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Climate, Drought Exposure, 
and Technology Adoption 
An Application to Drought-Tolerant 
Corn in the United States 

Jonathan McFadden, David Smith, 
and Steven Wallander 

6.1 Introduction 

Ongoing climate change is causing complex and potentially irreversible 
changes to crop growing conditions across the world . In the US, increases in 
average temperatures, accompanied by increases in the frequency of warm 
days and nights , and higher precipitation variability over the central US 
are amplifying drought risk (Intergovernmental Panel on Climate Change 
2014). Widespread drought prevalence and risk are projected to increase 
through 2050, with the Rocky Mountain states and the southwestern US 
experiencing greater drought frequency (Strzepek et al. 2010). These regions, 
along with the Central Plains, are at high risk of a multi-decadal drought this 
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century (Cook , Ault , and Smerdon 2015), even as groundwater sources for 
irrigation in certain areas continue to decline (Steward et al. 2013). 

Using historical crop yield data , several applied econometric studies have 
found little evidence of long-run adaptation to climate change in the produc­
tion of major US row crops. For example, through a comparison of long 
difference and panel regression coefficients, Burke and Emerick (2016) con­
clude that adaptation has offset no more than half of the negative short run 
impacts of extreme heat on US corn yields. Their median estimate of future 
climate change impacts suggests that such limited adaptation will contribute 
to decreases in annual yields by 15 percent in 2050. Much of this is driven 
by the finding that corn yields decline sharply at temperatures above 28-
290C (82.4- 84.2°F) (Schlenker and Roberts 2009; Burke and Emerick 2016). 
However, past agricultural adaptations are imperfectly captured , and the 
prospects of future adaptation-inducing technical progress (Heisey and Day 
Rubenstein 2015) or large-scale price feedbacks (Auffhammer and Schlenker 
2014) cannot be precisely forecasted over long time horizons. 

In the short run , crop farmers have few potential tools for reducing 
downside production risk from changes in drought frequency or intensity. 
Adoption of irrigation equipment, increased irrigation , or adoption of more 
efficient equipment are only viable for farmers with access to sufficient irri­
gation water. Regardless of irrigation availability, no-till crop management 
and conservation tillage practices can be effective adaptation tools (Powlson 
et al. 2014) because they reduce soil moisture evaporation and help improve 
soil water-holding capacity and infiltration . US federal working lands con­
servation programs , such as the Environmental Quality Incentives Program , 
pay farmers to use such practices. Federal conservation easement programs 
like the Conservation Reserve Program can also help certain farmers adapt 
to drought risk by retiring land from agricultural production (Wallander 
et al. 2013). Apart from these technologies and management practices , one 
recent and increasingly available option is adoption of drought-tolerant 
(DT) crop varieties. 

Non-genetically engineered (non-GE) DT corn hybrid varieties were com­
mercialized in 2011, while GE DT varieties were released on a limited basis 
in 2012. Adoption has been rapid in the first five years since introduction : by 
2016, just over 22 percent of US corn acreage was planted to DT varieties 
(McFadden et al. 2019). Currently, most DT corn acreage is concentrated in 
drought-prone areas of the western Corn Belt- particularly in Nebraska and 
Kansas. However, DT corn seed adoption is also significant in the eastern 
Corn Belt and in regions of relatively lower corn productivity . Climate and 
drought risk, local growing conditions, and seed company marketing strate­
gies likely factor into farmers' decisions about which corn varieties to grow. 

