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Abstract

Agricultural producers make investment decisions based on expectations of future re-

turns. This article investigates how changes in perceptions about input availability

affects the adoption of conservation practices. We develop a theoretical model to ex-

amine how a producer’s perception of water shortages influences investment in more

efficient irrigation technologies. Using publicly available data on water rights and ir-

rigated cropland, we construct a novel dataset to empirically identify the impact of

changing perceptions about water availability on conservation decisions. We leverage

a natural experiment in Colorado in which a period of severe drought and institutional

change in the early 2000s led to an exogenous shock to expectations for some water

right holders. It is estimated that producers who experience unprecedented increases in

the curtailment of their water right convert 11% more land to a more efficient irrigation

technology on average. We also present evidence that adoption rates are driven more

so by changes in surface water availability than groundwater. This analysis provides

useful insight into the role of expectations in incentivizing adaptation to water scarcity

in irrigated agriculture.
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Introduction

Scientists and policy makers agree on the need for efficient and sustainable resource planning

under a changing climate (IPCC, 2021). Climate change describes a shift in the underlying

distribution of weather patterns over a long period of time. Shifting temperature and precip-

itation patterns are expected to contribute to increased water scarcity which poses a threat

to food production (Mancosu et al., 2015). Meeting the needs of expanding populations

depends on the ability of industries and governments to adapt. This is particularly relevant

in arid regions, where water supplies are expected to be intensely affected by climate change

(Lioubimtseva, 2004) and agriculture is often dependent on irrigation. For areas that rely

on irrigation water derived from snowpack, accelerated snowmelt will change the timing and

quantity of water available during the growing season, increasing the risk of costly shortages

(Adam et al., 2009). It is estimated that water shortages result in more annual crop loss

than all pathogens combined, totaling $30 billion in global production losses over the past

decade (Gupta et al., 2020). As overall water availability changes, maintaining agricultural

output will depend on how producers adapt. Adopting water conservation strategies is one

possible mechanism.

Understanding what motivates producers to conserve water resources is important for

future planning. While there exists a rich literature on potential conservation strategies

(e.g., Howden et al., 2007), little emphasis has been placed on the role of perceptions that

influence the implementation of these strategies. One reason for the lack of research in this

area is that identifying events in the natural world that change perceptions about scarcity,

and subsequently change behavior, can be difficult. Some literature suggests that personally

experiencing an extreme weather event can change climate change perceptions and increase

the inclination to adopt conservation strategies (Spence et al., 2011; Wang, 2017; Wang and

Lin, 2018). Maddison (2007) finds that many farmers in Africa perceive climate change to

be real, yet some still do not respond in their practices. While these studies provide impor-

tant insights into attitudes on climate change, they rely on cross-sectional survey data and
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cannot track behavioral changes over time. Overall, literature investigating how perceptions

impact behavior using observational, non-survey data is scant. In this article, we explore

how changing perceptions about water scarcity affects conservation investment decisions for

agricultural producers. A simple theoretical framework is developed to demonstrate the

conditions under which a producer’s perception of water availability would incentivize in-

vestment in irrigation efficiency. Then, a unique period of extreme drought and institutional

reform in Colorado is leveraged as a natural experiment to compare empirical results to

simulations from the theoretical model.

Perceptions about water availability play a critical role in decision-making for producers

that are dependent on irrigation. In the United States, western states (the American West)

account for 81% of total irrigation withdrawals (Dieter et al., 2018), and productivity in many

areas is dependent on surface water from snow runoff. In this area, rising temperatures

cause more precipitation to fall as rain instead of snow, which reduces snowpack depth

and changes the seasonality of runoff (EPA, 2016). Several studies have examined recent

hydrological changes in the American West, documenting trends in earlier snowmelt-driven

stream flows and declines in April snowpack (Mote et al., 2005; Hamlet et al., 2005; Mote,

2006; EPA, 2016). In addition to increasing temperature and evaporation trends, monthly

projections of the Palmer Drought Severity Index (PDSI) suggest that climate change will

amplify the length and severity of droughts while also hindering the recovery of macro-scale

water supplies (Gutzler and Robbins, 2011). One mechanism for agricultural producers

to adapt to water scarcity is to adopt more water-efficient, pressurized irrigation systems

like sprinkler or drip (Howden et al., 2007; Frisvold and Bai, 2016), but gravity systems

are still prevalent throughout the American West partially due to high costs of sprinkler

investment and relatively low water prices. Carey and Zilberman (2002) use a stochastic

dynamic model to demonstrate how uncertainty in water supplies creates an option value

and deters irrigation technology adoption unless the expected present value of the investment

exceeds the cost by a large margin. However, some empirical evidence has shown that farmers
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adopt new technologies to hedge against production risk (e.g., Koundouri et al., 2006). The

present article provides insights into the disconnect between some theoretical predictions

and empirical evidence surrounding investment in irrigation technology.

Presumably, producers have a belief about the probability distribution of input shocks.

When considering multi-year investments in water conservation technologies, a farmer likely

assesses of the probability of a water shortage. Ji and Cobourn (2021) provide an intuitive

framework of expectation formation, proposing that perceptions about weather—or supply

conditions—develop with an increased bias toward recent events. Therefore, experiencing a

disproportionately extreme event triggers a larger revision to expectations, and a subsequent

series of events closer to long-run averages would be necessary to decrease the perceived like-

lihood of another extreme event. They corroborate their theoretical hypotheses empirically,

finding that weather shocks significantly impact short-run planting decisions for farmers.

Similarly, Cobourn et al. (2021) demonstrate that irrigators anticipating water shortages

are more likely to fallow land and plant drought-resilient crops. Complementing these re-

cent studies that focus on short-run responses (i.e., yearly planting decisions), our attention

lies on long-run responses (i.e., investment in infrastructure). Our novel dataset of over 60

years of water right curtailment recordings alleviates our reliance on weather data in esti-

mating producer expectations of water availability. We are able to pinpoint irrigators that

directly experienced shortages, allowing us to identify changes in perceptions and subsequent

long-run improvements in water-use efficiency via irrigation technology adoption.

The present article contributes to the relevant literature in two aspects. First, we de-

velop a theoretical model to analyze the conditions under which an agricultural producer’s

perception of a possible water shortage would incentivize investing in a more water-efficient

irrigation system. The model framework captures how risk is perceived for farmers operating

under a priority-based water allocation institution through two parameters: (i.) the proba-

bility that water supply will be curtailed in a given year and (ii.) if curtailed, the intensity of

the water loss. We then consider a range of model parameters to identify when the benefit of
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investing in more efficient irrigation infrastructure is highest. Since our framework captures

the nuances of a priority-based water rights regime, insights on how investment decisions are

influenced by perceptions are particularly applicable to the American West, though similar

regimes exist throughout the world.

Second, we capture changing perceptions of water shortage risk for farmers in northeast

Colorado using a comprehensive panel dataset of irrigated cropland, agricultural water rights,

and curtailment recordings. For many producers, increased water scarcity will change the

perceived reliability of water right portfolios. In Colorado, producers with historically secure

water rights are facing increases in curtailment due to institutional changes resulting from

litigation and sustained drought in the early 2000s (Waskom, 2013). Our empirical context

provides us with a unique opportunity to identify a change in perceptions about the reliability

of a water supply, which allows us to measure how those changes affect decisions to adapt

to increasing scarcity.

