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Abstract

In general, it is challenging to release differentially private versions of survey-weighted statis-
tics with low error for acceptable privacy loss. This is because weighted statistics from complex
sample survey data can be more sensitive to individual survey response and weight values than
unweighted statistics, resulting in DP mechanisms that can add substantial noise to the unbiased
estimate of the finite population quantity. On the other hand, simply disregarding the survey
weights can result in a biased estimate that also underestimates the sampling variance. Thus,
the problem of releasing an accurate survey-weighted estimate essentially involves a trade-off
among bias, precision, and privacy. We leverage this trade-off to develop a DP method for
estimating finite population quantities. The key step is to privately estimate a hyperparameter
that determines how much to regularize or shrink survey weights as a function of privacy loss.
We illustrate the differentially private finite population estimation using the Panel Study of
Income Dynamics. We show that optimal strategies for releasing DP survey-weighted mean in-
come estimates require orders-of-magnitude less DP noise than naively using the original survey
weights without modification. We then discuss its implications for integrating DP into survey
research.

1 Introduction

As part of efforts to protect data subjects’ privacy and confidentiality, data stewards can release
statistics that satisfy differential privacy (DP) [9, 10]. To date, typical applications of DP have
been based on data from censuses or administrative databases. Often, however, statistics are
based on surveys with complex designs, e.g., using multi-stage, unequal probability sampling. It
is well known that analysts should account for the design in inferences, which is typically done
by using survey weights. Survey-weighted statistics offer unbiased and consistent estimates for
finite population quantities, such as population means and totals. Yet, as we describe below,
survey weights introduce challenges to implementing DP methods. These challenges motivate
our work: how might data stewards apply DP to release survey-weighted statistics from complex
sample surveys?

Preliminary work at the intersection of DP and survey statistics has focused on synthetic
data generation with weighted distributions [14], estimation under classical sampling designs
like stratified sampling [16], and interpretations of survey sampling methods for their privacy
amplification properties [6, 13]. Each of these approaches attempts to utilize as much informa-
tion as possible about the sampling process. However, weighting schemes can cause practical
problems for DP. Weighted statistics can have significantly larger sensitivities than their un-
weighted counterparts, hence requiring substantially more noise to provide the equivalent level
of DP protections at the same level of privacy loss [8]. Of course, one could avoid the associated
increase in the DP noise variance by disregarding the sampling weights in estimation. Indeed,
this can be appealing when the weighted and unweighted estimates are similar, which can occur
when the survey weights are uncorrelated with the particular survey variable of interest [17, 5].
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However, when this is not the case, the data steward ends up adding noise to a (perhaps severely)
biased estimate. Additionally, anomalously large survey weights can substantially increase the
variability of survey statistics, prompting approaches to smoothing the estimates or regularizing
survey weights [11, 4, 21, 22].

Introducing DP into survey inference suggests that the degree of weight regularization should
depend on privacy loss budgets. Just as there is a bias-variance-privacy trade-off for mean esti-
mation with independently identically distributed (iid) records [15], similar three-way trade-offs
must be made when analyzing survey-weighted quantities. We propose methods for DP survey-
weighted estimates where the optimal degree of regularization depends on the confidential data.
In this setting, we must consume privacy loss to estimate this optimal degree of regularization
and the statistics of interest. Doing so allows us to adaptively consume privacy loss budget for
fine-tuning uncertainty quantification when constructing interval estimates and assessing their
coverage properties.

1.1 Contributions

We summarize our contributions here for the full paper accompanying this chapter:

1. We analyze the three-way relationship between privacy loss, accuracy, and bias emerging
from survey data. To do this, we introduce a regularization parameter λ ∈ [0, 1] that
linearly shrinks the survey weights to a constant when λ = 1. For any survey sample,
there exists an “optimal” value λ∗ which minimizes DP mean-squared error (for a fixed
privacy loss) that depends on the sample size, response range, possible weighting designs,
and the difference between the unweighted and weighted mean estimates. We prove that
λ∗ > 0 (for any informative sampling design). Similarly, we prove that for any fixed privacy
loss, there is a limit to the amount of bias that can be corrected by design-based weight
adjustment without requiring DP noise that exceeds said correction.

