not of much relevance to study productivity, since the 
source of any such large- scale perturbation (e.g., the bombing of Japanese cities) is also likely 
to affect productivity directly, and there is no natural exclusion restriction.

6. The issue with instrumenting is that the number of possible instruments is small, while 
there are potentially dozens of (endogenous) variables that can describe a local economy. In 
view of this problem, our strategy is to consider parsimonious specifi cations with no more than 
one or two potentially endogenous variables. The drawback is that the exclusion restriction 
for the instruments (i.e., lack of correlation between the instruments and the error) is more 
difficult to satisfy than with a greater number of controls. Despite this, we think that a more 
demanding exclusion restriction is preferable to the addition of inappropriate and possibly 
endogenous controls.
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efficiency unit of  labor. Even if  we are willing to set aside the issue that 
different types of labor should be viewed as different factors of production, 
not all workers supply the same number of efficiency units of labor per day. 
However, the data for individual workers is about their daily earnings—that 
is, their wage rate times the efficiency of their labor. For worker j employed 
by fi rm i, it is convenient to think of their earnings as being Wj � wi( j) � sj, 
where their level of skills sj is assumed to map directly into the efficiency of 
their labor. Hence, individual skills must be conditioned out from the regres-
sion to estimate equation (5) properly. Otherwise, any correlation between 
local characteristics and the skills of the local workforce will lead to biased 
estimates for agglomeration effects. Put differently, the quality of  work-
force in an area is likely to be endogenous. Previous work on French data 
(Combes, Duranton, and Gobillon 2008) leads us to be believe that this is 
a fi rst- order issue.

To deal with this problem of  endogenous labor quality, a number of 
approaches can be envisioned. The fi rst would be to weigh the workforce by 
a measure of labor quality at the area level and try to instrument for labor 
quality just like we instrument for labor quantity. Instruments for labor 
quality are very scarce. The only reasonable attempt is by Moretti (2004), 
who uses land- grant colleges in U.S. cities to instrument for the local share 
of workers with higher education. In any case, this is unlikely to be enough, 
because we also expect unobservables such as ambition or work discipline to 
matter and to be spatially unevenly distributed (Bacolod, Blum, and Strange 
2009).

To tackle sorting head- on, previous literature has attempted to use area 
characteristics at a different level of spatial aggregation. For instance, Evans, 
Oates, and Schwab (1992) use metropolitan characteristics to instrument 
for school choice, while Bayer, Ross, and Topa (2008) use location at the 
block level and assume an absence of sorting conditional on neighborhood 
choice.7 In our data, although we know location at the municipal level, we 
are loathe to make any strong spatial identifying assumption of that sort. A 
more satisfactory alternative would be to estimate a full system of equations, 
modeling explicitly location choice. Unfortunately, due to both the difficulty 
of fi nding meaningful exclusion restrictions and to the complications intro-
duced by the discrete nature of the choice among many locations, this is a 
difficult exercise. Dahl (2002) proposes a new approach to this problem, but 
this can be applied to cross- sectional data only.

The last existing approach is to use the longitudinal dimension of the data, 
as in Glaeser and Maré (2001), Moretti (2004), and Combes, Duranton, and 

7. Opposite spatial identifying assumptions are made. In Evans, Oates, and Schwab (1992), 
the choice of the more aggregate area is assumed to be exogenous, while location choice at a 
lower spatial level is not. Bayer, Ross, and Topa (2008) assume instead that randomness prevails 
at the lower level of aggregation and not at the higher level of aggregation.
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Gobillon (2008). This is the approach we follow. The details of our method-
ology are described in the next section.

1.3   Sorting and Wage Data

1.3.1   Choice of Spatial Zoning, Sectoral Aggregation, 
and Explanatory Variables

The choice of geographical units could in principle be of fundamental 
importance. With the same data, there is no reason why a partial correlation 
that is observed for one set of spatial units should also be observed for an 
alternative zoning. In particular, the shape of the chosen units may matter. 
However, Briant, Combes, and Lafourcade (2007) compare the results of 
several standard exercises in spatial economics using both official French 
units, which were defi ned for administrative or economic purposes, and arbi-
trarily defi ned ones of the same average size (i.e., squares on a map). Their 
main fi nding is that to estimate agglomeration effects, the localization of 
industries, and the distance decay of trade fl ows across areas, the shape of  
units makes no difference.

With respect to our choice of units, we opt for French employment areas 
(“zones d’emploi”). Continental France is fully covered by 341 employment 
areas, whose boundaries are defi ned on the basis of daily commuting pat-
terns. Employment areas are meant to capture local labor markets, and most 
of them correspond to a city and its catchment area or to a metropolitan 
area. This choice of relatively small areas (on average 1,500 km2) is consis-
tent with previous fi ndings in the agglomeration literature that agglomera-
tion effects are in part very local (Rosenthal and Strange 2004). Nevertheless, 
we are aware that different spatial scales may matter with respect to agglom-
eration effects (see Briant, Combes, and Lafourcade [2007] and previous 
literature). We need to keep this important issue in mind when deciding on 
a specifi cation.

Turning to the level of sectoral aggregation, a key question regards whether 
the benefi ts from agglomeration stem from the size of the overall local mar-
ket (urbanization economies) or from geographic concentration at the sector 
level (localization economies). Although we want to focus on overall scale 
effects, sector effects cannot be discarded. Previous results for France sug-
gest that they matter, although they are economically far less important 
than overall scale effects (Combes, Duranton, and Gobillon 2008). In the 
following, we work at the level of 114 three- digit sectors.8

The main explanatory variable we are interested in is employment den-

8. We view this level of aggregation as a reasonable compromise. On the one hand, we need 
fi nely defi ned sectors in wage regressions and for TFP estimation. On the other hand, localiza-
tion economies are expected to be driven by similarities in customers, suppliers, workers, and 
technology, and thus take place at a fairly broad level of sectoral aggregation.
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sity. It is our favorite measure of local scale. Since Ciccone and Hall (1996), 
density- based measures have often been used to assess overall scale effects. 
Their main advantage compared to alternative measures of size, such as total 
employment or total population, is that density- based measures are more 
robust to the zoning. In particular, Greater Paris is divided into a number of 
employment areas. The true economic scale of these Parisian employment 
areas is much better captured by their density than by any absolute measure 
of employment.

To repeat, French employment areas are relatively small and are deter-
mined by commuting patterns. On the other hand, input- output linkages 
may not be limited by commuting distances. Hence, we expect some agglom-
eration effects to take place at a scale larger than employment areas. There is 
by now a lot of evidence that the market potential of an area matters (Head 
and Mayer 2004). Thus, in some regressions, we also consider the market 
potential of an area that we defi ne as the sum of the density of the other 
areas, weighted by the inverse distance to these areas.9 Experimenting with 
other measures leads to very similar results.

1.3.2   Main Wage Data

We use an extract from the Déclarations Annuelles des Données Sociales 
(DADS) or the Annual Social Data Declarations database from the French 
statistical institute (INSEE). The DADS are collected for pension, bene-
fi ts, and tax purposes. Establishments must fi ll a report for each of their 
employees every year. An observation thus corresponds to an employee-
 establishment- year combination. The extract we use covers all employees 
in manufacturing and services working in France and born in October of 
even- numbered years.

For each observation, we know the age, gender, and occupation at the 
two- digit level. Except for a small subsample, education is missing. We also 
know the number of  days worked but not hours for all years so that we 
restrict ourselves to full- time employees for whom hours are set by law. For 
earnings, we focus on total labor costs, defl ated by the French consumer 
price index. We refer to the real 1980 total labor cost per full working day as 
the wage. The data also contains basic establishment- level information such 
as location and three- digit sector.

The raw data contains 19,675,740 observations between 1976 and 1996 
(1981, 1983, and 1990 are missing). The details of the cleaning of the data 
is described in Combes, Duranton, and Gobillon (2008). After selecting 
only full- time workers in the private sector, excluding outliers, dumping a 
number of industries with reporting problems, and deleting observations 

9. We retain a simple specifi cation for market potential and do not aim to derive it from a 
“new economic geography” model (Head and Mayer 2004). Alternative specifi cations for mar-
ket potential are highly correlated with the one we use. See Head and Mayer (2006) for further 
evidence and discussion of this fact.
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with coding problems, we end up with 8,826,422 observations. For reasons 
of computational tractability, we keep only six points in time (every four 
years: 1976, 1980, 1984, 1988, 1992, and 1996), leaving us with 2,664,474 
observations.

Using this data, we can construct a number of variables for each year. Our 
main explanatory variable, employment density, can be readily calculated 
from the data.10 So can market potential. For each area and sector, we also 
compute the number of establishments, the share of workers in professional 
occupations, and the share of the sector in local employment. As controls, 
we also use three amenities variables. These amenities variables are the share 
of population located on a sea shore, mountains, and lakes and waterways. 
These variables come from the French inventory of municipalities. We aggre-
gate them at the level of  employment areas, weighting each municipality 
by its population.11 Table 1.1 reports a number of descriptive statistics for 
French employment areas.

