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3 Pricing Excess-of-Loss 
Reinsurance Contracts against 
Cat as trophic Loss 
J. David Cummins, Christopher M. Lewis, 
and Richard D. Phillips 

With the recent rise in catastrophic disaster losses and the resulting effect on 
insurance-company solvency, the insurance industry is increasingly calling for 
some form of federal assistance in meeting disaster claims. Most of these re- 
quests, including the industry-sponsored Natural Disaster Partnership Protec- 
tion Act of 1995, incorporate some form of all-hazard federal reinsurance pro- 
gram or backstop. A recent paper by Lewis and Murdock (1996) argues that 
the lack of federal regulatory authority in the insurance industry, the prevalence 
of moral hazard, adverse selection, and other opportunities for risk shifting, 
and the well-documented inability of the federal government to set adequate 
premiums to control for these costs make any traditional federal reinsurance 
program problematic. 

Instead, Lewis and Murdock propose an alternative form of federal reinsur- 
ance that provides targeted protection for the insurance industry against cata- 
strophic events but limits the federal government’s exposure to additional 
losses. Under this alternative, the federal government would sell per occur- 
rence excess-of-loss contracts to private insurers and reinsurers, where both 

J .  David Cummins is the Harry J. Loman Professor of Insurance and Risk Management at the 
University of Pennsylvania. Christopher M. Lewis is senior financial economist at Ernst & Young 
LLP. Richard D. Phillips is assistant professor in the Department of Risk Management and Insur- 
ance at Georgia State University. 

The authors thank Jim Tilley and Sanjiv Das for providing helpful comments on earlier versions 
of this paper. In addition, the authors thank the various members of the White House Working 
Group on Natural Disasters for their insightful comments. Simulation data used in this study were 
provided by Weimin Dong of Risk Management Solutions, Inc. Historical data on U.S. catastro- 
phes were provided by Gary Kerney of Property Claims Services. Financial support for this paper 
from the NBER Project on the Financing of Property Casualty Risks is also acknowledged. 

The authors retain any responsibility for errors or omissions. 
1. The operating assumption in this paper is that the establishment of a federal reinsurance 

program does not include the provision of a taxpayer subsidy, which is viewed as a political deci- 
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the coverage layer and the fixed payout of the contract are based on insurance- 
industry losses, not company losses. In financial terms, the federal government 
would be selling earthquake- and hurricane-catastrophe call options to the in- 
surance industry to cover catastrophic losses in the range of $25-$50 billion. 
Lewis and Murdock argue that this type of contract would expand capacity 
and stability for the insurance industry while limiting the taxpayer’s exposure 
to the insured event: namely, a catastrophic disaster. 

The purpose of the present paper is to develop a methodology for pricing 
the catastrophic reinsurance contracts proposed in Lewis and Murdock (1996) 
and to present price estimates based on both historical catastrophe-loss experi- 
ence and engineering simulations. After briefly discussing the need for a fed- 
eral role and summarizing the key provisions of the proposed reinsurance con- 
tract, the paper proceeds by developing a statistical model of losses that would 
be covered under the contract. We then discuss how insurers could use the 
proposed contracts in hedging catastrophic risk. Finally, we provide estimates 
of catastrophe frequency, severity, and expected total losses based on two 
sources-the Property Claims Services (1 994) database on insured catastro- 
phe property losses covering the period 1949-94 and simulated catastrophe 
losses obtained from Risk Management Solutions-and use these estimates to 
illustrate prices of the reinsurance contracts. 

3.1 The Proposed Reinsurance Contracts 

3.1.1 The Need for a Federal Role 

The proposed federal catastrophe-reinsurance contracts are needed because 
of dislocations in insurance and reinsurance markets resulting from growing 
catastrophic property losses. Combined, Hurricane Andrew in 1992 ($18.4 bil- 
lion) and the Northridge Earthquake in 1994 ($12.5 billion) resulted in nearly 
$31 billion in insured industry losses and caused the failure of at least ten 
insurance companies (see Scism and Brannigan 1996). The magnitude of 
insurance-industry losses associated with these two recent disasters is unprece- 
dented. The next largest insured catastrophe loss was the $4.2 billion in losses 
associated with Hurricane Hugo. Over the period 1988-94, insured industry 
losses exceeded $35 billion in 1992 dollars, more than the cumulative total 
over the previous twenty-one years. 

More troubling is the fact that Hurricane Andrew and the Northridge Earth- 
quake may not represent “outlier” events. Research on the frequency and mag- 
nitude of hurricanes and earthquakes, as measured by the Saffir-Simpson and 
Richter scales, respectively, indicates a strong potential for increased disaster 
activity over the next twenty years (Gray 1990). In addition, given the 69 per- 
cent increase in insured coastal property values in the United States since 1988 
(to $3.15 trillion), the losses associated with hurricanes are likely to be more 
severe than historical experience. Thus, the probability of disasters with losses 
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at least as large as those incurred as a result of Hurricane Andrew and the 
Northridge Earthquake over the coming years remains significant. 

The realization of this increased risk exposure has sent reverberations 
through the insurance markets, especially in Florida and California. Reinsur- 
ance companies have raised rates rapidly, in many cases by as much as 150 
percent. Following suit, primary insurers have submitted requests for large rate 
increases to state insurance commissioners. However, most of these rate in- 
creases have been pared down by states before being approved, allegedly creat- 
ing a gap between the reinsurance premium for a given layer of coverage and 
the amount the insurer can recover from the buyer through the primary market 
premium.* Thus, the recent jump in expected disaster-claim severity and fre- 
quency and the resulting recognition of the inddequacy of insurance premiums 
have prompted the industry to look to the federal government for some form 
of assistance, typically through a reinsurance mechanism. 

On the basis of the federal government’s superior ability to diversify inter- 
temporally, Lewis and Murdock (1996) contend that a targeted, risk-specific 
federal reinsurance program could expand the supply of reinsurance without 
imposing a large liability on the federal government. Typically, the cost-of- 
funds advantage of private reinsurers over a ceding insurer relates to an im- 
proved ability to diversify risk geographically and, for some levels of risk, 
intertemporally. However, the ability of a reinsurer to diversify catastrophic 
risk is limited by the reinsurer’s access to capital and the costs associated with 
the risk of insolvency. The actuarially fair premium for a hundred-year disaster 
is meaningless if the hundred-year disaster occurs in year 2 and bankrupts the 
reinsurer. Thus, even if a differential exists between the reinsurer’s targeted 
economic return and the ceding insurer’s required return, the risk premium 
required by the reinsurer for high-risk lines may make reinsurance unafford- 
able for the primary insurer. This is especially true for very high-risk exposures 
where the uncertainty with respect to the loss is also high. 

The federal government, on the other hand, carries a near zero default rate. 
Therefore, a federal reinsurer would not be subject to insolvency risk and the 
limitations that insolvency risk places on a private reinsurer’s access to capital. 
As a result, the risk premiums required by a federal reinsurer for upper layers 
of catastrophic risk would be significantly below the premiums required by 
private reinsurers. If this cost-of-capital advantage exceeds any efficiency 
losses associated with the federalization of this form of reinsurance, the supply 
of reinsurance will expand, creating additional capacity in the primary- 
insurance market. In addition, since catastrophic reinsurance capacity is almost 
nonexistent for upper layers of loss, inefficiency costs will most likely be small 

2. Testing the existence of state “rate suppression” or “rate stickiness” with respect to catas- 
trophe loads is outside the scope of this paper. However, it should be noted that the existence of 
state “rate stickiness” can account only for the failure of insurance rates to adjust to higher levels 
in the postdisaster environment in California since rates in the state were not approved before 
1990. 
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as long as the federal reinsurance program is adequately targeted to insuring 
catastrophic risk. 

3.1.2 The Proposed Contract 

The objective of catastrophic reinsurance is to provide per occurrence pro- 
tection for losses (L) that exceed some trigger level ( T )  based on the level of 
losses that the insurer can absorb. By design, once an event exceeds this trigger, 
the reinsurance pays (some fixed proportion of) disaster losses (L)  usually up 
to some predetermined cap C on the reinsurer’s exposure. Therefore, if losses 
are less than the trigger, the contract pays nothing. If losses fall in the range 
between the trigger and the cap, the contract pays out L - 7: If losses exceed 
the cap, the contract pays out the difference between the cap and the trigger, 
or C - 7: Using this basic structure, one can specify the payout (P) of the 
reinsurance as f01lows:~ 

P = Max[O, Min(L - T, C - T ) ]  
(1) 

= Max [0, L - TI - Max [0, L - C ] .  

As the expression following the second equals sign in (1) reveals, the reinsur- 
ance contract is simply the difference between two call options with different 
strike prices, that is, a call-option spread, written on the loss exposure of the 
underlying event. This specification corresponds directly with conventional per 
occurrence reinsurance and with the structure of the catastrophe call options 
being traded on the Chicago Board of Trade (CBOT) (see Cummins and Ge- 
man 1995) and thus provides a financial framework for structuring the federal 
reinsurance role. 

Under the proposed reinsurance program, the federal government would 
directly write and sell contingent claims against the upper (capped) layers of 
catastrophic disaster losses on a per occurrence basis. These contingent claims, 
hereafter referred to as excess-ofloss (XOL) contracts, would be available for 
qualified insurance companies, pools, and reinsurers and would cover industry 
losses from a disaster in the $25-$50 billion layer of coverage-a layer cur- 
rently unavailable in the private market. 

Like private catastrophe covers, these XOL contracts would provide cover- 
age for a single event, not an aggregation of losses over a fixed period. How- 
ever, like the CBOT options, the reinsurance trigger and cap would be based 
on insured industry losses to minimize the moral hazard and adverse-selection 
problems associated with writing company-specific rein~urance.~ The payout 

3. This specification oversimplifies somewhat the actual contract payoff. For a more detailed 
discussion, see Lewis and Murdock (1996). 

4. For a review of the problems of adverse selection and moral hazard in insurance markets, see 
Dionne and Doherty (1992). For recent discussions involving catastrophe reinsurance and futures 
markets, see D’Arcy and France (1992), Cummins and Geman (1994). and Lewis and Murdock 
( 1996). 



97 Pricing Excess-of-Loss Reinsurance Contracts 

function on these XOL contracts would also be a function of industry losses 
and would be fixed at the time the contract is issued. Thus, the expected payout 
of the contract would be reexpressed as follows: 

( 2 )  P = Max[O, 6(L  - T ) ]  - Max[O, 6(L - C ) ] ,  

where a(.) represents the payout function of the contract, which depends on 
the difference between the level of total industry losses and the contract trigger 
or strike price. 

As mentioned above, the XOL contracts offered by the federal government 
would be analogous to writing a call option for the insurance industry that pays 
off when industry disaster losses exceed $25 billion, along with a “short” call 
option such that industry losses in excess of $50 billion are retained by the 
insurance industry (i.e., buyers of the contract would be “long” in the call op- 
tion with strike price T and short in a call with strike price C ) .  

Thus, the payout to insurers of the first (long) call-option component of the 
XOL contract rises as a fixed proportion of industry losses in excess of $25 
billion once the $25 billion threshold is reached. However, once industry losses 
exceed $50 billion, the second (short) component of the XOL contract provides 
an equal offset to any additional industry losses above $50 billion. As a result, 
the federal government’s exposure is limited to covering losses in the $25-$50 
billion range. On the basis of this payout structure, insurance and reinsurance 
companies could decide on the optimal number of contracts to purchase in 
order to hedge their catastrophe-loss exposure. 

Other aspects of the XOL contracts include the following: 
a )  As mentioned above, the contracts would cover insured property losses 

from hurricanes, earthquakes, and volcanic activity. Qualified lines of insur- 
ance for earthquake damage would include property losses in earthquake- 
shake policies (written separately or as part of a homeowner’s policy), com- 
mercial multiperil, and commercial inland marine coverage associated with 
earthquakes. For hurricane damage, losses covered by homeowner’s, wind 
(written separately or as part of a homeowner’s policy), commercial multiperil, 
fire, allied, farmowner’s, and commercial inland marine policies would be cov- 
ered. For reporting purposes, estimates reported by the state insurance com- 
missioner’s office in each affected state would be used as an index of loss, with 
validation accomplished through year-end tax filings. 

b) The XOL contracts would be sold annually with a maturity of one year. 
However, each contract would include a renewal provision that allows the 
holder of an exercised contract to purchase an additional contract to cover 
losses to the end of the original contract year at a cost of the original premium 
prorated to the remaining term on the exercised contract. An alternative form 
of the contracts, also under discussion, would cover the insurer for multiple 
events over a period of one year. This form would be equivalent to including 
an automatic renewability feature in the contract. 
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c) The trigger level of the contracts would be set at a level above the layers 
of reinsurance being provided in the private markets. On the basis of evidence 
provided by private reinsurers and the levels of coverage available in the CBOT 
market, the trigger ( T )  is set initially at $25 billion in industry losses. This 
trigger level of coverage would be adjusted or indexed annually to the rate of 
property-value inflation. 

d )  The fact that the actual distribution of catastrophic losses is unknown 
and must be estimated from imperfect data exposes the federal government 
to parameter-estimation risk as well as the risk of the underlying process. To 
place a cap on the government’s exposure, the upper limit of the reinsurance 
contract is initially set at $50 billion. Again, the level of the cap can be adjusted 
annually to reflect property-value inflation. 

e) The payout function of the XOL contract stipulates how much each indi- 
vidual contract will pay in the event the contract trigger is reached. As pro- 
posed, 6(-) simply represents a scalar function relating industry losses to the 
desired denomination of each contract. That is, 6(.) is set so that each contract 
pays out $1 million for every $1 billion by which industry losses exceeded 
the trigger: 

(3) ( L  - T ) .  
1 s(.) = - 

1000 

This simple payout function, which by construction includes a contract payout 
cap equal to $25 million, would provide a total capacity of one thousand con- 
tracts being sold annually. A more complicated specification for 6(*) is, of 
course, possible, but we will assume that the contracts will be based on the 
simple linear structure given by (3). 
f) Only insured losses paid during the eighteen-month period immediately 

following the disaster and reported to the federal government within twenty- 
one months of the event date will be covered to limit the tail on the contract 
payout and to prevent the accumulation of losses over a series of events. While 
helping protect against fraud and abuse, this provision has the additional ad- 
vantage of encouraging insurance companies to expedite the processing of 
claims in the wake of a disaster-a social good from a policy standpoint. 

g )  Private reinsurance firms, primary insurance companies, and state, re- 
gional, and national pools would be eligible to purchase and exercise federal 
XOL contracts, as long as they are licensed to write property-casualty insur- 
ance or reinsurance in a state in the United States and are actively providing 
insurance/reinsurance for property located in the United States. 

