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Abstract1

Property insurance markets in multiple US states are experiencing volatility in the form of in-2

creasing premiums, insurer bankruptcies, and complete withdrawal from some areas. This volatility3

appears linked to growing costs of natural disasters, with some of the most serious effects in states4

heavily exposed to hurricanes and wildfires. This paper illustrates how uncertainty introduced5

by a changing climate can produce abrupt changes in insurance market conditions as insurers6

(and reinsurers) integrate the possibility of changing climate conditions into their pricing and risk7

management.8

The mechanism operates via changes to the updating process by which agents infer current9

climate conditions and, by extension, the distribution of weather risk. Key methodologies used10

for managing weather risks in both engineering and finance applications have, implicitly or explic-11

itly, relied on the assumption that the climate (the probability distribution over weather) is not12

changing over time, and therefore the historic weather record is representative of current risks.13

Anthropogenic climate change upends this assumption by introducing the possibility, or even the14

likelihood that the climate distribution today is different from past experience. This effectively15

reduces the information available to actors and increases ambiguity in the estimated climate distri-16

bution, with associated costs for weather risk management and risk-averse decision-makers. These17

costs arise purely from the knowledge that the climate could be changing, may arise abruptly, are18

additional to any direct costs or benefits from actual climate change, and are, to date, entirely19

unquantified.20

Using a case study of extreme rainfall-related flood damages in New York City, this paper21

illustrates how these ambiguity-related costs arise. Greater uncertainty over the current climate22

distribution interacts with a steeply non-linear damage function to greatly increase the mean23

and variance of the loss distribution. I show how this uncertainty can ripple through insurance24

markets in the form of higher and more volatile premiums and higher reinsurance costs, with25

limited potential for diversification within the insurance sector, impacts consistent with observed26

changes in the U.S. property insurance market in recent years.27
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1 Introduction28

Recent decades have seen rapid increases in the frequency and severity of extreme weather events with29

significant economic losses. In the U.S., the number of events with losses of more than $1 billion (in30

inflation-adjusted terms) increased from an average of 3.3 events per year in the 1980s to 20.4 events31

per year in the last 5 years [26]. These growing losses are likely the result of interactions between32

anthropogenic climate change altering the frequency and intensity of extreme weather events and33

growth in population density and capital stocks in high-risk areas (e.g. [28]).34

While the relative importance of risky development patterns versus anthropogenic climate change in35

driving extreme event losses may be debated, it is clear that growing losses are posing challenges36

to private insurance markets. Major insurers largely exited Florida and Louisiana following large37

hurricane-related losses years since 2005. Those markets are now dominated by small firms with38

highly-concentrated risk, heavily reliant on the reinsurnace market. As of 2018, over 50% of value39

underwritten in Florida is from firms without a credit rating from the major ratings agencies and nine40

Florida insurers became insolvent between 2021 and 2023 [31, 13]. Unprecedented wildfires have driven41

record losses in California and led major insurers to limit underwriting in the state, leading to massive42

growth in the state’s public ”last resort” insurance program [19, 16]. Price volatility or unavailability43

of property insurance can quickly spillover to the mortgage market because of the requirement from44

lenders that properties that secure the loan be insured.45

Natural hazards are challenging for private insurers to cover because losses are highly concentrated in46

space and time. Unlike other insurance lines where claims are stable from year-to-year and premiums47

can be set to closely match, natural hazards losses exhibit substantial interannual variability, even48

when aggregated across all perils at the global level [35]. Losses from California wildfires in 2017 and49

2018 was more than double the industry profit from all property insurance in the state for the last50

30 years [19]. The nature of these losses require insurers underwriting these risks to maintain access51

to large amounts of liquid capital to pay claims in the event of a major disaster. This is expensive52

as it requires paying fees to reinsurers or premiums to investors in insurance-linked securities (ILS).53

These costs are passed on to consumers, potentially raising premiums above expected losses, depressing54

demand.55

This paper highlights how climate change can interact with pre-existing catastrophic risks to raise56

costs of both insurance and reinsurance. Using recent observed instability in the insurance market57

as a motivation, it highlights an under-appreciated pathway by which climate change impacts society.58

Simply the knowledge that past experience of weather may no longer be representative of current59

risks decreases the information available to market actors and increases uncertainty. The cost of this60
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added uncertainty may be small for some types of risk but could be substantial for natural hazard risks,61

where expected losses are driven by very rare (and therefore highly uncertain) events. The paper walks62

through a stylized model of catastrophic risk and Bayesian updating, using a case study illustration63

based on extreme rainfall-related flood damages in New York City. I show how simply the knowledge64

the climate might be changing alters the updating problem to add uncertainty over current weather65

risks. This propagates through the damage distribution to substantially raise expected damages, even66

though neither the damage function nor historic evidence on extreme events has changed. I trace the67

implications of these altered damage distributions through insurance markets, addressing 1) expected68

losses and actuarily fair premiums; 2) premium volatility; 3) reinsurance costs; and 4) the potential69

for diversification.70

2 Background71

2.1 The Climate Distribution72

“Climate is what you expect, weather is what you get” - Andrew John Herbertson, 190173

Climate, particularly in a period of relatively rapid climate change as we are now in, is best understood74

as a probability distribution over weather [18]. Because of the nonlinear dynamics that govern the75

atmosphere, particular weather outcomes are unpredictable beyond a lead-time of somewhere between76

a couple weeks to about 6 months for seasonal forecasts. An irreducible uncertainty exists in weather77

outcomes, meaning any economically-relevant, weather-dependent outcome will have associated risk.78

A climate can be usefully understood as the probability density over weather outcomes, useful for79

quantifying the distribution of weather-related risks. A climate may be time- and space-specific and80

may be defined jointly over multiple relevant weather metrics (e.g. maximum temperature, wind speed,81

absolute humidity, precipitation etc).82

Understanding climate as a probability density makes clear the inherent challenge in attempting to83

manage (or insure) weather risks. Weather risks are determined by the full climate distribution, but84

this is inherently unobservable. At any place and time we observe only a single draw from the climate85

distribution (i.e., the weather). Actors tasked with managing weather risks are therefore faced with86

a fundamental inference problem: how to estimate the full climate distribution given only a single87

history of weather observations?188

If the climate distribution is known to be unchanging over time (i.e., stationary), then a long enough89