Corn presents a particularly attractive opportunity for studying the eco­
nomic dimensions of DT crop adoption. First , corn has been a major tar­
get of substantial US breeding research into drought tolerance for several 
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decades , culminating in the commercial release of multiple hybrid variet­
ies. Despite the extensive challenges of identifying and manipulating plant 
genetic material that mediates the plant's complex response to drought , DT 
varieties have been developed for other crops like soybeans (e.g., Nuccio 
et al. 2018), though US regulatory approval and commercialization have 
only occurred very recently, and the full extent of uptake is unknown . Sec­
ond , corn is a water-intensive crop that is sensitive to high temperatures 
(e.g., Schlenker and Roberts 2009), thus making its on-farm management 
intrinsically interesting - especially within the context of worsening climate 
conditions. Third, corn is among the most economically important crops in 
the US. Since 2006, annual gross cash receipts for corn have comprised at 
least 10 percent of receipts for all US agricultural commodities (US Depart­
ment of Agriculture , Economic Research Service 2022), and its share of 
total annual US planted crop acres has been well over 25 percent during this 
same period (US Department of Agriculture, National Agricultural Statis­
tics Service 2022). Given the sizeable physical and financial value at risk­
risk with an increasingly large downside for the US agricultural economy as 
climate change deepens - an examination of the determinants surrounding 
this particular drought adaptation tool would seem compelling. 

The objective of this study is to determine how drought risk and recent 
drought exposure impact the adoption of DT corn in the US. We begin by 
detailing research and development (R&D) of DT corn seeds and the sub­
sequent use of these varieties across the US. Next, we motivate our empiri­
cal analysis of adoption trends through a state-contingent framework that 
accommodates farmers' beliefs about future drought based on objective 
drought risk and exposure. Although nationally representative microdata 
of farmers' fields are available, they do not track the same field ( or farm 
operation) over time, which generates concerns of potential bias arising 
from unobserved heterogeneity. To alleviate this source of potential bias, we 
implement a new and intuitive econometric method, spatial first differences, 
which is designed to eliminate time-invariant confounds in cross-sectional 
regression models. 

Our discrete choice analysis suggests that adoption is responsive to long­
run drought risk and climate conditions and not the severity or duration of 
recent droughts. We further find that irrigation reduces the likelihood of 
adoption , while high erodability increases this likelihood , both of which are 
consistent with the location-based marketing of these varieties that initially 
targeted the western Corn Belt. 

6.2 Research, Development, and Uptake of Drought-Tolerant 
Corn Varieties 

Private-sector research on drought tolerance in corn dates back to at least 
the 1950s (Cooper et al. 2014). Initial research focused on varietal selec-
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tion for yield performance under drought conditions. Public-sector research 
began in the mid-1970s (Edmeades 2012). In contrast to the private sector, 
non-profit institutions like the International Maize and Wheat Improve­
ment Center (CIMMYT) began selecting for drought tolerance in tropical 
varieties using an index of traits. The methods (e.g., conventional breeding, 
molecular breeding, and genetic engineering) and germ plasm (i.e., seeds and 
plants used in crop breeding research) used in both sectors have improved 
over the past several decades. To date, the international research community 
has introduced several hundred varieties of DT corn that are adapted to 
growing conditions in the US and abroad. 1 

By 2012, both non-GE and GE DT corn hybrid varieties had been com­
mercialized in the US. Non-GE varieties were developed through the use 
of molecular breeding, which entailed analysis of field trial data and sub­
sequent selection based on statistical predictions of yield performance 
and other traits under drought conditions. Non-GE DT corn acreage has 
increased following its 2011 commercial release (Minford 2015). By contrast, 
GE drought tolerance involves insertion of a certain soil bacterium gene 
into the corn plant's genetic material, which causes expression of a specific 
protein that helps the plant mitigate drought damages. GE DT corn acre­
age has also increased since commercialization in 2012 (Castiglioni et al. 
2008; Waltz 2014), but at a slower rate than acreage to corn varieties with 
conventional drought tolerance (McFadden et al. 2019).2 

