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Comment Mark Sendak , Freya Gulamali , and Suresh Balu 

Introduction 

While enthusiasm for the role of artificial intelligence (AI) in healthcare 
continues to mount , economic analyses demonstrating successful return on 
investment are scant. In their piece titled "The Potential Impact of Artificial 
Intelligence on Healthcare Administrative Spending ," Sahni and colleagues 
estimate the total potential savings from AI in healthcare to be $200 billion 
to $360 billion annually. These estimates will likely spur further investment 
in the development and adoption of healthcare AI. However, unless stake­
holders rapidly align on strategies to overcome barriers and achieve the 
required activation energy, the potential value of healthcare AI will remain 
beyond reach. 

We represent the Duke Institute for Health Innovation (DIHI) at Duke 
Health , a multihospital health system with 67,000 inpatient admissions and 
4.7 million outpatient visits annually (Duke Health 2023). Similar to Sahni 
and colleagues , we draw upon a combination of academic and industry 
experience. We have nearly a decade of experience working on internal inno­
vation projects that design, develop, and integrate novel technologies and 
care delivery models within Duke Health. Through our work at DIHI , we 
have developed and implemented over 15 AI solutions internally and have 
multiple initiatives validating AI solutions in external health systems. We 
also launched the Health AI Partnership (HAIP) in 2021 to convene stake­
holders from health systems across the United States to advance the ethical 
adoption of AI (Duke Institute for Health Innovation 2021). Through our 
work at HAIP , we have conducted 85 interviews with clinical , technical , 
and operational leaders across nearly a dozen health systems in the US to 
surface and disseminate AI adoption best practices. While we work across 
care delivery settings and medical conditions , our perspective is primarily 
grounded in the experience of health systems and physician practices. 

In this comment , we present several analyses that complement the work 
of Sahni and colleagues. First , we describe concrete use cases that reinforce 
the hospital AI delivery domains and the need to capture both financial 
and nonfinancial benefits. Second , we present on-the-ground insights that 
identify gaps in evidence relied upon by Sahni and colleagues. Lastly, we 
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identify specific organizational (within-health-system) and seismic (policy­
level) interventions that could overcome the activation energy to unlock the 
value of healthcare AI. 

AI Delivery Domains 

In this section , we present use cases from DIHI and HAIP that illustrate 
the AI delivery domains described by Sahni and colleagues. We focus on the 
six domains related to direct patient care and not related to reimbursement 
or corporate functions. 

The first AI delivery domain is continuity of care, described as "opti­
mizing point-of-service and referrals to improve patient care." Within this 
domain , our team at DIHI used AI to predict hospital readmissions to opti­
mize postdischarge transfers to skilled nursing facilities (SNFs). Geriatric 
patients discharged to SNFs are at increased risk of hospital readmission , 
and AI can prioritize patients for telemedicine support to ensure appropriate 
postacute care (Krol et al. 2019; Bellantoni et al. 2022). This use of AI can 
create financial value in value-based care programs by preventing hospital 
readmissions and nonfinancial value by improving the safety and quality of 
care provided within SNFs. 

Second , network and market insight applications are described as "track­
ing relationship strength among providers. " Within this domain, one of our 
HAIP sites, Parkland Center for Clinical Innovation , used AI to segment 
their patient population to design tailored clinical programs for clusters of 
patients (Tamer et al. 2022). This use of AI creates nonfinancial value by 
improving patient experience and addressing barriers to access. 

Third , clinical operations applications are described as "optimizing 
clinical workflow and capacity throughout [the] care journey ." Within this 
domain , our team at DIHI used AI to predict admissions to the hospital 
requiring either intermediate or intensive care unit level care (Fenn et al. 
2021). This application of AI can improve patient flow within the emer­
gency department , prompting timely inpatient transfers for patients requir­
ing escalation of care and discharge for patients who can safely return home. 
This use of AI creates financial value by increasing emergency department 
throughput and nonfinancial value by improving patient experience. 

Fourth , clinical analytics applications are described as "improving patient 
care journey with data at all points of care delivery." This domain overlaps 
heavily with clinical operations, especially when optimizations to health sys­
tem operations align with patient care goals. For example, our team at D IHI 
used AI to identify patients at high risk of postsurgical complications as 
well as patients at high risk of inpatient mortality (Corey et al. 2018; Brajer 
et al. 2020). In both these cases, accurate risk stratification can ensure that 
invasive surgical and medical interventions align with patient goals of care. 
These uses of AI create nonfinancial value by improving patient experience, 
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but financial value depends on the reimbursement model. In a fee-for-service 
model, these uses of AI can have a negative financial impact (i.e., by reducing 
procedures and treatments) , whereas in a value-based care model , these uses 
of AI can create financial value. 