Our theoretical model shows that the net benefit of adopting more efficient irrigation

technology increases in the probability of curtailment, holding all else constant. However,

changes in the expected amount of water received (when curtailed) impacts net benefits

non-monotonically. Treatment and control groups are determined by water right curtail-

ments during the early 2000s shock relative to historical droughts. Results of a difference-

in-difference analysis indicate that the treatment group, those who experienced an unprece-

dented increase in curtailment, adopted more water-efficient irrigation systems at signifi-

cantly higher rates than the control group. Additionally, cropland with corn experienced

the largest increases in irrigation efficiency improvements in years immediately following the

shock, although total corn acreage was reduced. Corn is considered more sensitive to water

stress than other popular crops grown in the region, such as alfalfa or wheat, further indi-

cating that the shock incentivized a change in practices to hedge against production risks.

Some producers in our study area supplement their surface water irrigation practices with

groundwater, yet we find that changes in groundwater use did not differ substantially be-
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tween treatment and control groups beyond years immediately following the shock. This is,

in part, due to the conjunctive governance of surface water and groundwater in Colorado.

These empirical findings provide fresh evidence of the link between updating perceptions

and conservation investment behavior.

The remainder of the article is organized as follows. First, we describe a theoretical

framework used to analyze the impact of perceptions on irrigation technology adoption in

the context of prior appropriation, which is the dominant water allocation system in the

American West. We then discuss our study area and the period of extreme drought and

institutional reform that we leverage as a natural experiment, followed by a description of

the data and modeling approach. In the final sections we present the estimation results,

analyze their robustness, and conclude by discussing policy implications.

Theoretical Framework

When adapting to increasing water scarcity, farmers face a menu of potential strategies

to reduce their overall water dependency. Drought-tolerant crop varieties and species can

be planted in lieu of water-intensive ones. Deficit irrigation on large quantities of land

or increased irrigation on a reduced quantity of land offer opportunities for water savings.

Technologies that harvest and store water or reduce conveyance losses can increase average

supplies. Improving the application efficiency of an irrigation system can reduce the amount

of diverted water necessary to achieve full evapotranspiration. The advent of water mar-

kets and water-sharing agreements allow farmers to diversify their income through selling

water or to hedge against drought risk by buying water. In general, the actual costs and

benefits of different adaptation strategies from this suite of options depends on a farmer’s

characteristics, such as geographic location. However, farmers’ expected costs and benefits,

which ultimately drive adoption decisions, vary largely according to perceptions about water

scarcity. Otherwise similar farmers with different perceptions may exhibit a vastly different
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willingness to invest in practices that reduce water use. In the following theoretical frame-

work, we focus solely on how perceptions drive the decision to improve irrigation efficiency.

Although our theoretical model is presented in the context of a producer evaluating the

expected benefits from adopting an irrigation technology, the findings apply more gener-

ally with respect to how perceptions of scarcity influence producer decisions to invest in

technologies and/or practices that improve water use efficiency.

To examine the impact of perceptions on conservation investment, we develop a the-

oretical model describing a producer’s decision to improve the efficiency of his irrigation

infrastructure. We adopt the conceptual framing of a producer’s irrigation water supply

under a prior appropriation system from Li et al. (2019), with some simplification. After

summarizing prior appropriation, we show a general condition characterizing the net benefit

of investment in a conservation technology. We then impose assumptions on the parameters

to estimate the impact of perceptions about input availability on the investment decision.

Water allocation in most of the American West is governed by a system of prior ap-

propriation, a legal framework that rules over all water use. To divert water under prior

appropriation, one must obtain a water right from a court or purchase an existing right.

Water rights are usufructuary, meaning that the rightsholder does not own the water itself

but the right to divert and use it. Rights are ranked in a hierarchy of priority determined by

the date on which a user first appropriated and diverted water for beneficial use, colloquially

phrased as “first in time, first in right.” Owners of agricultural water rights cannot divert

more water for irrigation than what is decreed by their right, and when basin water supplies

are insufficient to fulfill all decreed water rights, rightsholders with older water rights have

priority over users with newer rights. In the state of Colorado, water rights are curtailed

through a system of administrative “calls.” When inflows are insufficient to satisfy all water

rights holders, the State Engineer places a “call” on a stream which curtails the ability for

junior water rights holders to divert. The administrative call communicates a priority level

required to continue diverting water. In essence, when senior rights are unable to divert
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their decreed allotment, all junior upstream users must temporarily stop diverting to make

more water available (Getches, 2009).

Consider a producer operating under a system of prior appropriation who uses water to

grow crops. The producer owns a water right with a fixed priority level and a maximum

amount of w units of water that may be diverted from a specified stream. Irrigation water

w available to the producer to grow crops over a growing season is a random variable that

takes the form

w =


w, S ≥ V

δw, S < V

(1)

where S is a stochastic stream supply term, corresponding to the total quantity of water

available for diversion by all water rights holders, and V is the total supply necessary within

the stream system for the producer to divert the maximum quantity of water associated with

the water right. If S < V , the producer’s water right is called, and he receives a proportion

δ ∈ [0, 1) of the total allotment. We further assume a relationship between irrigation water

and crop yield equal to

y(w, λ, α) =


(λw)α, 0 ≤ λw < wm

ym, λw ≥ wm

(2)

where y(w, λ, α) is the total quantity of output, λ ∈ (0, 1) is an irrigation efficiency coefficient,

ym is maximum yield, wm is the net irrigation requirement for maximum yield, and α ∈ (0, 1)

is a shape parameter.1

Now consider the case where the producer has an existing low-efficiency, flood irrigation

system and can invest in a high-efficiency, sprinkler system. The producer can pay an annu-

alized cost of the upfront capital investment, cs, that would increase irrigation efficiency from

1Our choice of functional form attempts to exhibit the typical relationship between total seasonal irrigation
and crop yield as represented on page 4 of Foster and Brozović (2018). We assume no yield when no water
is applied, i.e., y(w = 0, λ, α) = 0, since irrigated crop varieties in Colorado are often not drought tolerant.
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λf to λs. Assume this producer’s objective is to maximize expected profit by first choosing

whether to invest in the new irrigation system, taking prices as given, and then applying

water to his fields after w is realized. The profit function after realization is composed of

the per unit price of output p, output y(w, λ, α), and some fixed cost of production k,

π = py(w, λ, α)− k. (3)

The producer assumes a probability that his water right will be called in a given year,

P (S < V ) = θ ∈ [0, 1], and the magnitude of water loss, δ ∈ [0, 1), should the call occur.