The percent of US corn acreage planted to DT corn varieties increased 
swiftly in the years following commercialization (figure 6.1). In 2012, DT 
corn (all varieties) accounted for a little over 2 percent of national corn acre­
age. By 2016, roughly 22 percent of US corn acres were drought tolerant, a 
20 percentage point increase over five years. This growth is similar to that 
of insect-resistant (Bt) and herbicide-tolerant (HT) corn varieties in their 
first five years (1996- 2000). Comparisons of adoption trends for these three 
technologies must be interpreted cautiously because each is used to manage 
different factors that cause yield loss. Bt varieties are mainly used to man­
age two insect pests common throughout the US Corn Belt. HT traits are 
used to manage weeds. In contrast, there are several areas of the eastern 
Corn Belt (e.g., eastern Indiana, Ohio, and western Pennsylvania) where 

I. The Drought Tolerant Maize for Africa (DTMA) project (2007-15) was an international 
partnership that developed and released DT corn varieties adapted for sub-Saharan growing 
conditions. Wossen et al. (2017) found average yields were 12.6 percent higher among DTMA 
DT corn adopters in Nigerian villages under mild droughts than non-adopters. The Water 
Efficient Maize for Africa (WEMA) project (2013-18) is a public-private partnership that 
has also developed and commercialized DT corn varieties for certain sub-Saharan nations 
(Ed mead es 2012). A successor, the Stress Tolerant Maize for Africa project (2016-19) , had 
the goal of developing 70 varieties with more resistance to non-drought stresses, e.g., low soil 
fertility , diseases, and pests (CIMMYT 2018). 

2. As our study relies on data at the initial stage of the DT corn adoption path , it is infeasible 
to perform an ex post analysis of the returns to drought tolerance R&D for the commercial­
ized varieties. 
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Fig. 6.1 Adoption of insect-resistant, herbicide-tolerant, and drought-tolerant corn 
in the US since 1996 
Note: The HT and Bt genetically-engineered (GE) traits were commercially introduced in corn 
in 1996. The year in which GE varieties of drought-tolerant (DT) corn were introduced was 
2012. For year 2016, the DT adoption rate is calculated from Phase II ARMS data. Since 
Phase II of ARMS does not survey corn each year, estimates of adoption rates are unavailable 
prior to 2016. For years 2012-15 , DT corn acreage is taken from various industry sources and 
then divided by total harvested acreage of corn for grain. Adoption rates for Bt and HT corn 
include minimal acreages of stacked varieties (1996-2000) , whereas adoption rates for DT 
corn include varieties that are overwhelmingly stacked with Bt and/or HT traits (2012-2016). 
Source: Fernandez-Cornejo and McBride (2002) for Bt and HT corn adoption rates ; USDA , 
National Agricultural Statistics Service (2018b) and various industry estimates for DT (2011-
15); USDA , Economic Research Service and National Agricultural Statistics Service, 2016 
Agricultural Resource Management Survey. 

drought is less common. In addition, there was no universal expectation that 
HT and Bt traits would subsequently become "breakthrough" and widely 
adopted crop production technologies. Nonetheless, the pace of early DT 
corn adoption has been comparable to that of other major recent innova­
tions in corn varieties. 3 

Aggregation of national acreage trends masks significant regional varia­
tion in 2016 DT corn adoption (figure 6.2). Roughly 16- 21 percent of corn 
in 2016 for the traditional Corn Belt (e.g., Iowa, Illinois, and Indiana) was 
drought tolerant, with 14- 20 percent shares of corn acreage in the north­
ern Great Lakes states of Minnesota, Wisconsin , and Michigan. The Great 
Plains exhibit significant within-state variability, particularly in Nebraska, 

3. It should be noted that these traits are often bundled in the same variety. For example , 
54 percent of corn fields in our sample were planted to varieties with HT and Bt traits , while 
20 percent were planted to varieties with DT, HT, and Bt traits. Despite such bundling , it does 
not appear that climate , drought risk , and other regressors of interest have larger effects on 
adoption of HT or Bt corn than DT corn. This conclusion is supported by complementary 
multivariate econometric analysis , which we exclude here for space considerations ( estimates 
available upon request). 
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Fig. 6.2 DT shares of US state corn acreage, 2016 
Not e: In 2016, total US corn acreage planted to DT varietie s was 18.6 million acre s. 