To accelerate the development of a private reinsurance market to “crowd 
out” the federal government in the provision of catastrophe-reinsurance cover- 
age layers, these XOL contracts could be priced using a private market cost- 
of-capital adjustment. That is, the reservation price established for the XOL 
contracts could be based, not on the federal government’s cost of borrowing, 
but on a private market discount rate or hurdle rate established by the federal 
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government. For additional details regarding the contracts, see Lewis and Mur- 
dock (1996). 

3.2 Pricing Methodology 

Pricing the contracts involves two steps: (1) estimating the loss distribution 
and the expected value of loss and (2) incorporating a risk premium and ex- 
pense loading in the contract price. These steps are discussed below, following 
a general discussion of the pricing rationale for the contracts. 

3.2.1 Pricing Rationale 

Ideally, an insurance risk pool would be able to diversify risk across time as 
well as across exposure units in the pool at a given point in time. Most discus- 
sions of risk diversification through pooling consider only the latter dimension 
(for a review, see Cummins [1991]). Adding the time dimension can signifi- 
cantly reduce the standard deviation of losses from a pool of risks, reducing 
the residual risk faced by pool participants. As a simple example, consider a 
pool consisting of N independent, identically distributed exposure units with 
expected loss and variance of loss uz. The mean of the pool loss is then N F ,  
and the variance is Nu2,  yielding a coefficient of variation (a standard measure 
of the “insurer’s risk”) of u/(p*.t/N). If the pool can also diversify across time, 
the coefficient of variation becomes u/(p,FN), where T = the number of time 
periods. Therefore, time diversification has the potential to reduce the insurer’s 
risk significantly. 

In a theoretical world, under the assumptions of perfect information, no 
transactions costs or contract-enforcement costs, and no probability of bank- 
ruptcy, time diversification would merely involve the pool’s borrowing at the 
risk-free rate of interest when losses exceed the expected value of loss and 
lending (or repaying loans against the pool) when losses are less than their 
expected value. In principle, mutual insurers operate much like the theoretical 
risk pool, accumulating retained earnings when losses are less than expected 
and drawing down equity or borrowing to pay losses that are greater than ex- 
pected. A stock insurer operates similarly except that the firm can raise funds 
by issuing equity as well as through borrowing and retaining earnings. Thus, 
at least in theory, both types of insurers diversify risk across time. 

Because the assumptions underlying the pure risk pool hold only as approxi- 
mations in the real world, however, insurance markets do not fully achieve 
time diversification. Time diversification fails most acutely in the case of very 
large losses, such as those resulting from catastrophes. Because capital is 
costly, insurers cannot maintain a sufficient equity cushion to guarantee the 
pool against bankruptcy. The possibility of bankruptcy, along with information 
imperfections in insurance and capital markets, is primarily responsible for the 
failure of time diversification for large losses. 

The existence of these market imperfections implies that the cost of both 
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debt and equity capital is likely to rise significantly following a large loss or 
an unusual accumulation of small losses. Prospective capital providers are con- 
cerned about the long-term viability of insurers that have suffered major loss 
shocks, and they are also worried that the insurers’ reserves are not adequate 
to fund the losses from the catastrophe. The cost of capital reflects these in- 
formation asymmetries, and, therefore, capital costs more following a loss 
shock than it would if the insurance and capital markets were frictionless and 
complete information were available. Thus, the insurer may not survive long 
enough to deliver a fair return on equity or repay loans needed to fund loss 
payments. The cost of capital would reflect these market imperfections, and 
capital would cost more than if the insurance and capital markets were friction- 
less and complete information was available. In the extreme, capital may not 
be available at any price to some insurers following a major loss shock. 

The federal government is better able than the private-insurance market to 
diversify large losses across time efficiently. The principal reason is that the 
riskless borrowing and lending assumption required for time diversification 
that does not apply to private insurers applies to the federal government, 
allowing it to borrow at the risk-free rate to fund losses arising from a catastro- 
phe and then to repay the loans out of subsequent premium payments in periods 
when no severe catastrophes occur. Implicitly, premiums paid into a catastro- 
phe-reinsurance program in excess of accumulated losses go to offset federal 
debt arising from other programs, so the pool is in effect “lending” at the risk- 
free rate during these periods. The ability of the federal government to time 
diversify would ensure the availability of reinsurance at a cost of capital that 
does not include a margin for information asymmetries and other market im- 
perfections. Even with a risk premium to encourage private market crowding 
out of the federal contracts, the cost of capital would be lower than if the re- 
insurance were provided privately. 

The discussion of time diversification suggests the following basic principle 
for pricing the federal XOL contracts: The contracts should be self-supporting 
in expected value; that is, the expected costs to the government of operating 
the program should be zero, where the expectation is defined as including the 
expected value of losses and other program costs across time. In principle, the 
price should also reflect financing costs. However, the net financing costs of 
the program are expected to be zero if the premiums are retained by the govern- 
ment. This is the case because the costs of borrowing to pay catastrophe losses 
are offset in expectation by the proceeds gained by “lending” the premium 
payments to the federal government during periods when no losses occur. 

As mentioned above, the proposal calls for adding a risk premium to the 
contracts so that their prices will approximate the price that would be charged 
in the private marketplace in the absence of severe information imperfections 
(i.e., a normal risk charge or cost of capital). The risk can be viewed as a way 
to ensure that there would not be any unintended consequences in the private 
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insurance and reinsurance markets due to the proposed program. This risk 
charge can also be viewed as compensating the government for other unfore- 
seen costs that could arise under the program. Thus, the final price will be the 
expected value of loss plus administrative expenses and a risk loading. 

3.2.2 The Loss Distribution and Its Moments 

We develop the pricing model under two alternative assumptions regarding 
the design of the reinsurance contracts: (1) that the contracts cover only one 
loss, with the option to purchase an additional contract covering one loss for 
the balance of the year based on a price equal to the original price times the 
proportion of the year remaining after the first loss, and (2) that the contracts 
cover a theoretically unlimited number of multiple losses during a period of 
one year. 

(Renewable) Contracts Covering a Single Loss Event 

under the proposed contract can be written as follows: 
Using generalizations of standard actuarial formulas, the loss distribution 

(4) 
F ( L )  = c p ( N ) q ( L  > TIN)S(LIL > T )  

N=O 

= S(LIL > T ) C  p ( N ) q ( L  > TIN),  
N=O 

where F(L) = the distribution function of catastrophic losses; p ( N )  = the prob- 
ability that N catastrophes occur during the contract period; q(L > TIN) = the 
probability that one catastrophe exceeds the trigger level of losses, conditional 
on the occurrence of N catastrophes; and S(L1L > T )  = the distribution func- 
tion of the severity of catastrophic loss, conditional on losses from a catastro- 
phe exceeding the trigger. Thus, payment under the contract requires the occur- 
rence of some number N of catastrophes (an event with probability p ( N ) )  such 
that one loss exceeds the trigger level ( T )  (an event with probability q(L > 
TIN)). Both p ( N )  and q(L > TIN)  are discrete probability distributions. The 
severity of the loss (loss amount), given that the loss exceeds the trigger, is 
assumed to follow the continuous probability distribution function S(LIL > T ) .  
Even though the contract terminates following the first catastrophe where 
losses exceed the trigger, the exposure to a catastrophe of this magnitude in- 
creases with the number of catastrophes that occur. 

The summation on the right-hand side of the second line of equation (4) 
gives the unconditional (on N )  probability of a loss above the trigger point. 
We call this probability (p*). To obtain an expression for the unconditional 
probability ( p * ) ,  we first derive q(L > TIN). For any one catastrophe, let Pr(L 
5 T )  = P ,  and Pr(L > T )  = P,, and observe that 
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Intuitively, catastrophes are assumed to arrive sequentially throughout the 
year.5 On the arrival of the first catastrophe, the reinsurance contract pays off 
if the losses from this catastrophe exceed T, an event that occurs with probabil- 
ity P,. If the first catastrophe does not exceed the trigger level (an event with 
probability P,), then the contract pays off if the second catastrophic loss ex- 
ceeds T, with the result that the probability that the second catastrophe triggers 
the contract is P,P,, and so on. 

The unconditional probability of a loss exceeding the trigger ( p * )  is then 
obtained as the expected value of q(L > TIN) over N .  The result is 

(6) p* = Ep[q(L  > TIN)] = [l - E p ( P f ) ]  = (1 - Mp[ln(P,)]]: 

where M,[ln(P,)] = the moment-generating function of the probability distri- 
bution p ( N ) .  Thus, if claim arrivals are Poisson distributed, 

(7) 

where X = the parameter of the Poisson distribution. And, if claims arrive 
according to a negative binomial distribution, then 

p* = [1 - eA(ein'P<)-I)] = [1 - e A ( P , - l ) ]  = [1 - e - A P > ] ,  

where a and p are the parameters of the negative binomial distribution, 
which is 

(9) 
a +  k -  1 

P ( k )  = ( k ) p ( l  - p)k 

f o r k = 0 , 1 , 2  . . . .  
The moments of F(L) can be derived from the moment-generating function 

M,(r) = (1 - p*)  + p*jLeds(LIL > T ) ~ L  
(10) 

= (1 - P*> + P*M,,,,,(O, 

where M,(t) = the moment-generating function of F(L), and MSIL,T(t) = the 
moment-generating function of the distribution S(LIL > T ) .  The mean and 
variance of F(L) are, respectively, 

5.  Equation ( 5 )  is the distribution function of the geometric distribution. As shown by the right- 
most expression in (5), the probability of an event that exceeds the threshold is one minus the 
probability that none of the N events exceeds the threshold. 
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( l l a )  E ( L )  = p*p, ,  

(1lb) 

where IJ., = the ith moment about the origin of the distribution S(LIL > T ) .  
We next consider the severity distribution S(LIL > T ) .  We derive the ex- 

pected severity under the assumption that the catastrophic loss distribution is 
shifted from the origin to point 0 < d 5 7: This allows for the possibility of 
defining catastrophes as being events of some minimal size d, with the result 
that the support of the distribution is the interval [d, -1 rather than the usual 
support interval for loss severity of [O,C=] .~  Thus, L is distributed as S(L - d),  
L 2 d; and the expected severity for a call option on L with strike price T is 
then given by 

(12) 

V a ( L )  = p * p 2  - p*’p? = P*(F*  - F : )  + F ; P * ( ~  - P*>. 

E ( L  - TIL > T )  = F I T  = J;(L - T)dS(L  - dlL > T )  

= j;[1 - S ( L  - dlL > T)]dL ,  

where klT = the expected severity of loss under a call with trigger 7: The 
second moment about the origin for the call-option severity is 

(13) 
E [ ( L  - T)’IL > TI = IJ’*T = j ; (L  - T)*dS(L  - dlL > T )  

= 2 j p  - T)[1 - S ( L  - dlL > T)ldL,  

where p2= = the second moment about the origin of the severity of loss under 
a call with trigger T7 

The corresponding moments of the severity of loss for the call spread can 
then be written conveniently as 

FICT = JZ(L - T)dS(L  - dlL > T )  

= j;[l - S ( L  - dlL > T ) ] d L ,  

F Z C T  = j;(L - T)*dS(L  - dlL > T )  

(14) + (C - T)[1 - S(C - dlL > T ) ]  

(15) + (C - T)2[1 - S(C - dlL > T ) ]  

= 2J3L  - T)[l - S ( L  - dlL > T)dL ,  

6. Shifting the distribution enables us to deal with data such as that on catastrophes collected 
by Property Claims Services (PCS), an insurance-industry statistical agent. PCS defines catastro- 
phes as losses from catastrophic perils that cause insured property damage of $5 million or more. 
This database is analyzed in detail later in the paper. 

7. The right-most expressions in (12) and (13) are obtained by integrating by parts. 
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where pLICT = the first moment about the origin of the severity of loss for a call 
spread with trigger T and cap C, and p2cT = the second moment about the 
origin of the severity of loss for a call spread with trigger T and cap C. The 
mean and variance of the call spread are then given by respectively, 

= p*(Fzrc - p?rc) + P?rcp*(l  - P*),  

where p* is given by expression (6), and kICT and pzn are from (14) and (15). 

Contracts Covering Multiple Losses 

quency distribution becomes 

(17) 

where p,(k; L > T )  = the probability that the XOL contracts are triggered k 
times during the coverage period, unconditional on the total number of catas- 
trophes; and p,(k; L > TIN) = the probability that the XOL contracts are trig- 
gered k times during the coverage period, conditional on the occurrence of N 
total catastrophes. The distribution p,(k; L > TIN) is a binomial distribution 
with parameters P ,  and N. If p ( N )  is Poisson with parameter A, then it can be 
shown that p,(k L > T )  = p,(k) is Poisson with parameter AP,. Similarly, if 
p ( N )  is negative binomial with parameters p and a (see eq. [9]), p,(k) is also 
negative binomial with parameters a and p = (p’P>)/(l - P,p’). The mean 
and variance of the call spread are then given by 

If the contracts cover multiple losses during a specified period, the fre- 

- 
pk(k; L > T )  = C p ( N ) p k ( k ;  L > TIN),  

N = k  

(184 EF(L; T,  c, = E k ( k ) p l T C >  

(18b) Var,(L; T ,  C) = Ek(k)(p1Tc - F:,) - V ~ ~ , ( ~ ) P I T C ’  

where E,(k) = the expected value of frequency based on the distribution pk(k; 
L > T ) ,  and Var,(k) = the variance of frequency based on the distributionp,(k; 
L >  T ) .  