Given his perception of parameters θ and δ, and conditional on efficiency, the producer’s

expected profit, prior to the realization of w, is

E[π] = p[(1− θ)y(w, λ, α) + θy(δw, λ, α)]− k. (4)

The decision to invest in the new irrigation system is modeled as binary, so the producer

chooses between only two profit functions. For simplicity, we examine the payoff of investing

for a single period case. The annualized expected net benefit of investment is

E[πs]−E[πf ] = p{(1− θ)[y(w, λs, α)− y(w, λf , α)] + θ[y(δw, λs, α)− y(δw, λf , α)]}− cs, (5)

and assuming w is the amount of water necessary for maximum yield with flood irrigation,2

i.e., the marginal productivity of water is zero beyond w = y
1/a
m /λf , equation (5) is reduced

to

E[πs]− E[πf ] = pθ[y(δw, λs, α)− y(δw, λf , α)]− cs. (6)

Lastly, we assume that a producer adopts the technology if the net benefit of investment is

2Water allotments under prior appropriation are determined by the historical consumptive use of the activity
allowed by the water right, so this assumption is appropriate in this context.
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greater than zero:

pθ[y(δw, λs, α)− y(δw, λf , α)]− cs > 0 (7)

or after rearranging,

θ[y(δw, λs, α)− y(δw, λf , α)] >
cs
p
. (8)

The left-hand side of equation (8) is the difference in yields when water is called multiplied

by the probability that water is called. It represents the expected gross benefit of technology

adoption. As the difference increases, producers become more likely to adopt the technology.

The right-hand side describes the ratio of cost to output price. As the cost of the investment

increases, producers are less likely to invest while as price increases, the net benefit of

adoption becomes higher, and producers become more likely to adopt. A key feature of this

model is that the benefit of technology adoption comes only from reducing down-side risk.

The adoption of a more efficient irrigation technology allows the producer to achieve a higher

yield per unit of water when he does not receive the entirety of his water right. The highest

priority farmer has θ = 0 and an expected gross benefit equal to zero.

Parameter Simulations

We now examine how perceptions of θ and δ incentivize adoption of the efficient technology

by parameterizing the left-hand side of (8). We are only concerned with identifying where

a producer would have the highest likelihood of adopting, so we focus on the range of

parameters in which the gross benefits of adoption are highest. When the gross benefits of

adoption are highest, we would expect adoption to be more likely.

First, we assume the following parameter values: λf = 0.5, λs = 0.9, ym = 6, and

α = 0.5. Irrigation application efficiencies are used from Bauder et al. (2014) and maximum

yield can be interpreted as tons of corn per acre (CSU Crop Enterprise Budgets 2017).

We then calculate the left-hand size of (8) over the range of plausible values of θ and δ to

generate a heat map displaying the areas in which the gross benefit of adoption is greatest
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given the producer’s perceptions (Figure 1). Each point on the heat map corresponds to

a possible combination of θ (probability of a call) and δ (magnitude of shortage) for an

individual producer. The background shading at each point corresponds to the gross benefit,

or increase in expected yield, associated with that combination of θ and δ. Darker (lighter)

areas are associated with lower (higher) gross benefits, so a change that results in movement

from a dark area to a lighter area would result in an increase in benefit. The impact of θ is

straightforward and monotonic. Pick one point along the horizontal axis and hold δ constant,

and each point directly above (increasing θ) lies on a lighter area on the map. In other words,

as a possible call becomes more likely, the benefit of improving water application efficiency

increases monotonically. If the perceived probability of a call is 0, there is no incentive to

invest.

The impact of δ is less straightforward. When holding θ constant and moving along points

from left to right, the benefit is greatest around δ = 0.55, after which the benefit decreases.

When the producer expects to receive nearly all or nearly none of his water during a call,

the benefit of improving water application efficiency approaches 0. If a producer were to

experience a change in perception that moved him from a dark to light area on Figure 1,

we would expect an increased likelihood of investing in the high-efficiency, sprinkler system.

The region in which producers are most likely to adopt the new technology occurs when the

probability of a call is perceived as high, and the volume of water lost during a shortage

is about half of the full right. In the empirical section of this paper, we investigate these

theoretical predictions.

Study Area

In Colorado, The Water Right Determination and Administration Act of 1969, C.R.S. 37-

92 et seq. (1969), designated seven water divisions based on drainage characteristics, each

staffed with its own division engineer and water judge. Water Division 1 (WD1), the study
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area for this analysis, is highly dependent on surface water and contains the South Platte

River basin (SPRB), Republican River basin, and Laramie River basin. The Colorado Water

Plan (2015) provides extensive detail on all basins and water divisions, and here we summa-

rize the details relevant to our analysis. The SPRB alone is home to approximately 80% of

Colorado’s population while also having the largest proportion of irrigated agriculture. Irri-

gated agriculture accounts for approximately 85% of total water diversions within the basin,

with water supplies originating in mountain snowpack along the Continental Divide. Farm-

land in WD1 typically receives less than 8 inches of precipitation during the growing season

(Schneekloth and Andales, 2017). In addition to 1.4 million acre-feet of average-annual native

flow volume, the basin receives an additional 500,000 acre-feet in transmountain diversions.

Overall, the basins in WD1 are over-appropriated, meaning the total allotted volume of wa-

ter rights exceeds the current average supply, and many irrigation season water rights are

continuously out of priority.

WD1 provides a relevant case study of many arid regions that are experiencing water

scarcity concerns coupled with irrigation-dependent agriculture and fast growing populations.

The 17 states wholly or partially west of the 100th meridian in the conterminous United

States all utilize a strict or hybrid prior appropriation water rights regime (Leonard and

Libecap, 2019) and depend on irrigation water for agricultural production. Of these 17

states, seven were among the top ten fastest growing states in percent growth from 2020 to

2021 (US Census Bureau 2021). Increased water scarcity due to climate change combined

with increasing demands for urban uses place significant pressures on agricultural production

in these areas. While there is considerable heterogeneity in producers across the American

West, many face similar problems to those represented in this study.

Agricultural producers in WD1 face uncertainty in water availability from two predomi-

nant sources. The first source is the variability in water supplies under a changing climate.

The second source is institutional, as water administration is complex and constantly evolv-

ing. Colorado is experiencing rapid population growth, with increasing water demands for
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municipal, industrial, recreational, and environmental uses, and the administration of water

law frequently undergoes changes from new legislation and court rulings as new problems

emerge (Jones and Cech, 2009).

The Natural Experiment

In addition to designating water divisions, the 1969 Act determined that groundwater was

to be regulated in conjunction with surface water under prior appropriation. The act in-

troduced “augmentation plans” that allow for out-of-priority diversions so long as sufficient

replacement water is supplied to prevent injury to senior users. Such plans are required

to be approved through a decree of a district water court,3 but the State Engineer was

granted the ability to temporarily approve substitute water supply plans (SWSPs). SWSPs

were essentially augmentation plans that could be renewed on an annual basis without of-

ficial approval from the courts. Consequently, many junior users neglected to formally seek

court adjudication and relied on the State Engineer for continued water use under SWSPs

(Waskom, 2013). SWSPs were predominantly utilized by groundwater users who would col-

lectively provide replacement water through recharge ponds or reservoirs. Throughout the

1980s and 1990s, groundwater users in particular were accused of providing inadequate re-

placement water (Waskom, 2013), however exceptional precipitation and snowpack (McKee

et al., 2000) veiled potential water shortages. Nearly two decades of abundant water supply

meant there was little incentive to impose change within the system.