1.3.3   Three Wages

The simplest way to implement equation (5) is to compute the mean wage 
for each area and year and take its log:

(10) W1
at � ln w�at � ln � 1

�
Nat j∈(a,t )

∑ wjt�,

where wjt is the wage of worker j and year t, and Nat is the number of workers 
in area a and year t.

We can then use W1
at as the dependent variable to be explained by local 

employment density and other local characteristics in equation (14). Using 
a simple log mean like W1

at throws a number of problems. First, when using 
mean wages, we do nothing regarding the endogenous quality of labor bias. 
Second, we do not condition out sector effects.12

To deal with these two problems, a fi rst solution is to use all the available 
observables about workers and proceed as follows. We fi rst compute a mean 
wage per employment area, sector, and year:

(11) w�ast � 
1

�
Nast

 
j∈(a,s,t )
∑ wjt.

10. We keep in mind that the years are not the same for the wage and TFP regressions. For 
each set of regressions, the explanatory variables are constructed from the corresponding data 
sources.

11. Each employment area contains on average more than one hundred municipalities.
12. One further (minor) issue needs to be mentioned. We take the log of mean wages rather 

than the mean of log (individual) wages. When viewing local wages as an aggregate of individual 
wages, the log of mean wages is not the proper aggregate to consider. Mean log wages should 
be used instead. However, the former is easier to implement than the latter, especially for those 
who do not have access to microdata. In any case, this issue is empirically unimportant, since 
the correlation between log mean wages and mean log wages is 0.99.
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This wage can then be regressed on a number of (mean) characteristics of 
the workers and the local sector. More specially, we can estimate the follow-
ing fi rst- step regression:

(12) ln w�ast � W 2
at � s � Xast� � εast.

In this equation, s is a sector dummy, and Xast is a set of characteristics for 
sector s in area a and year t and the workers employed therein. To capture 
sector effects, we use in Xast the (log) share of local employment in sector 
s and the (log) number of local establishments in this sector. Also in Xast, 
the mean individual characteristics are the age, its square, and the shares of 
employment in each of six skill groups.13 In equation (12), the coefficient 
of interest is W 2

at, a fi xed effect for each employment area and year. When 
estimating equation (12), all local sector and mean individual characteristics 
are centered, and the observations are weighted by the number of workers 
in each cell to avoid heteroscedasticity.

The coefficients W 2
at can, in a second step, be regressed on local employ-

ment density and other local characteristics, as stipulated by equation (5). 
While further details and justifi cations about the estimation of equation 
(12) are given in Combes, Duranton, and Gobillon (2008), three important 

13. The shares of each skill in local sector employment capture the effects of both individual 
characteristics at the worker level and the interactions between workers. The two cannot be 
separately identifi ed with aggregate data.

Table 1.1 Summary statistics for our main variables (averages across 306 
employment areas)

  Mean  Standard deviation

Mean wage (1976–1996, in 1980 French francs, per day) 207.9 15.8
W 1 5.3 0.074
W 2 5.2 0.070
W 3 –0.04 0.049

Employment density (workers per sq. km) 64.4 543.0
Ln employment density 2.4 1.2
Market potential (workers per sq. km) 108.1 139.9
Ln market potential 4.4 0.7

1831 Urban population density (inhabitants per sq. km) 38.2 419.8
1881 Urban population density (inhabitants per sq. km) 106.8 1232.3

Sea (average % municipalities on a coast line) 8.8 21.1
Lake (average % municipalities on a lake) 17.2 12.9
Mountain (average % municipalities on a mountain)  9.8  19.7

Source: DADS for the fi rst eight lines, historical censuses for the next two, and 1988 municipal 
inventory for the last three. For sea, lake, and mountain, we have for each employment area 
the percentage of municipalities on a coast, with a lake, or on a mountain. We average this 
quantity across employment areas.
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issues need to be briefl y discussed. First, the approach described here fi rst 
estimates local fi xed effects before using them as the dependent variable in 
a second step. We prefer this two- step approach to its one- step counterpart 
for reasons made clear next.

Below, estimating equation (12) with OLS may condition out sectoral 
effects, but it does not take care of the possible simultaneity between mean 
sector wages and local sector characteristics. A high level of specialization 
in a certain sector may induce high wages in this sector. Alternatively, high 
local wages may simply be a refl ection of strong local advantage, also leading 
to a high level of specialization. We acknowledge this concern at the sector 
level, but we do not deal with it. The main reason is that the coefficients for 
local specialization and the number of establishments, although signifi cant, 
only explain a very small part of the variation in equation (12) (Combes, 
Duranton, and Gobillon 2008).

Finally, controlling for observable labor market characteristics including 
one- digit occupational categories (for lack of control for education) attenu-
ates concerns about the endogenous quality of labor bias. However, they do 
not eradicate them entirely.

A more powerful way to deal with the endogenous quality of labor bias 
is to estimate:

(13) ln wjt � W 3
a( jt)t � s( jt) � X1

a( jt)s( jt)t�
1
s( jt) � X 2

jt�
2 � �j � εjt.

This equation is estimated at the level of individual workers and contains 
a worker fi xed effect �j, which controls for all fi xed individual characteris-
tics.14 The use of  individual data also allows us to control for individual 
characteristics X 2

jt (age and its square) separately from (centered) local indus-
try characteristics X 1

ast. The latter contain the share of local employment 
of the sector, the local number of fi rms in the sector, and the local share 
of professional workers. The coefficient of interest in equation (13) is the 
wage index W 3

at for each area and year after conditioning out sector effects, 
observable time- varying individual characteristics, and all fi xed individual 
characteristics. If  we ignore again the possible endogeneity of local sector 
characteristics, the main issue when estimating equation (13) regards the 
endogeneity of location or sector choices. However, because we have sector 
effects and time- varying local effects, W 3

at, problems only arise when we have 
spatial or sector sorting based on the worker- specifi c errors. In particular, 
there is no bias when sorting is based on the explanatory variables, including 
individual, area- year, and industry fi xed effects. More concretely, there is a 
bias when the location decision is driven by the exact wage that the worker 
can get at locations in a given year, but there is no bias when workers base 
their location decision on the average wage of other workers in an area and 

14. Equation (13) is identifi ed from both the movers (to identify the difference between W 3
at 

and W 3
a�t�1) and the stayers (to identify the difference between W 3

at and W 3
at�1).



Estimating Agglomeration Economies    27

their own characteristics (i.e., when they make their location decision on the 
basis of their expected wages). See Combes, Duranton, and Gobillon (2008) 
for further discussion.

Note that we prefer this two- step approach, which fi rst estimates equa-
tion (12) or (13) before regressing W 2

at or W 3
at on local characteristics, to its 

corresponding one- step counterpart for three reasons. First, we can prop-
erly take into account correlations between area- sector variables and error 
terms at the area level. Second, a two- step approach allows us to account 
for area- specifi c error terms when computing the standard errors for the 
coefficients we estimate. Doing so is important, because Moulton (1990) 
shows that standard errors can be seriously biased otherwise. Accounting 
for area- specifi c errors with a one- step approach is not possible, given that 
workers can move across areas. Third, we can conduct a variance decompo-
sition for the second stage.15

Finally, to avoid identifying out of the temporal variation, we average the 
three wage variables and all the explanatory variables across the six years 
of data we use.16 Before turning to our results, it is interesting to note that 
these three local wage variables are strongly correlated with one another. The 
correlation between W 1 and W 2 is 0.87, the correlation between W 1 and W 3 
is 0.81, and the correlation between W 2 and W 3 is 0.91. Table 1.1 reports a 
number of descriptive statistics for French employment areas.

1.4   Instruments

That the estimation of  agglomeration economies could be plagued by 
simultaneity was fi rst articulated by Moomaw (1981). To preview our IV 
approach, we note fi rst that using historical variables such as long lags of 
population density to instrument for the size or density of local population 
has been standard since Ciccone and Hall’s (1996) pioneering work. To the 
extent that (a) there is some persistence in the spatial distribution of popu-
lation and (b) the local drivers of high productivity today differ from those 
of a long- gone past, this approach is defensible. An alternative strategy is 
to use the nature of soils, since geology is also expected to be an important 
determinant of settlement patterns. Some soils are more stable than others 
and thus can support a greater density of people. More fertile lands may 
have also attracted people in greater numbers, and so forth. To the extent that 

15. It is also true that using as the dependent variable a coefficient estimated in a previous step 
introduces some measurement error. The procedure used in Combes, Duranton, and Gobillon 
(2008) to control for this problem shows that it makes no difference, because the coefficients 
are precisely estimated at the fi rst step.