2. We propose a two-step procedure to estimate survey-weighted population means using
ρ-zero-concentrated Differential Privacy ρ-zCDP [7]. First, we use the exponential mecha-
nism to estimate λ∗; then we use this output to shrink the survey weights toward uniform
values and estimate the population mean using the Gaussian mechanism. We also provide
different asymptotic and finite-sample approaches to quantifying errors due to sampling,
weight shrinkage, and DP noise, allowing users to construct DP confidence intervals for
our population mean estimates.

3. We demonstrate our methodology on survey microdata from the Panel Study of Income
Dynamics (PSID) [24], a longitudinal survey containing family-level statistics on income
sources and other sociodemographic information and oversampling from lower income sub-
populations. We show how different response variables require different degrees of survey
weight regularization, allowing us to more efficiently tailor DP privacy loss budgets when
estimating multiple population means for different response variables. We also empirically
validate our uncertainty quantification properties, including accuracy and coverage.

1.2 Related Literature

While there is an extensive literature on differentially private statistical analyses (see [23] for a
review) and a separate literature on methods for trimming or regularizing survey weights [12],
there is little literature at their intersection. Many DP algorithms rely on the ”amplification by
sub-sampling” property, wherein applying a DP algorithm on a simple random sample without
replacement yields smaller privacy loss than the same algorithm applied to the entire population
[3]. However, for survey designs besides simple random sampling, this property may not hold
[6] nor would it always improve accuracy [13]. We consider a complex sample survey design
where the weights themselves contain all relevant sampling information and, therefore, must
be protected with DP. We do not consider the release of auxiliary data used to construct final
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adjustment weights, instead isolating the privacy cost of incorporating survey design exclusively
within the weights.

The most direct line of work compared to ours uses methods that generate synthetic data
samples containing survey responses and weights [14]. These methods can produce synthetic
data that are interoperable with existing analyses and admit combining-rules-based approaches
to inferences with synthetic data [20]. Our approach differs in key ways. First, we directly
use survey-weighted estimators as opposed to working through multiple synthetic datasets and
inferences via combining rules. Second, we provide decision-making guidelines for whether
certain kinds of weighting corrections can be sufficiently estimated using DP at a given sample
size.

2 Methods

In this section, we summarize our main theoretical findings here. Full derivations and results
are available in the technical paper accompanying this book chapter.

2.1 Notation and Problem Definition

We consider a response variable and design-based survey weights {(yi, wi)}Ni=1 lying within
bounded intervals [LY , UY ]× [LW , UW ] from a population of N observations, where we observe
the first i ∈ [n] units and we do not observe i ∈ {n+1, n+2, . . . , N}. For convenience, we define
∆W ≜ UW − LW , and without loss of generality, we assume LY = 0 and 1 ≤ LW ≤ UW . We
will use y and w to correspond to the vector of n observed samples and weights, respectively.

Our goal is to estimate the population mean θ ≜ 1
N

∑N
i=1 yi using the survey-weighted

mean θ̂(y,w) ≜ 1
N

∑n
i=1 yiwi, assuming we only have access to the survey responses and the

weights. The variability of θ̂ about θ depends on our sampling mechanism, which we assume
is fully characterized by the survey weights. This allows us to treat the yis and wis as fixed
constants, making our analysis consistent with DP approaches that treat confidential data entries
as constants from a fixed “schema” of possible values.

We focus on the case where the weights correspond to probabilities of inclusion, i.e. w−1
i ≜

πi = P(Ii = 1). Our goal is to release a confidence interval around θ̂ that contains θ while
satisfying DP, specifically ρ-zero concentrated differential privacy (ρ-zCDP [7]) with respect to
both the survey weights and responses. Under ρ-zCDP, for any two datasets that differ on one
record’s response and survey weight, the distributions of the hypothetically released statistics
are close together, with distance measured by the privacy loss parameter ρ. Greater values of ρ
correspond to greater disclosure risks and less noise injected into the statistics.