Then, in 1999-2000, Colorado experienced an unexpected combination of low winter

snow accumulation and above average spring and summer temperatures that led to drought

conditions across the state (Pielke et al., 2005). This revealed that existing replacement

efforts under SWSPs did not adequately cover shortfalls in water availability, and as a result,

litigation was launched between two water users over misuse of SWSPs. The result of Empire

3Colorado water courts are specialized state courts with water judges appointed by the state Supreme Court.
Water judges have jurisdiction over all water use and administration within their water division. See https:
//www.courts.state.co.us/Forms/PDF/JDF%20301W.pdf for the application and detailed requirements
for approval of an augmentation plan.
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Lodge Homeowner’s Association v. Moyer, 39 P.3d 1139 (Colo. 2001) declared that the State

Engineer did not have legal authority to approve SWSPs on an annual basis and shifted more

oversight of water replacement plans to the water courts.4 Although this ultimately led to the

permanent curtailment of many groundwater rights, it had a direct impact on surface water.

First, producers faced increased dependence on uncertain surface water supplies during the

summer months. Additionally, the number of formally decreed augmentation plans that

require records of actual diversions increased dramatically in subsequent years (Waskom,

2013). Since the basins in WD1 are over-appropriated, net surface water diversions could

not increase in practice. As more water rights recorded daily diversions, the State Engineer

had a better understanding of actual surface water supplies, and the likelihood of calls along

mainstream rivers increased.

After the institutional change, drought conditions persisted through 2009 with the most

intense period occurring in 2002. In 2002, all of Colorado was in extreme drought con-

ditions, and April snowpack was estimated at 52% of the previous 30-year average (Pielke

et al., 2005). PDSI levels for WD1 reached -6 (Figure 2, top panel), a classification of drought

categorized by widespread crop losses and severe water shortages that result in water emer-

gencies. The newly increased reliance on surface water, better records for actual diversions,

and unprecedented drought conditions resulted in a permanent change to the call regime

(Figure 2, bottom panel). The average number of days under call from 2002-2012 was two

to four times that of 1982-2001 for districts within WD1 (Waskom, 2013, pp. 149-152). The

change in oversight for out-of-priority diversions, combined with an unprecedented decrease

in surface water supply, created an exogenous shock to the distribution of surface water

available to relatively junior water rights.

4For more information on SWSPs and Empire Lodge Homeowners v. Moyer, see the
“Guidance Documents” available at https://dwr.colorado.gov/services/water-administration/

water-supply-plans-and-administrative-approvals.
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Data and Modeling Approach

To exploit the exogenous change in surface water availability for some users, we compile an

extensive dataset for WD1 on irrigated cropland, irrigation technology, agricultural surface

water rights, call recordings, and population across seven observation years (1976, 1987,

1997, 2001, 2005, 2010, 2015). County-level population data is available through the Col-

orado State Demography Office, and the remainder of the data from Colorado’s Division of

Water Resources HydroBase software.5 Information on individual water rights includes water

source, point of diversion, water use type, maximum flow volume, appropriation date, and

priority number. The priority number ranks all water rights in terms of seniority, determined

by rights’ appropriation and court adjudication dates. Information on irrigated cropland in-

cludes acreage, point of diversion, and crop type. Irrigation technology at the field level

describes if a field irrigates using flood or sprinklers. Water rights, irrigation technology, and

irrigated acres can be matched to a diversion structure, such as a ditch or canal, however

we cannot identify the individual parcels owned by a specific water right holder. Therefore,

we aggregate information to the diversion structure as the unit for analysis. Altogether we

construct a balanced panel of 411 diversion structures.

Since 1950, all administrative calls by the State Engineer have been recorded, which we

use for our treatment design. Annual information on the length of curtailment for each water

right allows us to define treatment and control groups by losses during the 2000s drought

relative to historic droughts in the 1950s and 1970s (McKee et al., 2000). We assume that

producers developed a perception about the security of their water rights during drought

years from the intensity of their curtailment during the historic droughts. The average

number of curtailed days per year in drought period d, Cd, during the growing season (April-

October) is calculated over the “historic” drought years (1950-1956 and 1974-1978) and the

“recent” drought years (2000-2009) for all water rights sharing a diversion structure. Diver-

sion structures that experienced a considerable increase in average curtailment Cd during

5See https://cdss.colorado.gov/software/hydrobase.
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the recent drought period are placed into the treatment group at the following cutoff:

Treatment =


1, ∆Cd ≥ 50%

0, ∆Cd < 50%

(9)

where ∆Cd = Crecent−Chistoric

Chistoric
∗ 100. Robustness to the 50% cutoff is examined in the first

section of the Appendix.

In Table 1, we summarize the sample characteristics of treatment and control groups.

Statistics for 2001 are reported to provide a snapshot of the sample just before the natural

experiment, and it is used as the reference year for our regression analysis. From the data

presented it is apparent that larger diversion structures with slightly more junior water

rights were disproportionately impacted by the shock. To investigate if treatment structures

are correlated spatially, we present a map of treatment and control structures in Figure 3.

The location of treatment structures provides evidence that the shock was not localized to

a specific area. We find treatment structures in both urban and rural areas and along a

variety of different streams.

To examine the impact of the shock on the number of irrigated acres at diversion structure

i in year t with technology j, yjit, we estimate the following difference-in-difference models:

yjit =
τ∑
t

βjtDiTt + ωjxit + αjt + γji + εit (10)

where j denotes the technology-specific model (i.e., sprinkler or flood), Di = 1 if structure

i is in the treatment group and 0 otherwise, and Tt is an indicator equal to 1 if t = year T

and 0 otherwise. The term xit is county population, and αt and γi are year and diversion

structure fixed effects to control for time trends and omitted variables. Lastly, εit is the error

term clustered at the diversion structure. As a placebo test, DiTt includes all panel years,

excluding the reference year of 2001, to investigate differences prior to and after the natural

experiment. Hereinafter we will refer to years 1976, 1987, and 1997 as “pre-treatment” and
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years 2005, 2010, and 2015 as “post-treatment.”

Empirical Results

Coefficient estimates from (10) with corresponding cluster-robust standard errors are re-

ported in Table 2. We estimate four iterations of the model with different dependent vari-

ables: the number of irrigated acres with flood technology, the number of irrigated acres

with sprinkler technology, sprinkler acres as a percentage of total irrigated acres, and total

irrigated acres. We include the percentage of sprinkler acres to ensure estimates in the first

two columns are not biased by the behavior of larger diversion structures in our sample. In-

significant estimates for the pre-treatment variables in the first three columns indicate that

differences in the outcome variables between treatment and control groups are not statisti-

cally distinguishable from zero prior to the shock. This provides suggestive evidence that the

treatment and control groups have parallel trends. We present coefficients for the treatment

variables graphically in Figure 4, with 95% confidence intervals, to check for the existence

of differential pre-trends visually. Dashed confidence intervals indicate overlap with zero.

In years after the shock, estimates become significant and increase in magnitude, suggest-

ing that a change in behavior persisted for over a decade. By 2015, the average treatment

structure adopted sprinkler technology on 723 more acres than the average control structure.