1The question of how scientific model information can used to help estimate the climate distribution is discussed
more fully in Section 5. While potentially an important complement to observational data, there is evidence from
both financial markets and the scientific literature that current models do not substantively help constrain near-term,
location-specific extreme weather risks.
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weather record can constrain the current climate. In the limit, an infinitely long record will perfectly90

characterize the climate distribution and therefore resolve any weather-related ambiguity over losses91

(ambiguity is used here to refer to uncertainty over a probability distribution). In reality, however,92

weather observations are not infinitely long. A standard definition used by the World Meteorological93

Organization to define a climate distribution (the so-called ”climate normal”), is 30 years [9]. Obser-94

vational weather records date back somewhere between 70 and 100 years in most locations, up to a95

few hundred years in some places. Paleoclimate records from coral, tree rings, ice cores and sediments,96

can push records back much further, but for a limited set of weather variables, in limited locations,97

and with substantial measurement error and uncertainty.98

While 30-100 years may be more than enough information to constrain the expected value of thin-99

tailed weather variables, some weather variables exhibit long-tails, where their expected value depends100

sensitively on rare events. Even 100 years of observations contain, in expectation, only five 1-in-20101

year events and only one 1-in-100 year event. Even under a stationary climate therefore, limits in102

the observational record could leave substantial ambiguity in the tail of the climate distribution and103

therefore, for heavy-tailed weather variables, meaningful ambiguity in their expected value.104

Anthropogenic climate change complicates this setting further by undermining the stationarity as-105

sumption in the interpretation of weather observations. Greenhouse gas emissions have altered the106

energy-balance of the planet, producing clearly detectable changes in global and regional temperatures,107

rainfall patterns and intensity, and river flows, among other variables [29, 1, 38, 24]. The fact that108

humans are influencing the climate system renders older records potentially uninformative of current109

probabilities, effectively decreasing the information available to estimate the climate distribution. The110

magnitude of these effects will be most pronounced for extreme events in the tail of the distribution,111

where the observational record is already limiting. Although absolute probabilities of historically-112

unusual events may remain small, increasing ambiguity in the climate distribution could produce large113

relative changes in probability.114

2.2 Catastrophic Risk115

Weather risk in a particular setting depends both on the distribution of a weather variable (or combi-116

nation of weather variables) and a damage function that maps realizations of weather onto losses. The117

distribution of losses arises from convolving the distribution of the weather variable (i.e. the climate)118

with the damage function. Damage functions with thresholds and / or steep non-linearities can amplify119

the importance of the tail of the weather distribution in determining expected losses: if losses increase120

non-linearly with the weather variable, then expected losses (even more so than expected weather)121
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will be driven by very rare but extremely damaging events.122

Catastrophic risk occurs when the loss distribution is heavy-tailed so that expected losses are heavily123

driven by very rare events [7]. Any setting where a long-tailed physical driver (for instance, rainfall124

intensity or earthquake magnitude) interacts with a damage function that is steeply non-linear in the125

physical driver could produce heavy-tailed catastrophic risks. Non-linear damage functions are more126

common than not in the literature, with thresholds and non-linear responses documented in a range of127

settings from agricultural yields, to human mortality [32, 6, 5]. These are associated with excedances128

of either natural, engineered, or social tolerances (for instance, over-topping river banks, excedance of129

building design codes, crop physiological limits).130

3 Case Study Illustration131

The remainder of this paper develops an extended case study based on rainfall-induced flooding in132

New York City (NYC) to illustrate how shifting learning models to account for climate change could133

affect insurance markets.134

3.1 Weather Data and Damage Function135

The motivation used here to develop the stylized illustration used in this paper is urban flooding.136

Rainfall intensity, a critical driver of flood frequency and magnitude, is known to potentially have a137

heavy-tailed distribution. Peak rainfall intensities that drive flood events are typically modeled using138

Generalized Extreme Value or Peaks Over Threshold models, which can produce heavy-tailed distri-139

butions such as the Weibull or Frechet [37]. Moreover, aggregate damages from intense rainfall are140

likely to be characteristic of catastrophic risk. Rainfall events of moderate intensity can be handled141

by existing drainage and flood-defense infrastructure but larger intensity events can increasingly over-142

whelm these systems to produce a steeply increasing damage function as more properties are affected143

and sustain heavier damage due to deeper flood depth [36].144

Underlying climate data comes from daily rainfall data from the Central Park, NY rain gauge, which145

goes back to 1869. Figure 1a shows annual maximum rainfall data for the most recent 30 year cli-146

matology, from 1994 to 2023. The record shows substantial variability. For instance, while the first147

13 years saw maximum rainfall of just over 5 inches in a day, 2007 saw 7.6 inches of rain in a day,148

exceeding the previous maximum by over 50%. Figure 1b shows the best-fit Weibull distribution fit149

to the 30 year record in Figure 1a.150

The shape of the damage function is based on annual data on all flood insurance claims paid through151
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Figure 1: Rainfall distribution and damage function used for the illustration. a) Annual
maximum daily rainfall from the Central Park, NY rain gauge for 30 years from 1994 to 2023. b)
Weibull distribution fitted to the rainfall data with the fitted damage function based on flood insurance
claims in New York under the National Flood Insurance Program, controlling for total coverage levels
and annual maximum tide heights (additional details in Appendix A.1).
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the National Flood Insurance Program (NFIP), 2009-2023 in New York City (NYC). The Federally-run152