Fifth , quality and safety applications are described as "reducing major 
adverse events with special attention to patient experience and legal compli­
ance." This domain also overlaps heavily with clinical analytics and clinical 
operations, and the financial impact depends on reimbursement model. For 
example, our team at D IHI used AI to identify patients at high risk of sepsis 
as well as patients at high risk of incident HIV (Bedoya et al. 2020; Burns 
et al. 2022). In both these cases, infections and their resultant complications 
can be avoided with timely prevention and treatment. These uses of AI cre­
ate nonfinancial value by improving patient safety and experience, but like 
other domains , the financial value depends on the reimbursement model. In 
a fee-for-service model , these uses of AI can have a negative impact , whereas 
in a value-based cased model , these uses of AI can create financial value. 

The final AI delivery domain is value-based care, described as "improving 
patient outcomes with value-based care models." This domain resolves much 
of the tension in the prior domains by asserting the reimbursement model. 
Within this domain , our team at DIHI used AI to predict progression of 
chronic kidney disease within an accountable care organization population 
(Sendak, Balu , and Schulman 2017). Patients at high risk of end stage renal 
disease can be proactively referred to specialty care to initiate interventions 
that slow disease progression. These use cases create nonfinancial value by 
improving patient experience and create financial value by reducing costs 
associated with advanced chronic disease. 

The examples above reveal the complexity of capturing value from AI 
and the role for total mission value metrics that combine financial and 
nonfinancial measures. In a fee-for-service reimbursement model , the only 
domain that consistently generates financial value is clinical operations. In a 
value-based care reimbursement model , a much broader variety of domains 
generate financial value. However, the efficient scaling and diffusion of AI in 
healthcare will ultimately be determined by how much total mission value 
creates real financial returns. In settings that are unable to fully align incen­
tives across payer, hospital , and physician practice , only a limited scope of 
AI applications will achieve broad adoption. 

On-the-Ground Insights 

Three on-the-ground insights derived from our work with DIHI and 
HAIP reveal gaps in evidence relied upon by Sahni and colleagues. First , 
the benefits of AI integration presented by Sahni and colleagues are highly 
optimistic both in terms of timing (immediacy of returns) and magnitude 
(size of returns). Two quantitative estimates are, first, "In our experience, 
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organizations that deploy AI have twice the five-year revenue compound 
annual growth rate [CAGR] compared with others that do not "; and second , 
"Our estimates do not include one-time implementation costs, which in our 
experience are 1.0 to 1. 5 times the annual savings." As described above, most 
health system and provider practice AI use cases do not generate financial 
value and would not directly increase CAGR. In a recent McKinsey report , 
five-year annual CAGR was estimated at 3 percent, down from the prior 
estimate in July 2022 of 7 percent (Patel and Singha! 2023). All health sys­
tems face significant financial pressure in the current environment, due to 
inflation and high labor costs, which are not entirely addressable with AI. 
It's unclear how health systems that deploy AI would double their CAGR 
compared to health systems that don't deploy AI. 

Existing evidence also does not support the claim that implementation 
costs for health AI are 1.0 to 1.5 times annual savings. In fact , health infor­
mation technology (IT) is notorious for high implementation costs that yield 
minimal returns. For example, while interoperable health IT was estimated 
to yield $77.8 billion per year in 2005, despite a $30 billion investment by the 
US government , the impact of electronic health records (EHRs) on health 
system finances was minimal (Walker et al. 2005; Beauvais et al. 2021). Many 
health systems saw financial losses from EHR implementations (Adler­
Milstein , Green , and Bates 2013). Without well-documented case studies 
of AI implementations leading to immediate financial value, it's unclear if 
health systems and physician practices will achieve the described results . 

The second problematic gap in evidence relates to the scalability of cur­
rent health information technology. The authors claim that "all savings esti­
mates are based on the use of technologies available today and assume that 
adoption reaches full scale." Unfortunately , the authors do not describe how 
existing AI solutions can be fully scaled to achieve replicable results across 
settings. Two factors prevent the efficient scaling of current AI solutions 
across settings. First , current EHR system implementations are highly cus­
tomized , and significant effort is required to normalize and harmonize data 
to conduct analyses across sites. Our team estimated the costs of implement­
ing a single model at a single institution to be nearly $220,000 (Sendak , Balu, 
and Schulman 2017). Redundant effort to scale that single algorithm across 
all US hospitals would cost nearly $40 million . More recently, we described 
the significant effort required for interdisciplinary teams to conduct data 
quality assurance to develop new algorithms within Duke Health as well 
as externally validate existing algorithms in external settings (Sendak et al. 
2022). Integrating AI systems into legacy IT systems in new settings remains 
a high-cost endeavor. Without infrastructure that normalizes , harmonizes , 
and monitors data across EHR systems, there are minimal efficiencies of 
scale for new settings to adopt AI solutions. 

