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Abstract

Privacy considerations and their effects on behavior are becoming increasingly im-
portant. Yet the extremes of full and no privacy are rarely an option. How much
does behavior change with small changes in privacy? Dekel et al. (2023) introduce the
concept of privacy elasticity, the responsiveness of economic variables to small changes
in privacy protections. This concept combines elasticity—a key economic measure
of responsiveness of one variable to changes in another—and differential privacy—a
computer science theory emerging as the standard tool for protecting and quantifying
privacy. Together, they create a measure of privacy elasticity that is portable and com-
parable across contexts. The applicability of this concept is demonstrated by reviewing
how privacy elasticity can be estimated in a public-good lab experiment.
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1 Introduction

Privacy considerations and their effects on behavior are becoming increasingly important.

Yet, individuals rarely experience either full privacy or a complete lack of privacy. How much

does behavior change with small changes in privacy? Our paper, “The Privacy Elasticity of

Behavior: Conceptualization and Application” (Dekel et al., 2023) introduces the concept

of privacy elasticity: the responsiveness of economic variables to small changes in privacy

protections. This concept combines elasticity—a key economic measure of responsiveness,

calculated by the percentage change in one variable resulting from a one-percent change in

another—and ϵ-differential privacy (Dwork et al., 2006)—a computer science theory widely

adopted by industry and government as a standard tool for protecting and quantifying

continuous changes in privacy. Combining the two allows for a privacy elasticity measure

that is portable and comparable across contexts.

In Section 2 we review the definition of differential privacy and our implied definition of

privacy elasticity. Intuitively, differential privacy protects the privacy of individual data by

adding random noise that limits the inferences that observers can make about an individual.

While leading social scientists have reservations about this measure (Hotz et al., 2022), it is

widely adopted by statistical agencies and tech companies, making it a natural starting point

for measuring privacy elasticity. To demonstrate the usefulness of this concept, we review

real-world deployments of differential privacy (Section 3) and a stylized theoretical example

(Section 4) from our paper. Additionally, Section 5 reviews how privacy elasticity can be

empirically estimated using a controlled public-good lab experiment, where noisy versions of

subjects’ contributions to the public good are announced to their group. Finally, Section 6

discusses some implications of our proposed notion of privacy elasticity.

2 Conceptualizing Privacy Elasticity

2.1 Differential Privacy

Differential privacy protects privacy by adding randomness to sensitive data, computations

on such data, or the published results of such computations. This makes it difficult for
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observers of the released output to make inferences about any individual. Even if the output

reveals something about an individual, similar inferences would be made if the individual’s

data were replaced with any other possible data, thus preserving their differential privacy.

For more details, see Dwork and Roth (2014) or Heffetz and Ligett (2014).

Consider some sensitive personal data that an individual may not want disclosed to others

(e.g., researchers, Silicon Valley companies, the government, or the public). Imagine that

some computation is performed on this data, whose result will be published or recorded in

some database. An ϵ-locally differentially private (Dwork et al., 2006) computation selects

its output (i.e., the published or recorded signal) using a degree of randomness, such that

any given output is similarly likely under any two possible data profiles of an individual.

Specifically, the likelihood of any output under any two possible data profiles differs by

at most a fixed multiplier, eϵ, where ϵ is a non-negative parameter quantifying the level

of privacy. The smaller ϵ is, the less the output depends on the specific data profile used,

offering stronger privacy but less accurate results. When ϵ = 0 then eϵ = 1 and the output

distribution is the same regardless of the data profile used, providing perfect privacy, but

a perfectly useless signal. When ϵ = ∞ there is no privacy, but the signal is perfectly

informative. In between, there is a continuum where the tradeoff between privacy and

accuracy is transparent and measurable.

2.2 Privacy Elasticity

Elasticity is a key concept in economics. It measures the percentage change in an economic

variable of interest in response to a one-percent change in another variable. In essence, it

measures the sensitivity of one variable to (small) changes in another. It is often used to

measure how quantities demanded and supplied respond to changes in price, income, and

other factors. For instance, a government that considers raising the tax on a good needs to

take into account how much the demand will fall due to the price increase, which requires

understanding the price elasticity of demand for that good. Importantly, elasticity does

not rely on the units of the variables involved. However, it does require a measure for the

variables involved where small, proportional changes are meaningful.

To define privacy elasticity—the percentage change in a variable in response to a one-
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percent change in privacy—we need a privacy metric that meets these criteria. Our paper

suggests using eϵ, the maximum proportional increase in the likelihood of disclosing infor-

mation about an individual when using their own data compared to any other possible data.