NFIP accounts for more than 90% of flood insurance coverage in the United States. Flood insurance153

take-up is very low (approximately 3% nationwide) so these damages do not reflect total flood damages,154

but they do provide an unusually comprehensive view of insurer losses - the most relevant variable155

for this illustration - and how they vary with rainfall intensity. The shape of the damage function is156

estimated controlling for annual maximum tide height and total policy coverage, and is robust to the157

exclusion of 2012 (the year of Hurricane Sandy). Additional details on the damage function estimation158

and regression model results are given in Appendix A.1.2159

Figure 1b shows the estimated damage function superimposed on the best-fit Weibull distribution for160

the 30 year record in Figure 1a. The exponential shape of the damage function is such that most years161

incur little or no flood-related damages with the bulk of damages concentrated in very intense but162

unusual events. As one illustration, the 25% of years with lowest maximum rainfall account for just163

5% of losses while the top 25% of years account for a disproportionate 65% of losses. Seven percent164

of damages arise from events not observed in the 30 year climatology and 3% come from events not165

observed in the full 155 year record at the Central Park station, those with less than a 0.2% annual166

chance of occurring (under the stationarity assumption).167

3.2 Ambiguity and Learning Over the Climate Distribution168

Actors seeking to manage (or insure) flooding-related risks in the present (here taken as 2024) face the169

challenge of inferring the current probability distribution (i.e. the climate distribution) over peak rain-170

fall intensities, given the available history of observations. The climate distribution cannot be known171

for certain, but instead must be estimated, producing an ambiguity in the current climate distribution.172

For the set of simulations shown here, I operationalize this learning as a Bayesian updating process173

over one of the two parameters of the Weibull distribution. The Weibull distribution is commonly174

used to fit extreme rainfall statistics and is described by two parameters: the shape parameter (α),175

which describes behaviour of the tail of the distribution (α < 1 produces fat-tailed distributions and176

α > 1 gives thin-tailed distributions), and the scale parameter (θ), which describes how ”stretched”177

the distribution is along the x-axis (for a given shape parameter, larger values of the scale parameter178

will have more probability mass at higher values).179

In the interests of simplicity and to remain conservative in describing learning model impacts, both180

learning models described here assume that 1) the shape parameter of the distribution remains con-181

2For the purposes of this paper, I abstract from the institutional fact that flooding is covered almost entirely by the
Federal government in the US, and discuss insurance market implications as though losses accrued to a private insurer.
Flooding is a useful case study, precisely because of the ready availability of insured loss data from the NFIP to support
estimation of the damage function. The essential intuition developed using this case study should extend readily to other
climate-related natural disasters such as windstorms and wildfires that are still covered by private insurers in the US.
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stant, actors know the value, and that it doesn’t change3; 2) agents know the damage function precisely;182

and 3) perform optimal Bayesian updating over the scale parameter of the Weibull distribution. These183

are clearly conservative assumptions in many ways. In particular, the assumption of a fixed shape184

parameter substantially limits the potential ambiguity introduced by climate change, by fixing the185

asymptotic behavior of the right tail of the distribution. Adding uncertainty over the shape param-186

eter would introduce the possibility of much heavier tails into the agent’s prior, and therefore would187

likely produce similar effects but of much larger magnitude than those described here. Assuming a188

known damage function is also conservative in that in reality effects of weather extremes are uncertain189

and could depend sensitively on small and unpredictable details of event characteristics4. Kruttli,190

Roth Tran and Watugala [21] demonstrate that pricing of stock-options for firms in hurricane-affected191

areas show increased implied volatility for several months after hurricane landfall, implying investor192

uncertainty regarding hurricane impacts even after the physical details of a particular storm are fully193

known.194

To highlight the pure ambiguity costs of climate change (i.e the costs arising from being unable to195

assume a stationary weather distribution), I contrast two sets of results throughout the remainder of196

the paper, both with agents using the same 30 year record (1994-2023) and the same damage function,197

just varying whether or not the agent assumes the rainfall distribution is unchanging (the “Assumed198

Stationarity” model) over the period, or allows for non-stationarity (the “Potential Non-Stationarity”199

model). In both models, the agent’s problem is to infer the probability distribution over extreme200

rainfall for the current year (i.e. 2024).201

1) Assumed stationarity: Agents assume the climate distribution over the 30 year period is sta-202

tionary and representative of the present. They know the climate distribution over annual maximum203

rainfall intensities, x, is distributed Weibull with likelihood:204

L(x|α, θ) = α

θ
xα−1e−

xα

θ

where shape parameter, α, is known and the scale parameter, θ must be estimated.205

The agent holds a prior over θ distributed inverse gamma (the conjugate prior of the Weibull scale206

3The known shape parameter is based on the best-fit Weibull distribution to the 30 year record (here taken to be
1994-2023) and has a value of 2.57, producing a right-skewed but thin-tailed distribution.

4For instance, the precise storm track, time spent over developed areas, and coincidence of storm landfall with high
tide could all significantly affect the damage caused by a windstorm of a given magnitude.
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parameter, used to limit computational complexity5) with density:207

p(θ|a, b) = bae−
b
θ

Γ(a)θa+1

The parameters of the prior are set so that the prior is broad but partially informative, with a = 1.5 to208

give a diffuse, heavy-tailed prior distribution and b chosen so that the mean of the distribution ( b
a−1 )209

is equal to the estimated shape parameter from the prior 30-year climatology (i.e. using data from210

1962-1993).211

Agents use the 30-year climatology in Figure 1a to update their posterior to a new inverse gamma212

distribution with parameters a′ = a + 1 + n and b′ = b + Σtx
α
t where n = 30 is the length of the213

climatology and xt is the observation from year t.214

This posterior defines the agent’s beliefs over possible values of the scale parameter of the rainfall215

distribution. Each draw from the posterior, when combined with the fixed scale parameter (α = 2.56)216

defines a probability distribution over rainfall outcomes, each of which defines a particular distribution217

over damages given the fixed damage function. The agent’s beliefs over damages is calculated by:218

1. Drawing 10,000 samples θi from the posterior distribution219

2. For each draw, drawing 10,000 samples from the Weibull rainfall distribution defined by θi and220

the shape parameter α, producing 10,000 * 10,000 = 100 million samples from the posterior221

rainfall distribution 6
222

3. Passing all 100 million samples through the damage function to give the posterior damage dis-223

tribution224

The posterior distribution over damages is estimated by taking 10,000 draws from the posterior θ225

distribution and then, for each draw, propagating 10,000 samples from the Weibull distribution given226

by that draw and the known shape parameter α. through the damage function shown in Figure 1b.227

