
Improving Privacy for Respondents in Randomized
Controlled Trials: A Differential Privacy Approach

Soumya Mukherjee1, Aratrika Mustafi1, Aleksandra Slavković1, and Lars
Vilhuber2

1Penn State, Department of Statistics
2Cornell University, Department of Economics

August 26, 2024



Abstract

Randomized controlled trials (RCTs) have become a powerful tool for assessing the impact
of interventions and policies in many contexts. Researchers have published an increasing
number of studies that rely on RCTs for at least part of the inference, and these studies
typically include the response data collected, de-identified, and sometimes protected through
traditional disclosure limitation methods. In our presentation and extended paper, we explore
the impact of applying differentially private methods on inference, computational feasibility
and accuracy, as a case study on a published article.

We find, not surprisingly, that robust but naïve methods yield strong protection, but at
great loss of inference ability. However, we also explore how a partial targeted relaxation as
well as a model-specific protection method can alleviate those concerns, at least in this one
case study.

The case study is part of a larger research program exploring the feasibility of stronger
privacy methods in real-world contexts. We briefly outline some of the consequences of
applying these methods for data openness, research transparency, and privacy of respondents.



1 Introduction

Randomized controlled trials (RCTs) have become a powerful tool for assessing the impact of

interventions and policies in many contexts (e.g., in economics, see the Nobel Prize lecture by

Duflo, 2020). Today, they are considered the gold standard for inference in the biomedical

fields and many social sciences. In economics, much of the growth has been since the 1990s.

Researchers have published an increasing number of studies that rely on RCTs for at least

part of the inference. In economics, the American Economic Association (AEA)’s Social

Science Registry had recorded over 8,000 registrations as of 2023, with more than 12,400

researchers associated with these registrations (Vilhuber, 2024).

In a parallel development, the quest for improved transparency in the social sciences has

led to more supplementary materials accompanying articles being made public as “replication

packages”. For instance, the flagship journal of the AEA, the American Economic Review

(AER), has required analysis data and code since 2004 (Bernanke, 2004), and the AEA journals

launched in 2009 implemented such a policy from creation.1 The increased availability of

complete replication packages has allowed other researchers to leverage the materials, and

conduct re-analyses and meta-analyses, furthering our understanding of the methods as well

as of the conclusions drawn from these studies.

The third development has been in the area of privacy protection methodology. While

privacy protection has long been a standard part of the toolkit of statistical agencies (e.g.,

Hundepool et al. (2012)) and ethical research guidelines, new formal privacy mechanisms,

such as various forms that satisfy differential privacy (DP)(Dwork et al., 2006, 2016; Dwork

and Roth, 2014), offer transparent, mathematically provable, and arguably stronger promises

of confidentiality.

Nevertheless, the typical (recent) guidance followed by researchers who conduct RCTs

primarily relies on weaker methods, such as de-identification (Department of Health and Hu-

man Services, 2012; Kopper, Sautmann and Turitto, 2020; DIME, 2020) and other traditional
1See Vilhuber (2020) and Vlaeminck (2021) for a review of reproducibility practices in economics.
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disclosure avoidance methods (e.g., k-anonymity (Samarati and Sweeney, 1998), l-diversity

(Machanavajjhala et al., 2006), and other aggregation-based methods (Hundepool et al.,

2012)). Most data included within replication packages allow for the exact reproduction of the

results in the papers, and is typically simply de-identified. We are not aware of the application

of DP in the context of the dissemination of data collected as part of RCTs, though some

(rare) surveys are conducted using randomized response.2 This suggests that much of the

current literature on RCTs publishes replication packages that contain inadequately protected

data. This is particularly concerning in the economic data setting we are exploring because

many of these studies have data from respondents in low- and middle-income countries, where

there may be lower legal protections than in Europe or North America.