Hotz et al. (2022) argue against widespread use of differential privacy, as it measures the

risk of disclosing information relatively (proportionately) rather than additively (absolutely).

They argue that individuals may be more concerned about small increases in risk if the initial

risk is high, and less concerned about larger increases if the initial risk is low. These concerns

notwithstanding, differential privacy’s multiplicative (relative, proportional) approach is al-

ready in widespread use. Our paper could thus be viewed as conceptualizing and measuring

the extent to which people do respond to this imperfect but influential lever. Moreover, using

our approach to estimate privacy elasticity when the baseline risk is known could contribute

to the discussion by providing empirical evidence relevant to their argument.

To fix ideas, imagine a person participating in an activity on a platform, such as re-

sponding to a government survey, browsing the web, or contributing to a public good. This

person might be concerned that if certain actions (e.g., survey responses, websites visited, or

public-good contributions) were tracked or revealed, it might increase the likelihood of bad

outcomes, such as online targeting or social repercussions. If the platform uses ϵ-differential

privacy then the person is guaranteed that no matter which action she takes, the information

reported about her will be almost the same. This means the likelihood of bad outcomes will

also not change much. Specifically, the probability of any reportable information and its

potential implications won’t increase by more than a constant factor, eϵ, compared to the

lowest possible probability.

A one-percent increase in privacy loss in this setting means a one-percent increase in eϵ

used by the platform. This implies the concept of privacy elasticity, defined as the percentage

change in a variable in response to a one-percent change in the upper bound on the ratio

between the probability of any outcome induced by the privacy mechanism and what it

would have been if an individual’s actions were entirely different. That is, privacy elasticity

measures how much a behavior changes when there is a small change in privacy protection.

4



3 Potential Applications

We now review real-world deployments of differential privacy cited in our paper, where

privacy elasticity may be useful.

For instance, Apple Watch users can use an ECG app to record heartbeats and check

for irregular heart rhythms. Individuals might worry that merely using the ECG app might

imply a heart condition, which if revealed to others might increase the probability of some

adverse treatment by insurers, advertisers, employers or even potential romantic partners.

Apple currently uses ϵ = 2 per day to protect this information before it is gathered. If changes

in privacy guarantees affect users’ willingness to use the ECG feature or share health data

with Apple, this could have important implications, from affecting Apple’s ability to do

strategic product planning, to making the Apple Watch a less useful product, to even saving

lives. Understanding the privacy elasticity of such behavioral changes could be important.

As another example, both Google and Apple use differential privacy to protect and gather

information on user web-browsing behavior. Users might be concerned that visiting certain

websites might reveal sensitive or embarrassing information about them. Hence, they might

alter their browsing behavior or their willingness to share browsing data with tech companies

based on the level of privacy guaranteed. Therefore, understanding the privacy elasticity of

behavior in these settings could be useful. For instance, it could help companies balance

users’ privacy with their need to fix browser crashes.

There are many other examples, some using more advanced differential privacy techniques

than we cover in our paper. Windows has used differential privacy to protect data collected

from millions of Windows 10 devices about users’ app usage and to protect information that

it reveals to managers about employee collaborations. Microsoft also uses differential privacy

for advertiser queries on LinkedIn, and for Microsoft Office’s suggested email replies. Other

major tech companies, including Uber, Snapchat, Salesforce, Facebook, and Amazon, are

developing or implementing tools for differentially private data analysis, and TikTok has

posted job ads that describe background in differential privacy as a qualification.
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4 A Stylized Example

To make these potential real-world applications of privacy elasticity more concrete, consider

the following scenario analyzed in our paper. A mobile-device firm wishes to estimate the

fraction of its shipped devices that are defective. Users cannot detect the defect themselves,

so the firm asks each owner to run a simple diagnostic test. This test perfectly detects device

status, and sends a (possibly noisy) signal to the firm. Users decide whether to opt in or out

of running the diagnostic. Before running it, each device is equally likely to be defective, so

a user’s opt-in decision is independent of their device status.

Individuals may not want their device status to be revealed to the firm, as they might

worry about unknown future implications and, more generally, tech-firms’ use of their private

data. They are therefore more likely to opt-in if they are guaranteed more privacy. Hence,

the firm embeds the diagnostic within an ϵ-locally differentialy private mechanism. The

firm’s optimization problem is to choose the level of privacy (eϵ) to maximize the accuracy

(i.e., reduce the variance) of the estimator of the fraction.