This gives 10 million samples from the posterior damage distribution.228

2) Potential Non-Stationarity: Agents know simply that the climate may be changing, but receive229

no additional information on exactly how for the particular hazard and location of interest. They are230

forced to drop the stationarity assumption and allow the unknown scale parameter to vary over time231

5In Bayesian learning, using prior distributions from the conjugate of the likelihood distribution provides a closed-form
solution for the posterior, allowing the posterior distribution to be calculated directly from the data and the parameters
of the prior, rather than deriving it computationally

6The potential importance of catastrophic events is of primary interest in this paper. Since these are rare by definition,
accurate characterization of the tails of the relevant probability distributions is essential. If computational approximation
of distributions is too coarse (i.e. dos not contain enough samples) the tails of the distributions will be poorly sampled
and risk estimates will be downward bias. That is why I use what may seem to be excessively large sample sizes (though
computational requirements are not excessively burdensome - all code for the paper can run in less than an hour in
parallel over 12 cores on a modern laptop computer).
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(i.e. the parameter becomes time specific, θt). The inference problem is now to estimate the 2024232

distribution, i.e. θ2024.233

In the interests of limiting computational complexity, possible time variation is limited to the set of234

linear trends over time t:235

θt = θ0 + βt

Both the initial scale parameter, θ0 and the rate of change, β are unknown. The prior over θ0 is236

distributed identically to the stationary case (i.e. a broad inverse gamma distribution partly informed237

by the prior 30-year period). The prior over β is normally distributed around zero, allowing for the238

scale parameter (and, equivalently, the probability of extreme rainfall events) to be constant (β = 0),239

increasing (β > 0), or decreasing (β < 0) over time. The width of the posterior is set arbitrarily such240

that the central 95% of the distribution allows for a change of ±1 by the end of the n (i.e. 30) year241

period (from a prior mean starting value of 3.1) giving the prior distribution over β:242

β ∼ N(0,
0.5

n
)

To estimate the current climate, the agent must now use the same 30 year record to estimate the243

joint posterior probability distribution over both θ0 and β. Since the agent must now estimate two244

parameters instead of one from the same record, they have effectively lost information and the posterior245

distribution must be wider than in the stationary case. This can also be seen by noting that the246

stationarity case assumed in the first learning model is nested as one possibility in this model (β = 0).247

Since this new model admits a broader set of possibilities (β ̸= 0) the priors are broader and, given the248

same set of data for updating, the posterior must also be wider. The question is just how much wider,249

and what are the potential implications for the loss distribution given interactions with the non-linear250

damage function.251

Since simple conjugacy no longer applies, the posterior is calculated computationally using Bayes Rule.252

For a given draw of θ0 and β, posterior probabilities given the set of observations, x, is given by:253

p( θ0, β|x) ∝ ΠtL(xt|α, θ0, β)p(θ0)p(β)

Where p(θ0) and p(β) are prior probabilities and the likelihood of the data point xt is given by the254

Weibull distribution with the time varying scale parameter:255

L(xt|α, θ0, β) =
α

θ0 + βt
xα−1
t e−

xα

θ0+βt
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The joint posterior distribution over θ0 and β is sampled using 16 million draws from the joint prior256

density (4000 draws from the β prior and, for each draw, 4000 independent draws from the θ0 prior.257

The posterior distribution over the current climatology (i.e. θ2024) comes from 10,000 samples of the258

joint posterior:259

θ2024 = θ0 + 30β

The posterior damage distribution in turn is estimated similarly to the stationary case by, for each260

10,000 samples of θ2024 from the posterior, taking 10,000 samples from the Weibull rainfall distribution261

implied by that draw and the known shape parameter, α and propagating those through the damage262

function. This again gives 100 million draws from the posterior damage distribution.263

4 Results264

The impacts of being forced to relax the stationarity assumption because of the existence of climate265

change are illustrated throughout by contrasting results for the two updating processes described in266

Section 3. I first describe effects on the posterior climate distribution, then discuss how this propagates267

through to the damage distribution, before describing how uncertainty could propagate through to268

disrupt functioning of insurance markets.269

4.1 Posterior Climate Distribution270

Figure 2a shows the posterior distribution over the scale parameter for the two updating processes. Sim-271

ply relaxing the assumption of stationarity to allow a linear trend in the scale parameter substantially272

widens the posterior density and shifts it towards higher values. Larger values of the scale parameter273

give a more “stretched” distribution, with a longer right tail and more probability mass at histori-274

cally extreme values. While the prior over the trend parameter puts equal probability on increases or275

decreases in the scale parameter over time, integrating evidence from the historical record decisively276

shifts the posterior in favor of increases over time (posterior probability of β > 0 is 83%).277

Note that this effect is almost entirely driven by a shift in the learning model, rather than clear evidence278

of changing extreme rainfall conditions in the historical data used for updating7. This is illustrated279

by the dotted distributions in Figure 2a which show posterior distributions under identical learning280