Sour ce: USDA , Economic Research Service and National Agricultural Stati stics Service, 2016 
Agricultural Resource Management Survey. 

Kansas , and Texas, though adoption is highest (39- 42 percent) for cropland 
generally over or near the Ogallala Aquifer. Certain high-latitude regions, 
like North Dakota , had minimal adoption but also tend to have relatively 
less corn production. 

It is expected that adoption is correlated with incidences of recent and 
severe droughts (figure 6.3). The US Drought Monitor indicates that sub­
stantial swaths of the Corn Belt experienced a "severe" (category D2) or 
worse drought in July 2012. One year later, droughts were concentrated in 
western states, with many counties in Colorado , Nebraska , Kansas , and 
Texas experiencing "extreme " (category D3) or "exceptional " (category D4) 
droughts . These drought patterns are confirmed by spatial variation in July 
drought risk , as measured by the standard deviation of the Palmer Modified 
Drought Index (PMDI). Counties that had one or more severe-or-worse 
droughts in 2011- 15 tended to have higher risk . However, most counties in 
South Dakota , North Dakota , and Minnesota did not experience significant 
drought over 2011- 15, despite being higher risk . Conversely, many Texas 
counties experienced more frequent and/or more severe droughts during 
2011- 14 than might be implied by their long-run risk. These discrepancies 
in short-run exposure and long-run risk partially motivate our economic 
framework , which we discuss next. 



Fig. 6.3 US Drought Monitor index of droughts, 2011-15 
Note: The US Drought Monitor sorts drought into five categories: abnormally dry (a drought 
precursor , DO), moderate (DI) , severe (D2) , extreme (D3) , and exceptional (D4). These can be 
thought of in terms of potential impacts: short-term dryness (DO), some damage to crops 
(DI) , crop losses likely (D2) , major crop losses (D3) , and exceptional and widespread crop 
losses (D4) , although actual agricultural impacts will vary by crop and irrigation use. 

Source: US Drought Monitor 2019. 
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6.3 Economic Framework 

We define the farmer's state-contingent and partial ( drought and drought­
abating) per-acre profit ('rr) function as 

(1) 

where Pis the output price,4 Y, is yield, X 0 is a vector of state-independent 
drought-abating inputs , xp is a vector of state-contingent drought-abating 
inputs , px is a vector of prices for these inputs , and sis an index for a state 
of the world . 

We assume that yields are a multiplicative function of drought-free yields 
(Y) and a drought abatement function (d,(.) E { 0, 1} ), defined over the unit 
interval. The drought abatement function is the percentage of the drought­
free yields that are not damaged by the drought , 

(2) 

The drought abatement function is dependent on drought damage (DJ , 
drought abatement (X 0 , XP), and the ability to irrigate (I) . In this frame­
work , I is a set of exogenous parameters indicating: (1) whether irrigation 
equipment has been previously installed on a field, and (2) whether irriga­
tion water is available. This reflects the idea that within a single growing 
season , farmers cannot choose whether their fields are irrigable or if water 
is available. In other words, farmers must make their drought abatement 
choices contingent on the capacity to irrigate. 5 When there is no drought or 
if the inputs fully abate damages from drought, then ds = 1 and yields are 
equivalent to drought-free yields. If the drought is devestating , then ds = 0 
and the crop is lost ( Y, = 0). 

The drought-abating inputs can be separated into a vector of inputs con­
tingent on drought xp and inputs that are not contingent on drought X 0 . 