Note that our analysis assumes that survey weights are fixed properties of individual records
that do not change depending on which units appear in the realized sample. This helps align our
analysis with standard DP analyses that treat observed confidential data (in this case, survey
responses and weights) as constants instead of random variables. We additionally assume that
the population and sample sizes, N and n, respectively, are public information. While this as-
sumption reflects standard practice for publishing survey metadata, there may be confidentiality
concerns if membership in the population under study is privacy-concerning.

The canonical method for satisfying ρ-zCDP requires adding Gaussian noise to statistics
whose variance is a function of the statistic’s sensitivity, or how much the statistic could maxi-
mally change when modifying one possible entry. In this setting, the sensitivity of the weighted
estimator is given by

∆(θ̂) = sup
(y,w)∼M (y′,w′)

∣∣∣θ̂(y,w)− θ̂(y′,w′)
∣∣∣ = UWUY

N
. (1)
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So to satisfy ρ-zCDP, we could release

θ̂(ρ)(y,w) ≜ θ̂(y,w) + ε, ε ∼ N

(
0,

∆(θ̂)2

2ρ

)
. (2)

This naive approach requires Gaussian noise with variance that grows with U2
W , which could

be prohibitively expensive if UW is large (i.e., if some units have a significantly larger survey
weight than others). Such issues are especially pronounced for surveys, where typical sample
sizes are much smaller than those used for DP evaluations [8].

To motivate an alternate approach, let θ̂0 be the unweighted sample mean, allowing us to
suggestively rewrite

θ̂ = θ̂0 + Sign(θ̂ − θ̂0)|θ̂ − θ̂0|. (3)

The first term in the estimand is the standard, low-sensitivity unweighted mean for which
classical DP release mechanisms offer optimal utility guarantees [2]. The second term in the
estimand contains two components which we call the weighting bias sign and absolute weighting
discrepancy (AWD), respectively. The AWD’s high sensitivity makes DP survey estimation
difficult in practice. When survey response variables and survey weights are highly correlated
do we see large AWD values; when the two are less correlated, the AWD can be quite small.
Therefore we should consider not only whether it’s possible to inflate statistic sensitivities to
accommodate survey weighting, but whether such an inflation significantly changes our resulting
inferences.

We consider a regularization parameter λ ∈ [0, 1] that reduces our estimand’s dependence on
AWD by shrinking our survey weights towards uniform values. We define this using the function
Gλ and the associated biased estimate θ̂λ

Gλ(w) ≜ (1− λ)w +
λN

n
1n, θ̂λ(y,w) = θ̂(y, Gλ(w)). (4)

Estimating θ̂λ is easier under ρ-zCDP because the statistic is less sensitive to changes in survey
weights by design. This reduction in sensitivity comes at a cost based on the difference between
θ̂(y, Gλ(w)) and θ̂(y,w). We give this quantity a name, mechanism bias, to quantify bias
induced by the DP mechanism, defined as

D(λ) ≜ Eε[θ̂
(ρ)
λ (y,w)]− θ̂ = λ(θ̂0 − θ̂). (5)

Using this expression for mechanism bias, we can consider the mean-squared error (MSE) about
the confidential non-DP estimate

ℓ(λ;y,w) = Eε

[
(θ̂

(ρ)
λ − θ̂)2

]
=

∆(θ̂λ)
2

2ρ
+D(λ)2. (6)

Equation (6) characterizes a three-way “bias-variance-privacy” trilemma for DP survey estima-
tion. As we reduce the mechanism bias of our survey estimates, we require more additive noise
to satisfy ρ-zCDP; moreover, this effect becomes more extreme as ρ gets smaller. If we were
able to optimally navigate this trade-off for a fixed value of ρ, we could try to minimize ℓ as a
function of λ. This yields the following Lemma.

Lemma 1. Consider minimizing the loss function in Equation (6). Then

1. The MSE in Equation (6) is minimized by

λ∗ ≜ min

1,

UW

ρ

(
UY

N

)2 (
UW − N

n

)[
1
ρ

(
UY

N

)2 (
UW − N

n

)2
+ 2(θ̂0 − θ̂)2

]
 . (7)

2. λ∗ > 0 iff UW > N/n.