3.2.3 Risk and Expense Loadings 

There are two primary approaches to incorporating risk loadings into prices 
of insurance and reinsurance contracts-the actuarial approach and the finan- 
cial approach. An extensive literature exists on actuarial pricing principles 
(e.g., Goovaerts, de Vylder, and Haezendonck 1984; Buhlmann 1984; Wang 
1995). The actuarial pricing principles usually imply that prices should have 
some desirable mathematical properties such as value additivity or that firms 
behave as if they were risk averse so that prices can be derived using utility 
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functions. Although the lack of theoretical foundation for most additive risk- 
loading formulas and the assumption of firm utility functions would seem to 
rule out the actuarial approach, these approaches may provide some useful 
information in solving the pricing problem, under the interpretation that they 
provide a way to incorporate judgmental risk premiums in option prices on 
nonhedgeable stochastic processes. However, in this role, they should be con- 
sidered subordinated to financial pricing approaches. 

Financial pricing models are the most appropriate way to price the catastro- 
phe-reinsurance contracts. Financial pricing models incorporate risk loadings 
that are based on an asset-pricing model or, minimally, avoid the creation of 
arbitrage opportunities. The classic paper on the pricing of options on jump 
processes is Merton (1976). More recent extensions are Naik and Lee (1990), 
Heston (1993), Aase (1993), and Chang (1995). The principal problem in ap- 
plying option-pricing methodologies to options on catastrophes is that these 
methodologies are based on arbitrage arguments that do not apply in general 
to jump processes. The problem is one of market incompleteness when jumps 
in asset prices are possible. Market incompleteness implies that jump risk can- 
not be hedged, and therefore arbitrage arguments generally do not apply. 

Because of the market-incompleteness problem, some additional assump- 
tions are needed to price options on jump processes. Merton (1976) circum- 
vents the problem by assuming that assets are priced according to the capital 
asset-pricing model (CAPM) and that jump risk is nonsystematic, that is, not 
correlated with the market portfolio of securities. If the risk of catastrophes is 
unsystematic, catastrophe risk can be diversified away by investors, and thus 
the return on the catastrophe reinsurance option is equivalent to the risk-free 
rate. Merton derives the formula for option prices on jump processes under 
these assumptions, with the magnitude of jump risk assumed to follow a log- 
normal distribution.* 

If the assumption that jump risk is nonsystematic is not viewed as satisfac- 
tory-for example, because market prices respond to large catastrophes or be- 
cause federal borrowing to fund the reinsurance contracts increases market 
interest rates-then other assumptions can be used to price the options. One 
approach is to assume that jumps can assume only a finite number of constant 
magnitudes and that a sufficient number of traded securities exist that are cor- 
related with the jumps to permit the formation of portfolios to hedge the jump 
risk (see, e.g., Cummins and Geman 1995). This is equivalent to breaking up 
the severity of loss distribution applicable to catastrophes into a finite sequence 
of mass points. Gerber (1982) shows how this can be done while preserving 

8. Chang (1995) shows that Merton’s assumption of diversifiable jump risk is consistent with no 
arbitrage only when the aggregate consumption flow is not subject to jumps. If that assumption 
does not hold, Merton’s formula underprices hedging assets and overprices cyclic assets. Cyclic 
assets are defined as assets subject to jumps that are negatively correlated with jumps in aggregate 
consumption, while hedging assets are defined as assets subject to jumps that are positively corre- 
lated with aggregate consumption jumps. 
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the moments of the severity distribution. If only the first few moments (such 
as the mean and the variance) of severity are of interest, this approach could 
prove to be effective. However, the moments do not uniquely characterize most 
probability distributions, including the lognormal (Johnson and Kotz 1970). 
Thus, if the first two or three moments are not sufficient for pricing the con- 
tracts, this approach may not be satisfactory. 

An alternative approach that does not require constant jump sizes is to make 
an assumption about investor preferences. In a recent paper, Chang (1995) de- 
rives pricing formulas for traded and nontraded options under the following 
assumptions: (1) aggregate consumption follows a jump-diffusion process, and 
( 2 )  preferences can be incorporated using the assumption that there exists a 
representative investor whose utility function is of the constant relative risk 
aversion type. Chang presents an option-pricing model that is “distribution 
free” in the sense that it places no restrictions on the probability distributions 
of the magnitudes of jumps in the value of the underlying asset or the “market 
portfolio,” which in this case is aggregate consumption. Chang (1995) gives 
formulas for the option price in the case where jump sizes in aggregate con- 
sumption and in the strike price are jointly lognormal. However, it would also 
be possible to calculate option prices using other multivariate distributions that 
sometimes provide better models of catastrophic losses, such as the multivari- 
ate Burr 12 distribution (see Johnson and Kotz 1972). The approach could be 
implemented through numerical integration, based on Chang’s pricing for- 
mulas. 

We decided not to attempt to parameterize an option-pricing model for two 
primary reasons: (1) the option-model adjustment in the expected value price 
obtained from our pricing model is likely to be a second-order effect, and 
( 2 )  the data available to parameterize the option-pricing model are likely to be 
inadequate to yield reliable parameter estimates. The problem is that the value 
of the underlying asset (property subject to insured catastrophe loss) is not 
available except at the time of the decennial U.S. Census. Thus, the calculation 
of essential quantities such as the instantaneous volatility parameter would 
have to rely on data that may be unreliable proxies for the actual value of 
insured property. Since option values are very sensitive to the key parameter 
estimates, this could introduce potentially serious error into the premium esti- 
mates. 

Relying on the argument that the risk of loss from hurricanes and earth- 
quakes is likely to be largely unsystematic, we propose using the expected- 
loss values based on our formulas as the basis for the price of the XOL options. 
This is essentially equivalent to using Merton’s approach except that we substi- 
tute the loss estimates derived below for the lognormal distributions on which 
the Merton jump-option-pricing formula is based. As in our prices, no explicit 
market-risk premium is included in Merton’s option-pricing formula. However, 
his formula does recognize the time value of money by discounting the antici- 
pated payout under the option at the risk-free rate of interest. Our formula 
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could also incorporate a discount factor for the time value of money. The ap- 
propriate period would be the expected time of the payment under the renew- 
able option. However, under the multiple-claim option, technically it would be 
appropriate to discount each expected payment for its specific expected time 
of arrival. This could be done under the Poisson distribution using the duality 
between the Poisson process and the exponential distribution of the time of 
arrival between events. However, this, too, is an adjustment of second order in 
importance and probably not worth the extra effort. 

Consequently, the final step in pricing is to incorporate expenses into the 
price of the contracts using the usual actuarial formula, 

where G(L; T, C, d )  = the expected loss loaded for expenses and discounted, 
e = the expense ratio (ratio of expenses to the gross premium), r = the risk- 
free rate (e.g., the ninety-day Treasury bill rate), and t = expected time of 
arrival of the first event that triggers the contracts. The price based on (19) 
should be viewed as the federal government’s reservation price, that is, the 
minimum price at which the contracts should be sold. If a higher price results 
when the contracts are auctioned, they should be sold at the auction price. The 
contracts should not be issued if the reservation price is not realized because 
that is likely to expose the government to an expected loss from issuing the 
contracts. 

3.3 Hedging Catastrophe Risk with Federal XOL Reinsurance 

This section illustrates how the proposed federal excess-of-loss (XOL) rein- 
surance contracts could be used by an insurer to hedge its exposure to the risk 
of hurricanes, earthquakes, and volcanic activity. It is assumed that the insurer’s 
objective is to protect its equity capital and achieve other business objectives 
by optimally reducing the variance of its loss ratio.9 This objective is consistent 
with the literature on insurance futures and options (e.g., Buhlmann 1995; Nie- 
haus and Mann 1992). More general discussions of the rationale for managing 
firm risk are provided in Froot, Scharfstein, and Stein (1994), Mayers and 
Smith (1982), and Shapiro and Titman (1985). Insurers may find it advanta- 
geous to manage their net income risk in order to minimize taxes (Cummins 
and Grace 1994), protect franchise values, reduce regulatory costs, and avoid 
being penalized in the insurance market for changes in insolvency risk. 

To model the insurer’s loss ratio and hedging strategy, let LcA = catastrophe 
losses of insurer A, LNA = noncatastrophe losses of insurer A, L ,  = catastrophe 

9. Because premiums can be treated as nonstochastic, it is not necessary to work with loss ratios. 
Loss ratios are used here because they provide a familiar and convenient framework for evaluating 
hedging strategies in insurance. 
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losses of the insurers included in the catastrophe loss index, PA = premiums of 
company A in lines affected by catastrophes, and PI = premiums for insurers 
reporting data to the catastrophe loss index. Insurer A's loss ratio is then de- 
fined as 

Assuming that the company buys some number NA of XOL contracts, its loss 
ratio will be 

1. { 1,000 1,000 
L,  N Max[L, - T, 01 Max[L, - C, 01 LNA - 

P , P , P ,  
(21) RA = ~ + - - A 

It is assumed that LNA is independent of L, and L ,  but that L, and L, are 
not independent. 

As a first example, we assume that the company's objective is to cap its loss 
ratio due to catastrophes at the industrywide loss ratio represented by the trig- 
ger point of the XOL contract. Assume that industrywide premiums from poli- 
cies covering perils included in the XOL contracts equal $100 billion.I0 Then 
the federal XOL contracts can be viewed as providing a twenty-five/fifty loss 
ratio call spread, that is, as providing protection for loss ratios due to catastro- 
phes ranging from 25 to 50 percent of premiums. The number of contracts that 
the insurer would purchase to implement this strategy is given by 

where S = contract size = $25 billiod1,OOO = $25 million. 
A numerical example based on this hedging strategy is provided in Table 

3.1. We assume that company A's share of the market for coverages affected 
by catastrophes is 1.2 percent and that its premium volume from policies cov- 
ering perils included in the XOL pool is therefore $1.2 billion." We focus first 
on case A of table 3.1. This case assumes a catastrophic loss of $40 billion, 
giving an industry loss ratio from catastrophic losses of 40 percent. It is also 
assumed that company A's catastrophic losses are perfectly correlated with the 
industry's catastrophic losses, with the result that company A's catastrophe-loss 
ratio is also 40 percent. Given company A's premium volume, this implies that 
company A suffers catastrophe losses of $480 million. Equation (19) implies 
that the insurer purchases twelve XOL reinsurance contracts. The payoff per 

10. Actual industry premiums for fire, allied lines, inland marine, farmowner's, homeowner's, 
commercial multiple peril, and auto physical damage, the coverages included in the federal XOL 
contracts, totaled $94.5 billion in 1994 (A. M. Best Co. 1995). 

11. The fifteenth largest property-liability insurer in the United States has a market share of 1.3 
percent, and the twentieth largest has a market share of 1 percent (A. M. Best Co. 1995). 
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Table 3.1 Hedging Example Using Federal XOL Reinsurance 

Case A Case B Case C Case D 

Industq data 
Industry premiums ($) 

Company A data 
Company A's 

Company A's 

Federal XOL contracts 
Trigger expressed as loss 

Cap expressed as loss 

Contract size ($) 

Hedging strategy 
Number of contracts 

Evaluating the hedge 
Catastrophe size ($) 
Industry catastrophe-loss 

Company A's catastrophe 

Return per contract ($) 
Company A's gain on cat 

Company A's catastrophe- 

market share (%) 

premiums ($) 

ratio (%) 

ratio (%) 

ratio (%) 

losses ($) 

contracts ($) 

loss ratio: 
Without XOL 

With XOL 
reinsurance (%) 

reinsurance (%) 

100,oO0,000 

1.20 

1,200,000 

25.00 

50.00 
25,000 

12.00 

40,000,000 

40.00 

480,000 
15,000 

180,000 

40.00 

25.00 

100,000,000 

1.20 

1,200,000 

25.00 

50.00 
25,000 

12.00 

40,000,000 

40.00 

504,000 
15,000 

180,000 

42.00 

27.00 

100,000,000 

1.20 

1,200,000 

25.00 

50.00 
25,000 

12.00 

40,000,000 

40.00 

444,000 
15,000 

180,000 

37.00 

22.00 

100,000,000 

1.20 

1,200.000 

25.00 

50.00 
25,000 

12.00 

55,000,000 

55.00 

660,000 
25,000 

300,000 

55.00 

30.00 

Note: Case A = company A's and industry loss ratios perfectly correlated, loss less than $50 billion. 
Case B = company A's loss ratio greater than industry ratio, loss less than $50 billion. Case C = company 
A's loss ratio less than industry ratio, loss less than $50 billion. Case D = company A's and industry loss 
ratios perfectly correlated, loss greater than $50 billion. All dollar figures reported in thousands. 

contract for a $40 billion loss is $15 million, so company A's gain from the 
reinsurance contracts is $15 million X 12, or $180 million. Company A's net 
loss from the catastrophe is $300 million ($480 million - $180 million), for a 
loss ratio of 25 percent. Thus, by purchasing the reinsurance contracts, com- 
pany A has been able to cap its catastrophe-loss ratio at 25 percent. 

Cases B and C of table 3.1 illustrate the effects of hedging when insurer A's 
losses are not perfectly correlated with industrywide losses. In case B, insurer 
A's loss ratio exceeds the industry loss ratio, and, in case C, insurer A's ratio is 
less than the industry ratio. In these cases, the hedge is not successful in hold- 
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ing the catastrophe-loss ratio to 25 percent, but the loss ratio is still substan- 
tially less than if no XOL contracts had been purchased. Case D shows the 
effects of a catastrophic loss ($55 billion) that exceeds the cap on the XOL 
contracts ($50 billion). Assuming that insurer A's losses are perfectly corre- 
lated with industry losses, insurer A's loss ratio under the XOL hedge is 30 
percent, that is, the 55 percent unhedged-loss ratio minus the layer of XOL 
reinsurance coverage (25 percent). 

The hedging strategy illustrated in table 3.1 is not necessarily optimal. To 
derive an optimal strategy, we consider the variance of the loss ratio. To sim- 
plify the notation, we disregard the upper limit in the XOL contracts and as- 
sume that the insurer can buy a call option with a strike price of T = $25 
billion. The loss-ratio variance is given by 

where a; = the variance of insurer A's loss ratio, uiA = the variance of insurer 
A's noncatastrophe losses, atA = the variance of insurer A's catastrophic 
losses, a2, = the variance of losses included in the XOL reinsurance-contract 
pool, and (T,,~~ = the covariance of insurer A's catastrophe losses with the 
losses included in the XOL pool. To find the number of contracts that mini- 
mizes the loss-ratio variance, we differentiate equation (20) with respect to N, 
and set the resulting expression equal to zero, obtaining 

where pcA,clr = the correlation coefficient of L,  and Max[&. - T, 0]/1,000. 
Thus, to estimate the optimal number of contracts, the insurer would have to 
estimate the variance of its catastrophe losses, the variance of the losses in the 
XOL pool, and the correlation coefficient between its losses and the pool 
losses. The optimal number of contracts is increasing in the insurer's variance 
and the correlation coefficient and decreasing in the variance of the pool's 
losses. 