Importantly , seed decisions occur well before planting , and thus drought­
tolerant (DT) seed use is not state contingent (i.e., farmers must make this 
decision before observing the state of drought during the growing season). 
Other examples of state-independent drought-abating inputs are adjust­
ments to planting dates , row spacing , seeding rates, and the installation or 
upgrade of irrigation equipment. These also include conservation practices 
that have long-term effects on soil organic matter and water-holding capac­
ity, such as conservation tillage and cover crops. The set of state-contingent 
drought-abating inputs is somewhat limited but include increases in irriga­
tion application rates, changes in late season herbicide use to reduce com­
petition from weeds for water, and reductions in fertilizer applications to 
reduce water demand. 

4. We assume that farmer s con sider output and input price s not to be state contingent. 
5. To economize on notation in the remaining exposition , we do not explicitly index farmers ' 

optimal choice s by the se irrigation parameter s. 
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The farmer's objective is to maximize state-contingent profits , choosing 
whether or not to use drought-abating inputs 

(3) 

where W : !Rs H IR is a non-decreasing continuous function of a profit vec­
tor ( -rr = 'TT 1, 'TT 2, ••• , 'TT 5) indexed by state s E S. Farmers will choose to use 
a drought-abating input if 

(4) 

where-rr 1 = -rr(xD = 11 X 0 ,xp;I) and-rr 0 = -rr(xD = 0 I X 0 ,xp;I) . 
A number of preference functions , W : IP H IR, defined on the set of 

profit outcomes , II with elements , 'Tl's, have been used in the economics lit­
erature on choice under risk and uncertainty . We present two commonly 
used preference functions to motivate our empirical models . Such prefer­
ences give rise to empirical specifications suggesting that short-run drought 
shocks and long-run drought risk can influence farmers' economic decision 
making . Given that farmers ' underlying preference structures are unknown 
and difficult to determine empirically , we estimate separate regression 
models. 6 

6.3.1 Mean-Variance Utility 

The objective of a risk-facing farmer with risk-neutral preferences is 
simply to maximize expected profits . However , some empirical agricultural 
production models have shown utility-maximization models provide better 
fit than expected profit maximization (e.g., Lin , Dean , and Moore 1974). We 
choose the mean variance model with preference function 

(5) 

Note that v: (µ,cr2
) H IR is a utility function, µ[-rr] = I.;=1 Ps'TTs, where 'TT

5 

occurs with probability Ps and cr2 [-rr] = I, ;=1,('TTs - I, ;=1 Ps'TTs)2. Substituting in 
the production function , r,: = Yds, we can then choose a preference function 
such that 

(6) V
1 

- v0 = PYexp{µ['TTl(dJ]- µ['TT~(ds)l- (cr['TTl(dJ]- cr['TT~(ds)])}- px. 

The preference function defines the marginal utility of drought abatement. 7 

With this preference function , a farmer will choose to use drought-abating 

6. In earlier version s of thi s research that used drought severity indicator s, we estimated the 
structural regression model s implied by the below derivation s. We found man y of the struc­
tural parameter s were individuall y significant and implied marginal effects similar to tho se 
from reduced -form weighted pro bit regressions of adoption on the drought severity indicat ors. 

7. The preference function is increa sing in output price s, drought free-yields, and mean 
drought abatement . The marginal utilit y of drought abatement is decrea sing in the variance 
of drou ght abatement. As Chamber s and Quiggin (2000) note , the variance can be replaced by 
any index for riskine ss. Without loss of generalit y, we replace the variance with the standard 
deviation. 
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inputs if v1 
- v0 > 0, i.e., if her utility from adopting these inputs exceeds her 

utility from not adopting them. Rearranging this inequality and applying 
the logarithmic transformation implies that 

(7) lnP + In Y + µ[1r;(d,)] - µ[1r~(d,)] - (a[1r;(d,)] - a[1r~(ds)]) > In p x. 