7The scientific basis for expecting more extreme rainfall events in a hotter climate is well established. Hotter air can
hold more moisture, producing both longer and more intense dry spells and more extreme precipitation events. Evidence
for shifts in these patterns over long timescales at the global scale has been demonstrated [24, 38]. Therefore, there is
good reason to suspect anthropogenic climate change has had an effect on the Central Park station record used here and
increased the intensity of major events. The discussion here is not meant to suggest otherwise, but to point out that
such an effect is not required to produce shifts in the posterior probability densities I demonstrate. Instead these can
arise purely from the interaction of a broader prior distribution with a skewed likelihood distribution under sampling
variability.
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Figure 2: Posterior Distribution Under Diferent Learning Models. a) Posterior distribution
over the scale parameter of the climate distribution in 2024 after updating using information from
the 30-year maximum rainfall climatology shown in Figure 1a under learning models that do and do
not assume stationarity. Vertical lines mark the central 95% of the distributions.Dotted distributions
posterior densities under two learning models, but based on an artificial time-series of observations
that is stationary by construction (i.e. simulated observations are drawn from the Weibull distribution
shown in Figure 1b). b) Distribution over maximum daily rainfall given implied by the 95th percentile
of the posterior damage function under the two learning models, with the overlaid damage function.
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procedures, but updated using a 30 year simulated record that is stationary by construction (drawn281

from the best-fit Weibull distribution based on the 30 year climatology). Although these are both282

shifted to the left relative to the posteriors based on real-world data (i.e. place slightly less probability283

on very extreme rainfall events), the key elements of the simulation remain: posterior probabilities284

under potential non-stationarity are both broader and substantially shifted to the right compared to285

the case where stationarity could be assumed.286

This asymmetric effect arises from exactly how the available evidence - namely, 30 years of rainfall287

maxima - act to constrain the set of possible models, given the zero lower-bound and right-ward skew288

of the underlying rainfall distribution. Because significant sampling variation of tail events in a 30289

year record is to be expected, agents in the potential non-stationary case are unable to distinguish290

between a large upward trend in the scale parameter combined with relatively “normal” draws from291

the underlying climate distribution and little to no trend in the underlying distribution combined with292

unusually high samples from the distribution. In contrast, just one or two relatively high draws in293

the dataset can effectively eliminate the possibility of a large downward trend, since the sampling294

probabilities would be so low. Posteriors in the assumed stationarity case are both narrower and lower295

because agents have ruled out the possibility of a trend and are therefore better able to use absence of296

evidence as evidence of absence: if very large rainfall events do not appear in the record, it is probably297

because of low underlying probabilities and not because sampling variability over 30 years produced a298

series of “lucky” draws.299

Figure 2b maps differences in the posterior θ distribution into difference in rainfall probabilities. The300

figure shows the rainfall distribution associated with the 95th percentile of both posterior distribu-301

tions. The larger scale parameter under potential non-stationarity (θ0.95 = 4.8 under potential non-302

stationarity compared with 4.2 under assumed stationarity) stretches the distribution and extends the303

upper tail. The effect for much of the distribution appears fairly modest, but essential for economic304

applications is the interaction with the damage function (overlaid for reference). Steeply increasing305

damages amplify the importance of the tail of the distribution, where relative changes in probability306

are largest. For instance, the probability of an annual maximum rainfall event of 5 inches or more307

increases by 56% from 19.8% to 30.9% while the probability of an event of 8 inches or more more than308

triples.309

4.2 The Damage Distribution310

The implications of changes in the posterior probabilities of extreme rainfall for economic outcomes311

depends entirely on the impacts of different events, operationalized here through the damage function312

13



Expected
Damages

Variance
Damage Distribution Percentiles

25 50 75 90 95 97.5 99 99.5

1.32 2.85 1.11 1.17 1.25 1.33 1.39 1.46 1.54 1.61

Table 1: Measures of the Damage Distribution Expected value, variance, and quantiles of the
damage distribution, shown as the ratio under the two learning models for each statistic (i.e value
under learning allowing for non-stationarity over value under assumption of stationarity).

based on NFIP claims illustrated in Figure 2b. The posterior distributions over θ are propagated313

through the associated maximum rainfall distributions and then through the damage function to give314

distributions over damages under both updating models.315

Table 1 shows how summary statistics of the damage distribution shift once the possibility of non-316

stationarity is integrated into the learning process. Even the fairly modest widening of the posterior317

rainfall distribution (Figure 2b) has a substantial effect on the damage distribution, raising expected318

damages by just over 30% but more than doubling the variance. The largest impacts are concentrated319

in the tails of the distribution, with just a 17% increase in median damages but a 61% increase in the320

1 in 200 year event (99.5th percentile).321

4.3 Insurance Implications322

Increased ambiguity over the climate distribution and, by extension, the nature of weather risks that323

property owners and insurers face, could have a range of implications for the functioning of property324

insurance markets. In this section I trace through these implications, taking the perspective of a single325

insurer underwriting the set of risks represented by the damage function in Figure 1b. In that sense,326

the damage function can be thought of as expected claims for the insurer conditional on the rainfall327

realization and its underwriting exposure.328

4.3.1 Premium Prices and Volatility329

One of the first-order effects of relaxing the stationarity assumption, made clear in Table 1, is a330

substantial increase in expected damages. Assuming that regulators allow premiums to adjust to reflect331

new understanding of risks under potential non-stationarity, this would produce a sudden increase in332

premiums of 32% (in line with the shift in expected losses). This increase occurs despite the fact that333

neither the weather data, historical loss data, nor the current damage function have changed. It is334

purely the result of the learner (namely the insurer) adjusting their updating model to integrate the335

possibility of a shifting climate distribution. The reasoning behind a sudden shift in average premiums336

may well be opaque to consumers (and potentially regulators), particularly in the absence of structural337

models of catastrophic risk able to integrate anthropogenic climate change effects (addressed further338
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in the Discussion section).339
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Figure 3: Effect of Extreme Events on Expected Damages and Premiums. Shows expected
damages for 2024 both assuming stationarity and allowing for possible non-stationarity. Shaded bars
show expected damages when the final observational datapoint has been adjusted to an extreme value,
slightly larger than the maximum in the 30-year climatology. Values are shown normalized to the level
in the stationary updating case using original weather data.