The firm faces a privacy-accuracy tradeoff: the more privacy it offers (i.e., the lower it

sets eϵ), the more individuals will be willing to opt in, increasing the sample size and thus

reducing the variance of the estimator. On the other hand, the more privacy there is, the

noisier (less accurate) any sent signal becomes, which increases the estimator’s variance.

Which effect is stronger depends on the privacy elasticity of total participation.

Our paper shows that if the firm’s only goal is to maximize data accuracy, it will only offer

privacy if privacy elasticity is very high (such that the increase in participation outweighs

the added noise due to the increase in privacy). This highlights the importance of privacy

elasticity in economic decisions. In many real-world cases, privacy elasticity may currently

be low. Starting with a socially desirable privacy level, privacy elasticity can be used to

measure the change in user behavior needed to incentivize firms to provide at least that level

of privacy. If achieving sufficiently high elasticity seems unlikely, then regulatory intervention

may increase the likelihood of securing the desired privacy level. Moreover, with time and

experience, individuals may come to correctly interpret noisy signals, and this may increase

the privacy elasticity of participation.
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5 Privacy Elasticity in a Public-Good Experiment

To demonstrate how to measure privacy elasticity, our paper incorporates a differentially

private announcement mechanism into a public-good-game lab experiment.

In the experiment, 328 subjects play seven rounds of a public-good game in fixed groups of

eight, seated in the same computer lab. In each round, each subject divides a $10 endowment

between a personal account and a group account. Allocating money to the personal account

yields a higher individual return, but the group benefits more from contributions to the

group account, which are first multiplied by some multiplier, and then redistributed among

the subject and others. We randomly vary across sessions the price of generating $1 in

others’ money.

To incentivize subjects to play in each round as if it were the only round that mattered,

they are informed in advance that one round will be randomly chosen at the end of the ex-

periment, and their payments will be based on the allocations from that round. Additionally,

noisy versions of these allocations will be announced to their group. The level of noise is

randomly varied across session rounds. Announcements are made by having each subject’s

noisy allocation in the chosen round both appear on everyone’s screen and read aloud by

an experimenter while the subject stands up and faces the group. Subjects are not told in

advance about the varying privacy levels. The experiment is double-blind, with payments

prepared in a different room by another experimenter.

We estimate an average price elasticity of contribution at −0.23 (S.E. = 0.07). Fur-

thermore, we estimate an average privacy elasticity of contribution (over our finite ϵ’s) at

0.07 (S.E. = 0.01). Importantly, this privacy elasticity is not a mere reaction of subjects to

changes in privacy levels. The between-subjects estimate (based on the first round of each

session, where subjects did not know that they would face other privacy levels) is close, at

0.06 (S.E. = 0.03). These elasticities suggest that contributions are similarly affected by a

one-percent increase in price and a 3–4 percent increase in privacy. They also suggest that

contributions are inelastic with respect to both price and, even more so, privacy: when ei-

ther price or privacy changes by one percent, contributions change by less than one percent,

specifically by only 0.23 or 0.06–0.07 percent, respectively.
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6 Discussion

Personal data is collected and stored at an ever increasing pace, raising the importance

of privacy concerns and their potential effects on behavior. Since privacy is rarely binary,

privacy elasticity may help understand how privacy protections affect economic systems.

Differential privacy, the emerging standard for privacy protections in large data systems,

offers a tool for quantifying small changes in privacy. While we hope future work will

explore other notions of privacy, at present we define privacy elasticity using this imperfect,

yet widely used, measure.

Currently, many individuals are likely unaware of the level of privacy protecting their data

and of its potential consequences. As a result, behavior may be inelastic to privacy in many

real-world settings. However, as privacy awareness grows through education, legislation, and

regulation, privacy elasticity may significantly increase.

Abowd and Schmutte (2019) discuss the tradeoff faced by statistical agencies when decid-

ing how much noise to add to published statistics. More noise enhances respondent privacy

but reduces the accuracy of the statistics. They call for research to find the optimal bal-

ance. Our work shows that finding this balance is more complex than simply choosing ϵ

along a fixed tradeoff curve. Different privacy levels can change behavior and participation

in a dataset, affecting the data itself. Thus, unless behavior is completely privacy inelas-

tic, the choice of ϵ can have complex effects on the data gathered, its accuracy, and its

representativeness.
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