16. These averages are weighted by the number of workers in the area for each year to obtain 
a wage index for the average worker in the area over time. By contrast, our fi nal regressions 
for the cross- section of employment areas assess whether denser areas make their average fi rm 
more productive. There is no longer any reason to weigh the observations (by the number of 
workers) in these regressions.
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geology affects the distribution of population (i.e., labor supply) and does 
not otherwise cause productivity (i.e., labor demand) because fertile lands 
are no longer a relevant driver of local wealth, it can provide reasonable 
instruments to explain the distribution of employment. Except by Rosenthal 
and Strange (2008) in a slightly different context, geology has not been used 
to instrument for the distribution of population.

1.4.1   Description of the Instruments

Our fi rst set of instruments is composed of historical populations from 
early French censuses. For twenty- six French censuses prior to our earliest 
year of data (1976), we know the urban population for each municipality. 
Among available censuses, we choose the earliest one from 1831 and another 
from 1881, fi fty years later.17 We also experimented with other years. Unfor-
tunately, urban population in historical censuses is only reported above a 
threshold of  5,000. For 1831, there are thirty- fi ve employment areas for 
which no municipality had an urban population above 5,000. A small major-
ity of them are rural areas, while the others are densely populated employ-
ment areas with strong municipal fragmentation. We think of this as being 
measurement error. To minimize weak instrument problems, we drop these 
thirty- fi ve employment areas.

Our second group of  instruments is composed of  geological variables 
from the European Soil Database (ESDB) compiled by the European Soil 
Data Centre. The data originally come as a raster data fi le with cells of 1 km 
per 1 km. We aggregated it at the level of each employment area.18 Given 
that soil characteristics are usually discrete, we use the value that appears 
most often in each area. To take an illustrative example, the initial and trans-
formed data for the water capacity of the subsoil are represented in fi gure 
1.2. For a small number of densely populated employment areas in Greater 
Paris, the most important category is sometimes missing. When this is the 
case, we turn to the second- most important category. In the rare instances 
where the information is missing from all the pixels in an employment area, 
we impute the value of a neighboring area (chosen because it takes similar 
values for other soil characteristics). For instance, the water capacity of the 
subsoil in Central Paris is missing. We impute the value of its close neighbor 
Boulogne- Billancourt.

In total, we generate twelve variables from the ESDB.19 The fi rst four 

17. Because they are in log, using these two variables together allows us to instrument for 
both past 1831 level and past growth between 1831 and 1881.

18. To aggregate the information from 1- km- by- 1- km pixels to employment areas, the zonal 
statistics tool from ArcGIS 9 software was used. The tool uses the zones defi ned in the zone 
data set (in our case, French employment areas) and internally converts the vectors into a zone 
raster, which it aligns with the value raster data set for soils.

19. The ESDB (v2.0 Raster Archive) contains many more characteristics. For France, some 
of  them, like the soil code according to the standard Food and Agricultural Organization 
classifi cation, are poorly reported. A large number of characteristics also contain categories 
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describe the nature of the soils, according to the mineralogy of their sub-
soil (three categories) and topsoil (four categories) and the nature of the 
dominant parent material at a broad level of aggregation (six categories) 
and at a fi ner level (with twenty categories). More precisely, the mineralogy 
variables describe the presence of various minerals in the topsoil (the fi rst 
layer of soil, usually 5 to 15 cm deep) and the subsoil (the intermediate layer 
between the topsoil and the bedrock). The dominant parent material of the 
soil is a description of  the underlying geological material (the bedrock). 
Soils usually get a great deal of structure and minerals from their parent 
material. The more aggregate dominant parent material variable (in six 
categories) contains entries such as igneous rocks, glacial deposits, or sedi-
mentary rocks. Among the latter, the detailed version of the same variable 
(with twenty categories) distinguishes between calcareous rocks, limestone, 
marl, and chalk.

The next seven geological characteristics document various characteris-
tics of the soil, including the water capacity of the subsoil (fi ve categories) 
and topsoil (three categories), depth to rock (four categories), differentiation 
(three categories), erodibility (fi ve categories), carbon content (four catego-

Fig. 1.2  Geological characteristics—water capacity of the subsoil: A, original 
data; B, transformed data
Source: European Soil Database.
Note: Panel A represents the initial raster data. Panel B represents the transformed version of 
the same data after imputation of the missing values for seven employment areas in Greater 
Paris. In panel A, the darkest shade of gray corresponds to “very high” (i.e., above 190 mm), 
the second- darkest shade corresponds to “high” (between 140 and 190 mm), followed by “me-
dium” (100– 140 mm), “low” (5– 100 mm), and “very low” (0– 5 mm). Missing values in panel 
A (around Paris) are in white.

A B

that refer to land use (e.g., “urban” or “agriculture”) and are thus not appropriate here. More 
generally, characteristics a priori endogenous to human activity were discarded. Finally, some 
characteristics such as the secondary dominant parent material struck us as anecdotal and 
unlikely to yield relevant instruments.
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ries), and hydrogeological class (fi ve categories). Except for the hydrogeo-
logical class, which describes the circulation and retention of underground 
water, the meaning of these variables is relatively straightforward. Finally, 
we create a measure of local terrain ruggedness by taking the mean of maxi-
mum altitudes across all pixels in an employment area minus the mean of 
minimum altitudes. This variable thus captures variations of altitude at a 
fi ne geographical scale.

1.4.2   Relevance of the Instruments

Following equations (5) and (6), the specifi cations we want to estimate are:

(14) ln Wa � Constant � Xa�
W � �a

W

and

(15) ln TFPa � Constant � Xa�
TFP � �a

TFP,

where �a
W and �a

TFP are the error terms for the wage and TFP equations. 
The vector of the dependent variables Xa contains the three amenity vari-
ables previously discussed, (log) employment density, and sometimes market 
potential. These last two variables are suspected of being simultaneously 
determined with wages and TFP.

Estimating the effect of  employment density and market potential on 
local wages and productivity using instrumental variables can yield unbiased 
estimates, provided that the instruments satisfy two conditions: relevance 
and exogeneity. Formally, these conditions are

(16) Cov(Densitya, Za|.) � 0,  Cov(MarketPotentiala, Za|.) � 0,

and

(17) Cov(�a
X, Za) � 0  for X � W and X � TFP, respectively,

where Z denotes the set of instruments. We begin by discussing the ability 
of our instruments to predict contemporaneous employment density and 
market potential conditionally to the other controls.

The stability of  population patterns across cities over time is a well-
 documented fact (see Duranton [2007] for a recent discussion). This sta-
bility is particularly strong in France (Eaton and Eckstein 1997). The raw 
data confi rm this. Table 1.2 presents pairwise correlations between our four 
historical instruments and current employment density and market poten-
tial.20 For the sake of comparison with the following geology variables, we 
also report the R2s of the corresponding univariate regressions. We can see 
that the log urban population densities of 1831 and 1881 are good predictors 

20. We use the measures of density used for our wage regressions (1976 to 1996). Our mea-
sures of density for the TFP regressions differ slightly, since they are calculated from a slightly 
different source and cover different years.
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of current employment density. Past market potentials computed from 
1831 and 1881 urban populations also predict current market potential ex-
tremely well.

Turning to geological characteristics, we expect the nature of soils and 
their characteristics to be fundamental drivers of population settlements. 
Soil characteristics arguably determine their fertility. Since each soil charac-
teristic is described by several discrete variables, it is not meaningful to run 
pairwise correlations as with historical variables. Instead, table 1.3 reports 
the R2 when regressing employment density and market potential against 
various sets of dummies for soil characteristics. The results show that some 
geological characteristics such as the dominant parent material or the depth 
to rock have good explanatory power. Other soil characteristics such as their 
mineralogy or their carbon content are less powerful predictors of current 
population patterns. Note also that soil characteristics tend to be better at 
explaining the variations of market potential than employment density. This 
is not surprising, since most soil characteristics vary relatively smoothly over 

Table 1.2 R2s of univariate regressions and pairwise correlations: Historical versus 
density and market potential (1976 to 1996)

  Ln (employment density) Ln (market potential)

Ln (1831 density) 0.57 (0.75) 0.05 (0.24)
Ln (1881 density) 0.78 (0.88) 0.10 (0.33)
Ln (1831 market potential) 0.21 (0.46) 0.96 (0.98)
Ln (1881 market potential)  0.22 (0.47)  0.99 (0.99)

Note: 306 observations; adjusted R2 in plain text, and pairwise correlations between parenthe-
ses.

Table 1.3 R2s when regressing density and market potential on 
soil characteristics

  Ln (employment density) Ln (market potential)

Subsoil mineralogy (2 dummies) 0.02 0.06
Topsoil mineralogy (3 dummies) 0.02 0.06
Dominant parent material (5 dummies) 0.11 0.31
Dominant parent material (19 dummies) 0.13 0.48
Topsoil water capacity (2 dummies) 0.03 0.23
Subsoil water capacity (3 dummies) 0.01 0.32
Depth to rock (3 dummies) 0.10 0.35
Soil differentiation (2 dummies) 0.07 0.19
Erodibility (4 dummies) 0.04 0.19
Carbon content (3 dummies) 0.04 0.04
Hydrogeological class (4 dummies) 0.01 0.04
Ruggedness  0.05  0.10

Note: Adjusted R2s; 306 observations.
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fairly large spatial scales, while variations in density are more abrupt and 
take place at smaller spatial scales.