Even if the IT infrastructure were in place to scale an AI solution , orga­
nizations must adapt to effectively use and benefit from the technologies . 
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In 2018, our collaborator Madeleine Elish described Sepsis Watch , an AI­
driven sepsis detection system, as sociotechnical to emphasize the ways in 
which the technology and social environment interacted to shape use of the 
AI system in practice (Elish 2018). Since that time, we regularly engage social 
scientists in our work to help surface change management opportunities 
and challenges to ensure successful AI integration (Elish and Watkins 2020; 
Kellogg, Sendak , and Balu 2022). Unfortunately , our experience building 
and integrating AI solutions across settings reveals that these technologies 
are not "turn-key ," and significant effort is required from transdisciplinary 
teams to enable successful organizational adoption. 

The final gap relates to organizational characteristics associated with AI 
software adoption. Sahni and colleagues claim , "Hospitals have piloted 
AI and are beginning to scale adoption in some domains , with larger hos­
pitals having done more than smaller hospitals ." Our own work reveals that 
health system size is not a factor driving AI adoption. Use of AI is highly 
concentrated within academic medical centers (AMCs) , which only account 
for 35 percent of hospital admissions in the United States (Burke et al. 2019; 
Sendak et al. 2020; Price, Sachs, and Eisenberg 2022). Large health systems 
without internal AI expertise are also more likely to rely on EHR vendors 
for AI solutions , many of which perform poorly when used in new contexts 
(Wong et al. 2021 ). Furthermore, our work with HAIP sites has revealed the 
importance of centralized AI capabilities and organizational governance 
structures to ensure safe and effective adoption of AI. This best practice is 
most mature within AMCs that have significant internal AI development 
and integration expertise. 

Overcoming the Activation Energy 

To overcome the challenges listed above, we present multiple potential 
organizational and policy ("seismic") interventions . First, there are high 
returns to increasing investment in sociotechnical research of AI integra­
tions in healthcare . There is value at both the policy level (i.e., increases 
in public sector research funding) and at the organizational level (i.e., 
sustained investment in social science roles) . For example , three system­
atic reviews of randomized control trials (RCTs) evaluating AI products 
in healthcare were published between October 2021 and September 2022 
(Plana et al. 2022; Lam et al. 2022; Zhou et al. 2021 ). The reviews included 
95 studies across 29 countries. Only 15 AI products were validated in RCTs 
in the US leveraging broadly available data platforms , including EHR sys­
tems and radiology imaging data . Of those AI products , sociotechnical 
research was conducted for two. A team at PennMedicine conducted several 
studies examining clinician perspectives of an AI system used to prompt 
serious illness care conversations for patients with cancer , and multiple sites 
examined organizational factors related to adoption of an AI system to 
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help triage patients with chest pain in the emergency department (Parikh 
et al. 2022a, 2022b; Gesell et al. 2018; Bean et al. 2021). Without including 
sociotechnical research as a standard component of AI development and 
validation , positive results are unlikely to be replicable in new organiza­
tional contexts. 

Second , technical and regulatory structures could ensure quality control 
of AI used by health systems and physician practices. As described above, 
current EHR systems do not facilitate the efficient diffusion of AI across 
sites. A market failure currently incentivizes health systems to rely on AI 
solutions provided by EHR vendors , which often perform poorly (Sendak , 
Price, and Balu 2022; Wong et al. 2021). Even if a best-in-class solution 
emerges, integration costs prevent efficient scaling. National infrastructure 
investment could upgrade the current health IT ecosystem to enable rapid 
scaling across sites. Similarly, standards and regulation could ensure that 
AI solutions are validated within health systems and physician practices 
prior to use. Regulators such as the Office of the National Coordinator 
could require adoption of this best practice for health IT certification , and 
third-party accreditation organizations , such as the Joint Commission , can 
ensure that health systems adopt this best practice as part of organizational 
governance efforts. 

Third , capacity-building programs could upskill the healthcare workforce 
to effectively use AI. Programs that target individual clinicians, such as our 
DIHI Clinical Research and Innovation Scholarship, can be scaled across 
clinical training sites to engage more clinicians in AI product development 
(Sendak et al. 2021). Similarly, programs that equip organizational leaders , 
such as HAIP , can equip teams of interdisciplinary professionals to rapidly 
enhance organizational governance of AI. Funding for this training from 
the public sector could ensure that the existing digital divide does not widen. 
Without public sector intervention , AI products will largely remain within 
the ivory tower of highly resourced AM Cs. 

Conclusion 

In their analysis, Sahni and colleagues estimate the total potential savings 
from AI in healthcare to be $200 billion to $360 billion annually. While we 
agree that the opportunity to improve healthcare using AI is enormous , 
our experiences through DIHI and HAIP reveal a more complex picture. 
In this comment , we present gaps in evidence that must be addressed to 
ensure that AI solutions are scalable across sites. We also present policy and 
organizational interventions that could unlock the value of AI in healthcare. 
Without coordinated investments in sociotechnical research , technical and 
regulatory structures , and capacity-building programs, the potential benefits 
of AI in healthcare will remain out of reach for health systems and physi­
cian practices . 
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