The additional uncertainty over catastrophic events creates a problem for consumers not just from340

higher premium prices, but also from price volatility. Insurance contracts are renewed each year,341

allowing insurers (subject to regulatory approval) to rapidly adjust prices in response to new climato-342

logical information. However, volatile and unpredictable insurance prices create challenges for property343

owners since relevant decisions that impact exposure to insurance price volatility (namely over location,344

ownership, and mortgages) are long-term, forward looking decisions that can not be easily adjusted in345

response to changing insurance costs.346

Figure 3 shows how greater ambiguity in the climate distribution could lead to more volatility in347

insurance premiums, particularly very extreme new events. The figure shows expected losses are348

for both updating models under both the observed 30-year record and a modified record where the349

final observation is altered to an extreme value slightly larger than the previous maximum value. The350

additional extreme observation alters agents’ beliefs about the underlying climate distribution, shifting351

the posterior distribution and raising expected losses. The effect is much larger, however, if agents352

believe the climate may be changing: expected losses increase 8% under assumed stationarity but 20%353
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with possible non-stationarity in response to the new extreme observation. This arises because the354

agent is far less confident regarding parameter values under potential non-stationarity and therefore355

adjusts their beliefs far more in response to new observational evidence.356

4.3.2 Loss Variance and Reinsurance Costs357

Beyond the higher and more variable insurance premiums faced by consumers, the much larger vari-358

ance in the damage distribution (Table 1) poses a challenge to insurers. A fundamental challenge of359

natural hazard risk for insurance is the correlated nature of losses; insurers must maintain access to360

large amounts of liquid capital in order to pay claims should a large event occur or risk bankruptcy.361

In the limit, over an infinitely long time horizon, premiums set at expected losses should cover total362

claims. But insurers need to be able to pay claims not just in the limit, but every time period they363

are underwriting risks, including years immediately following a major disaster when any accumulated364

capital reserves are depleted. Insurers can address these risks by either reducing exposure to catas-365

trophic risks by limiting underwriting (as we observe some firms doing in both the US Gulf Coast366

and California), attempting to diversify portfolios through exposure to other uncorrelated catastro-367

phes, or passing risks on to global capital markets through reinsurance contracts or insurance-linked368

securities.369

The additional uncertainty from a potentially non-stationary climate adds substantial variance to an370

insurer’s position. In the case study used here, variance in the insurer’s net position (i.e. aggregate371

claims minus total revenues, where revenues are set at expected losses) almost triples. Assuming372

regulator approval, insurers may be able to charge higher premiums in response to higher expected373

losses, but the increased variance of losses adds additional costs for the insurer not captured in expected374

loss. Conditional on a particular underwriting portfolio, insurers will have to pay more to transfer375

risks to reinsurers or capital markets because of the higher possibility of large losses. I illustrate this376

effect by simulating returns for a hypothetical, insurance linked security (ILS) that indemnifies the377

insurer up to losses equivalent to the most extreme event in the observational record for one year8.378

This guarantees the insurer will be able to pay claims for any event up to this threshold, but comes379

at a cost that compensates the investor for the risk of lost capital9.380

8An insurance-linked security (ILS) is a contract between an investor and an insurer. The investor places collateral
into a trust account that provides a base safe-asset return. The insurer pays an additional premium to the investor,
essentially the price of the security. If a trigger event occurs then the contracted amount of the collateral is released to
the insurer. If the term of the security ends without a trigger event, the collateral is returned to the investor. Triggers
can be defined based on insurer losses directly (the case considered in the example), total industry losses, or parametric
triggers related to physical variables such as hurricane intensity in a particular geographic region. ILS function similarly
to reinsurnace but have far more observable prices compared to largely private reinsurance contracts, which is why I use
them as a motivation in this example.

9For the time being I abstract from any potential for spatial or temporal smoothing. Spatial smoothing through
diversification across independent catastrophic risks is discussed later in the paper. Temporal smoothing is more com-
plicated for insurers since it requires them to amass large capital reserves to pay claims in the event of large but unlikely
losses. As discussed in Jaffe and Russell [17], capital market structures make this challenging. Insurers are not able to
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Figure 4: Loss distribution for a security indemnifying an insurer up to a particular loss
level. Histogram shows the fraction of security collateral lost by the investor under both updating
models. Losses to the insurer are defined as aggregate damages minus total premiums, where total
premiums are set at expected loss (and are higher in the case of potential non-stationarity relative to
assumed stationarity). If aggregate damages are less than total premiums, then the investor incurs no
loss.

Figure 4 shows the distribution of losses faced by an investor in the ILS. Despite higher premiums381

under potential non-stationarity (arising from higher expected losses), expected loss for the security382

increases by almost 40% from 2.2% to 3.5% due to the longer tail of the climate distribution increasing383

the probability of very large losses. The probability that a large fraction of the collateral is lost384

increases even more substantially: the probability of a loss of 50% or more almost triples from 0.5%385

to 1.3%.386

This changing loss distribution will affect the return insurers must pay investors to undertake the risk387

transfer. A number of papers have empirically examined the determinants of ILS pricing and suggest388

investors require a substantial premium to hold catastrophic risk. For instance, Braun [4] examines389

pricing of 437 ILSs issued between 1997 and 2012 and reports a mean spread of 10 times the expected390

loss, with a median of 4.8 and a minimum of 1.610. Lane and Mahul [22] perform an original analysis391

credibly earmark retained earnings to pay out future claims, and would be liable for tax on both the earnings set aside
and any interest earned by that capital. Moreover, accumulation of large reserves could make firms target of hostile
takeovers and could attract scrutiny from rate regulators given the appearance of large profits being generated from
excessive premiums.

10The fact that ILSs command any premium over the safe asset return and expected loss (let alone the large premium
documented in the literature) is perhaps surprising. The standard capital asset pricing model links the risk premium
to the covariance between asset returns and broader market volatility. Since natural hazard risk is almost by definition
uncorrelated with market returns, one might expect little to no risk premium, but that does not match available evidence
on ILS prices.
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that re-models risk statistics for 213 ILSs, enabling them to report how prices vary not just with392

expected loss but with other moments of the loss distribution. They find evidence that loss variance,393

including standard deviation and tail value at risk (TV aR) are associated with ILS spreads.394

I use one of Lane and Mahul’s models integrating tail risk metrics to illustrate potential effects on395

reinsurance costs. They estimate the relationship:396

PremiumSpread = ExpectedLoss+ 0.054TV aR99

where TV aR99 is the expected loss conditional on reaching the 99th percentile of the loss distribution.397