While the correlations and R2s reported in tables 1.2 and 1.3 are interest-
ing, equation (16) makes clear that the relevance of an instrument depends 
on the partial correlation of the instrumental variables and the endogenous 
regressor. To assess these partial correlations, table 1.4 presents the results of 
OLS regressions of log density on our instrumental variables and controls. 
Table 1.5 reports results for a similar exercise with market potential.

Column (1) of table 1.4 examines the partial correlation between employ-
ment density and 1831 population density while conditioning out amenities 
(sea, lake, and mountain). Column (2) performs a similar regression using 
1881 instead of 1831 population density. In both columns, the coefficient 
on past density is highly signifi cant and close to unity. In columns (3) to (9), 
we regress contemporaneous employment density on a series of soil dum-
mies concerning their mineralogy, dominant parent material, water capacity, 
carbon content, depth to rock, and soil differentiation. For lack of space, 
we do not report all the coefficients, but it must be noted that at least one 
dummy is signifi cant at 5 percent in each regression.

The comparison of R2s in columns (1) to (2) versus (3) to (9) immediately 
shows that long lags of population density explain a greater share of the 
variations in contemporaneous employment density than soil characteris-
tics. To make a more formal assessment of the relevance of our instruments, 
we turn to the weak instrument tests developed by Stock and Yogo (2005).21 
Table 1.4 presents the relevant F- statistics. The two lagged density instru-
ments in columns (1) and (2) have F- statistics close to 400 and 1,000, respec-
tively. This makes them very strong in light of the critical values reported 
by Stock and Yogo (2005) in their tables 1 through 4. The soil instruments 
are weaker by comparison and fall below the critical values of Stock and 
Yogo (2005) with two- stage least squares (TSLS). To avoid the pitfalls of 
weak instruments, a number of possible strategies can be envisioned. First, 
it would be possible to increase the strength of some soil instruments by 
considering only the more relevant dummies and by dropping insignifi cant 
ones. In absence of a well- articulated theory of how soils affect economic 
development, we acknowledge an element of “data mining” in our use of 
soil characteristics. We are nonetheless reluctant to push it to such extremes. 
Second, we experiment next with estimation strategies that are less sensi-
tive to weak instruments, such as limited information maximum likelihood 

21. Stock and Yogo (2005) provide two tests for weak instruments. They are both based 
on a single F- statistic of the instrumental variables but use different thresholds. The fi rst one 
tests the hypothesis that the two- stage least square (TSLS) small sample bias is small relative 
to the OLS endogeneity bias (“bias test”). Second, an instrument is considered strong if, from 
the perspective of the Wald test, its size is close to its level for all possible confi gurations of the 
IV regression (“size test”). Note that instruments may be weak in one sense but not another, 
and instruments may be weak in the context of TSLS but not when using limited information 
maximum likelihood (LIML).
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(LIML), as advocated by Andrews and Stock (2007). Third, we repeat the 
same regressions with different sets of  soil instruments and see how this 
affects the coefficient(s) of  interest. Obtaining the same answer over and 
over again would be reassuring.

In table 1.5, we repeat the same exercise with market potential using lagged 
values of that variable and the same set of soil instruments as in table 1.4. 
Both historical and soil variables are much stronger instruments for market 
potential than for employment density. For historical variables, the reason 
is that market potential is computed as a weighted mean of employment 
density. As a result, this washes out much idiosyncratic variation and natu-
rally yields higher R2s. Put differently, soil variables are better in replicating 
the smooth evolution of market potential than the spikes of employment 
density. The facts that in column (1), the coefficient on 1831 market poten-
tial is essentially 1 and that the partial R2 is 95 percent also indicate that we 
should not expect much difference between OLS and TSLS.

Because both market potential and soil characteristics vary smoothly over 
space, one may worry that the good explanatory power of soil characteristics 
may be spurious. This will be the case if  some large areas with particular soil 
characteristics spuriously overlap with areas of particularly high or low mar-
ket potential. However, a detailed reading of the coefficients on soil dummies 
(not reported in table 1.5) indicates that this is not the case. For instance, 
areas for which the dominant parent material is conditionally associated 
with the lowest market potential are eolian sands, molasse (sand stone), and 
ferruginous residual clay. Sands, which drain very fast, and ferruginous clay, 
a heavy soil which does not drain at all, do not lead to very fertile soils. On 
the other hand, the parent materials associated with a high market potential 
are loess, a notably fertile type of soil, and chalk, a stable and porous soil, 
which can be very fertile, provided it is deep enough. Similarly, a high water 
capacity of the subsoil is associated with a higher market potential, as could 
be expected.

1.4.3   Instrument Exogeneity

Equation (17) gives the second condition that must be satisfi ed by a valid 
instrument: orthogonality to the error term. Intuitively, the difficulty in 
inferring the effect of density and market potential on wages and TFP arises 
because of the possibility that a missing local characteristic or some local 
shocks might be driving both population location and economic outcomes. 
To overcome this problem, we require instruments that affect wages and 
TFP only through the spatial distribution of population. That is, as made 
clear previously, we need our instruments to affect the supply of labor but 
not directly productivity. We now discuss the a priori arguments for why our 
instruments may (or may not) satisfy this exogeneity condition.

We begin with historical variables dating back to 1831. Long- lagged values 
of the same variable obviously remove any simultaneity bias caused by con-
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temporaneous local shocks. For such simultaneity to remain, we would need 
these shocks to have been expected in 1831 and to have determined popu-
lation location at the time. This is extremely unlikely. However, endogene-
ity might also arise because of some missing permanent characteristic that 
drives both past population location and contemporaneous productivity. A 
number of fi rst- nature geographic characteristics such as a coastal location 
may indeed explain both past population location and current economic 
outcomes. In our regressions, we directly control for a number of such fi rst-
 nature characteristics (coast, mountain, lakes and waterways).

Hence, the validity of long population lags rests on the hypothesis that the 
drivers of population agglomeration in the past are not related to modern 
determinants of local productivity after controlling for fi rst- nature char-
acteristics of  places. The case for this relies on the fact that the French 
economy in the late twentieth century is very different from what it was 
in 1831. First, the structure of the French economy in the late twentieth 
century differs a lot from that of 1831. In 1831, France was only starting its 
industrialization process, whereas it is deindustrializing now. Manufacturing 
employment was around 3 million in 1830, against more than 8 million at 
its peak in 1970 and less than 6 million today (Marchand and Thélot 1997). 
Then, agriculture employed 63 percent of the French workforce against less 
than 5 percent today. Since 1831, the workforce has also doubled. Second, 
the production techniques in agriculture, manufacturing, and much of the 
service industries are radically different today from what they were more 
than 150 years ago. With technological change, the location requirements of 
production have also changed considerably. For instance, the dependance of 
manufacturing on sources of coal and iron has disappeared. Third, the costs 
of shipping goods and transporting people from one location to another 
have declined considerably. Actually, 1831 coincides with the construction 
of the fi rst French railroads. Subsequently, cars, trucks, and airplanes have 
further revolutionized transport. At a greater level of  aggregation, trade 
has also become much easier because of European integration over the last 
fi fty years. Fourth, other drivers of population location not directly related 
to production have changed as well. With much higher standards of  liv-
ing, households are arguably more willing to trade greater efficiency against 
good amenities (Rappaport 2007). Some previously inhospitable parts of 
the French territory such as its Languedocian coast in the south have been 
made hospitable and are now developed, and so on. Finally, since 1831, 
France has been successively ruled by a king, an emperor, and presidents and 
prime ministers from fi ve different republics. The country also experienced a 
revolution in 1848, a major war with Germany in 1870, and two world wars 
during the twentieth century.

With so much change, a good case can indeed be made that past deter-
minants of population location are not major drivers of current productiv-
ity. As a result, historical variables have been the instrument of choice for 
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current population patterns since Ciccone and Hall (1996). They have been 
widely used by the subsequent literature.

Although the a priori case for historical instruments is powerful, nothing 
guarantees that it is entirely foolproof. The fact that long lags of the popu-
lation variables usually pass overidentifi cation tests and other ex post diag-
nostics may not constitute such a strong argument in favor of their validity. 
Population variables are often strongly correlated with one another so that 
any permanent characteristics that affect both measures of past population 
location and contemporaneous productivity may go unnoticed due to the 
weak power of overidentifi cation tests when the instruments are very similar 
and thus highly correlated.