This amounts to 11.2% more land converted from flood to sprinkler irrigation on average.

Applying this estimate to the entire treatment group, the shock incentivized an increase of

over 52,000 sprinkler-irrigated acres in our study area as of 2015.

Surprisingly, there is no statistically significant impact on total irrigated acreage. Al-

though WD1 is experiencing an overall decline in irrigated acreage (CWCB, 2015), the rate

at which land is leaving production is comparable between the treatment and control groups.

This suggests that the treatment group responded to the shock to water availability through

more efficient use of the input on the intensive margin. The overall decline in irrigated acres
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across the basin is perhaps partially explained by the negative and significant coefficient for

population, suggesting that a population increase reduces irrigated acres within a county.

This finding is consistent with large cities in Colorado buying agricultural water rights to

meet increasing municipal demands (Pritchett et al., 2008).

In addition to irrigation technology, agricultural producers can respond to water scarcity

by planting less water-intensive crops. We estimate crop-specific models using the same

specification as (10) while limiting the dependent variable to total and sprinkler irrigated

acres with corn, alfalfa, and wheat. We exclude results for grass pasture as there is very

little sprinkler irrigated pasture in our sample. Results from the crop-specific models are

presented graphically in Figure 5, again with 95% confidence intervals, and cluster-robust

standard errors are available in Table 3. Regression results indicate that corn was the crop

that experienced the biggest increase in sprinkler-irrigated land as a result of the shock.

On average, corn acreage accounted for 60-65% of the increase in sprinkler acreage for all

post-treatment years.6 This result holds in 2005 despite the significant average decrease

of 149 total corn acres, which was a potential short-run response to the shock. Between

the three crops, corn is generally more sensitive to drought than alfalfa or wheat (Lobell

et al., 2014), making this result consistent with risk-mitigating behavior. By 2015, we find

significant and positive differences for alfalfa and wheat in addition to corn for the Sprinkler

Acres specification. With the exception of corn in 2005, we find no significant differences in

total acres post-treatment for each crop. This suggests that adjustments to the change in

relative scarcity were made on the intensive margin (adjusting water application per acre)

rather than the extensive margin (retiring cropland).

We also investigate the potential impacts on irrigated acreage that is supplemented with

groundwater. The average number of estimated acres supplemented with groundwater in

Table 1 indicates that the treatment group utilizes more groundwater to augment their irri-

gation practices. Since the institutional change in the early 2000s resulted in the curtailment

6This was estimated by dividing the coefficient estimates from the corn-specific Sprinkler Acres model (Ta-
ble 3, column 2) by the coefficient estimates from the total Sprinkler Acres model (Table 2, column 2).
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of many groundwater rights, it is important to scrutinize what changes in sprinkler adoption

can be attributed to changes in surface water versus groundwater availability. We first con-

trol for groundwater supplemented acreage in the Sprinkler Acres and Sprinkler % models

to check for loss of significance and magnitude of the treatment effects, and then estimate

one additional model with groundwater supplemented acres as the dependent variable. Esti-

mates of groundwater supplemented acreage were omitted from the primary regressions due

to endogeneity concerns and potential measurement error, particularly because attenuation

bias due to measurement error is amplified in fixed effects estimations (Johnston and Di-

Nardo p. 404, 2009). Regression results for the groundwater models are presented in Table 4,

where columns (2) and (4) correspond to the models with the added groundwater control

variable and column (5) to the model with groundwater supplemented acres (GW Acres) as

the dependent variable. The only qualitative change to the results from the primary regres-

sions is the loss of significance of the Treatment*2005 variable for the Sprinkler Acres model.

Otherwise, the longer-term trends and Sprinkler % results remain largely unaffected. For

the GW Acres model, we find a significant decrease in groundwater supplemented acreage

for the treatment group in 2005, which reflects the immediate curtailment of groundwater

rights after the shock. However, estimates for Treatment*2010 and Treatment*2015 are not

statistically distinguishable from zero, indicating that long-term changes in groundwater use

did not differ significantly between the treatment and control groups. It is therefore likely

that the significant increases in sprinkler adoption in the treatment group was a mechanism

to adapt to long-run changes in surface water availability due to the shift in the call regime.

In summary, we observe a short-run response to the shock in the reduction of total

corn acreage and a long-run response in the increased and consistent adoption of sprinkler

technology. To examine what this implies for potential water use, we use seasonal crop-

water demands for corn, alfalfa, and wheat to make a back-of-the-envelope calculation of the

reduction in water required for full crop yields for treatment structures. First, we multiply the

2015 coefficient estimates in Table 2 for corn, alfalfa, and wheat by the number of treatment
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structures. Next, we calculate the difference in the seasonal net-irrigation requirement,

accounting for precipitation and soil moisture typical to northeastern Colorado, for an acre

of each crop with flood irrigation versus sprinkler irrigation.7 The difference for each crop is

then multiplied by the values from the first step. In total, we estimate a potential reduced

seasonal irrigation demand for water diversions of 85,000 acre-feet or 28 billion gallons of

water across WD1 by 2015 attributable to the change in expectations of water availability.

The average Colorado household needs about 0.5 acre-feet of water per year (Waskom and

Neibauer, 2014), so the demand reduction is roughly equivalent to the yearly water demands

of 170,000 households.8

In Figure 4, there is some evidence of pre-trends given the direction of coefficient esti-

mates across time, particularly for the Sprinkler % model. One might attribute these trends

to the difference in the average appropriation year (Table 1) between the treatment and

control water rights. Given our theoretical results, it is reasonable to assume that junior

water right holders would invest more in water efficient technologies than senior water rights

holders, regardless of the shock to surface water availability in the 2000s. If that is the

case, then our coefficient estimates could be biased. We test this supposition by limiting our

sample to similar treatment and control structures and re-estimating the Sprinkler % model.

We use a propensity score matching algorithm using the minimum, median, and maximum

appropriation year for the water rights associated with a structure to make the distribution

of all water rights between treatment and control groups as similar as possible.9 Results from

the matching exercise are presented in Figure 6. The treatment group is smaller than the

control group, so we first match every treatment structure with two similar control structures

(second column) and then one-to-one (third column). The first row of Figure 6 displays a

smoothed density curve for the total sample and the two matched samples, and the second

7Net crop water requirements are calculated from data presented in Schneekloth and Andales (2017).
8This comparison is made only to provide perspective on the volume of water. According to Colorado water
law, water ”saved” via irrigation efficiency gains cannot be reused or sold.

9We use the MatchIt package in R to perform a greedy nearest neighbor matching algorithm. Details can
be viewed at https://cran.r-project.org/web/packages/MatchIt/MatchIt.pdf.
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row displays coefficient estimates corresponding to the sample directly above. Although the

densities do not completely overlap in the two-to-one matched sample, any evidence of pre-

trends in the resulting coefficient estimates is virtually eliminated, and post-shock estimates

remain positive and significant. The one-to-one matching results in a nearly perfect overlap

between densities, but the regression suffers from a small sample and estimates are not sta-

tistically significant until 2015. This exercise provides evidence that our main results are not

driven by differences in seniority among the water rights at treatment and control diversion

structures. Additional robustness checks and analysis relating to treatment design, model

specification, and nonlinear impacts from the shock can be found in the first three sections

of the Appendix, respectively.