4



3. λ∗ < 1 iff ∣∣∣θ̂0 − θ̂
∣∣∣ >

√
U2
Y

2ρNn

(
UW − N

n

)
, (8)

or, equivalently,

ρ >
U2
Y

2(θ̂0 − θ̂)2Nn

(
UW − N

n

)
. (9)

Lemma 1 has an interesting interpretation. First, if the weighting scheme is informative
(i.e., if UW > N/n), then is it never optimal to use survey weights as-is without some degree of
regularization (i.e., λ∗ > 0). Second, if the effect of the mechanism bias introduced by shrinking
survey weights is not sufficiently large, or if ρ is sufficiently small, then the optimal DP strategy
to minimize ℓ(λ·;y,w) is to ignore the survey weights entirely (i.e., λ∗ = 1).

The optimal degree of regularization λ∗ depends on the confidential data through the AWD,
|θ̂0 − θ̂|. Therefore, we propose the following two-step approach to estimating θ̂ using (ρ1 + ρ2)-
zCDP:

1. Estimate λ∗ while satisfying ρ1-zCDP by using the exponential mechanism by sampling
λ̂(ρ1) from the density

f(λ) ∝ 1{λ∈[0,1]} exp

(
−

√
2ρ1

2∆(ℓ)
ℓ(λ;y,w)

)
, (10)

where we show ∆(ℓ) = (∆(θ̂)−∆(θ̂0))
2.

2. Sample θ̂
(ρ2)

λ̂(ρ1)
according to the Gaussian mechanism using weights shrunk with estimated

optimal lambda value λ̂(ρ1).

By using λ̂(ρ1) as a noisy proxy for λ∗, we still maintain a high probability of reducing the
noise needed to satisfy ρ-zCDP for ρ = ρ1 + ρ2 when adding Gaussian noise to the weighted
mean estimate. We can then spend additional privacy loss budget to calculate DP confidence
intervals that simultaneously account for errors due to sampling and DP noise; their interval
width and coverage properties are discussed in the technical paper accompanying this chapter.

3 Data Analysis

To demonstrate the methodology, we analyze the PSID data and also simulate data. We use
family-level survey records published from 2019, comprising n = 9420 families from a population
of N ≈ 1.29 × 108 families. For the purposes of this evaluation, we treat the provided survey
weights as design-based (in reality they are adjusted; see [24] for details). Under this weighting
scheme, we are setting UW = 6× 104 as a conservative upper bound on our survey weights. We
seek to estimate population means of the variables in Table 1 using ρ-zCDP. In addition to the
collected variables in PSID, we include one synthesized random variable, bern, which contains
iid Bernoulli draws to simulate a random survey response that is theoretically independent of
the survey weights by construction.

Variable Description UY θ̂0 − θ̂

inc3 Cube-root-transformed family income 150 -.67

pov 1 if family income below poverty line, else 0 1 .022

nf Number of family members 20 .27

bern iid Bernoulli(.5) random draws 1 .004

Table 1: Selected PSID variables and the simulated Bernoulli variable.
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Figure 1: Bivariate scatter plot of survey weights (x-axis) and cube-root-transformed family income
values (y-axis), with univariate histograms on the margins and a spline estimate of the central
tendency in blue.

PSID facilitates research on employment, income, wealth, health, family and child develop-
ment, and other sociodemographic and economic topics, with an oversample of lower-income
families. We plot the relationship between survey weights and inc3 in Figure 1. The survey
weights are weakly correlated with family income (Spearman’s rank correlation of approximately
.14). If ignoring survey weights, we would underestimate the national average family income
and overestimate the national poverty rate, as expected.