We postulate that one of the possible reasons for the absence of strong privacy protection

methods in the more recent literature is that in contrast to many of the traditional disclosure

avoidance tools, the landscape for formal privacy protection tools is still evolving, and does

not have tools available for straightforward efficient use by non-specialists.3 Efficiency here is

defined as “perturbing inference as little as possible compared to the unprotected inference.”4

The present article is part of a project that aims to provide an assessment of the feasibility

of using privacy enhancing technologies (PETs), in particular differentially private methods,

for data publication and adjusted inference in the context of RCTs. Broadly, we aim to

contribute on two separate dimensions. First, in the context of data collected for RCTs, we

investigate the feasibility of preserving the generic quality of inference obtained using the

confidential data even when the same inference is performed using data endowed with privacy
2Randomized response (Warner, 1965) is shown to be a (distributed) DP mechanism, used at the collection

stage, and has been applied in various surveys, in particular on sensitive topics. A recent example explicitly
referencing it in data collection within an RCT is Kancharla and Kang (2021); the earliest (central) DP work
is of Vu and Slavkovic (2009).

3We are aware of the Two Ravens tool (D’Orazio, Deng and Shoemate, 2018), but have not seen usage of
it in the space we surveyed.

4Inference even in the “unprotected” case is already subject to uncertainty that is often not adequately
taken into account (Meager, 2019). This is even more important for the uncertainty and data modifications
that are generated through statistical disclosure limitation (SDL). Abowd and Schmutte (2015) and Slavkovic
and Seeman (2022) argue for the need to account for the privacy-preserving noise in analyses. Slavkovic
and Seeman (2022), and references therein, discuss a general way to adjust for privacy-preserving noise in
addition to other sources of uncertainty.
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protections that are stronger than the simple de-identification usually used. Second, we do so

while maintaining the feasibility of application, here defined as computational feasibility on

commodity hardware used by researchers in these fields (and in particular, by researchers in

low- and middle-income countries, where many RCTs are conducted). We do so while still

striving to maintain high transparency, i.e., the ability to continue publishing datasets that

allow others to verify any empirical claims made. We thus pursue three goals motivated by a

setting where the typical researcher wants to do the following:

Goal 1 publish a sufficiently precise privacy-protected inference of the effect of the treatment

on the treated from the model, given the data D;

Goal 2 release (publish) the privacy-protected database D̃ so that others can scrutinize the

analysis, while preserving the privacy of the respondents whose data are contained in

the database;

Goal 3 Apply privacy-protection methods in a way that is computationally tractable on

commodity computer hardware, i.e., a researcher laptop or at most a reasonably

dimensioned server.

Our focus on RCTs is intentionally narrow.5 We believe that exploring the impact of

privacy-preserving technologies in the context of RCTs is useful for several reasons. First,

statistical methods are, in general, straightforward: standard linear regression, difference-in-

difference methods, and possibly even simple difference in means across treated and untreated

populations. These are amongst the first analysis methods for which adaptations to DP

protection have been studied (e.g., Awan and Slavković, 2020; Alabi et al., 2020; Slavkovic

and Molinari, 2021; Barrientos et al., 2018; Bowen et al., 2020). If formal privacy-preserving

methods cannot be made to work “out-of-the-box” and at scale in this context, then it will

be much more difficult to argue for broader application. Second, most RCTs are small-scale,

using samples of the overall population, allowing us to avoid computational constraints when
5A somewhat different approach is taken by Rosenblatt et al. (2023), who start with frequently-used

published datasets and explore the (conceptual) reproducibility of analyses in articles that used such datasets.
They, too, focus on the simpler methods and find mixed results.
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algorithms scale with sample size N .6 Third, RCTs are often accompanied by pre-analysis

plans, with specific hypotheses in mind and with the intent to avoid false discovery. These

areas have also been explored within the DP framework (e.g., Vu and Slavkovic, 2009; Pistner,

2020; Dwork, Su and Zhang, 2021)). Furthermore, it is already understood in the privacy

community that the inherent noisiness of the sampling may affect inference (e.g., Slavkovic

and Seeman, 2022). The analogy between adding noise for the purpose of BHA (Meager,

2019), and adding noise for privacy protection may be convenient to improve the acceptance

of such methods. A similar Bayesian framework can be used to adjust noisy inference due to

privacy (e.g., Seeman, Slavkovic and Reimherr, 2020).

2 Methods

In our full paper Mukherjee et al. (TBD), we conduct a case study, using the data and analysis

code from a single published article — Blattman, Jamison and Sheridan (2017a) [henceforth

“BJS”]. Data and code are taken from their replication package (Blattman, Jamison and

Sheridan, 2017b). BJS report results from an RCT conducted in Liberia, in which young

delinquents were offered cognitive behavioral therapy, money, or both, in order to induce them

to reduce criminal and violent behavior. They measured a variety of outcomes, constructed

an index that summarizes these various outcomes, and analyze the effects of the experiment.