Conclusion and Policy Implications

In this article, we explore the impact of perceived input scarcity on conservation invest-

ment decisions. We develop a theoretical model to examine the conditions under which

an agricultural producer’s perception of water shortages would incentivize investment in a

more efficient irrigation technology. A numerical exercise is used to demonstrate a range

of perceptions that maximize the gross benefit of investing in irrigation efficiency, and we

test our theoretical predictions empirically. A period of severe drought and institutional

change in Colorado that led to a change in expectations about the availability of irrigation

water is leveraged as a natural experiment. Results suggest that agricultural producers who

experienced an unprecedented shock to their irrigation water supply transitioned more land

from low- to high-efficiency irrigation systems in the following decade. Our analysis provides

evidence that input shocks can trigger investment in efficiency due to changes in perceptions.

This research has limitations that must be acknowledged. Subsidy programs such as the

Environmental Quality Incentives Program (EQIP) that can significantly reduce the costs

of investment may affect conservation decisions. Although we can observe general rates of
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adoption through land use changes, we do not know producer-specific costs of a sprinkler

system. We also cannot observe conservation practices beyond irrigation technology and

crop choice in our data. For example, when evaluating EQIP enrollment, Wallander et al.

(2013) found that many drought-facing producers adopted tillage practices that conserve

soil moisture. Lining or replacing irrigation ditches to reduce seepage is another practice

identified as water saving by EQIP that we are unable to detect.

In Colorado, water rights can be bought and sold, and a distinct feature of our study

area is the presence of active water markets. Most market activity consists of municipal

and industrial buyers and agricultural sellers. Some rights were undoubtedly traded during

our study period, which we are unable to track. We can only observe the decreed uses

of a particular water right as they exist today, and although we limited our analysis to

water rights that have a decreed agricultural use, some have gained additional uses through

previous transactions. It is possible that not all water right owners with an agricultural water

right are using their water for agricultural production in a given year. Although we cannot

identify which water rights were sold, we find that changes in total irrigated acreage did

not differ substantially between treatment and control groups. This provides some evidence

that agricultural water rights are being sold at similar rates across all diversion structures,

regardless of the heterogeneous impacts of the shock.

Concerning water right transactions, improving irrigation efficiency does not generally

reduce the value of a water right. One aspect of prior appropriation is that water rights may

be forfeited if the owner consistently fails to apply the water to a beneficial use, otherwise

known as ”use it or lose it.” This component however only applies to the consumptive

use determined by the water right. In the case of a farmer, the consumptive use of his

water right is determined by the annual documented evapotranspiration of his crops, not

the total amount of water diverted. Since improving irrigation efficiency only reduces the

amount necessary for diversion and not the beneficial, consumptive use, the water right’s

value should not be affected. In the case of a water right transfer, the transferee buys only
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the right to the consumptive use regardless of the transferor’s former diversion amounts. In

general, the ”use it or lose it” rule is not a true barrier to improving irrigation efficiency,

although it is potentially perceived that way by some (Waskom et al., 2016).

Another important characteristic of our study area is that all surface water and most

groundwater resources are administered similarly under prior appropriation, which is not

uniformly the case across the American West. Their conjunctive governance effectively

limits their substitutability, so agricultural producers cannot rely on increased groundwater

pumping when surface water supplies are low during drought. This lack of substitutability

certainly affected producers’ willingness to invest in technology to use surface water more

efficiently. Groundwater aquifers are often exhaustible in practice, since they can take long

periods of time to replenish naturally. Inhibiting the ability to excessively pump groundwater

during drought may prompt an earlier adoption of water conserving technologies. Improving

the use efficiency of renewable surface water supplies before exhausting limited groundwater

resources may increase the longevity of agricultural production under climate change.

Lastly, it is worth noting that hydrological systems are exceptionally complex, and any

changes to how and when water is diverted has common property resource implications. Wa-

ter is considered a public good under prior appropriation, and water rights are usufructuary.

If downstream users in a basin are reliant on return flows, i.e., the water that returns to

the system after human use, reducing upstream flows by improving irrigation efficiency can

impact their water availability. In some cases, it may not be clear if the adoption of efficient

application technologies improves system-level performance. An area of future research that

warrants attention is evaluating how uncertainty in return flows impact the overall efficiency

of a basin. Return flows are difficult to track and can vary in their amounts depending on

the crop being grown, soil type, weather conditions, and when the water is applied. This

added uncertainty can make a system more difficult to manage, all else equal. High efficiency

irrigation technologies however increase the control that a producer has to target water to a

crop, which reduces the uncertainty in the value added from a unit of water that could have
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otherwise been applied with a low efficiency technology. Scrutinizing these uncertainties and

understanding how incentives for efficient water use are aligned across producers within a

basin is crucial for agricultural sustainability.

Despite some limitations, our results are generally informative and have important policy

and water management implications. First, drought in arid regions is expected to worsen

under a changing climate, and perceptions will play a critical role in the future adoption of

conservation practices in agriculture. Neglecting how costs and benefits are perceived when

assessing the effectiveness of programs designed to encourage conservation efforts could pro-

vide policy makers with misleading information. For example, if a policy maker is considering

the implementation of a subsidy program to promote the adoption of water-conserving tech-

nologies, it is important to understand whether non-adoption is driven by conventional cost

hurdles or perceptions about necessity. If the latter is the driving factor, efforts to accelerate

revisions to perceptions to align with actual shortage distributions, before the realization of

costly weather disruptions, could bolster a more efficient path to adoption. This may be an

opportunity for agricultural extension to address and build perceptions about water scarcity

in arid climates. Surveys and qualitative interviews can be administered to local farmers

to gauge perceptions about climate change, drought risk, and the efficacy and necessity of

adaptation strategies. If climate change risk is perceived as negligible, awareness campaigns

tailored to communicating water scarcity concerns in localized areas may be effective at ac-

celerating changes. If climate change is perceived as a real risk, communicating the benefits

of increasing water use efficiency and providing better information on the possibility of future

water shortages can enable producers to minimize their down-side risk. Highlighting the con-

servation practices of local farming operations may also facilitate changes in perceptions, as

the behavior of neighbors has been found to be influential in adoption behavior (Case, 1992).