3.4 Empirical Estimates of Catastrophic Losses and XOL Premiums 

Two principal methods exist that could be used to develop empirical esti- 
mates of catastrophic losses: (1) fitting probability distributions to historical 
catastrophe-loss-experience data and (2) engineering simulation analysis. Both 
methods are utilized in this paper. Our historical catastrophe-loss-experience 
data are the insured catastrophic property losses reported to Property Claims 
Services (PCS), an insurance-industry statistical agent, for the period 1949-94. 
The engineering simulation analysis is based on catastrophe-loss simulations 
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provided to us by Risk Management Solutions (RMS), a private firm that con- 
ducts research on the economic effects of catastrophes for insurance compa- 
nies and other interested parties. The RMS analysis utilizes engineering and 
statistical techniques to simulate the probability and severity of catastrophes. 
This information is then merged with the firm's extensive database on insured- 
property exposures to estimate insured losses. Conducting the estimates on the 
basis of two sources of data provides a reasonableness check on the results and 
should provide the government and industry with a higher degree of confidence 
in the results than if only one source of data were used. 

3.4.1 Loss-Severity Models 

In modeling loss severity, it is important to fit a probability distribution to 
the observed data as well as evaluating the observed data directly. By fitting a 
probability distribution to the data, it is possible to model loss expectations in 
the tail of the loss distribution for ranges of losses larger than those contained 
in the data set. This is especially important when the sample size is small and  
or very large events are possible but have low probabilities of occurrence. 

On the basis of prior experience with modeling severity-of-loss distribu- 
tions, we utilize four probability distributions as possible models for loss sever- 
ity, the Pareto, the lognormal, the Burr 12, and the generalized beta of type 2 
(GB2) (see Cummins et al. 1990; and Cummins and McDonald 1991). The 
density functions for these distributions are given below: 

(26) Pareto: s ( L )  = oldaL-(l + a), L > d ,  

where B ( p ,  q) is the beta function. Because catastrophic losses are often de- 
fined as losses that exceed some monetary threshold, the probability distribu- 
tions have been shifted so that they are defined for losses in excess of some 
threshold d > 0. 

3.4.2 Loss Estimates Based on PCS Data 

PCS defines a property catastrophe as a single event that gives rise to insured 
property damages of at least $5 million (the limit was $1 million prior to 1983). 
PCS obtains loss estimates by state for each catastrophe from individual insur- 
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ers. The catastrophes reported include hurricanes, tornadoes, windstorms, hail, 
fires and explosions, riots, brush fires, and floods.'* 

It is important to be cautious in using historical loss data because systemic 
changes may have occurred such that prior catastrophes may not be representa- 
tive of those that will occur in the future. Systemic changes may involve both 
frequency and severity of loss. For example, climatological changes may have 
occurred that increase either the frequency or the severity of various cata- 
strophic perils. Economic and demographic changes can also affect catastro- 
phe losses. 

Fortunately, it is possible to adjust for most of the important systemic 
changes involving the frequency and severity of catastrophes. The two major 
factors affecting the severity of catastrophes are price-level changes (i.e., 
changes in construction costs and other factors that affect the prices of property 
exposed to loss) and changes in the amount of property exposed to loss. The 
latter adjustment is particularly important because several of the states with 
the highest exposure to catastrophe risk (such as California, Florida, and 
Texas) have been among the fastest-growing states over the past several de- 
cades. 

We use two alternative approaches to adjust for changes in price and expo- 
sure levels. The first approach is to adjust for price-level changes affecting 
property values by using the U.S. Department of Commerce census fixed- 
weighted construction-cost index (taken from various years of the Statistical 
Abstract of the United States) to restate all catastrophe-loss values in 1994 
dollars. To adjust for changes in the exposure base, we use data on population 
by state obtained from the U.S. Bureau of the Census. This approach assumes 
that the amount of property exposed to loss is highly correlated with popula- 
tion. Each catastrophe is adjusted to 1994 price and housing-value levels using 
the following formula: 

where L: = loss from catastrophe i in state j in year t ,  restated in 1994 dollars 
and exposure levels; L,], = loss from catastrophe i in state j in year t in year-t 
dollars; cg4 = construction-cost index for 1994; c, = construction-cost index 
for year t; v ] : , ~ ~  = population of state j in 1994; and v , ~  = population of state j 
in year t. In the discussion to follow, we refer to loss data based on equation 
(29) as population-adjusted (PA) losses. 

As a second approach to adjusting for changes in price levels and the amount 
of property exposed to loss, we use data on the value of owner-occupied hous- 
ing obtained from the U.S. Census of Housing, series HC8O-1-A. This series 
provides the value of urban and rural owner-occupied buildings in each state 

12. The catastrophe-insurance call spreads traded on the Chicago Board of Trade (CBOT) are 
also based on the PCS loss data. 
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at ten-year intervals based on the U.S. Census.I3 The series implicitly incorpo- 
rates both changes in the price of housing and changes in the physical stock of 
property. Thus, no price indices are needed when adjusting catastrophes using 
the housing-value data. We refer to the data adjusted for changes in the value 
of owner-occupied housing as value-adjusted (VA) losses. 

We consider the VA losses to be the primary data series for the estimation 
of XOL reinsurance premiums. Accordingly, most of the summary tables and 
graphs given below are based only on the VA series. However, the premium 
and loss-layer estimates are reported on the basis of both the PA and the VA 
series. 

The insured VA catastrophe losses from 1949 through 1994 are shown in 
figure 3.1. The largest losses were attributable to Hurricane Andrew, which 
caused $18.4 billion in insured losses in 1992, and the Northridge Earthquake, 
which accounted for $12.5 billion in insured losses in 1994. Value adjustment 
has a substantial effect on some of the earlier catastrophes. For example, after 
adjusting for property values, a windstorm loss in 1950 that affected eleven 
northeastern and Middle Atlantic states is the third most severe catastrophe. 
This loss ranks much lower in terms of the unadjusted data. 

Summary statistics on VA catastrophe losses by cause of loss are shown 
in table 3.2. On the basis of the loss experience since 1949, earthquakes and 
hurricanes have been the most serious type of catastrophe, with by far the high- 
est mean and standard deviation of loss. Earthquakes and hurricanes also have 
among the highest coefficients of variation and skewnesses. 

In estimating potential catastrophe losses in the $25-$50 billion range, it is 
clear that one should focus on catastrophes that are sufficiently severe to cause 
damage in this layer. Relatively minor catastrophes, such as hailstorms in the 
Midwest, for example, have a negligible probability of ever generating a loss of 
$25 billion or more (the largest such loss to date was $443 million). Although 
windstorms other than hurricanes clearly have caused very large losses, most 
of the 864 windstorms in the sample were relatively minor storms, such as 
tornadoes, that likely did not have the potential to cause losses in the loss layer 
covered by the proposed reinsurance contracts. 

Accordingly, we focus the remainder of the analysis on the catastrophic 
losses most likely to be representative of those that would generate covered 
losses under the reinsurance contracts-hurricanes and earthquakes. The num- 
ber of events in these two categories from 1949 to 1994 was seventy-one, fifty- 
seven hurricanes and fourteen earthquakes (including the Northridge Earth- 
quake). These hurricane and earthquake losses are graphed in figure 3.2. Four 
of the seventy-one humcanes and earthquakes did not exceed the PCS defini- 

13. Values for years in between the census years were based on the average growth rate in 
property values over each ten-year period. Comparable data on the value of rental properties and 
commercial and industrial buildings were not available. However, this should not cause a problem 
as long as the values of these types of properties are highly correlated with values of owner- 
occupied dwellings. 



51
1 5

11
 9

49
 

61
21

11
 9

53
 

61
1 4

11
 9

57
 

91
91

19
61

 

5/
8/

19
64

 

ll1
61

19
67

 

41
27

11
 96

8 

41
11

1 9
70

 

71
81

1 9
71

 

11
1 7

11
 9

73
 

11
61

1 9
74

 

4/
29

/1
97

5 

0
 

6/
26

/1
97

6 

91
30

11
97

7 
m

 

4
 a

~
~

ii
9

7
a

 
m
 5 

7/
16

/1
97

9 

' 
5/

18
/1

90
0 

51
31

1 9
81

 

61
28

11
 98

2 

i 2
13

11
 98

3 

41
1 9

11
 9

85
 

7/
31

/1
98

6 

51
41

1 9
08

 

6/
3/

19
89

 

91
1 0

11
 9

90
 

1 1
11

6/
19

91
 

21
21

11
 9

93
 

4/
5/

49
94

 



Table 3.2 Summary Statistics, U.S. Property Catastrophes, 1949-94 

Coeff. 
5 p e  of Catastrophe N Mean SD of var. Skewness Minimum Maximum 

Earthquake 
Brush fire 
Flood 
Hail 
Humcanes 
Ice 
Snow 
Tornado 
Tropical storm 
Volcanic eruption 
Wind 
All other 

Total 

14 
27 
14 
53 
57 

1 
11 
21 

8 
1 

864 
66 

1,137 

1.079,9 19,99 1 
228,427,389 

73,110,934 
82,098,301 

1,222,680,792 
20,625,310 

102,884,340 
74,586,127 
73,889,334 
69,870,633 
95,987,693 

108,959,698 

166,981,83 1 

3,3 13,558,418 
434,833,689 
117,528,364 
90,209,509 

2,763,012,070 
0 

194,752,240 
116,138,156 
58,915,748 

0 
429,832,971 
191,921,889 

849,08 1,766 

3.07 
1.90 
1.61 
1.10 
2.26 

1.89 
1.56 
3 0  

4.48 
1.76 

5.08 

3.64 
4.44 
2.20 
2.11 
4.76 

3.07 
3.67 
1.81 

23.50 
3.25 

14.85 

11,852,852 
3,769,473 
7,022,724 
7,992,680 
5,278,321 

20,625,310 
7,167,945 
3,246,349 

19,991,072 
69,870,633 
2,827,037 
3,777,433 

2,827,037 

12,500,000,000 
2,296,609,302 

356,502,769 
443,331,807 

18,39 1,014,407 
20,625.3 10 

677,636,717 
546,706,772 
204,946.13 1 
69,870,633 

11,746,275,284 
983,118,263 

18.39 1,014,407 

Source: Property Claims Services, Rahway, N.J. 
Note: Losses were adjusted to 1994 exposure and price levels using US. Census of Housing’s series HCSO-LA. 
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tion of a catastrophe ($12.04 million in 1994 dollars) when inflated to 1994. 
Consequently, these four events were dropped from the sample for the pur- 
poses of estimating seventy distributions and XOL contract premiums. The 
final sample thus consists of sixty-seven events. 

The next step is to estimate severity of loss distributions for the hurricane 
and earthquake data. As our value of d, the threshold that must be exceeded in 
order for a loss to be defined as a catastrophe, we use $12.04 million, which is 
the PCS lower-bound definition of a catastrophe ($5  million) inflated to 1994 
price and exposure levels using the value of owner-occupied housing (i.e., the 
VA adjustment). Based on the PA adjustment, d = $6.85 mi1li0n.I~ 

We use maximum-likelihood-estimation techniques to estimate the parame- 
ters of the various probability distributions that we employed in this study. The 
parameters and log-likelihood function values are shown in table 3.3, along 
with the RMS parameters, which are discussed later.IS Parameter estimates are 
shown for both PA and VA losses. The estimated probability distributions 
based on the VA losses are graphed in figure 3.3. Also shown in the graph is 
the empirical distribution function, calculated as i/(n + l), where i = 1,2, . . . , 
n, and n = the number of observations. Both the lognormal and Burr 12 distri- 
butions provide excellent fits to the observed data. The GB2 (not shown) also 
fits well and is about the same as the Burr 12. However, the Pareto distribution 
tends to overestimate the amount of probability in the tail of the distribution. 
This is shown more clearly in figure 3.4, which graphs the tails of the estimated 
distribution functions, where the tail is defined somewhat arbitrarily as the 
largest third of the observations. From figure 3.4, it is clear that both the log- 
normal and the Burr 12 provide an adequate fit to the tail of the loss distribu- 
tion. The tail of the Pareto is too heavy to represent the observed data. How- 
ever, it is important to keep in mind the possibility of sampling error in a 
sample of this size, particularly if our adjustments for exposure are not suffi- 
ciently precise. Thus, we believe that the results based on the Pareto should 
also be considered when setting the premiums for the XOL contracts. In this 
sense, the Pareto can be viewed as providing a conservative upper bound for 
the premiums. However, on the basis of goodness of fit, we recommend basing 
the premiums on the lognormal, the Burr 12, or the GB2. 

Analysis of the PA losses reveals that the Burr 12 and GB2 provide the best 
model for this data series. The lognormal underestimates the tail of the PA loss 

14. Prior to 1983, PCS defined a catastrophe as any single event that generated insured losses 
greater than $1 million. Therefore, we also investigated an alternative threshold for catastrophic 
losses of $1 million inflated to 1994 dollars from the first year in the analysis, 1949. Using the 
housing-value index, this would have set the lower-bound definition of a catastrophe at $57.7 
million. Reworking the analysis using this definition of a catastrophic event did not substantially 
change the results. Thus, they are not reported here. 

15. The log-likelihood function values for the PCS and RMS samples are not directly compar- 
able because the sample sizes differ-the PCS sample has sixty-seven events, and the RMS 
samples each have one thousand events. 