Not all interventions worked, and only a few outcomes are correlated with the intervention

in a statistically significant way.7 We apply our privacy-preserving mechanism to the data

collected by BJS and then apply BJS’s analysis methods to the protected data. The protected

data is constructed so as to be a drop-in replacement for the data originally published by

BJS. Importantly, we explicitly do not change the analysis methods used by the authors,

except where necessary to take into account the privacy-preserving mechanism.8

6We note that sampling might also allow us to leverage privacy-amplifying methods (Balle, Barthe and
Gaboardi, 2018), though we do not exploit that in this paper. We also note that DP was originally designed
with large rather than small samples in mind but the small-scale databases are as equally important in
practice.

7For more details, interested readers should consult the article.
8There are possibly many ways that other researchers might have analyzed the data collected by this

(or other) sets of authors. We do not explore those, but note that it is precisely through the availability of
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2.1 Basic setup

We use DP, which relies on the concept of ϵ-indistinguishability (Dwork et al., 2006;

Machanavajjhala and Kifer, 2015). An algorithm M satisfies (ϵ, δ)-differential privacy

(approximate-DP) for some ϵ, δ > 0 if for each of its possible outputs ω and for ev-

ery pair of databases D1, D2 that differ on the addition or removal of a single record,

P (M(D1) = ω) ≤ eϵP (M(D2) = ω)+δ. When δ = 0, an algorithm M satisfies ϵ-differential

privacy (pure-DP). In other words, given the outputs from two databases that differ only in

a single record are very “similar”, it is statistically very difficult to know if any particular

record was included in the database or not. The parameter ϵ > 0 is used to quantity the

privacy loss. There are many algorithms and mechanisms that satisfy these and related

definitions (e.g., see Desfontaines and Pejó, 2022). The fact that the outputs should be

“similar” should in principle help with maintaining similarity with inferences.

Consider a de-identified dataset D = [Y, T,X]. For convenience, we will call the de-

identified dataset “confidential,” because our goal is to truly anonymize it, recognizing that

de-identification is usually insufficient. The regression model of interest in the absence of

blocking variables is given by

Y = Tτ +Xγ + e, (1)

where T is n× t matrix of exhaustive assignment to treatment arms, τ is t-dimensional vector

of treatment effects, X is n× p matrix of explanatory covariates, γ is a p-dimensional vector

of coefficients, and e is n-dimensional error term with ei
i.i.d∼ N(0, σ2). The typical parameter

of interest is the treatment effect τ̂ , estimated from (1), with regression coefficients γ̂ often

ignored or of lesser importance.

2.2 Algorithms

We propose three different but related algorithms for privacy-protecting the confidential data

D and the inference concerning the treatment effects τ . All of them rely on a common base

replication packages that such differing approaches can be addressed – through replications.
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algorithm, applied to the covariate data X and treatment assignments T , but differ in how

they treat outcome variables Y and treatment effects τ . In all cases, our goal is to release a

sanitized replication database [Ỹ , T̃ , X̃] together with a sanitized inference concerning the

treatment effects τ (which includes treatment effect point and interval estimates, standard

errors and p-values for tests of significance of treatment effects). The algorithms differ in how

they process Y and associated inferences. We summarize the algorithms here, for details,

in particular on how to compare privacy loss across all three algorithms, see Mukherjee

et al. (TBD).9 Mukherjee et al. (2023) describes Algorithm 1 as presented at the 2023 NBER

workshop.

2.3 Base Algorithm

To create ϵ-DP privacy-protected covariate data X̃, we sample from an appropriately perturbed

multivariate histogram of X (e.g., see Dwork et al., 2006; Wasserman and Zhou, 2010).

The histogram counts are sanitized using the Laplace mechanism. Continuous variables are

discretized into bins using ‘precision’ ζ before we create the histogram.10 We sample from

the protected histogram to generate ϵ-DP protected X̃. We then reimplement the treatment

design, by doing random assignment for n synthetic treatment units,11 thus creating ϵ-DP

protected treatment indicators T̃ .