We now consider geological characteristics. The a priori case for thinking 
that geological characteristics are good instruments hinges fi rst on the fact 
that they have been decided mostly by nature and do not result from human 
activity. This argument applies very strongly to a number of soil character-
istics we use. For instance, soil mineralogy and their dominant parent mate-
rial were determined millions of years ago. Other soil characteristics might 
seem more suspect in this respect. For instance, a soil’s depth to rock or its 
carbon content might be an outcome of human activity. In the very long run, 
there is no doubt that human activity plays a role regarding these two char-
acteristics. Whether recent (in geological terms) economic activity can play 
an important role is more doubtful (e.g., Guo and Gifford 2002). A second 
caveat relates to the measurement of some soil characteristics. In particular, 
it is hard to distinguish between a soil’s intrinsic propensity to erodibility 
from its actual erosion (see Seybold, Herrick, and Brejda [1999]). In relation 
to these two worries, our wealth of soil characteristics implies that we can 
meaningfully compare the answers given by different soil characteristics as 
instruments in different regressions. We can also use overidentifi cation tests 
to assess this issue more formally.

Nonetheless, that soils predate patterns of human settlement does not 
ensure that any soil characteristics will automatically satisfy the condition 
in equation (17) and be valid instruments. More specifi cally, we expect soil 
characteristics to have been a major determinant of local labor demand in 
the past. The main argument for the validity of geological instruments, then, 
is that soil quality is no longer expected to be relevant in an economy where 
agriculture represents less than 5 percent of employment. We also exclude 
agricultural activities from our data. Put differently, the case for geological 
characteristics relies on the fact that this important, though partial, determi-
nant of past population location is now largely irrelevant. Hence, like with 
historical instruments, the a priori case for geological instruments is strong, 
but there is no way to be entirely sure.

It is important to note that the cases for the validity of  historical and 
geological variables as instruments differ. Historical variables are broad 
determinants of current population location. Soil characteristics are nar-
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rower but more fundamental determinants of current population location. 
Put differently, although we expect soils to have determined history, they 
were not the sole determinants of population patterns in 1831. Geological 
characteristics also explain current patterns of  employment density over 
and above past employment density. If  one group of instruments fails, it 
is unlikely that the second will do so in the same way. Finally, it is also 
important to keep in mind that these two sets of instruments can only hope 
to control for the endogenous quantity of labor bias. That a higher density 
can lead to the sorting of better workers in these areas is not taken care of 
by these instruments. Put differently, we expect the endogenous quality of 
labor bias to remain. Moving from crude measures of wage such as W 1 to 
more sophisticated ones (W 2, and most of all, W 3) is designed to tackle this 
second issue.

1.5   Main Wage Results

Table 1.6 presents the results of  three simple regressions for our three 
wages: W 1, the mean local wage as computed in equation (10); W 2, the 
wage index after conditioning out sector effects and observable individual 
characteristics as estimated in equation (12); and W 3, the wage index from 
equation (13), which also conditions out individual fi xed effects. In col-
umns (1), (2), and (3), these three wages are regressed on log employment 
density, controlling for three amenity variables (coast, lakes and waterways, 
mountain) using OLS. The measured density elasticity of  mean wages is 
at 0.048. This is very close to previous results in the literature (Ciccone 
and Hall 1996; Ciccone 2002). Controlling for sector effects in column (2) 
implies a marginally higher estimate of 0.051 for the density elasticity and 
signifi cantly improves the explanatory power of employment density. This 
suggests that although the local characteristics of the sector of employment 
matter, conditioning out sector effects does not affect our estimates of the 
density elasticity. Controlling also for unobserved individual characteristics 
yields a signifi cantly lower elasticity of 0.033. This suggests that a good share 
of measured agglomeration effects are in fact attributable to the unobserved 
characteristics of the workforce. More specifi cally, workers who command 
a higher wage on labor market sort in denser areas.

In columns (4), (5), and (6), we perform the same regressions as in columns 
(1), (2), and (3), but we instrument employment density with 1831 urban 
population density. Compared to their corresponding OLS coefficients, the 
TSLS coefficients for employment density are marginally lower. The instru-
ment is very strong, with a fi rst- stage F-  (or Cragg- Donald) statistic close 
to 400. In columns (6), (7), and (8), we add 1881 population density as a 
second instrument for employment density. The results are virtually undis-
tinguishable from those of columns (4), (5), and (6). With two instruments, 
it is also possible to run Sargan tests of overidentifi cation. They are passed 
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in all three cases with p- values above 10 percent. However, we can put only 
a limited weight on this test, because the correlation between 1881 and 1831 
density is high at 0.75.

If  we think of table 1.6 as our baseline, a number of fi ndings are worth 
highlighting. The density elasticity of  mean wages is 0.048 (column [1]). 
Controlling for the endogenous quality of labor bias through a fi xed effect 
estimation reduces the size of the coefficient by about one- third to 0.033 
(column [3]). Controlling for the endogenous quantity of labor bias using 
long historical lags as instruments reduces it by another one- fi fth to 0.027 
(column [9]). Hence, this table provides evidence about both the quality and 
quantity of labor being simultaneously determined with productivity. It also 
suggests that the endogenous quality of labor bias is more important than 
the quantity bias.

Next, table 1.7 reports results for a number of regressions, which all use 
geological characteristics as instruments for employment density. Following 
the results of table 1.4, we expect geological instruments to be on the weak 
side. Furthermore, table 1.5 also makes clear that geological characteristics 
appear to explain market potential better than employment density. Hence, 
we need to keep in mind that our geological instruments are correlated with 
a variable—market potential—that is (for the time being) missing from the 
regression and suspected to have an independent effect on wages. As a con-
sequence, IV estimations that rely solely on geological characteristics may 
not perform very well and should be interpreted with caution.

In each of the regressions in table 1.7, we use two different soil character-
istics. Except for ruggedness, because each soil characteristic is documented 
with a series of dummy variables, we could technically run overidentifi ca-
tion tests while instrumenting for only one characteristic. However, such 
tests may not be economically meaningful, since we would end up testing 
for overidentifi cation using the particular categorization of the ESDB. We 
experimented extensively with soil characteristics. The results we report in 
the table are representative of what is obtained using any combination of the 
soil characteristics listed in the table. With them, overidentifi cation tests are 
usually passed. This is not the case with the other soil characteristics.

More precisely, in column (1) of table 1.7, we regress mean wages on den-
sity and other controls using subsoil mineralogy and ruggedness as instru-
ments for employment density. We obtain a density elasticity of 0.042, which 
is consistent with what we fi nd in table 1.6 when we use historical variables. 
We repeat the same regression in columns (2) and (3) using W 2 and W 3 as 
dependent variables. In column (3), the coefficient is slightly above its OLS 
counterpart rather than slightly below when using historical instruments. 
The difference, nonetheless, is not signifi cant. Before going any further, 
note that the low fi rst- stage statistics in columns (1) through (3) raise some 
questions about the strength of these geological instruments. With weak 
 instruments, a number of authors (e.g., Stock and Yogo 2005) now argue for 
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the superiority of the LIML estimator to the TSLS estimator. Column (4) 
of table 1.7 reports the LIML estimate for a specifi cation similar to column 
(3). The TSLS and LIML results are the same.22

In columns (5) to (8), we report LIML results regarding our preferred 
measure of  wages, W 3, for further combinations of  instruments. The 
coefficient on employment density is positive and highly signifi cant in all 
cases. However, it is above its OLS counterpart rather than below, even more 
so than in column (4). This discrepancy between the IV results using history 
in table 1.6 and those using geology in table 1.7 is due to the fact that soil 
variables are not only correlated with the employment density but also with 
the market potential, which is missing. As a result, the density elasticities 
in table 1.7 may be biased upward. To see this, note that in column (4), the 
correlation between the predicted values of employment density obtained 
from the instrumental regression and actual density is 0.29. The correlation 
between predicted density and actual market potential (omitted from the 
regression) is nearly as high at 0.27. In column (5), the problem is even worse, 
since the correlation between predicted and actual density is 0.37, while the 
correlation between predicted density and market potential is 0.48.23

To explore this problem further, we now consider historical and geologi-
cal instruments at the same time. Table 1.8 reports the results for a number 
of regressions using both 1831 density and some soil characteristics. In all 
cases, the instruments are strong because of the presence of 1831 density. 
Subsoil mineralogy (along with 1831 density) is used in columns (1) to (3) 
to instrument for density and explain W 1, W 2, and W 3. The results are the 
same as those of columns (4) to (6) of table 1.6, which use only 1831 density, 
while they differ more with those of columns (1) to (3) of table 1.7, which use 
subsoil mineralogy (together with ruggedness) but not 1831 density. This is 
unsurprising, given that 1831 density is a much stronger instrument. Using a 
generalized method of moments (GMM) IV estimation rather than TSLS in 
column (4) does not change anything. Using ruggedness or hydrogeological 
class in columns (5) to (7) also implies a similar coefficient on density. With 
these three soil characteristics (and 1831 density), the overidentifi cation test 
is passed. For the other soil characteristics, however, this test is failed. An 
example is given in column (8) with topsoil water capacity. This is in line 
with the results of the previous table that a majority of soil characteristics 
do not give the same answer as 1831 density when used as instruments to 
estimate the density elasticity of wages.