Table 3.3 Parameter Estimates Summary 

PCS PCS RMS 
Distribution Housing Value Population RMS RMS RMS Southeastern 
and Parameter (VA) (PA) Nation California Florida United States 

Lognormal: 

P 
U 

- 1 o m  
Pareto: 

d 
(Y 

- log(L) 
Burr 12: 

a 
b 

9 

GB2: 

b 

P 
9 

-log(L) 

a 

- log69 

Frequency 

5.396 
2.064 

471.667 

,328 
12.040 

430.041 

,659 
874.302 

1.991 
502.537 

,150 

10.970 
88.975 

501.438 

2.20 

291,488,438.7 1 

4.586 
2.168 

426.964 

,343 
6.850 

470.040 

,804 
95.780 

.999 
461.542 

.078 

.oo 1 
121.909 
50.199 

460.476 

2.20 

4.403 
2.195 

6,108.236 

.43 1 
12.040 

6,653.261 

.910 
44.600 

,737 
6,609.184 

,405 
23.515 

3.816 
2.49 1 

6,604.769 

6.67 

3.703 
2.059 

5.344.295 

,564 
12.040 

5,834.966 

1.099 
18.006 

,619 
5,813.172 

1.842 
21.847 

.498 
,335 

5.81 1.365 

3.60 

5.654 
2.259 

7.388.235 

,296 
12.040 

8,087.477 

,689 
690.888 

1.507 
7,889.142 

,179 

7.988 
34.485 

7,882.308 

1,349,162.97 

.83 

5.337 
2.211 

7.049.33 1 

,323 
12.040 

7.7 12.696 

,760 
308.502 

1.215 
7,539.407 

.49 1 
469.254 

1.886 
2.590 

7,537.281 

1.35 
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distribution, and the Pareto overestimates the tail, although not by as much as 
in the VA analysis. 

The annual frequency of earthquakes and hurricanes is graphed in figure 
3.5. The graph reveals a high degree of volatility in the frequency series. Fre- 
quency has been trending upward, as shown by the least-squares line and ten- 
year-moving-average lines in the figure. The variance of frequency also in- 
creased near the end of the period, as shown by the ten-year-moving-average 
variance line. On the basis of these apparent trends in the average number and 
variance of catastrophic events, we estimate the average number of events at 
2.2 and use this estimate as the parameter of the Poisson frequency distribution 
in estimating p*).16 

Expected loss severities were calculated for various policy limits on the ba- 
sis of the estimated severity distributions. For the VA loss data, these expected 
severities represent the expected value of loss for a policy that covers catastro- 
phes in excess of $12.04 million up to the specified policy limit (e.g., $10 
billion). For the PA data, the expected severities cover catastrophes in excess 
of $6.85 million up to the specified policy limits. Reinsurance-layer prices are 
obtained as differences between the expected policy limit severities. The re- 
sults are presented in table 3.4 for both the PA and the VA data. 

The Pareto distribution clearly gives the largest estimate of expected sever- 
ity in the $25-$50 billion layer, $1.806 billion based on the VA data and $1.3 19 
billion based on the PA data. For the lognormal, the expected severities in the 
$25450  billion layer are $170.2 based on the VA data and $8 1 .O million based 
on the PA data. The corresponding expected severities in the $25-$50 billion 
layer given by the Burr 12 and GB2, respectively, are $162.4 million and 
$112.0 billion, based on the VA data, and $211.0 million and $97.1 million, 
based on the PA data. 

Table 3.4 also shows the overall expected loss for the four severity distribu- 
tions, based on equations (1 la) and (16a), and a Poisson frequency parameter 
of 2.2 events per year.I7 Based on the Pareto distribution, the expected loss is 
$3.636 billion for the VA data and $2.719 billion for the PA data. The lognor- 
mal gives expected losses of $370.0 million and $177.2 million based on the 
VA and PA series, respectively. The corresponding estimates based on the Burr 
12 are $353.4 million (VA data) and $458.5 million (PA data), and those based 
on the GB2 are $244.2 million (VA data) and $212.1 million (PA data). 

Overall, considering the goodness of fit to both data series, we recommend 
using either the Burr 12 or the GB2 model to calculate the XOL premiums. 
Taking the average of the Burr 12 estimates based on the VA and the PA data, 
one obtains an estimate of $405.9 million, or $405,900 for each $25 million 

16. Our frequency estimate is based on a linear least-squares trend line fitted to the annual 
frequency observations and used to project trend to 1995. 

17. The Poisson parameter is used in conjunction with eq. (7) to obtain an estimate of the loss 
probability p * .  The negative binomial results are very close to the Poisson results and hence are 
not shown. 
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Table 3.4 Expected Loss Severities for Various Layers, Total Expected Loss for 
$25-$50 Billion Layer 

Lognormal Pareto Burr 12 GB2 

Losses inflated by housing values: 
E(L) 
SDG) 
E(L; $12.04M, $5B, $12.04M) 
E(L; $12.04M, $IOB, $12.04M) 
E(L; $12.04M, $15B, $12.04M) 
E(L; $12.04M, $20B, $12.04M) 
E(L; $12.04M, $25B, $12.04M) 
E(L; $12.04M, $30B, $12.04M) 
E(L; $12.04M, $35B, $12.04M) 
E(L; $12.04M, $40B, $12.04M) 
E(L; $12.04M, $45B, $12.04M) 
E(L; S12.04M. $50B, $12.04M) 
E(L; $25B, $50B, $12.04M) 
Prob[L > $25levent occurs] = 

Prob [L > $251 = p* (Poisson 

E (L; $25B, $50B, $12.04MI 

Total E(L): $25-$50B layer 

Losses inflated by population: 
E(L) 
SD(L) 
E(L; $6.85M, $5B, $6.85M) 
E(L; $6.85M, $10B, $6.85M) 
E(L; $6.85M, $15B, $6.85M) 
E(L; $6.85M, $20B, $6.85M) 
E(L; $6.85M, $25B, $6.85M) 
E(L; $6.85M, $30B, $6.85M) 
E(L; $6.85M, $35B, $6.85M) 
E(L; $6.85M, $40B, $6.85M) 
E(L; $6.85M, $45B, $6.85M) 
E(L; $6.85M, $50B, $6.85M) 
E(L; $25B, $50B, $6.85M) 
Prob[L > $25levent occurs] = 

Prob[L > $251 = p* (Poisson 

E(L; $25B, $50B, $6.85Ml 

Total E(L): $25-$50B layer 

P, (%) 

param. = 2.2) 

L > $25B) 

p ,  (%) 

param. = 2.2) 

L > $25B) 

1,869.96M 
15,520.12M 

864.75M 
1,092.08M 
1,220.31M 
1,306.34M 
1,369.34M 
1,4 18.04M 
1,457.10M 
1,489.29M 
1,516.37M 
1,539.54M 

170.20M 

1.10 

,0238 

15,518.11M 
369.97M 

1,036.65M 
10,733.19M 

551.51M 
670.09M 
734.59M 
776.99M 
807.62M 
83 1.06M 
849.71M 
864.98M 
877.76M 
888.65M 
81.03M 

.53 

,0116 

15,286.12M 
177.20M 

Undefined 
Undefined 
1,025.95M 
1,637.97M 
2,152.84M 
2.61 3.28M 
3,037.06M 
3,433.75M 
3,809.24M 
4,167.49M 
4 3  11.31M 
4,842.81M 
1,805.75M 

8.18 

,1647 

22,073.58M 
3,635.69M 

Undefined 
Undefined 

789.43M 
1,247.59M 
1,629.95M 
1,970.14M 
2,282.06M 
2,573.14M 
2,847.98M 
3,109.64M 
3,360.28M 
3,601.54M 
1,319.49M 

6.01 

.I239 

21,950.14M 
2,719.1 1M 

2,209.63M 
Undefined 

841.38M 
1,043.37M 
1,156.47M 
1,233.12M 
1,290.16M 
1,335.10M 
1,371.88M 
1,402.8 1M 
1,429.37M 
1,452.55M 

162.39M 

1 .oo 

,0218 

16,194.72M 
353.35M 

Undefined 
Undefined 

541.34M 
691.79M 
790.83M 
866.40M 
928.20M 
980.85M 

1,026.92M 
1,068.01M 
1,105.19M 
1,139.21M 

211.01M 

1.13 

,0246 

18,617.91M 
458.48M 

1,5 11.32M 
55,723,965M 

854.45M 
1,059.38M 
1,166.37M 
1,233.67M 
1,280.27M 
1,314.54M 
1,340.8 1M 
1,361.57M 
1,378.38M 
1,392.24M 

111.97M 

.79 

,0172 

14,179.08M 
244.21M 

1,150.19M 
415,863,130M 

550.52M 
675.25M 
745.46M 
792.87M 
827.89M 
855.23M 
877.37M 
895.79M 
911.44M 
924.95M 
97.06M 

.61 

.0134 

15,839.40M 
212.06M 

Nore: E(L; I: C, d )  = expected value of loss seventy (L) for a shifted distribution beginning at d for 
a reinsurance contract beginning at point of attachment T and having upper limit C. M = million; B = 
billion. The total E(L) is based on the Poisson frequency distribution with mean of 2.2. Figures are dollar 
values unless otherwise specified. 
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contract. The corresponding estimate based on the GB2 is $228.1 million, or 
$228,100 for each $25 million contract. These premiums translate into rates 
on line for the $25-$50 billion layer of 1.62 percent and 0.91 percent, respec- 
tively.'* The most conservative estimate of the premium is provided by the 
Pareto distribution, which gives a premium estimate of $3.177 billion or a 12.7 
percent rate on line based on an average of the VA and PA results. 

3.4.3 Loss Estimates Based on RMS Data 

Risk Management Solutions supplied ten thousand simulated catastrophe 
losses for each of several geographic areas for use in this study. The geographic 
areas included the entire United States, the southeastern United States, Califor- 
nia, and Florida. Preliminary analysis indicated that it is not necessary to work 
with all ten thousand observations when estimating the loss-severity distribu- 
tions. Accordingly, we randomly selected subsamples of one thousand losses 
for each geographic-area definition to form the primary basis for the following 
discussion.19 We use the full samples of ten thousand claims to provide empiri- 
cal estimates of the premiums for comparison with the estimates based on the 
loss-severity distributions. 

The RMS estimates also differ from the PCS estimates in the choice of the 
loss-frequency parameter. For the PCS data, loss frequency was estimated by 
fitting a trend line to a time series of observed annual catastrophe frequencies. 
However, RMS estimates frequency on the basis of engineering and meteoro- 
logic models that are used to predict the probabilities and severities of hurri- 
canes and earthquakes. It is important to analyze the RMS frequency estimates 
because no catastrophe causing insured property damage in the $25-$50 bil- 
lion range has been observed during the period covered by the PCS data (1949- 
present), but such events are possible and can be simulated using the RMS 
approach. 

Summary statistics for the PCS sample and the national RMS sample are 
shown in table 3.5. The mean severities for the two samples are quite compara- 
ble, $1.284 billion for the PCS sample and $1.048 billion for the RMS sample. 
However, the coefficient-of-variation, skewness, and kurtosis estimates are 
considerably higher for the RMS sample, and the maximum loss in the RMS 
sample is about six times as large as the maximum in the PCS sample. The 
simulated RMS frequency of events larger than $12.04 million is also consid- 
erably higher than the corresponding PCS estimate (6.7 as opposed to 1.5). 
And the RMS estimate of frequency is about three times as large as our fre- 

18. The rate on line is defined as the premium divided by the width of the layer, $25 billion in 
this case. 

19. Estimation of the parameters of the loss distributions was very slow when all ten thousand 
observations were used. Preliminary analysis based on ten thousand and several random samples 
of one thousand revealed that the parameter estimates are very stable, i.e., not sensitive to the 
choice of sample. Accordingly, the remainder of the analysis was based on one-thousand- 
observation samples. 



Table 3.5 Summary Statistics: Actual Loss Experience and Simulated Loss Experience, Hurricanes and Earthquakes 

Obs. Mean 6) SD (9 Coeff. of Var. Skewness Kurtosis Minimum ($) Maximum ($) 

Seventy of losses reported by 
PCS, 1949-94, losses > 
$12.04 million 67 1,283,998.7 2,942,996.6 2.292 4.198 20.124 12,434.3 18,391,014.4 

Severity of losses simulated 
by RMS: 
All losses 95,182 736,533.4 3,790,455.6 5.146 12.126 199.853 5,007.2 107,546,261 .O 
Losses > $12.04 million 66,138 1,047,983.0 4,493,486.8 4.288 10.193 141.061 12,058.2 107,546,261 .O 

Obs. Mean SD Coeff. of Var. Skewness Kurtosis Minimum Maximum 

Frequency of losses reported 
by PCS, 1949-94 67 1.543 1.312 .85 1.477 2.539 0 6 

Frequency of losses 
simulated by RMS: 
All losses 95,182 9.5 18 3.056 ,321 ,333 ,152 0 23 
Losses > $12.04 million 66,138 6.668 2.559 ,384 ,399 ,195 0 19 
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quency estimate based on linear time trending (2.2 events per year). As dis- 
cussed further below, the primary reason for the difference in frequencies is 
that RMS is simulating a larger number of earthquakes per year than have been 
observed historically. 

The national loss estimates based on the RMS empirical and fitted probabil- 
ity-of-loss distributions are shown in table 3.6. It is noteworthy that the esti- 
mated loss severities in the $25-$50 billion layer are quite comparable to our 
PCS estimates presented in table 3.4. The lognormal and Pareto PCS estimates 
in table 3.4 are actually larger than their FWS counterparts in table 3.5. The 
severity estimates based on the Burr 12 and GB2 distributions fitted to the 
RMS data (table 3.5) are somewhat larger than the corresponding estimates 
based on the PCS data (table 3.4). For example, the Burr 12 loss-severity esti- 
mate for the $25-$50 billion layer is $279.2 million, whereas the PCS estimate 
is $162.4 million (based on the VA adjustment). 

The comparability of the fitted PCS and RMS loss estimates in the $25-$50 
billion layer shows that using probability distributions to model the tails of loss 
distributions on the basis of relatively small samples can yield accurate esti- 
mates of expected values of large losses even if no losses in this range have 
been observed. This is also illustrated by figures 3.6 and 3.7, which show, re- 
spectively, the empirical distribution functions for the RMS and PCS data and 
the tails of the empirical distribution functions along with GB2 distributions 
fitted to the PCS and RMS data. Figure 3.6 shows that the tail of the PCS 
distribution is actually somewhat heavier than that of the RMS distribution for 
relatively small losses and is comparable for larger losses. Figure 3.7 shows 
that the GB2 distributions are also quite comparable for large losses, although 
the RMS distribution has a somewhat heavier tail. 