If the mean of utility (of profits) from adopting drought-abating inputs 
relative to the utility from not adopting is approximately zero , i.e. 
µ[1r'(d,)] ~ µ[1r0(ds)L which would be expected to occur in long-run equilib­
rium , then (7) leads directly to an estimating equation once an operation­
alized measure of long-run drought risk is assumed. Using the standard 
deviation of the Palmer Modified Drought Index (PMDI) as our measure 
of drought risk , we can estimate 

(8) 

where 130 subsumes prices , 13 captures the effects of variability in profits from 
adopting drought-abating inputs relative to the variability in profits from 
not adopting drought-abating inputs , as underlying functions of drought 
(conceptualized here as states) , and£ is an econometric error term . 

6.3.2 Prospect Theory 

Mean-variance models and other expected utility models have theoreti­
cal shortcomings and do not always reconcile with empirical evidence (e.g. , 
Schoemaker 1982). For example , individuals often over-weight low prob­
ability states and under-weight high probability states (e.g. , Kahneman and 
Tversky 1979). This can have important implications for farmers' decisions 
to use drought-abating inputs . In some regions , severe or extreme drought 
is rare , but if some farmers attach substantial importance to these rare but 
damaging occurrences , their adoption rates could be systematically higher 
than expected , assuming that farmers did not over-weight such events. 8 For 
these reasons , we also use the following preference function 

s 
(9) W(n) = L h(ps)u(1rs) ' 

S=l 

where h(.) is a probability weight function, and u(.) is a utility function . Note 
this model assumes farmers know the probability of each possible state and sys­
tematically weight these probabilities . This model can be simplified by assum­
ing that the marginal rate of substitution between two state-dependent prof­
its is MRS ss' = [u(1r;) - u(1r~)] I [u(1r;,) - u(1rf,)] = w,(1r; - 1r~) / W5 ,(1r;, - 1rf,), 
where ws is the preference weight a farmer assigns to profits in each state. The 
probability-weighted marginal utility of drought-abating inputs is ws( 1r; - 1r~) 

8. Similarly, if the frequenc y, duration , and severity of drought s are expected to increa se 
under unmitigated climate change , then adoption rate s for tho se who systematicall y under­
weight such event s may be lower, even as the objective probabilit y of such occurrence s increa ses 
over time. 
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= h(p,)w,(1r l - 1r~), where ws is a weight that combines the probability and 
preference weights. Farmers will adopt drought-abating inputs if 

s 
(10) I,w,C1rl - 1r~) > o. 

S= I 

Substituting in the production function , r; = Yds, farmers will adopt if 

s 
(11) PYI,ws(d } -d ~) > p x, 

S= I 

where d] E (0,1) is the percent of yields not damaged by drought when using 
a drought-abating input , and d~ E (0,1) is the percent of yields not damaged 
by drought when not using a drought-abating input. We do not observe 
farmers' preference weights on state-dependent outcomes and probabilities 
when making their abatement decisions . A common approach is thus to use 
the historically observed states to proxy for the states that farmers face when 
making such decisions . Here , we assume that farmers use their experience 
of realized states from previous years to form their set of possible states. 
States can be defined according to the drought severity categories from the 
US Drought Monitor, for example , such that 

S T 

(12) PYI,I,w,(d } - d~)Ds, > p X, 
S= I t= I 

where Ds, is an indicator for drought in state s and year t. Assume that 
drought-related yield losses are reduced according to the function , 
exp(I, ~=' I.?:,, ws(d} - d~)D51).

9 Substituting this into (12) and applying a loga­
rithmic transformation , we get the following inequality 

S T 

(13) lnP + lnY + I,I,w,(d } -d ~)Ds, -lnp x > 0 . 
S= I l= I 

This leads to an empirical equation that resembles 

S T 

(14) a 0 + aylnY + L,L,a s,Ds, > £ . 
S= I l= I 

6.4 Empirical Strategy: Identification and Data 

The motivating economic framework suggested that producers could con­
sider short-run shocks and/or long-run risk when making drought abate­
ment adoption decisions. 10 However , owing to the standard ceteris paribus 