Under this model, the costs of risk transfer for the insurer in terms of premium spread on an ILS398

increase 43% from a spread of 5.6% over the safe asset return to 8.0%. However, higher risk transfer399

costs for the insurer are not accompanied by lower risk of insurer bankruptcy. Rather, bankruptcy risk400

also increases under potential non-stationarity. Probability of an event exceeding the largest event in401

the full 155 year weather record (and therefore exceeding the indemnity limit for the hypothetical ILS)402

approximately quadruples from 0.08% to 0.32%.403

4.3.3 Diversification404

One question is whether sufficient diversification can ameliorate the effect of greater uncertainty in the405

climate distribution and associated risk profile faced by insurers. By underwriting multiple, uncorre-406

lated risks simultaneously, insurers can lower the variance in their net position. Figure 5 simulates407

the effect of diversification on insurer positions and the interaction with updating processes. Rather408

than assume insurers face catastrophic risks exclusively in 1 location, the simulation assumes insurers409

spread the same exposure equally across n independent markets, all facing the same climatology and410

damage function.411

As Figure 5 shows, diversification across independent risks is an important tool for insurers, with412

variance dropping steeply as the number of markets grows. However, diversification does not mitigate413

the increased variance associated with a shift to potential non-stationarity. Variance in the non-414

stationary case is elevated relative to assumed stationarity, and the relative increase in variance remains415

relatively steady. With exposure concentrated in a single market, variance under non-stationarity is416

2.8 times larger than under stationarity. With exposure spread over 10 markets, absolute variance417

falls by an order of magnitude but still remains 2.8 times larger than the case where stationarity418

could be assumed. The potential non-stationarity introduced by climate change is a systemic shock,419

simultaneously raising agents’ uncertainty over damages in all markets, creating additional risk that420

cannot be diversified in property insurance markets alone.421

18



●

●

●

●

●
●

●
●

● ●

2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Number of Markets

V
ar

ia
nc

e 
In

su
re

r 
P

os
iti

on
(R

el
at

iv
e 

to
 O

ne
 M

ar
ke

t U
nd

er
 S

ta
tio

na
rit

y)

●

●

●

●
●

● ● ● ● ●

●

●

Assumed Stationarity
Potential Non−Stationarity

Figure 5: Effect of diversification on insurer position variance. Shows the variance in the
distribution of premiums (set at expected losses) minus aggregate claims for an insurer with the same
total exposure, but split equally across n markets, where n varies from 1 to 10. Shown relative to
variance for the stationary case in a single market.

5 Discussion and Conclusions422

Climate is a statistical distribution over possible weather states. The climate at a particular place and423

time is not directly observable, but instead must be estimated using either past observations of weather,424

structural models of the climate system, or a combination of the two. Anthropogenic climate change,425

by rendering past weather observations potentially less informative of current risks reduces information426

available to constrain the current climate distribution and, by necessity, increases uncertainty in the427

present distribution of weather risks.11 Like any uncertainty, this is costly to risk averse individuals428

11Note that this uncertainty also impacts structural climate models such as General Circulation Models (GCMs).
GCMs have the challenge of jointly estimating both the effect of greenhouse gas emissions on the climate system (the
so-called ”forced response”) and the distribution of weather conditional on a particular climate state, both of which
are uncertain. Historic observations provide only a single draw from the historic climate distribution and must be used
to evaluate model simulations of both the forced response and internal climate variability. If the forced response were
known to be zero, internal climate variability could be better constrained with the same information.
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and investors, but the costs of this added uncertainty due to lost information from a non-stationary429

climate are, as yet, entirely unquantified.430

The implicit assumption of stationarity in the climate distribution has been deeply embedded in how431

institutions understand and manage weather risk. For instance, methods for designing engineered432

systems from standards for property construction to the specification requirements for urban drainage433

systems, rely on the assumption that the envelope of natural weather variability these systems will434

face can be recovered from the observational record [25]. Catastrophe modeling, used by the insurance435

industry to estimate and price catastrophe risk, resamples the observational record of weather extremes436

while overlaying current maps of property locations and vulnerability to estimate losses were those437

events to occur today. Effectively then, these models assume the distribution of past weather events438

is representative of today.439

While the limitations of the stationarity assumption are increasingly well-recognized, the question440

of how to adapt risk-management approaches to account for anthropogenic climate change is not441

resolved. While evidence from GCMs does provide general indications of trends in some extremes442

(such as increasing heat waves or more intense rainfall and droughts), the ability of GCMs to generate443

reliable, probabilistic information on extreme distributions at spatial and temporal scales relevant444

for risk-management and insurance pricing, is not established. GCMs are designed to project long-445

term, global changes in temperature from elevated greenhouse gas emissions, primarily as a tool to446

inform global emissions targets. While the models have an excellent track record at this task [14],447

risk-management applications are very different [12]. Recent papers evaluating performance for these448

applications cast doubt on models’ ability to capture even the direction of change for key variables449

relevant to both wildfire and hurricane risks [34, 33].450

The recognition that the stationarity assumption is inappropriate, with no well-tested methods to451

replace lost information from the weather record necessarily increases ambiguity in the current and452

near-future climate distribution. While climate change itself is a relatively gradual, long-term process,453

this increase in ambiguity can occur abruptly as actors the possibility of a shifting climate into their454

assessment of current weather risks. The impacts of this added uncertainty is likely to be largest for ex-455

treme event risk. Extremes are rare, by definition, in the historical record, meaning long observational456

records are particularly valuable in constraining current probabilities. Moreover, given non-linear dam-457

age functions and long-tailed weather distributions, expected values are heavily influenced by unlikely458

but highly consequential outcomes. A loss of confidence in tail probabilities could place substantial459

upward pressure on expected losses.460

Simulations presented in this paper illustrate how these effects could ripple through property insurance461
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markets, raising actuarily-fair premiums, premium volatility and reinsurance costs. While higher462

insurance rates may be important in providing information on changing risks, efficient adaptation will463

not be accomplished through insurance pricing alone. Decisions over where and how to build, where to464

live and work, and when and how to purchase property are long-term and forward-looking. Insurance465