Table 3.6 also shows the estimates of the total expected loss (i.e., the ex- 
pected loss component of the XOL premiums) in the $25-$50 billion layer 
based on the RMS data. The expected loss estimates in table 3.6 are consider- 
ably larger than those based on the PCS data (table 3.4), primarily because of 
the difference between the RMS and the PCS loss-frequency estimates. The 
RMS-based estimates of the expected loss range from $453.4 million (or a 1.8 
percent rate on line) for the lognormal distribution to $4.635 billion (or an 18.5 
percent rate on line) for the Pareto. Again, however, the Pareto does not provide 
a very good fit to the data. The best fit is provided by the Burr 12 and GB2, 
and the premiums based on those models are $1.758 billion (7 percent rate on 
line) and $1.020 billion (4.1 percent rate on line), respectively. 

Expressed per XOL contract, the expected-loss estimates from table 3.6 im- 
ply a price of $1,758,000 per $25 million national contract based on the Burr 
12 and $1,020,000 per contract based on the GB2. These are much larger than 
the $405,900 per contract (Burr 12) and $228,100 per contract (GB2) based 
on the PCS data. Whether the RMS or the PCS sample gives more reasonable 
estimates depends on the accuracy of the RMS prediction that 6.6 events will 
occur per year. A practical approach to resolving the uncertainty would be to 



Table 3.6 Expected RMS Loss Seventies for Various Layers for the United States, Total Expected Loss for $2.5450 Billion Layer 

Empirical Lognormal Pareto Burr 12 GB2 

Losses sirnuluted by RMS 
E(L)  
S W )  
E(L; $12.04M, $5B, $12.04M) 
E(L; $12.04M, $10B, $12.04M) 
E(L; $12.04M, $15B, $12.04M) 
E(L; $12.04M, $20B, $12.04M) 
E(L; $12.04M, $25B, $12.04M) 
E(L; $12.04M, $30B, $12.04M) 
E(L; $12.04M, $35B, $12.04M) 
E(L; $12.04M, $408, $12.04M) 
E(L; $12.04M, $45B, $12.04M) 
E(L; $12.04M, $50B, $12.04M) 
E(L; $25B, $50B, $12.04M) 
Prob[L > $25levent occurs] = p, (%) 
R o b  [ L  > $251 = p* (Poisson 

E (L; $25B, $50B, $12.04MI 

Total E(L): $25-$50B layer 

param. = 6.7) 

L > $25B) 

987.67M 
4,433.98M 

538.44M 
669.39M 
736.27M 
780.90M 
820.30M 
850.34M 
872.29M 
882.29M 
892.29M 
902.29M 
81.99M 

.70 

,045 I 

11,713.10M 
528.84M 

922.63M 
10,082.30M 

492.68M 
595.84M 
651.67M 
688.28M 
714.68M 
734.87M 
750.92M 
764.06M 
775.05M 
784.41M 
69.73M 

.46 

,0297 

15,266.03M 
453.36M 

Undefined 
Undefined 

646.72M 
963.60M 

1,2 15.96M 
1,433.83M 
1,629.19M 
1,808.30M 
1,974.94M 
2,131.60M 
2,280.03M 
2,421 SOM 

792.32M 
3.73 

,2182 

21,246.44M 
4,635.46M 

132,47 1,003.8M 
Undefined 

498.66M 
662.15M 
776.88M 
868.19M 
945.26M 

1,012.61M 
1,072.8 1M 
1,127.49M 
1,177.78M 
3,224.45M 

279.19M 
1.43 

,0903 

19,477.90M 
1,758.16M 

36,766.2M 
Undefined 

496.29M 
628.83M 
712.49M 
774.28M 
823.48M 
864.44M 
899.59M 
930.39M 
957.82M 
982.56M 
159.08M 

.89 

,0571 

17,847.16M 
1,019.66M 

Nore: E(L; 7: C, d )  = expected value of loss seventy (L)  for a shifted distribution beginning at d for a reinsurance contract beginning at point of attachment T and 
having upper limit C. M = million; B = billion. The total E(L) is based on the Poisson frequency distribution with mean of 6.7. Figures are dollar values unless 
otherwise specified. 
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set the reservation price as the average of the RMS and the PCS estimates. This 
would give a reservation price of $1.082 million (4.3 percent rate on line) 
based on the Burr 12 and $624,000 (2.5 percent rate on line) based on the GB2. 

On the basis of the RMS data, we also estimated conditional and uncondi- 
tional loss severities for California, Florida, and the southeastern region of the 
United States. Tables comparable to table 3.6 and based on these three samples 
are presented in appendix B. We also had enough PCS data on losses in the 
southeastern region of the United States to provide PCS estimates for this re- 
gion. The results are summarized in table 3.7, which shows the conditional 
expected severity of losses in the $25-$50 billion layer, the probability of a 
loss in this layer based on the severity distribution (i.e., P[L > $25 billionlan 
event occurs] = P,]), and the unconditional expected severity in the layer (the 
product of the conditional severity and P,). For purposes of comparison, the 
table also shows the comparable national statistics based on the PCS and 
RMS samples. 

The RMS conditional loss severity is highest in California, $1 6.6 billion 
(table 3.7). The comparable conditional loss severities are $15.0 billion for 
Florida and $1 3.9 billion for the Southeast. However, the unconditional severi- 
ties are higher in Florida and the Southeast than in California. The chance of 
breaching the $25 billion trigger is larger in Florida and the Southeast, but, 
given that a loss breaches the trigger, expected severity is higher in California. 
Graphic analysis (not shown) reveals that the GB2 is the best model for the 
RMS California severity data, while the Burr 12 and GB2 are the best models 
for Florida and the Southeast. Comparison of the PCS and RMS data for the 
Southeast reveals that the PCS data imply lower conditional severity, a lower 
probability of a loss exceeding the trigger, and lower unconditional severity 
than the RMS data, where these comparisons are based on the best-fitting GB2 
distribution. This is likely due to the reduced PCS sample size and the absence 
of large events, such as the Northridge Earthquake, from the southeastern 
PCS sample. 

The total expected-loss components of the PCS reservation-price estimates 
and their corresponding rates on line are summarized in table 3.8. The first 
panel of the table is based on historical loss-frequency estimates, while the 
second panel is based on the RMS frequency estimates. The differences be- 
tween the results in the first two panels of the table can be attributed primarily 
to the loss-frequency estimates generated by RMS, which are higher than the 
historical averages nationally and those for California, Florida, and the South- 
east. For example, the historical average number of events per year in Califor- 
nia is 0.22, whereas the RMS estimate is 3.6. To see the effect that the higher- 
frequency estimates has on the reservation price, consider the best-fitting 
distributions-the Burr 12 and the GB2. Using the PCS VA (housing value) 
severity estimates and the historical frequencies for the national contracts, the 
estimated reservation rates on line are 1.41 percent for the Burr 12 and 0.98 
for the GB2. However, using the corresponding RMS-provided frequency data 



Table 3.7 Summary: Expected Loss Severities and Expected Losses, $25-$50 Billion Layer 

Region 

E(L; $25B, $SOB, $12.04MIL > $25B) ($) 

GB2 Empirical Lognormal Pareto Burr12 

22,073.58M 16,194.72M 14,179.08M PCS housing value (VA) . . .  15,518.1 1M 
PCS population (PA) . . .  15,286.12M 21,950.14M 18,617.9 1M 15,839.40M 
RMS, United States 1 1.7 13.10M 15,266.03M 21,246.44M 19,477.90M 17,847.16M 
RMS, California 16,601.38M 13,739.22M 20,229.10M 19,402.2SM 39,844.63M 
RMS, Florida 14,974.47M 16,839.55M 22,339.15M 17,514.89M 15,414.08M 
PCS, Southeastern United States (VA) . . .  16,677.02M 21,966.54M 15,853.33M 14,356.77M 
RMS, Southeastern United States 13,867.94M 16,276.46M 22,l Il.64M 17,963.53M 16,776.73M 

Prob [ L  > $25BIEvent Occurs] = P ,  (8) 

Empirical Lognormal Pareto Burr12 GB2 

PCS housing value (VA) . . .  
PCS population (PA) . . .  
RMS, United States .70 
RMS, California .60 
RMS, Florida 1.70 
PCS, Southeastern United States (VA) 
RMS, Southeastern United States 1.20 

. . .  

1.10 
.53 
.46 
.09 

2.39 
1.57 
1.52 

8.18 
6.01 
3.73 
1.34 

10.44 
7.41 
8.47 

1 .oo 
1.13 
1.43 
.73 

2.13 
.77 

1.66 

.79 

.61 

.89 

.92 
1.70 
.59 

1.33 

E(-k $25B, $50B, $12.04M) ($) 

Empirical Lognormal Pareto Burr12 GB2 

PCS housing value (VA) . . .  170.20M 1,805.75M 162.39M 111.97M 
PCS population (PA) . . .  8 1.03M 1,319.49M 21 1.01M 97.06M 
RMS, United States 81.99M 69.73M 792.32M 279.19M 159.08M 
RMS, California 99.61M 12.46M 27 1.42M 141.86M 182.84M 
RMS, Florida 254.57M 402.06M 2,333.02M 372.95M 262.73M 
PCS, Southeastern United States (VA) . . .  261.57M 1,626.79M 122.47M 84.17M 

223.63M RMS, Southeastern United States 166.42M 246.64M 1,873.72M 297.76M 

Nore: M = million: B = billion. 



Table 3.8 Reservation-Price Estimates of Federal XOL Contracts 

Historical Severity Distribution Assumption ($) 
Frequency 

Region Estimates Lognormal Pareto Burr12 GB2 

PCS housing value 

PCS population 

RMS, United 

RMS, California 

(VA) 

(PA) 

States 

RMS. Florida 

PCS, Southeastern 
United States (VA) 

RMS, Southeastern 
United States 

2.2 

2.2 

2.2 

,217 

,378 

,844 

344 

RMS 
Frequency 
Estimates 

PCS housing value 

PCS population 

RMS, United 

RMS, California 

( W  

(PA) 

States 

RMS, Florida 

PCS, Southeastern 
United States (VA) 

RMS, Southeastern 
United States 

6.7 

6.7 

6.7 

3.6 

3 3  

1.35 

1.35 

369.97M 
( 1.48) 

177.20M 
(.71) 

152.64M 
(.61) 

87.02M 
(.35) 
4.7 1 M 
(.02) 

219.31M 
(.88) 

206.84M 
(33) 

1,083.66M 
(4.33) 

525.46M 
(2.10) 

453.36M 
(1.81) 
44.61M 

(. 18) 
331.61M 

(1.33) 
349.4 1 M 

(1.40) 
330.30M 

(1.32) 

3,635.69M 
(14.54) 

2,719.11M 
(10.88) 

1,673.5 1M 
(6.69) 

500.57M 
(2.00) 

102.34M 

1,330.98M 

1,526.2OM 

~ 4 1 )  

(5.32) 

(6.10) 

9,209.22M 
(36.84) 

7,188.55M 
(28.75) 

4,635.46M 
(18.54) 
950.54M 

(3.80) 
1,861.27m 

(7.45) 
2,089.95M 

(8.36) 
2,395.22M 

(9.58) 

353.35M 
(1.41) 

458.48M 
(1.83) 

604.63M 
(2.42) 
80.74M 

(.32) 
53.55M 

(.21) 
103.03M 

249.56M 
( 1 .ow 

~ 4 1 )  

1,037.08M 

1,341.85M 

1,758.16M 
(7.03) 

502.23M 
(2.01) 

307.93M 
(1.23) 

164.48M 
(.66) 

398.38M 
( 1.59) 

(4.15) 

(5.37) 

244.21M 
(.98) 

212.06M 
( 3 5 )  

346.57M 
(1.39) 
56.91M 

68.99M 
(.28) 

70.86M 
(.28) 

187.68M 
(.75) 

~ 2 3 )  

720.08M 
(2.88) 

627.69M 
(2.51) 

1,019.66M 
(4.08) 

645.12M 
(2.58) 

217.31M 
(.87) 

113. I8M 
(.45) 

299.86M 
(1.20) 

Nore: The rates online, given in percentages and shown in parentheses, are obtained by dividing the 
reservation prices by $25,000 million. M = million. 
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increases the estimates to 4.15 and 2.88 percent, respectively. A similar pattern 
can be observed for the other severity estimates reported in table 3.8 and across 
each of the different regions. 

Whether the reservation price should be based on the historical data or on 
the RMS projections depends on the degree of credibility that should be as- 
signed to the RMS projections. This is difficult to gauge in the absence of a 
full-scale engineering analysis or a few more years of historical experience. 
However, the difference between the two approaches provides a reasonable 
range that government officials could use when setting the reservation price. 
Also, as indicated above, these rates should be loaded for the expenses of ad- 
ministering the program and discounted to reflect the time lag between the 
premium payment and expected-loss-payment dates. 

3.5 Conclusions 

This paper analyzes a proposal for federal excess-of-loss (XOL) reinsurance 
contracts to assist insurers in hedging the risk of property catastrophes. Under 
the proposed reinsurance program, the federal government would directly write 
and sell per occurrence excess-of-loss reinsurance contracts protecting against 
catastrophe losses. These XOL contracts would be available for qualified insur- 
ance companies, pools, and reinsurers and would cover industry losses from a 
disaster in the $25-$50 billion layer of coverage-a layer currently unavailable 
in the private market. 

The rationale for government provision of these contracts is that the capacity 
of the private insurance and reinsurance markets is presently inadequate to 
provide coverage for losses of this magnitude. The unavailability of capacity 
for large catastrophes has a number of serious effects on the viability of insur- 
ance markets and the ability of society to respond to a major disaster. The lack 
of capacity has led to shortages in the supply of insurance, with the resulting 
potential for higher federal disaster-relief expenditures as a result of a major 
catastrophe. The unavailability of high-limits reinsurance also increases the 
probability of insolvency for insurers participating in the property-insurance 
market, thus posing further risk to the stability of insurance markets. 