Once climate change perceptions align with a need to improve water use efficiency, dissem-

inating opportunities that reduce costs of implementation, such as EQIP participation, can

hasten the path to adoption.
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Tables

Table 1: Summary of Characteristics of Treatment and Control Diversion Structures, 2001

Control Treatment

Variables: Mean Std Dev Mean Std Dev

Irrigated Land (Acres)
Flood Technology 1,110.88 3,814.92 2,755.17 5,721.63
Sprinkler Technology 289.91 1,502.46 894.70 2,830.55
Total 1,400.78 5,142.39 3,649.87 8,028.84
Groundwater Supplementeda 372.12 1,776.11 2,064.06 4,713.05

Crop Varieties (Acres)
Corn 433.15 1,868.73 1,628.41 3,820.95
Alfalfa 483.02 2,055.93 1,149.95 2,572.18
Grass Pasture 250.54 514.26 351.02 701.01
Wheat 107.37 450.89 192.18 572.25
Otherb 42.23 228.76 109.44 405.71

Water Rights Datac

Appropriation Year 1880 13.14 1892 24.11
Number of Rights 6.13 11.46 2.90 3.52

County Population 211,001.8 136,786.1 147,749.5 122,041.8

Number of Structures 339 72

aHydroBase provides estimates of surface water irrigated acreage that is supplemented

with groundwater.
bOther crops include sugar beets, dry beans, and assorted vegetables.
cRefers only to water rights with decreed agricultural uses.
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Table 2: Difference-in-Difference Estimations of the Impact of Drought and Institutional
Change on Irrigation Practices

(1) (2) (3) (4)
Variables: Flood Acres Sprinkler Acres % Sprinkler Total Acres

Treatment*1976 467.0 −251.5 −0.016 215.5∗

(276.2) (214.3) (0.022) (94.6)
Treatment*1987 218.3 −175.7 −0.006 42.6

(164.8) (131.9) (0.013) (70.5)
Treatment*1997 139.1 −114.1 0.012 25.0

(78.5) (78.8) (0.008) (36.8)
Treatment*2005 −401.3∗∗ 254.5∗∗ 0.048∗∗∗ −146.8

(151.8) (87.2) (0.012) (82.0)
Treatment*2010 −557.6∗∗ 516.7∗∗ 0.077∗∗∗ −40.9

(196.5) (163.1) (0.020) (76.6)
Treatment*2015 −843.4∗∗ 723.3∗∗ 0.112∗∗∗ −120.1

(305.1) (237.5) (0.025) (102.5)
County Population −0.001 −0.0007 −2.11× 10−7∗ −0.002∗∗∗

(0.001) (0.001) (1.07× 10−7) (0.0004)

Fixed effects:
Diversion Structure X X X X
Year X X X X

Observations 2,877 2,877 2,877 2,877
Adjusted R2 0.920 0.792 0.701 0.993

Diversion Structures: 411, Time Periods: 7, Reference Year: 2001

Standard errors (in parentheses) are clustered at the diversion structure level.

Signif. Codes: ***: 0.001, **: 0.01, *: 0.05
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Table 3: Difference-in-Difference Estimations of the Impact of Drought and Institutional Change on Crop-Specific Irrigation
Practices

Corn Alfalfa Wheat

(1) (2) (3) (4) (5) (6)
Variables: Total Acres Sprinkler Acres Total Acres Sprinkler Acres Total Acres Sprinkler Acres

Treatment*1976 338.2 −54.9 −244.0 −169.3 −90.4 −32.2
(195.8) (68.4) (171.1) (119.9) (56.4) (23.2)

Treatment*1987 115.1 −56.8 −328.4∗ −149.4 59.0 −23.4
(125.7) (55.5) (161.8) (97.5) (38.2) (15.5)

Treatment*1997 18.8 −49.3 −203.5 −107.5 32.0 −8.34
(120.3) (59.7) (122.4) (67.8) (31.9) (12.7)

Treatment*2005 −149.4∗ 155.8∗∗ −134.2 21.1 −28.8 −4.65
(68.9) (51.2) (119.5) (37.1) (33.7) (7.29)

Treatment*2010 −23.5 340.7∗∗ −204.2 54.4 88.6 72.0
(53.8) (103.3) (135.4) (40.3) (53.2) (37.4)

Treatment*2015 −103.5 453.2∗∗ −144.1 144.3∗ 46.3 74.6∗

(79.9) (145.7) (109.3) (56.5) (42.7) (35.1)
County Population −0.001∗∗ −0.0005 −0.0009∗∗ −0.0002 −0.0001 1.5× 10−5

(0.0004) (0.0005) (0.0003) (0.0005) (0.0001) (9.58× 10−5)

Fixed effects:
Diversion Structure X X X X X X
Year X X X X X X

Observations 2,877 2,877 2,877 2,877 2,877 2,877
Adjusted R2 0.954 0.781 0.915 0.717 0.798 0.522

Diversion Structures: 411, Time Periods: 7, Reference Year: 2001

Standard errors (in parentheses) are clustered at the diversion structure level.

Signif. Codes: ***: 0.001, **: 0.01, *: 0.05
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Table 4: Difference-in-Difference Estimations, Controlling for Groundwater Use

(1) (2) (3) (4) (5)
Variables: Sprinkler Acres Sprinkler Acres Sprinkler % Sprinkler % GW Acres

Treatment*1976 -251.5 -190.9 -0.016 -0.014 47.09
(214.3) (193.8) (0.022) (0.022) (37.78)

Treatment*1987 -175.7 -207.9 -0.006 -0.007 -24.35
(131.9) (146.5) (0.013) (0.013) (36.94)

Treatment*1997 -114.1 -134.0 0.012 0.011 -15.09
(78.8) (96.2) (0.008) (0.009) (19.67)

Treatment*2005 254.5∗∗ -94.8 0.048∗∗∗ 0.033∗∗ -269.00∗∗

(87.2) (124.7) (0.012) (0.013) (100.50)
Treatment*2010 516.7∗∗ 354.5∗ 0.077∗∗∗ 0.070∗∗∗ -125.36

(163.1) (162.9) (0.020) (0.020) (85.00)
Treatment*2015 723.3∗∗ 624.5∗∗ 0.112∗∗∗ 0.108∗∗∗ -76.31

(237.5) (219.5) (0.025) (0.025) (58.41)
County Population -0.0007 -0.002 −2.11× 10−7 ∗ −2.46× 10−7∗ -.0007∗∗

(0.001) (0.001) (1.07× 10−7) (1.07× 10−7) (.0002)
GW Acres - -1.32∗∗∗ - −5.38× 10−5∗∗∗ -

- (0.232) - (7.96× 10−6) -

Fixed effects:
Diversion Structure X X X X X
Year X X X X X

Observations 2,877 2,877 2,877 2,877 2,877
Adjusted R2 0.792 0.820 0.701 0.707 0.989

Diversion Structures: 411, Time Periods: 7, Reference Year: 2001

Standard errors (in parentheses) are clustered at the diversion structure level.

Signif. Codes: ***: 0.001, **: 0.01, *: 0.05
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Figures

Figure 1: How Perceptions Impact the Gross Benefit of Investment
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Figure 2: Monthly PDSI and Frequency of Calls by State Engineer, Colorado Water Division
1
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Figure 3: Treatment and Control Diversion Structure Map, Colorado Water Division 1
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Figure 4: Difference-in-Difference Estimations of the Impact of Drought and Institutional
Change on Irrigation Practices
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Figure 5: Difference-in-Difference Estimations of the Impact of Drought and Institutional
Change on Crop Choice
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Figure 6: Difference-in-Difference Estimations Before and After Propensity Score Matching,
Sprinkler %
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Appendix

Scrutinizing the Treatment Design

To further investigate our treatment design, we approximate the parameters defined in the

theoretical model and impose the values on the heat map (Figure A1). Although treatment

and control groups were determined by impacts during only drought years, we estimate

perceptions using three 16-year periods that include both dry and wet years. Drought

shocks are random, and a producer would develop perceptions about the probability of a call

conditional on a variety of weather realizations. The estimate for the probability of a call

(θ) is the average number of years a water right at a given structure was called during the

period, divided by the length of the period. The estimate for the proportion of water received

when called (δ) is the average of (1− days under curtailment
growing season days

) for the years in which a water right

was called. From Figure A1 it is evident that most treatment structures shifted from darker

to lighter areas in the period containing the shock (2000-2015), indicating a movement from

low to high gross benefits from adopting a more water-efficient irrigation technology. The

control structures do not exhibit the same movement. Although many control structures lie

in an area that predicts a high benefit of adoption, our treatment designs aims to capture

a change in perceived water availability. The relatively stable parameter estimates for the

control group indicate they did not experience the drought shock to the same degree, as

compared to prior droughts, as the treatment group.