To confi rm that this problem is due to the strong correlation between soil 

22. In the other regressions, the differences in the point estimates and standard errors between 
TSLS and LIML remain small. The differences with respect to the overidentifi cation tests are 
sometimes more important. This is due to the greater power of the Anderson- Rubin test under 
LIML relative to the Sargan test used with TSLS.

23. This is consistent with the fact that overidentifi cation tests are passed only for the small 
set of regressions reported in the table.
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characteristics and market potential, table 1.9 reports results for a number of 
regressions in which market potential is added as a control. In columns (1) 
to (3), our measures of wages W 1, W 2, and W 3 are regressed on density and 
market potential using OLS. The measured elasticity of wages with respect 
to market potential is between 0.01 and 0.03. It is also interesting to note 
that the density elasticity is slightly lower than in columns (1) to (3) of table 
1.6, where market potential is omitted. In columns (4) to (9), we instrument 
employment density with 1831 density and a range of soil characteristics. 
The density elasticity is very stable at 0.02, while the market potential elas-
ticity is also very stable at 0.034. Importantly, the overidentifi cation tests 
are passed (whereas they fail without market potential as a control). More 
generally, the overidentifi cation test is passed for most combinations of geo-
logical instruments and 1831 density. The main systematic failure occurs 
when the dominant parent material dummies are used. It should be noted 
that 1831 density is a much stronger instrument, and as a result, it does most 
of the work in generating the predicted density at the fi rst stage. This greater 
strength of past density may explain the stability of the coefficients. None-
theless, in each of the IV regressions of table 1.9, at least one soil dummy 
(and usually more) is signifi cant (and usually highly so). This implies that 
we can run meaningful overidentifi cation tests. The fact that their p- values 
are usually well above 10 percent is strongly suggestive that 1831 density and 
a broad range of soil characteristics all support this 0.02 estimate for the 
density elasticity of wages.

Finally, in table 1.10, we consider that market potential could also be 
endogenous. In columns (1) to (3), we use only historical instruments: 1831 
and 1881 density, as well as 1831 market potential. The results for W 3 in 
column (3) are similar to the IV results in table 1.8. In columns (4) to (9), 
we use 1831 employment density in each regression with two different soils 
characteristics among erodibility, carbon content, subsoil water capacity, 
depth to rock, ruggedness, and soil differentiation. The overidentifi cation 
test is always passed in the table. Although the results are not reported 
here, this test is also passed for all the other pairwise combinations of these 
characteristics (except the combination of soil differentiation and carbon 
content for which the test marginally fails). For our preferred concept of 
wage, W 3, the coefficients on density and market potential are very stable 
and confi rm the estimates of column (3) with historical instruments and 
those of the previous table, where market potential is taken to be exogenous. 
This stability across columns (3) to (9) is interesting, because, as instru-
ments in columns (4) to (9), geological variables and past density are not as 
strong as the combination of past density and past market potential. Our 
preferred estimate for the elasticity of wages with respect to employment 
density is 0.02. With respect to market potential, our preferred estimate is 
at 0.034.

While regressing mean wages on employment density leads to a measured 
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elasticity of 0.05, adding further controls and correcting for the endogenous 
quality and quantity of labor biases bring this number down to about 0.02.

1.6   TFP

1.6.1   Firm and Establishment Data

To construct our establishment- level data, we proceed as follows. We fi rst 
put together two fi rm- level data sets: the BRN (Bénéfi ces Réels Normaux) 
and the RSI (Régime Simplifi é d’Imposition). The BRN contains the bal-
ance sheet of all fi rms in the traded sectors with a turnover above 730,000 
euros. The RSI is the counterpart of  the BRN for fi rms with a turnover 
below 730,000 euros. Although the details of the reporting differ, for our 
purpose, these two data sets contain essentially the same information. Their 
union covers nearly all French fi rms.

For each fi rm, we have a fi rm identifi er and detailed annual information 
about its output and its consumption of intermediate goods and materials. 
This allows us to construct a reliable measure of value added. To estimate 
TFP (see the following), we use a measure of  capital stock based on the 
sum of the reported book values of productive and fi nancial assets.24 We 
also experiment with TFP estimations using the cost of capital rather than 
assets values, following the detailed methodology developed by Boutin and 
Quantin (2006).

Since fi rms can have many establishments at many locations, we also use 
the SIREN data (Système d’Identifi cation du Répertoire des ENtreprises), 
which is an exhaustive registry of all establishments in the traded sectors. 
For each establishment and year, SIREN reports both a fi rm and an estab-
lishment identifi er, a municipality code, and total employment. Finally, note 
that BRN, RSI, and SIREN only report total employment and not hours 
worked.

To obtain information about hours, we return to the DADS, which reports 
them after 1993. Hence, for 1994 to 2002, we use another, this time exhaus-
tive, DADS data set.25 Using the individual information about hours and 
two- digit occupations that this source contains, we can aggregate it at the 
establishment level to obtain the hours for all employees and by skill group. 
We emphasize this because of the suspected importance of labor quality. 

24. In this respect, we proceed like Syverson (2004). Nevertheless, valuing assets at their 
historical costs is not without problems. We minimize them by estimating TFP at the three-
 digit level with 114 sectors. Indeed, the capital stocks of fi rms within the same sector are likely 
to be of the same vintage when sectors are more narrowly defi ned. We also use year dummies. 
An alternative would be to defl ate assets using economic criteria. However, our panel is rather 
short, which makes it difficult to trace the original investments. Our procedure also differs from 
that of Olley and Pakes (1996), who use a permanent inventory method.

25. Unfortunately, this data cannot be used for our wage regressions, because the different 
years have not been linked up.
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To avoid estimating too many coefficients for different types of labor, we 
aggregate two- digit occupational categories into three groups: high- , inter-
mediate-  and low- skill workers, following the classifi cation of Burnod and 
Chenu (2001).

To merge these four data sets, we extend the procedure of Aubert and 
Crépon (2004). At the establishment level, we fi rst match SIREN with 
DADS using the establishment identifi er present in both data sets. This 
establishment- level data set (sector and hours by skill group) is needed later 
to create a number of local characteristics. Next, we aggregate this establish-
ment data set at the fi rm level using the fi rm identifi er. Finally, we merge 
this fi rm data with RSI and BRN to recover fi rm- level information. For 
each fi rm between 1994 and 2002, we end up with its value added, the value 
of its assets, and total hours worked by establishment and skill group. The 
total number of observations for 1994 is 942,506. This number rises slowly 
over the period.

Finally, to avoid dealing with the complications of TFP estimation for 
multiestablishment fi rms for which capital and output are known only at the 
fi rm level, we restrict our attention to single- establishment fi rms to estimate 
TFP.26 Because the information about very small fi rms tends to be noisy, we 
only retain fi rms with more than fi ve employees.

1.6.2   Constructing Area- Year Measures of TFP

We now turn to TFP and start by constructing productivity measures for 
each employment area and year from TFP regressions. We estimate TFP 
for 114 sectors separately. For simplicity, we ignore sector subscripts for the 
coefficients. For fi rm i in a given sector, its value added vait is specifi ed as:

(18) ln vait � � ln kit � � ln lit � ∑
m

�S
mqimt � �t � εit,

where kit is the capital of fi rm i, lit is its labor (in hours), qimt is the share of 
labor hours in skill group m, �t is a year fi xed effect, and εit is an error term 
measuring fi rm TFP. The way we introduce skill shares is justifi ed in Hel-
lerstein, Neumark, and Troske (1999).

Three important issues are worth highlighting at this stage. First, we face 
the same problem as with wages regarding input quality, and more particu-
larly, labor. Unfortunately, workers characteristics are typically scarce in 
fi rm-  or establishment- level data. We use the strategy used in equation (18) 
based on occupational categories to control for labor quality.27 This is obvi-

26. With multiestablishment fi rms, we need to impute the same residual estimated from a 
fi rm- level production function to all establishments of the same fi rm. This is a strong assump-
tion that we would rather not make. In results not reported here, we nonetheless experimented 
with TFP estimated from multiestablishment fi rms.

27. An obvious way to deal with the unobserved quality of the workforce is to use fi xed 
effects, but unfortunately, their use is often problematic with fi rm- level data because of the 
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ously a less powerful set of controls than the individual fi xed effects used in 
the preceding wage regressions.