2.4 Algorithm 1: Hybrid-DP

Given
[
X̃, T̃

]
, the protected response Ỹ is created using a generative model that depends

on standard statistical inferential procedures performed on the confidential data D. The

generative model can use τ̂ obtained from estimating (1) on [X,T ], but could also use different

generative models (we report on such experiments in the full paper). Ỹ is obtained as
9The notation here is simplified for the sake of discussion.

10The precision of binning prescribes how many bins are created for each continuous variable dimension, as
a function of the sample size (for e.g., if ζ = 2

3 and p = 2, with both variables being continuous, the total

number of bins in the multivariate histogram is
(
n

2
3

)2

= n
4
3 ).

11In practice, we set n to be the same number as in the original X, though this is not strictly necessary.
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Ỹ := T̃ τ̂ + X̃γ̂ + E, (2)

where E ∼ N(0, σ̂2I). We then estimate (1), replacing [Y, T,X] with [Ỹ , T̃ , X̃], to obtain the

releaseable τ̃ . The confidential τ̂ are not published.

By using the parameter estimates [τ̂ , γ̂] obtained from the confidential data D in this

algorithm, it is expected that inference validity is preserved by the protection procedure.

The released τ̃ is nevertheless perturbed and therefore conventionally protected because it is

based on ϵ-DP-protected X̃ and model-based imputation, but is not formally DP-protected.

The privacy-protected D̃1(ϵ, ζ) =
[
Ỹ , T̃ , X̃

]
is published as part of the replication package,

and τ̃ , its associated standard errors and inferential statistics based on (1), are estimated

using D̃, and published as part of the relevant article.

2.5 Fully DP algorithms

In Mukherjee et al. (TBD), we develop two additional algorithms. Algorithm 2 develops a

model-agnostic fully DP algorithm that simply provides protection to the underlying data.

As in Algorithm 1, all data can be released, and the expectation is that the published τ̂

is derived from the released data. The data thus released, D̃2(ϵ, ζ) =
[
Ỹ2, T̃2, X̃2

]
, since

not constrained or derived from a particular model, should have wider utility, but may not

provide enough utility for the specific purpose of the article. In the paper, we experiment

with a variety of ways to generate Ỹ , both independently of [T,X] and jointly with [T,X].

We also propose Algorithm 3 in an attempt to improve the accuracy of inferences, while

retaining full DP protection, by again relying on model-based mechanisms. We rely on methods

first proposed by Karwa and Vadhan (2017) and Kazan et al. (2023) to compute DP-protected

point estimates, standard errors, 95% confidence intervals and p-values corresponding to tests

of significance for τ . The computation of such privacy-protected parameters still requires

access to the confidential data, and thus cannot be reproduced by readers of the article. Data

releases can either be the same (independently produced) D̃2(ϵ, ζ) from Algorithm 2, or a

7



Figure 1: Outcome measures in the original study and after application of the privacy-
protection measures described in the text

model-based variant of Ỹ3 computed based on τ̃3. The full paper has additional details.

3 Results

In Mukherjee et al. (2023) and Mukherjee et al. (TBD), we focus on two key tables of BJS,

Table 1 — the balance table — and Table 2 — the key table in the paper, which shows

the effects of the three treatment branches on outcomes, measured at two time intervals.

In addition to the algorithms described earlier, we also benchmark against a variant of the

base algorithm, in which data are resampled from the histogram, without any protection

(i.e., ϵ = ∞). In our analysis, we focus on the longer-run outcomes (Panel B of Table

2). Our analysis is not based on an exact reproduction of BJS, because a first constraint

was encountered in how much memory the histogram required.12 We limited the model to

subsets of X, using between 7 and 10 columns, rather than the 13 that the authors use. Our
12This may be an artifact of the use of R (R Core Team, 2024), and better algorithms may exist that would

alleviate this constraint.
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results using the original data, however, are very close even in this reduced specification. We

show that the protected data achieve similar balance as the confidential data, which is not

surprising, given the design of our algorithms. Algorithms 1 and 3 obtain reasonable inference

when compared to the inference based on the original data, though small differences arise.