Next, we test the robustness of the 50% curtailment increase we use to define our treat-

ment group. Our theoretical model suggests a nonlinear impact of curtailment length on the

benefits of adoption, so although the 50% choice aligned well with how treatment structures

moved on the theoretical heat map, larger increases in curtailment may impact behavior

differently. We examine coefficient estimates for the Sprinkler % and Total Acres models

with cutoffs ranging from 50% to 150% in increments of 5%. For each incremental increase,

structures that no longer meet the treatment criteria are dropped from the analysis rather
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than moving into the control group. Results are presented in Figure A2 and Figure A3,

where each row refers to the dependent variable in the model runs and each column to the

treatment-year interaction term. For the Sprinkler % model, pre-treatment coefficient esti-

mates are consistently insignificant, and post-treatment coefficient estimates are consistently

significant. Nearly all coefficient estimates for the Total Acres model are insignificant. How-

ever, the magnitude of the coefficient estimates are not as stable. For the post-treatment

coefficients in the Sprinkler % model, differences in average adoption rates fluctuate upwards

of 5% as of 2010 and 2015.

Addressing Threats to Identification

Here we address the possibility of multiple or staggered treatments. In our main econometric

specification, we leverage the shift in the call regime as a singular treatment event. However,

drought varies in intensity from year to year, and it is possible that some treatment structures

were impacted differently in years post-2002. If treatments are heterogeneous and staggered

across time, then our model would be misspecified, and we would instead need to employ

a difference-in-difference design suitable for estimating average treatment effects with two-

way fixed effects and heterogeneous treatments (e.g., Callaway and Sant’Anna, 2021). We

explore this possibility graphically and further clarify the aim of our current treatment

design. We first draw attention to the bottom right panel of Figure A1, which displays

parameter estimates from the theoretical model for all treatment structures for the 2000-

2015 time period. We find that all treatment structures move similarly on the heat map,

in aggregate. Disaggregating to yearly impacts, Figure A4 shows the average days under

curtailment for every diversion structure in our sample by year. Each point represents the

average number of days under curtailment across all water rights associated with a given

structure in that year. Grey points correspond to dry years (PDSI < 0) and black points

correspond to wet years (PDSI > 0). From the bottom panel of Figure A4, it appears that

treatment structures are consistently curtailed more in dry years post-2002 than any dry
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year previous. Although calls at different treatment structures may have varied across years,

we argue that our treatment design aims to capture the singular and systematic shift in the

way calls are administered post-2002. In other words, the treatment captures a change in

perceptions about water supply certainty due to a distributional change in the call regime

rather than year to year drought severity, which makes our model specification appropriate.

Next, we examine the robustness of our econometric results to adjustment of the reference

year. The reference year of 2001 was chosen as it is the most recent year prior to treatment,

but its omission inhibits the ability to fully investigate possible anticipatory behavior. If

water right owners were anticipating the shift in the call regime and took action prior to its

realization, the parallel trends assumption would not hold and our results could be biased.

Figure A5, Figure A6, and Figure A7 present coefficient estimates with 95% confidence

intervals for the main econometric models (Table 2) with reference years 1976, 1987, and

1997, respectively. For the Flood Acres, Sprinkler Acres, and Sprinkler % models, results

do not change qualitatively across reference years and pre-treatment coefficient estimates

are consistently insignificant. Most importantly, the insignificant coefficient estimates for

2001 indicate no substantial behavioral differences between treatment and control diversion

structures in the year immediately preceding the shock.

Lastly, we discuss the model specification, in particular the choice of year fixed effects ver-

sus a drought severity control variable (e.g., PDSI) across our study area. Localized weather

conditions influence crop water demands as well as the amount of effective precipitation

available to plants. As with much of the American West, the timing and quantity of surface

water supplies available to producers for irrigation is based largely on winter (quantity of

snow) and spring/early summer (timing of snowmelt) weather conditions in the mountains

outside of our study area (as much as 200 miles away from the planting location and/or in

another river basin). While PDSI is an effective measure of long-term (18 month) drought, it

reflects local conditions. Within a time period, there is little variation across our study area,

and the variation that does exist would not explain differences in surface water availability
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across producers (or the exogenous shock to perceived water right reliability that we ob-

serve). Our goal in this paper is to identify the effect of changing perceptions about surface

water availability on producer behavior. Including year fixed effects allows us to estimate the

effect of the unexpected shortages beginning around 2002 while controlling for differences

in weather conditions (along with market conditions and any other factors constant across

space) that may exist across the study period.

Nonlinear Impacts of Changing Perceptions

From the theoretical model, we determined that changing perceptions can impact adoption

nonlinearly depending on the movement of θ and δ. The increase in expected gross benefit

from an increase in θ could potentially be nullified by either an increase or decrease in δ,

depending on the starting combination. Looking again at the right-hand column of figure

Figure A1, we would expect treated units that moved to the lightest areas to have higher rates

of adoption. We investigate this hypothesis informally by imposing total changes in sprinkler

acreage (Figure A8) and sprinkler acreage as a percentage of total acreage (Figure A9) for

each structure on the bottom right panel of Figure A1.10 A larger point indicates a bigger

increase in sprinkler technology adoption. In both figures, there appears to be a greater

concentration of high adoption rates near the lighter areas, where the gross benefits of

adoption are predicted to be highest.

10Change in sprinkler acreage as a percentage of total acre is calculated as a difference in percentage points.
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Figure A1: Estimated Perception Parameters for Control versus Treatment Diversion Struc-
tures
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Figure A2: Robustness of Difference-in-Difference Estimations to Cutoff Selection, Pre-
Treatment

Figure A3: Robustness of Difference-in-Difference Estimations to Cutoff Selection, Post-
Treatment
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Figure A4: Average Days Under Curtailment for all Treatment and Control Structures by
Year
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Figure A5: Difference-in-Difference Estimations, Reference Year 1976
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Figure A6: Difference-in-Difference Estimations, Reference Year 1987
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Figure A7: Difference-in-Difference Estimations, Reference Year 1997
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Figure A8: Nonlinear Impacts of Perceptions on the Adoption of Sprinkler Technology, Total
Sprinkler Acreage
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Figure A9: Nonlinear Impacts of Perceptions on the Adoption of Sprinkler Technology,
Sprinkler Acreage as a Percentage of Total Acreage
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