Second, we can hope to control for the two main factors of production—
capital and labor—but not for other factors—and in particular.28 As argued 
previously, the price of land is expected to affect the consumption of land 
and thus production while at the same time to be correlated with other local 
characteristics. Again, instrumenting for these local characteristics is the 
solution we consider here. Furthermore, output prices are unobserved and 
are likely to be correlated with local characteristics as well. To the extent that 
we think of our work as looking into the determinants of local value added 
rather than pure productivity, this need not bother us much here.29

The third issue about TFP estimation is related to the fact that input 
choices are expected to be endogenous. This issue has received a lot of atten-
tion in the literature (see Ackerberg, Caves, and Frazer [2006], for a recent 
contribution). For our purpose, this endogeneity bias matters only when it 
differs across areas. Our main TFP results were estimated using Olley and 
Pakes (OP; 1996). See appendix A for details about the OP approach. This 
approach allows us to recover rit, an estimator of  εit. We then average it 
within sectors, areas, and years:

(19) rast � 
1

�
Last

 
i∈(a,s,t )
∑ li,tri,t,

where Last � Σi∈(a,s,t)li,t is the total number of hours worked in area a, sector 
s, and year t. A fi rst measure of the local productivity of the average fi rm 
in area a and year t, denoted TFP1

at, is obtained by averaging equation (19) 
across sectors, within areas and years, with weights equal to the number of 
fi rms:

(20) TFP1
at � 

1
�
nat

 
s∈(a,t )
∑ nastrast,

where nast and nat are the total numbers of fi rms for area a, sector s, and year 
t, and for area a and year t, respectively.

This measure of TFP does not control for the local sector structure. To 
control for the fact that high productivity sectors may have a propensity 
to locate in particular areas, we regress rast on a full set of sector fi xed ef-
fects, s:

sluggish adjustment of capital. See Fox and Smeets (2007) for a more thorough attempt to take 
(observable) input quality into account when estimating TFP. Like us, they fi nd that measures 
of labor quality are highly signifi cant, but taking labor quality into account does not reduce 
the large dispersion of TFP across fi rms.

28. We also expect the functional form to matter, although we limit ourselves to simple 
specifi cations here.

29. In a different context where one is interested in distinguishing between price and produc-
tivity effects, such benign neglect may not be warranted. See, for instance, Combes et al. (2007). 
Note that this issue also applies to wages.
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(21) rast � s � �ast.

This equation is estimated with weighted least squares, (WLS), where the 
weights are the number of  establishments associated with each observa-
tion.30 To estimate a productivity index TFP2

at, we average the estimated 
residuals of equation (21) for each area and year:

(22) TFP2
at � 

1
�
nat

 
s∈(a,t )
∑ nast �̂ast.

The variable TFP2
at can thus be interpreted as a productivity index net of 

sector effects.
We fi nally compute a third local productivity index, TFP3

at, controlling 
for variables at the area and sector level, Xast. For that purpose, we estimate 
the equation:

(23) rast � TFP3
at � s � Xast� � εast.

This equation is estimated with WLS, where weights are once again the 
number of establishments associated with each observation. It mimics equa-
tion (12) for wages and uses the same (centered) local characteristics (same 
sector specialization, number of fi rms, share of professionals, average age, 
and average squared age). The main difference, however, is that these char-
acteristics are constructed using the TFP data and not the wage data.

For comparison, we also estimate equation (18) with OLS. Denote ε̂it the 
estimated residual for fi rm i. We then defi ne:

(24) rast
OLS � 

1
�
Last

 
i∈(a,s,t )
∑ litε̂it,

the OLS counterpart to equation (19). It is possible to recompute our three 
measures of local productivity, TFP1

at, TFP2
at, and TFP3

at, using equation 
(24) rather than equation (19). Next, we compare the coefficients in our main 
regressions using local productivity indices computed from OP and OLS.

One aspect of the simultaneity bias at the area level is that establishments 
may produce more and grow larger in areas where the local productivity is 
higher. It is possible to control for that by introducing area and year fi xed 
effects gat in equation (18):

(25) ln vait � � ln kit � � ln lit � ∑
m

�S
mqimt � �t � gat � εit.

This equation is estimated with OLS. Since this equation is estimated for 
each sector, the area- year fi xed effects depend on the sector and can be 
rewritten with a sector subindex, gast. We can then defi ne rast

FE � gast, the fi xed 

30. These weights give more importance to sectors and areas for which a larger number of 
ri,t are considered when constructing rs,a,t. For these area- sector- years, the sampling error on 
rs,a,t is usually smaller. Weighing should thus reduce the impact of the sampling error on the 
dependent variable that comes from the fi rst- stage estimation.
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effect counterpart to equations (19) and (24), and construct once again our 
three measures of local productivity.31

Finally, we average our estimates across years as we did for wages to avoid 
identifying out of the temporal variation.32 Before going to our results, note 
that our local productivity variables are strongly correlated with one another. 
Using OP estimates, the correlation between TFP1 and TFP2 is 0.93, the cor-
relation between TFP1 and TFP3 is also 0.93, and the correlation between 
TFP2 and TFP3 is 0.98. For TFP3, the correlation between OP and OLS 
estimates is 0.96, the correlation between OP and fi xed effects estimates is 
0.91, and the correlation between OLS and fi xed effects is also 0.91. Finally, 
the correlation between TFP3 estimated with OP and mean wages (W 1) is 
0.77.33 This correlation rises to 0.88 after correcting wages of sector effects 
(W 2) or to 0.87 after correcting wages of sector and worker effects (W 3).

1.6.2   Results

Table 1.11 presents the results of three regressions for our three measures 
of local OP productivity: TFP1, the mean productivity computed in equa-
tion (20); TFP2, the local productivity controlling for sector fi xed effects as 
estimated in equation (21); and TFP3, the local productivity estimated in 
equation (23), which conditions out a broader set of sector effects. This table 
mirrors the wage table 1.6 for productivity. In columns (1), (2), and (3), these 
three measures of local productivity are regressed on log employment den-
sity controlling for amenities using OLS. The mean elasticity of TFP with 
respect to density is at 0.04 for mean productivity, 0.041 when taking out 
sector effects, and 0.047 when also controlling for the local sector structure. 
In columns (4), (5), and (6), we instrument employment density with 1831 
urban population density. The TSLS coefficients for employment density 
are marginally lower than in columns (1), (2), and (3). In columns (7), (8), 
and (9), we add 1881 population density to instrument for contemporaneous 
employment density. Although the Sargan test of overidentifi cation margin-
ally fails in column (7) with a p- value of 7 percent, the results are very close 
to those of columns (4), (5), and (6).

Comparing these results to those of table 1.6 for wages, we note the fol-
lowing. First, instrumenting for contemporaneous employment density with 
deep historical lags lowers the coefficients in roughly the same proportion in 
both cases. This confi rms our fi nding of a mild simultaneity bias regarding 
the quantity of labor. Second, controlling for sector effects in TFP3 com-
pared to TFP1 raises the coefficient on employment density, just like it does 
when considering W 2 instead of W 1 (although the increase is slightly more 

31. We also experimented with a number of alternative TFP approaches, such as GMM, cost 
shares, IV cost shares, Levinsohn and Petrin (2003), and so forth.

32. Like with wages, these averages are now unweighted.
33. Recall that the years over which TFP and wages are computed are not the same.
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important here).34 A stronger effect of density after conditioning out sec-
tor effects is consistent with the notion that sectors located in less- dense 
areas may gain less from overall density and perhaps more from same sector 
specialization or another sector characteristics that are conditioned out in 
TFP3.35 Third, it is also interesting to note that when a direct  comparison 
is possible, the density elasticities for wages tend to be above those for TFP. 
From the theoretical framework developed previously (and particularly 
equations [5] and [6]), we actually expect the coefficients on employment 
density to be higher for wages by a factor equal to the inverse of the labor 
share (1/ [1 –  �]). With labor coefficients typically between 0.5 and 0.75, 
the difference between the two sets of estimates is of the right magnitude, 
although a bit smaller than expected.

To assess the sensitivity of our results to the approach used to estimate 
TFP, we reproduce in table 1B.1 of appendix B some of the regressions of 
table 1.11 using alternative local productivity indices. These measures of 
local TFP are constructed from the OLS estimates of equation (18) and from 
equation (25), which computes local productivity fi xed effects. When TFP 
is estimated with OLS instead of OP, the coefficients on density are close, 
though not exactly the same.36 When TFP is estimated with local fi xed effects 
instead of OP, we fi nd lower coefficients on density. At this stage, our best 
estimate of the density elasticity of TFP is at 0.04.37

Turning to geological instruments, table 1.12 mirrors for TFP what table 
1.7 does for wages.38 Columns (1) to (3) use subsoil mineralogy and rug-
gedness to instrument for employment density using our three measures of 
TFP as dependent variables. The coefficients on density are higher than with 
historical instruments in table 1.11. Such a difference between  geological 

34. While TFP1 may be taken to be the counterpart of W 1, TFP3 corresponds to W 2. Because 
we cannot control for input quality well, there is no TFP concept that corresponds to W 3.

35. This higher coefficient on density with TFP3 is also consistent with possible correlations 
between unobserved input quality and the local structure of production.

36. When TFP is estimated with OP, we must drop the fi rst year of data and fi rms with no 
investment. Estimating TFP with OLS on the same sample of  fi rms as with OP makes no 
difference with respect to OLS estimates of local productivity.