Algorithm 2 has poor inference validity, even for moderate levels of protection. Figure 1

summarizes the various outcomes for one particular coefficient across the three arms of the

RCT, for various privacy-protection algorithms.13

In addition to the inference validity of the model when using protected data
[
Ỹi, T̃i, X̃i

]
,

as depicted in Figure 1, we also assessed empirical measures of how strongly protected the

data are, based on distributional comparisons of the confidential data to the protected data

(MSE and KL measures). Finally, we tracked the computational burden of the algorithms.

Conditional on the problem being able to fit into memory — a major constraint — the

computational time was in general measured in minutes, and seemed acceptable.

4 Discussion

Much of the literature (in economics) publishes replication packages with either weakly

protected (de-identified) data, or withholds the data out of privacy concerns, impeding the

ability for others to investigate inference. Our goals are to maintain the ability to publish

data as part of replication packages, yet provide stronger protections. A straightforward

application of one of the simplest DP mechanisms (histogram count perturbation with Laplace

noise) is applied to the sensitive covariate data. We show that using a hybrid approach, where

the outcomes of interest (potentially not observable by the broader public) are protected

with “traditional” methods, constitutes an improvement. Yet such a method does not comply

with a complete differentially private protection, since some knowledge about the confidential

values of the covariate data can “leak out” through the variance-covariance matrix of the

released data. We therefore also explore stronger, more complex, fully differentially private
13Results stem from a pre-publication version of Mukherjee et al. (TBD), and the final versions may appear

different in that publication.
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mechanisms. While the application is more complex, they remain computationally tractable

for the relatively simple dataset of our pilot study. But they do have other shortcomings:

Our general purpose Algorithm 2 provides poor inference validity, whereas the more complex

Algorithm 3 provides good inference validity, at the cost of not basing it on the released data,

relying yet again on non-shareable confidential data. It is also non-trivial to measure the

privacy loss in complex algorithms.

A researcher must therefore make a choice, possibly in conjunction with ethicists and

respondents, on how much, and how strongly, to protect the data. The proposed Algorithm 1,

while not completely DP, provides better protection than traditional methods, and may be

acceptable in certain contexts.

Our analysis has various caveats, which we describe in detail in Mukherjee et al. (TBD).

Importantly, we have relied on some key features of the typical RCT: Randomization is

orthogonal to the observed covariates of participants, and thus is non-informative about those

covariates. Relatively few parameters are of key interest, and estimated coefficients on other

control variables are typically not published. Overall, this reduces the amount of information

that needs to be released, greatly facilitating the application of strong privacy protection.

Relaxing any of these features may lead to less favorable results.

Two additional issues, however, are worth highlighting here. First, our experiments suggest

that in order to obtain good inference, model-based algorithms that target a particular

application — the research question of the published article — must be used. This will, in

turn, reduce the ability of others to use the same data in different contexts, and for others to

conduct robustness tests that question the original model used. Such questions can only be

answered with renewed access to the confidential data. Support for such post-publication

inquiries and access is generally weak, unless researchers are working in the context of large

research centers. Issues of funding for such infrastructure are a perennial problem when

research centers and universities discuss data preservation policies. Our results suggest that

such infrastructure would be increasingly in demand if better privacy protections are applied,
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even when protected data can be published (see also Vilhuber, n.d.).

Second, we believe that the role of software packages is crucial to the wider adoption of

stronger practices. The methods we developed rely on published algorithms throughout, and

were simply applied to the problem at hand, yet constituted de novo software implementations.

The development or extension of software packages that implement these and other methods,

in software platforms used by the relevant social scientists (R, Stata) should be supported.14

The ideas and results reported here are the first step towards better understanding of

feasible privacy-preservation of RCTs-based data, ensuring that privacy of data contributors

to RCTs, often from low- and middle-income countries (LMIC) countries, will be more

strongly protected, while maintaining the ability to draw meaningful inferences. While

policy-oriented stakeholders are primarly interested in the latter, citizens that contribute their

data to RCTs and companies, such as fin-tech providers, that provide key data to researchers

are also heavily invested in protecting privacy. Consumer and citizen protection agencies,

ethic review boards, and other regulators, should be interested in knowing of the existence of

privacy-enhancing methods, possibly facilitating approval of studies in the presence of strong

privacy guarantees.

14We note the ongoing development of non-DP methods in synthpop, an R package (Nowok, Raab and
Dibben, 2016; Snoke et al., 2018; Raab, Nowok and Dibben, 2021).
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