Private market capacity for large losses is limited because the possibility 
of bankruptcy, along with information asymmetries in insurance and capital 
markets, constrains the ability of private insurers and reinsurers to diversify 
risk across time. Time diversification requires that insurers be able to raise debt 
and/or equity capital at reasonable rates following a large loss. However, the 
cost of capital to insurers tends to increase following a loss shock, and capital 
may be unavailable at any price for certain lines of coverage. Private insurance 
markets tend to function effectively in diversifying the risk of relatively small 
losses, but they are not very efficient in dealing with extremely large losses. 

The federal government, on the other hand, has a superior ability to diversify 
risk across time through the exercise of federal borrowing power. While it is 
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costly for private insurers to raise additional capital following a loss shock, 
federal debt is viewed as default-risk free, and thus the federal government 
would not find its cost of capital increasing significantly following a catastro- 
phe. Thus, the federal government’s superior financing and time-diversification 
capabilities would permit the federal XOL contract program to bypass the im- 
perfections in the insurance, reinsurance, and capital markets that impede the 
private provision of disaster insurance. 

The proposed XOL contracts would help solve the problems in insurance 
markets while potentially reducing the federal government’s role in providing 
disaster-relief payments to propertyowners following a catastrophe. The con- 
tracts do not provide a subsidy to insurers but instead are designed to be self- 
supporting in expected value; that is, the contracts are to be priced so that the 
expected cost to the government is zero. If a loss occurred that exceeded the 
amount of premiums that had been paid into the program, the federal govern- 
ment would use its borrowing power to raise funds to pay the losses. During 
periods when the accumulated premiums paid into the program exceeded the 
losses that had been paid, the buyers of the contracts implicitly would be lend- 
ing money to the Treasury, reducing the costs of government debt. The ex- 
pected interest on these “loans” offsets the expected financing (borrowing) 
costs of the program as long as the contracts are priced at the expected value 
of loss plus program administrative expenses. 

A risk premium could be added to the price of the contracts to provide an 
incentive for private market crowding out of the federal program. This could 
imply that the expected return to the government from the program would be 
positive rather than zero, but this would not necessarily be the case if the risk 
premium compensates the government for parameter-estimation risk or unfore- 
seen program risk. 

A methodology was developed for calculating premiums for the XOL con- 
tracts. The first step is to estimate the expected value of loss. This involves 
fitting severity distributions to catastrophe losses. We estimated loss-severity 
distributions on the basis of two samples-the historical data on hurricane and 
earthquake losses maintained by Property Claims Services (PCS) and a sample 
of simulated loss based on engineering analysis provided by Risk Management 
Solutions (RMS). Four severity-of-loss distributions were used, the lognormal, 
the Pareto, the Burr 12, and the generalized beta of type 2 (GB2) distributions. 
The Burr 12 and GB2 distributions generally provided the best fit to the data. 
Using our severity distributions, we estimated the expected-loss component of 
the government’s reservation price for proposed XOL contracts covering the 
entire United States, California, Florida, and the Southeast. The reservation 
prices were computed using historical frequency data and using the frequency 
projections developed by RMS. The RMS frequency estimates are consider- 
ably higher than the historical averages. Thus, we suggest that the reservation 
price should be set using the range of PCS and RMS price projections based 
on the best-fitting Burr 12 and GB2 distributions as the expected-loss compo- 
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nent of the reservation price as a guide for policymakers. The expected loss 
should be loaded for administrative expenses and discounted to obtain the final 
reservation price. The ultimate price for the contracts would be determined by 
auction, but the contracts should not be issued for less than the reservation 
price. 

Future research is needed to explore the full implementation of the option 
model. In addition, the premium estimates could be improved by obtaining 
more comprehensive estimates of the value of property by state (e.g., to include 
rental, commercial, and industrial property) and physical measures of the se- 
verity of catastrophes. The incorporation of physical projections of the pre- 
dicted frequency of major catastrophes would also improve the estimates. 

Appendix A 
Derivation of pk(k; L > T)  When p(N) Is 
Negative Binomial 

Recall that the unconditional distribution of the number of catastrophes that 
breach the trigger T is 

(Al )  p, (k;  L > T )  = pk(k )  = L p ( N ) p , ( k ;  L > TIN). 

Assume that p ( N )  is negative binomial, that is, that 

m 

N=k 

Given N events and P ,  = S(L > T ) ,  pk(k;  L > T I N )  is binomial: 

Substituting (A2) and (A3) into (Al)  and collecting terms yields 

pk(k; > = pk(k) 

Changing the index of summation from N to h = N - k, setting p' = (1 - p), 
and moving terms that do not involve h outside the summation sign, we obtain 



136 J. David Cummins, Christopher M. Lewis, and Richard D. Phillips 

The expression to the right of the summation is a negative binomial distribu- 
tion, so the summation equals one. Rearranging the expression to the left of 
the summation yields 

PIP, 
1 - P,p" 

This is a negative binomial distribution with parameters (Y and p = _ _ ~  



Appendix B 

Table 3B.1 Expected RMS Loss Severities for Various Layers for California, Total Expected Loss for $25-$50 Billion Layer 

Empirical Lognormal Pareto Burr 12 GB2 

Lasses simulated by RMS 
E(L) 
W L )  
E(L; $12.04M, $5B, $12.04M) 
E(L; $12.04M, $10B, $12.04M) 
E(L; $12.04M, $15B, $12.04M) 
E(L; $12.04M, $20B, $12.04M) 
E(L; $12.04M, $25B, $12.04M) 
E(L; $12.04M, $30B, $12.04M) 
E(L; $12.04M, $35B, $12.04M) 
E(L; $12.04M, $40B, $12.04M) 
W ;  $12.04M, $45B, $12.04M) 
E(L; $lZ.WM, $50B, $12.04M) 
E(L; $25B, $50B, $12.04M) 
Prob[L > $251event occurs] = p, (%) 
Prob [L > $251 = p* (Poisson 

E(L; $25B, $50B, $12.04MI 

Total E(L): $25-$50B layer 

param. = 3.6) 

L > $25B) 

682.41M 
3,889.86M 

322.04M 
423.6 1 M 
492.21M 
536.57M 
5 7 0.9 7 M 
599.37M 
619.95M 
639.95M 
655.58M 
670.58M 
99.61M 

.60 

.02 13 

16,601.38M 
353.48M 

351.29M 
2,796.35M 

255.66M 
285.60M 
299.42M 
307.57M 
313.01M 
316.90M 
319.83M 
322.12M 
323.96M 
325.46M 

12.46M 
.09 

,0032 

13,739.22M 
44.61M 

Undefined 
Undefined 

367.81M 
502.45M 
602.25M 
684.55M 
755.88M 
819.53M 
877.43M 
930.83M 
980.58M 

1,027.30M 
271.42M 

1.34 

.0470 

20,229.10M 
950.54M 

Undefined 
Undefined 

288.45M 
373.19M 
432.21M 
478.98M 
518.34M 
552.66M 
583.28M 
61 1.05M 
636.56M 
660.20M 
14l.86M 

.73 

.0259 

19,402.25M 
502.23M 

Undefined 
Undefined 

299.39M 
398.19M 
469.34M 
526.95M 
576.22M 
619.71M 
658.93M 
694.83 M 
728.05M 
759.06M 
182.84M 

.92 

,0325 

19,844.63M 
645.12M 

Note: E(L; Z C, d) = expected value of loss severity (L) for a shifted distribution beginning at d for a reinsurance contract beginning at point of attachment T and 
having upper limit C. M = million; B = billion. The total E(L) is based on the Poisson frequency distribution with mean of 3.6. Figures are given in dollar values 
unless otherwise specified. 



Table 3B.2 Expected RMS Loss Severities for Various Layers for the Southeastern United States, Total Expected Loss for 525-550 
Billion Layer 

Empirical Lognormal Pareto Burr 12 GB2 

Losses simulated by RMS 
E(L) 
W L )  
E(L; $12.04M, $5B, $12.04M) 
EtL; $12.04M, $10B, $12.04M) 
E(L; $12.04M, $15B, $12.04M) 
E(L; $12.04M, $20B, $12.04M) 

E(L; $12.04M, $30B, $12.04M) 
E(L; $12.04M, $35B, $12.04M) 
E(L; $12.04M, $40B, $12.04M) 
E(L; $12.04M, $45B, $12.04M) 
E(L; $12.04M, $50B, $12.04M) 
E(L; $25B, $50B, $12.04M) 
Prob[L > $25levent occurs] = p, (%) 
Prob [L > $251 = p* (Poisson 

E(L; $25B, $50B, $12.04MI 

E(L; $12.04M, $25B, $12.04M) 

param. = 1.35) 

L > $25B) 
Total E(L): $25-$50B layer 

975.63M 
4,433.98M 

900.14M 
1,156.90M 
1,302.95M 
1,390.10M 
1,452.58M 
1,502.66M 
1,538.50M 
1,568.99M 
1,593.99M 
1,618.99M 

166.42M 
1.20 

,0161 

13,867.94M 
223.34M 

2,408.4YM 
27,495.06M 

Y01.68M 
1 ,I  72.45M 
1,334.42M 
1,447.72M 
1,533.46M 
1,601.58M 
1,657.53M 
1,704.61M 
1,744.97M 
1,780.10M 

246.64M 
1.52 

.0203 

16,276.46M 
330.30M 

Undefined 
Undefined 
1,047.91 M 
1,678.27M 
2,209.87M 
2,686.02M 
3,124.78M 
3,535.86M 
3,925.29M 
4,297.07M 
4,654.10M 
4,998.50M 
1,873.72M 

8.47 

,1083 

22,111.64M 
2,395.22M 

Undefined 
Undefined 

845.30M 
1,089.65M 
1,244.13M 
1,358.52M 
1,449.86M 
1,526.15M 
1,591.80M 
1,649.49M 
1,701.02M 
1,747.62M 

297.76M 
1.66 

,0222 

17,963.53M 
398.38M 

3,032.44111 
Undefined 

861.Y5M 
1,096.86M 
1,236.16M 
1,334.13M 
1,409.07M 
1,469.39M 
I ,5 1Y.61M 
1,562.49M 
1,599.78M 
1,632.70M 

223.63M 
1.33 

.0179 

16,776.73M 
299.86M 

Nore: E(L; Z C, d )  = expected value of loss severity (15) for a shifted distribution beginning at d for a reinsurance contract beginning at point of attachment T and 
having upper limit C. M = million; B = billion. The total E(L) is based on the Poisson frequency distribution with mean of 1.35. Figures are given in dollar values 
unless otherwise specified. 



Table 3B.3 Expected RMS Loss Severities for Various Layers for Florida, Total Expected Loss for $25-$50 Billion Layer 

Empirical Lognormal Pareto Burr 12 GB2 

Lasses simulated by RMS 
E(L) 
W L )  
E(L; $12.04M, $5B, $12.04M) 
E(L; $12.04M, $10B, $12.04M) 
E(L; $12.04M, $15B, $12.04M) 
E(L; $12.04M, $20B, $12.04M) 
E(L; $12.04M, $25B, $12.04M) 
E(L; $12.04M, $30B, $12.04M) 
E(L; $12.04M, $35B, $12.04M) 
E(L; $12.04M, $40B, $12.04M) 
E(L; $12.04M, $45B, $12.04M) 
E(L; $12.04M, $50B, $12.04M) 
E(L; $25B, $50B, $12.04M) 
Prob[L > $25levent occurs] = p, (%) 
Prob [ L  > $251 = p* (Poisson 

E(L; $25B, $50B, $12.04MI 
param. = 33)  

L > $25B) 
Total E(L): $25-$50B Layer 

987.67M 
4,433.98M 
1,135.33M 
1,509.92M 
1,704.34M 
1,832.49M 
1,929.21M 
2,002.29M 
2,060.75M 
2,103.77M 
2,143.77M 
2,183.77M 

254.57M 
1.70 

0.0141 

14,974.47M 
210.56M 

3,675.52M 
46,828.08M 

1,099.92M 
1,480.25M 
1,718.89M 
1,891.23M 
2,024.88M 
2,133.18M 
2,223.63M 
2,300.85M 
2,367.91M 
2,426.94M 

402.06M 
2.39 

0.0197 

16,839.55M 
331.61M 

Undefined 
Undefined 
1,189.12M 
1,940.19M 
2,582.86M 
3,163.90M 
3,703.04M 
4,210.97M 
4,694.35M 
5,157.65M 
5,604.09M 
6,036.06M 
2,333.02M 

10.44 

0.0833 

22,339.15M 
1,861.27M 

132,471,003.80M 
Undefined 

1,066.08M 
1,397.98M 
1,604.34M 
1,754.58M 
1,872.77M 
1,970.17M 
2,052.98M 
2,124.98M 
2,188.66M 
2,245.72M 

372.95M 
2.13 

0.0176 

17,514.89M 
307.93M 

2,557.73M 
234,918,436.58M 

1,104.32M 
1,445.22M 
1,642.39M 
1,775.82M 
1,873.74M 
1,949.35M 
2,009.83M 
2,059.48M 
2,101.07M 
2,136.47M 

262.73M 
1.70 

0.0141 

15,414.08M 
217.31M 

Nore: ECL; 7: C, d )  = expected value of loss seventy (L)  for a shifted distribution beginning at d for a reinsurance contract beginning at point of attachment T and 
having upper limit C. M = million; B = billion. The total E(L) is based on the Poisson frequency distribution with mean of 0.83. Figures are given in dollar values 
unless otherwise specified. 
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Comment Sanjiv Ranjan Das 

Catastrophic losses ensue from large acts of God, such as earthquakes, huni- 
canes, etc. The insurance industry uses the term cuts to describe these events 
and the contracts underwritten for these events. The paper by Cummins, Lewis, 
and Phillips is a paper on what I will denote bigcats. Bigcats are single events 
that result in losses exceeding $25 billion. The objective of this paper is to 
price one-year reinsurance contracts on bigcats. These are underwritings on 
single events on loss magnitudes that we have not as yet experienced. The 
motivation is simple: losses of this size will eventually occur, and, without a 
good mechanism to handle them, the reinsurance industry as well as consum- 
ers of insurance will suffer severe economic crises. 