Next, we visualize the privacy-bias-variance trade-off for the population mean estimates
of our different variables. Figure 2 shows how the theoretical bias-variance-privacy trade-off
manifests for estimating the survey-weighted average cube-root-transformed income (inc3) and
proportion of families below the 2019 poverty line (pov). For comparison purposes, we also
include two hypothetical responses: simulated iid Bernoulli(.5) responses (bern) and a copy of
the survey weights themselves (wgt), representing minimal and maximal correlation between
survey weights and responses. We plot the noise-to-signal ratio as the theoretical MSE over the
weighted mean estimate on the y-axis, with the regularization parameter λ on the x-axis. We
see that as the magnitude of the bias decreases (moving from top left subfigure to bottom right
subfigure), the optimal MSE is achieved at larger values of λ∗ for the same privacy loss budget
ρ2. Moreover, as ρ2 decreases, λ∗ increases for each response variable under consideration. We
see that for reasonably small choices of ρ2, we tend to reject small λ to optimize the bias-variance
trade-off at each fixed ρ2 value.

3.1 End-to-end DP Inferences

In this section, we simulate DP confidence intervals for the survey weighted population mean of
inc3, assessing their width and coverage properties. We consider ρ1, ρ2, ρ3 ∈ [10−3, 10−1], which
covers the full spectrum of regularization from λ∗, as shown in Figure 2. ρ1 and ρ2 correspond
to the privacy loss spent on estimating λ∗ and θ̂λ∗ , and ρ3 corresponds to the privacy loss spent
on estimating the confidence interval width. We also vary the interval width upper bound (i.e.,
the (1 − αv)*100% bound, shown by different colors in the following plot) to show trade-offs
between coverage and interval width.

6



Figure 2: Realized noise-to-signal (DP mean-squared error divided by non-DP mean estimate, y-
axis) as a function of λ (x-axis) for different values of privacy loss budget ρ2 (colored lines). Subplots
are ordered with decreasing correlation between response variable and survey weights. Points refer
to theoretical minimum values, which depend on confidential data and do not satisfy DP.
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Figure 3: Ratio of DP to non-DP confidence interval widths (y-axis) by values of ρ1 (x-axis), ρ2
(subplot columns), ρ3 (subplot rows), and αv (colors). Dashed line corresponds to equality (1:1
ratio).
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Figure 3 compares the interval widths of our proposed algorithm to their non-DP counter-
parts. For each violin plot, we show the distribution of the ratio for the DP confidence interval
over the non-DP confidence interval. The dashed horizontal line at 1.0 corresponds to equality.
As expected, increasing either ρ1, ρ2, or ρ3 decreases the DP confidence interval width relative
to the non-DP interval width. Of particular interest is different values for αv, represented by
the different violin plot colors (.5, .05, and .01, respectively). As expected, decreasing αv gives
us wider confidence intervals by accounting for more potential uncertainty in the interval width.

4 Discussion

Our work theoretically and empirically suggests that survey weight regularization, when used
appropriately, can reduce the amount of additional noise needed to preserve DP. By adaptively
considering how much to shrink weights toward uniform values while satisfying DP, we develop
methods that are operationally feasible while allowing uncertainty quantification at different
precision levels throughout the entire estimation process.

While our proposed methods can admit the construction of valid finite-sample confidence
intervals and asymptotic confidence intervals, different parameter choices may produce intervals
that are either too wide or narrow in practice. When selecting privacy loss budgets for each
stage of the algorithm, we recommend incorporating as much domain knowledge as possible.
For example, by simulating a distribution of plausible AWD values from prior knowledge, one
can establish which kinds of survey weighting biases could be correctable at different privacy
loss budgets without peeking at the confidential data.

While DP theoretically forbids using data-dependent hyperparameters without DP mech-
anisms, many commonly used DP algorithms and analyses do not adhere to this rule [1, 25],
necessarily yielding additional privacy vulnerabilities in practice [19, 18]. It could be the case
that tuning certain hyperparameters could substantially improve the end-to-end usefulness of
our estimators at a modest expense to privacy risk. Understanding this would require a much
more extensive and nuanced privacy analysis than a simple comparison of privacy loss budgets.
Still, such privacy analysis could help illuminate where DP itself fundamentally limits the kinds
of statistical validity offered in survey settings, where worst-case data generating scenarios may
be unrealistic in practice.
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