37. Comparing these results to Henderson (2003), the main study about agglomeration effects 
using TFP data in the literature, is not easy. First, Henderson (2003) uses very different U.S. 
data for which value added cannot be measured directly, and he focuses on fi ve industries only. 
Second, he concentrates on sector effects and uses as a key independent variable the number 
of plants in the local industry. We focus instead on total local employment, conditioning out 
local industry shares (among others) in some TFP measures. Third, he estimates TFP and the 
effects of local characteristics in one stage using a different specifi cation for productivity, which 
includes fi rm fi xed effects. Finally, he tackles endogeneity problems using a GMM approach. 
Despite these differences, his fi ndings of strong heterogeneity across industries and modest to 
high scale effects at the industry level are consistent with ours.

38. That is, aside from the difference in dependent variables, the regressions are exactly the 
same. The values taken by employment density differ very slightly because of the differences in 
years between the wage and TFP data and the difference in data source.
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and historical instruments is also observed with wages.39 To repeat, it refl ects 
the fact that geological instruments have a larger correlation with market 
potential than local density. The results of  column (3) are confi rmed in 
column (4), when LIML rather than TSLS is used, and in columns (5) to (8), 
when different sets of instruments are used. It is interesting to note that the 
overidentifi cation tests are passed for the same specifi cations as with wages 
(and they also fail for the same unreported regressions).

To mirror again the analysis performed with wages, table 1B.2 of appendix 
B performs the regressions of table 1.8 with TFP rather than wages, using 
historical and geological instruments at the same time. The results are again 
extremely consistent with the wage results. The coefficients on employment 
density in table 1B.2 with both sets of instruments are the same as those that 
use historical instruments only in table 1.11. This near equality also holds 
with wages. Furthermore, overidentifi cation tests appear to be passed or 
failed with the same combinations of instruments. An exception is column 
(8) with dominant parent material and topsoil water capacity. The test is 
passed with wages with a p- value of 15 percent, while it is failed with TFP 
( p- value of 5 percent).

In table 1B.3 of appendix B, we add market potential as the explanatory 
variable, just as we do with wages in table 1.9. We again use the exact same 
specifi cations as with wages. Adding market potential to the OLS specifi ca-
tions lowers the coefficient on employment density for TFP. The elasticity 
of TFP with respect to market potential is about half  the density elasticity. 
These two results closely mirror what happens in our wage regressions when 
we add market potential as an explanatory variable. In the second part of 
table 1B.3, we instrument employment density with 1831 density and a range 
of soil characteristics. The coefficient on density declines by about 0.01 point 
to 0.033, while that on market potential increases by about the same amount 
to 0.027. This again is very close to what happens in the wage regressions. 
Interestingly, the same combinations of instruments pass the overidentifi ca-
tion tests with both wages and TFP. The failure of the Sargan test in the last 
column of table 1B.3 is an exception.

Finally, in table 1.13, market potential is also assumed to be endogenous. 
As with wages in table 1.10, we instrument density and market potential with 
historical and soil variables. The main result is that instrumenting for market 
potential leaves its coefficient unchanged. The IV coefficient on employment 
density is also unchanged. This is the same outcome as with wages. In tables 
1B.4 and 1B.5 of appendix B, we repeat the same exercise but use TFP indi-
ces estimated with OLS and with local fi xed effects, as in equation (25). As 
in previous comparisons, the results for OLS and OP TFP are very close. 
With (local) fi xed effect TFP, the density and market potential elasticities are 

39. As previously, the coefficients on density are also slightly above those obtained with 
wages for similar regressions.
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lower than with OLS and OP TFP. However, we observe the same stability 
in the coefficients across regressions. This suggests that the method used to 
estimate TFP matters with respect to the point estimates for the density and 
market potential elasticities (though by only 0.01). However, the choice of 
TFP estimation does not matter otherwise.

1.7   Conclusions

We revisit the estimation of local scale effects using large- scale French 
wage and TFP data. To deal with the “endogenous quantity of labor” bias 
(i.e., urban agglomeration is a consequence of high local productivity rather 
than a cause), we take an instrumental variable approach and introduce a 
new set of geological instruments in addition to standard historical instru-
ments. To deal with the “endogenous quality of labor” bias (i.e., cities attract 
skilled workers so that the effects of  skills and urban agglomeration are 
confounded), we take a worker fi xed effect approach.

Our fi rst series of fi ndings relates to the endogenous quantity of labor 
bias. Long lags of our endogenous explanatory variables make for strong 
instruments. Geological characteristics are more complicated instruments 
to play with. Nevertheless, geological and historical instruments lead to 
similar answers once the regression is properly specifi ed: the simultaneity 
problem between employment density and local wages/ productivity is rela-
tively small. It reduces the impact of density by around one- fi fth.

Our second fi nding relates to the endogenous quality of labor bias. Better 
workers are located in more productive areas. This sorting of workers by 
skills (observed and unobserved) is quantitatively more important than the 
endogenous quantity of labor bias. In our regressions, we address sorting 
using the panel dimension of our wage data. The density elasticity is divided 
by almost 2. Applying this type of  approach to TFP is problematic. We 
thus put more weight on our wage results than we do on our TFP results. 
Nonetheless, the high degree of consistency between wage and TFP results 
is reassuring.

We believe the priority for future work should be to develop more so-
phisticated approaches to deal with the sorting of workers across places. 
Awaiting progress on this issue, our preferred estimates for the elasticity of 
wages to density is at 0.02 and is around 0.035 for the density elasticity of 
TFP. For market potential, we fi nd elasticities around 0.035 for wages and 
0.025 for TFP. Finally, our result about the relative importance of the two 
biases raises an interesting question. To what extent does it refl ect particu-
lar features of the French housing and labor market institutions? One may 
imagine that in a country like the United States with greater labor mobility 
and a much fl atter housing supply curve (in at least part of the country), the 
endogenous quantity of labor bias might dominate. Further research should 
inform this question.
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Appendix A

Implementation of Olley and Pakes (1996)

The error term in equation (18) is rewritten as εit � vit � �it, where vit is 
the part of the error term that infl uences the decision of the fi rm regarding 
its factors, and �it is an independent noise. The crucial assumption is that 
capital investment, Iit, can be written as a function of the error term, vit, and 
current capital: Iit � ft(kit,vit), with �ft/ �it 
 0. The investment function can 
be inverted to yield: vit � ft

– 1(kit,Iit). Equation (18) can then be rewritten as:

(A1) ln vait � � ln kit � � ln lit � ∑
m

�S
mqimt � �t � ft

�1(kit,Iit) � �it.

This equation can be estimated in two stages. Denote �t(kit,Iit) � ft
– 1(kit,Iit) 

� � ln kit � �t. Equation (A1) becomes:

(A2) ln vait � � ln lit � ∑
m

�S
mqimt � �t(kit,Iit) � �it.

This equation can be estimated with OLS after approximating �t(kit,Iit) with 
a third- order polynomial, crossing kit, Iit, and year dummies. Its estimation 
allows us to recover some estimators for the labor-  and skill- share coefficients 
(�̂ and �̂S

m). It is then possible to construct zit � ln vait –  �̂ ln lit –  ∑m�̂S
mqimt. 

Furthermore, the error vit is rewritten as the projection on its lag and an 
innovation: vit � h(vit– 1) � �it– 1. Using vit– 1 � ft–1

– 1(kit– 1,Iit– 1) � �t– 1(kit– 1,Iit– 1) –  
� ln kj,t– 1 –  �t– 1, the value added equation then becomes:

(A3) zit � � ln kit � �t � h [�̂(kit�1,Iit�1) � � ln kjt�1 � �t�1] � �it,

where �it is a random error. The function h(.) is approximated by a third-
 order polynomial, and equation (A3) is estimated with nonlinear least 
squares. It allows us to recover some estimators of the capital coefficient �̂ 
and the year dummies �̂t. Firm TFP is then defi ned as rit � zit –  �̂ ln kit –  �̂t. It 
is an estimator of εit. For further details about the implementation procedure 
in stata used in our chapter, see Arnold (2005).

Although the OP method allows us to control for simultaneity, it has 
some drawbacks. In particular, we need to construct investment from the 
data: Iit � kit –  kit– 1. As a consequence, it can be computed only for fi rms that 
are present in two consecutive years. Other observations must be dropped. 
Furthermore, the investment equation Iit � ft(kit,vit) can be inverted only if  
Iit 
 0. Hence, we can keep only observations for which Iit 
 0. This double 
selection may introduce a bias, for instance, if  (a) there is greater “churn-
ing” (i.e., entry and exits) in denser areas and (b) age and investment affect 
productivity positively. Then, more establishments with a low productivity 
may be dropped in high- density areas. In turn, this may increase the mea-
sured difference in local productivity between areas of low and high density. 
Reestimating OLS TFP on the same sample of fi rms used for OP shows that 
fortunately, this is not the case on French data.
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