Cummins, Lewis, and Phillips offer the following in the paper: (i) a proposal 
that the government write these bigcat insurance covers and (ii) a mathematical 
exposition of what these contracts will cost. By examining the past distribution 
of large losses, they develop a methodology to price these contracts and then 
provide indicative prices. Using, for example, the Burr 12 distribution, they 
arrive at a severity-of-loss estimate of about $17 billion on average, and mul- 
tiplying this by a 2 percent probability of occurrence results in an expected 
loss of about $350 million. 

My review of the paper falls into four categories: (1) the need for these 
contracts; (2) an examination of the proposed mechanics of these contracts; 
(3) an examination of the pricing method; and (4) a proposal for binary con- 
tracts . 

Sanjiv Das is assistant professor of finance at the Harvard Business School and a faculty re- 
search fellow of the National Bureau of Economic Research. 
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Necessity of the Bigcat Contract 

Is the bigcat contract much ado about nothing? Should the government ex- 
pend costly resources on this proposal? It may be akin to the development of 
the superheavyweight category in world boxing tourneys when people were 
satisfied with the heavyweight version. A little probability work shows, how- 
ever, that the proposal is not only justified but timely as well. 

Consider some of the data in the paper. The expected number of cats per 
year is A = 2.2 (Poisson arrival rate parameter A). A simple back-of-the- 
envelope calculation from the data in table 3.3 of the paper will show that the 
probability of the loss exceeding $25 billion is 0.005. Thus, the probability of 
occurrence of a bigcat is on the order of 1 percent per year. On average, we 
will see one bigcat every one hundred years. This does not sound like a cause 
for concern. However, this is not the correct way to look at this question. What 
we need to examine is the probability of at least one occurrence in one hundred 
years, not the average number of occurrences: 

N Poisson Probability 

,1108 
,3679 
,1839 
.06 13 

This turns out to be 89 percent! Hence, it is clearly a matter requiring attention. 
Similar analysis for twenty-five years gives a probability of at least one bigcat 
as 23 percent, and for ten years the probability is 10 percent. It is clear that, if 
the numbers hold, we will see a bigcat in the near future. 

The issue is, can we live with it? In assessing this matter, we must consider 
whether allowing a certain number of reinsurance firms to go down will have 
a detrimental effect on the insurance industry. On balance, it probably will. On 
another tack, discussion with industry representatives suggests that the pricing 
at lower levels of coverage seems to be affected by the difficulty of reinsuring 
bigcat risk. The paper argues in addition that the government is better placed 
to provide the time diversification needed to hedge these contracts and that the 
provision of this contract will provide better assessment of this risk as well as 
formalizing a system where the participants pay for the coverage rather than 
relying on endgame government bailouts. 

Eventually, cross-sectional diversification will overtake time diversification 
as the means to manage this risk. Cross-sectional pooling of risk also offers a 
better market in that there will likely exist larger numbers of buyers and sellers 
of the risk (i.e., a two-way market), as opposed to the current proposal, which 
envisages one seller and many buyers. In sum, there is a clear need for this 
type of contract, as a starter to a full-fledged market in bigcat risk. 
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Contract Mechanics 

The toughest issues to be dealt with in any proposal arise from the imple- 
mentation mechanics. This proposal is no exception. There are several issues 
that need attention. 

1. The first is delayed settlement: the contract is written on losses aggre- 
gated over eighteen months after the date of the event. Given this, buyers of 
the contract must wait to obtain the proceeds from the government. With what 
is almost certainly a badly eroded capital base, the reinsurance firms may not 
be able to wait that long. Of course, they may securitize their expected claim 
against the government, but this will mean taking a discount on the value of 
the claim, which may be quite large, given both the “distress” nature of the 
sale and the uncertainty of the true value of the claim. 

2. The contract with one seller who sets a reservation price may actually 
distort the fair value of the insurance in this market. 

3. The third issue is auction design: here several issues need addressing, 
especially in the light of the fact that both price and quantity risk are severe. 
The winner’s curse would be large, making the setting of the reservation price 
critical, to ensure not only that the government achieves a fair reserve but also 
that the reservation price offers a good signal of value. The likelihood of one 
firm garnering a disproportionate amount of this cover appears high as well. 
4. The fourth issue is the rollover version of the contract: the contract envis- 

ages a rollover option that allows the buyer to renew the contract for the rest 
of the year if within the year a bigcat occurs. The renewal is made for the 
remaining part of the year at a time-prorated value of the original contract. 
This rollover design has two flaws: (i) If the analogy of options is used, the 
time value of the contract is not equally distributed over the life of the option 
and tends to decay rapidly at times closer to maturity. If this is the case, the 
rollover would be overpriced. (ii) If the arrivals of cats are not independently 
and identically distributed but positively autocorrelated, as is surely the case 
with humcane risk, then the rollover is underpriced. Hence, a more careful 
specification of the rollover contract is called for. 

One possible suggestion may be to write contracts on the change in the price 
of insurance within a short period immediately after the cat. We observe that 
the price of insurance rises when a catastrophic event occurs and is correlated 
with the size of the event. This happens because the insurance industry needs 
to raise prices to cover higher costs of capital given capital erosion, and the 
rise in prices is partly demand driven since people seem to rush out and buy 
insurance when alarmed by a large catastrophe. This has the advantage of 
(i) being directly and immediately measurable, (ii) being traded, (iii) avoiding 
the delayed-settlement problem, all of which would make for a more liquid 
market. However, this assumes that prices react to cat size with a high degree 
of correlation (i.e., low-basis risk). It is not clear that this is so, and it calls for 
further empirical investigation. 
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Pricing Approaches 

The paper makes a difficult evaluation problem appear easy. The approach 
examines the fit of several statistical distributions to the data on loss severity 
and finds that the Burr 12 and GB2 distributions provide a good fit. While an 
options approach may also be used to come up with the insurance value of the 
contracts, it is hard to justify it, given that risk-neutral valuation does not apply 
in the absence of an ability to replicate the option with an underlying secu- 
rity/asset. 

Pricing these contracts requires three separate analyses: ( 1 )  a scheme to de- 
velop a distribution of loss severity; (2) estimation of the hazard or event rate; 
and (3) use of an appropriate cost-of-capital or discount rate to compute the 
present value of the losses. These three are clearly in descending order of com- 
plexity, and the paper rightly focuses on the most complex analysis, developing 
a satisfactory and pleasing methodology. 

If one has to raise a red flag, it is about what is often called the “Star Trek” 
problem. Since we have never seen a bigcat as yet, we are employing statistical 
analysis to make forecasts about a zone where we have never been before! The 
degree of confidence in this exercise must perforce be weak. 

Finally, one suggestion about the modeling: we do know that the standard 
deviation of losses tends to increase as we go into higher and higher layers of 
risk; that is, volatility of loss severity u ( T )  is increasing in the trigger level ( T ) ,  
or du(T)/dT > 0. Use of this fact may bring more structure to the modeling 
method and sharpen the confidence levels in the pricing results. 

Binary Contracts 

In some cases, loss occurrence is easier to forecast than loss severity. A good 
example of this is hurricanes, where advances in weather-forecasting technol- 
ogy have made the prediction of hurricane arrivals more facile. By writing 
binary contracts that pay off a fixed amount only on the occurrence of the 
bigcat, not on the severity, the writer of the contract will be able to price it more 
accurately. While this increases basis risk substantially, at the bigcat level, with 
triggers of $25 billion, the reinsurer is more concerned with credit risk than 
basis risk. There are several advantages of the binary contract, and, indeed, 
several participants in the market already trade such instruments. The benefits 
are the following: (1 )  The binary contract avoids the “Star Trek” problem. 
(2) The per contract risk can be quantified by the writer of the contract. ( 3 )  The 
market is forced to forecast severity but now has an available instrument to 
trade it. (4) It is easier to offer multiple maturities of contracts. (5) Implied 
hazard rates can be traded, just the way the market for equity options trades 
implied volatilities. (6) It will be easier to make a market, and demand and 
supply will therefore set price in a liquid two-way market. It avoids the para- 
digm of one seller and many buyers. (7) Pure jump-process option-pricing 
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technology may be used. (8) Plenty of physical forecasting expertise now ex- 
ists for these risks. 

Conclusion 

The paper makes an important contribution in highlighting the urgent need 
for bigcat contracts. While there are several mechanics and pricing issues that 
need sorting out, the authors should be pleased that their work will provide a 
first benchmark for contracting in this area and set a standard of quality for 
future work. With the establishment of indexes on cat risk, a new generation 
of pricing models such as this one will soon be spawned. It is truly an exciting 
time for modelers in this industry-this paper is the tip of the iceberg. 

Comment James A. Tilley 

One thing that is becoming clear is that it is easier to be a discussant the later 
in the conference one speaks because some of the good points one wants to 
make have already been very well expressed by others. It is too difficult for me 
to resist making comments about the role of the federal government and the 
proposed manner of federal government involvement in the catastrophic loss 
problem, but I will also live up to my assigned task of commenting on the 
pricing methodology proposed by the authors. 

The first key question is, Does the federal government need to be involved 
at all-can the private sector handle the problem by itself? Many advocates of 
leaving it to the private sector base their view on the huge capital base of the 
insurance/reinsurance industry, the ability of the industry to diversify across 
risks other than property-catastrophe, the possibility of adopting more aggres- 
sive investment strategies that have high returns and high volatilities but little 
if any correlation with the insurance risks underwritten, and the hope that con- 
straints on the state regulation of premium rates for personal lines can be eased 
or eliminated. Still, I have not seen any thorough, definitive analysis to suggest 
that the private sector alone can cope with the financial consequence of mega- 
disasters, either now or in the future. 

The second key question is, If the federal government should participate, are 
the proposed $25-$50 billion excess-of-loss (XOL) contracts the best way? 
Several participants have made good points already. I will repeat them briefly 
and then add a few points not yet raised. 

1. The fundamental issue is whether federal government involvement 
should be on a basis of risk transfer or riskfinancing. An associated issue is 

James A. Tilley is managing director and chief information officer of information technology at 
Morgan Stanley. 
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whether the involvement should be ex ante (risk transfer) or ex post (risk fi- 
nancing). Chris Milton of AIG has already argued in discussion here for the 
use of “transitory capital” in lieu of permanent capital. I think that that is con- 
sistent with a financing view; that is, the federal government should be ready 
to lend when required. 

2. I agree completely with Aaron Stem’s comment that, if the proposed fed- 
eral XOL contracts are used, they should cover losses on an aggregate basis 
rather than a per occurrence basis. An aggregate basis is consistent with the 
notion of the federal government serving an industry “backstop” role, whereas 
an occurrence basis is not. 

3. If the federal XOL contracts are utilized, how high should the attachment 
be? Should it be set at a twenty-five-, fifty-, or one-hundred-year return likeli- 
hood, or should the probability of attachment be even more remote? Again, 
this is a question of private- versus public-sector involvement and underscores 
the role of the federal government as providing a backstop to the industry. 
4. Should there be more than one layer of federal XOL contracts so that 

even higher caps can be provided, thus enhancing the value of the federal gov- 
ernment backup to the insurance industry? 

5. Is the basis risk imposed on the purchasers of the call-spread contracts 
so great as to largely negate the hedging value of the contracts? To what level 
of geography would the contracts have to be refined to deal satisfactorily with 
basis risk? 

6. One idea that may bear fruit is the mandatory purchase of the federal 
XOL contracts by the industry, assuming that the attachment point were high 
enough and the price low enough (e.g., the reservation price). Such mandatory 
purchase could mitigate basis risk greatly because the federal government 
would in essence be underwriting the entire industry. If the issue of individual 
insurer attachment points could be dealt with satisfactorily, each insurer could 
make recovery in proportion to underwritten net losses (UNL) in lieu of a pre- 
determined market share of industry losses. This approach is equivalent to the 
use of federal XOL contracts in combination with intercompany swaps of 
industry-based recovery in return for UNL-based recovery. 

Let me now turn to my explicit assignment of commenting on the authors’ 
proposed pricing methodology for the federal XOL contracts. A good starting 
point is the fundamental actuarial formula: 

reinsurance premium = “pure premium” to cover expected losses 

+ expense loading + risk loading. 

The risk-loading component is usually developed from notions of required 
capital to support the risks underwritten via the contract and the reinsurer’s 
cost of that capital. The concept required capital should account for the spread 
of risk in the reinsurer’s entire portfolio, both cross-sectionally and over time. 
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The variance of the reinsurer’s loss distribution and more particularly, the risk 
of ruin underpin the calculation of the risk loading. 

The problem posed by catastrophic losses is that the ratio of the standard 
deviation to the mean of the loss distribution applying to an XOL contract in- 
creases dramatically as the attachment for the XOLcover increases, actually ren- 
dering risk transfer uneconomical at some point. That is, at such a point, there is 
no price acceptable to both reinsurer and cedent. 

The authors point out that the federal government is in a unique position to 
take a nearly infinite time horizon and thus fully exploit the benefit on intertem- 
poral spreading to reduce the risk loading to zero. However, the authors seem 
to advocate building a risk load into the XOL contract pricing in order to avoid 
“crowding out” the private sector. My question to the authors is, If the federal 
government backstop of the insurance industry triggers only at a very high 
level, and if the federal government has a critical competitive advantage due to 
long-run intertemporal spreading, why would the private sector even consider 
playing the game? The industry has more than enough to worry about without 
taking on the megacatastrophic problem as well. 

As a final point, I would like to comment on the calibration of the pure- 
premium component of the pricing formula. The authors’ work demonstrates 
that distribution assumptions matter a great deal, as one expected they would- 
RMS versus PCS, GB2 versus lognormal, etc., all make a difference. It is dif- 
ficult to see how the federal government would be able to gauge, even over 
the very long run, whether the reservation price has been established properly. 
Moreover, would federal politicians be able to resist the “payback” mentality 
of the reinsurance industry following a megacatastrophe? Would the prices 
for federal XOL contracts then be jacked up? The notions of infinite-horizon 
intertemporal spreading and “here-and-now’’ political decision realities seem 
to conflict. 

In summary, I think that the product structure and pricing concepts advanced 
in the authors’ paper merit serious attention, but, as always for proposed solu- 
tions to vexing issues, early work often raises even more questions-that is its 
essential value, after all. The authors are to be congratulated for their contribu- 
tions. 
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