by contrast is sold annually and only covers current risks. Price volatility in insurance poses challenges466

for consumers, who are not able to rapidly adjust mortgage, location, or property ownership decisions467

in response.468

Further market pressures could arise from higher costs of risk transfer for insurers in response to469

reinsurers and investors also altering beliefs over the distribution of climate risks (Section 4.3.2). Unlike470

standard insurance premiums, reinsurance costs are not regulated. Evidence from ILS prices indicates471

that catastrophic risk transfer is expensive, with ILS spreads substantially higher than corporate bonds472

with comparable risk [22, 4], despite the diversification advantage offered by these assets. Insurers will473

need to pass higher reinsurance costs on to consumers to remain profitable, but this risks raising474

premiums above expected losses for individual consumers. Uptake of natural hazard insurance, when475

not required by lenders or regulators, is generally very low [23] and higher rates that are either actually476

or perceived to be far above expected loss will only exacerbate this market unraveling.477

Alternate options for insurers unable or unwilling to purchase risk transfer are to limit exposure to478

catastrophic risk entirely by limiting policy writing in exposed areas or, if permitted by regulators, to479

operate at higher risk of bankruptcy. Even more than rapidly increasing premiums, sudden insurer exits480

from areas rendering insurance unavailable at any price create challenges for property owners, most481

of whom are committed to 30 year mortgages that require an insurance policy. Insurer bankruptcies,482

several of which have been seen in recent years in Florida and Louisiana following major hurricanes, risk483

destabilizing local insurance markets more generally [31]. Losses from bankrupt insurers are assessed484

on the remaining admitted insurers in the state via State Guarantee Associations, putting additional485

financial pressure on those firms. Consumers that lose confidence in insurance institutions will be even486

less willing to pay higher premiums for insurance contracts that may not be paid out.487

Climate change poses clear but not insurmountable challenges for U.S. property insurance markets.488

Insured losses from natural disasters averaged less than $45 billion per year since 2000 (in 2020 dollars)489

[15], a vanishingly small fraction of an economy of $27 trillion. Natural hazard insurance plays an490

important role in disaster recovery for those affected [2, 20] and smooths the functioning of property491

and mortgage markets [30, 3], meaning maintaining access to insurance coverage in most areas will likely492

be an important part of climate adaptation. At the same time, risk transfer is not risk reduction, and493

policies to stabilize insurance markets in the face of climate change will not by themselves substantially494
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lower the net costs of climate change. If poorly designed, policies to address insurance availability could495

end up subsidizing development in the riskiest areas and perversely increasing total climate change496

costs.497

A Appendix498

A.1 Damage Function Estimation499

The damage function used for the case-study illustration in this paper is estimated using the universe500

of National Flood Insurance Program (NFIP) claims for New York City [11]. Claim amounts for 184501

New York City zip codes are aggregated to the annual level (i.e. total insured flood damages for502

the city) and merged with data on total flood insurance coverage for the city [10]. The time series503

runs from 2009 (the first year for which coverage data is available) to 2023. Claim amounts and504

coverage are converted into real 2020 dollars using the consumer price index from the St Louis Federal505

Reserve.506

The damage function relating annual maximum rainfall with insured flooding damage is estimated507

using a simple regression controlling for coverage levels and annual maximum tide height (using tide508

gauge data from The Battery in New York City [27]) 12. The estimated regression is:509

log(Ct) = β0 + β1RMaxt + β2TMaxt + β3log(Pt) + ϵt

where Ct is total NFIP paid claims in New York City in year t, RMaxt is the maximum daily rainfall510

at the Central Park station in year t, TMaxt is the maximum daily tide height at The Battery station,511

and Pt is the total flood policy coverage in New York City in year t.512

Regression results are shown in Table 2, showing large and highly statistically significant effects for513

maximum tide height and substantial effects for maxiumum daily rainfall, significant at the 5% level.514

Results imply that a 1 inch increase in maximum daily rainfall increases NFIP claims for the year515

by approximately 65%. Because Hurricane Sandy was such an extreme outlier (in terms of both tide516

height and flood damage) for New York City in this period, Table 2 also shows results of a regression517

model dropping the 2012 outlier. The estimated magnitude and direction of extreme rainfall (and518

maximum tide) on flood claims is robust to dropping this outlier.519

Regression results are used to construct a damage function connecting the weather variable of interest,520

12Flooding can occur either from intense rainfall overwhelming artificial and natural drainage systems (i.e. pluvial
flooding) or coastal flooding in which sea water floods onto land, typically during major storms (i.e. storm surge). The
period used here includes Hurricane Sandy in 2012, which caused intense storm-surge-related flooding in New York City.
The inclusion of maximum tide height controls helps isolate the rainfall-induced flooding, which is the motivation for
the example in this paper).
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Full Data Excluding 2012

RMax 0.654* 0.611*

0.219 0.233

log(P ) 1.075 1.202

1.055 1.096

TMax 1.300*** 1.615**

0.182 0.487

Num.Obs. 15 14

R2 0.867 0.766

RMSE 0.95 0.96

* p < 0.05, ** p < 0.01, *** p < 0.001

Table 2: Damage Function Regression Regression results for damage function used for case study
illustration in paper. Dependent variable is the total NFIP claims paid in New York City, for the
period 2009-2023. RMax is daily maximum rainfall, TMax is daily maximum tide height, and P is
total flood policy coverage in New York City. Errors are treated as iid.

RMax, to aggregate flood insurance claims in 2024. The damage function is specified using the average521

value over TMax for the 2009-2023 period, and the level of policy coverage in 2023, on the assumption522

that 2024 would be most similar to 2023. Predicted values for log(C) are converted into predicted523

values for C using the non-parametric Duan smearing estimator [8].524

Ct = eγ̂0+β̂1RMax ∗ 1

n
Σeϵt

Where γ̂0 = β̂0 + β̂2TMax + β̂3P2023 and 1
nΣe

ϵt is the Duan smearing term for a log transformed525

dependent variable. This procedure gives the exponential damage function shown in Figure 1b.526
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