9. If there is no drought in any state (D,, = 0), then yields in all state s are drought free (i.e., 
Y, = Y). 

10. Farmer s may also con sider short-run or seasonal climate forecasts when making agri ­
cultural decision s. Appendix Bin the Supplementar y Information (http: //www.nber.org /data 
-appendix /cl4693/Supplementar ylnformation.pdf) contains a discu ssion of this point. 

http://www.nber.org/data-appendix/c14693/SupplementaryInformation.pdf
http://www.nber.org/data-appendix/c14693/SupplementaryInformation.pdf
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assumption in regression models, it would not be suitable to include both 
measures in the same specification. This is because long-run drought risk 
will not be plausibly constant if drought frequency , duration, and severity 
change annually during a half-decade period. 11 We therefore estimate sepa­
rate specifications. 

Using weighted linear probability (LPM) regressions, we first estimate 
the "mean-variance empirical model" of DT corn variety adoption on field 
i in year 2016 as 

(15) DT; = ~o + ~DRuPMDIJ + ~wTV; + ~1,,Irr; + ~sLSL; + £; , 

where DT; is an indicator of DT seed variety adoption; uPMDu is the standard 
deviation of the PMDI measure in July for field i in 2016; TV; is a vector of 
average temperature and precipitation conditions, and their standard devia­
tions, over the 30 previous years (as a proxy for climate); Irr; is a vector of 
variables denoting field irrigation capacity and their interaction terms; and 
SL ; is a vector of field-level soil characteristics, land attributes, and corn 
basis from nearby grain elevators for February 2016. Note that uPMDu is 
a normalized measure of variability in natural soil moisture over the past 
century (Wallander et al. 2013). For purposes of model assessment, we com­
pare estimated coefficients to average marginal effects from corresponding 
weighted pro bit regressions. 12 

Similarly, we estimate the following "prospect-theoretic empirical model" 
of DT corn variety adoption using weighted LPM regressions 

(16) DT; = a 0 + f(a 51,D50 ) + aw TV;+ a1r,In; + asLSL; + £; , 

wheref( as,, Ds1J is a simple linear function of drought incidence with sever­
ity sin year t. 13 We do not use drought severity indicators as suggested by 
our motivating framework because of multicollinearity concerns. Rather, 
we make use of two variables designed to capture the duration and severity 
of farmers' recently-experienced droughts: (1) the total number of months 
of severe, extreme, or exceptional droughts during years 2011- 2015, and 
(2) the most intense drought experienced during the growing season (May­
September) throughout 2011- 2015. 

11. In contrast , it is plausible to hold long-run drought risk constant while varying the first 
two moments of long-run average temperature and precipitation (and vice versa) , which is done 
in our empirical application. 

12. Under the assumptions of the linear probability model for binary response variables , 
the ordinary least squares (OLS) estimates of the coefficients are unbiased and consistent. 
Moreover , the LPM may be preferred to standard prob it models when there are several discrete 
covariates , each with a limited number of values (Wooldridge 20 I 0). 

13. Farmer demographics , like education , as well as other dimensions that are more difficult 
to measure (e.g., risk preferences , broader human capital) are also expected to influence adop­
tion (e.g., Wozniak 1987). We can link our surveyed fields to their operators using data from 
the 2016 ARMS Phase III, but the benchmark sample size declines by roughly 40 percent. 
However , our estimates of the impacts of long-run drought risk change only minimally after 
controlling for years of farming experience , indicators for education level (high school diploma , 
some college, and four-year college degree) , and gender. 
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6.4.1 Identification and Causal Impacts of Climate in 
Cross-Sectional Regressions 

Over the past two decades , a surge in the number of empirical studies relat­
ing weather and climate to economic outcomes has brought methodological 
improvements in econometric applications. For agricultural outcomes , some 
studies have analyzed cross-sectional data (e.g. , Mendelsohn , Nordhaus , 
and Shaw 1994), while others make use of panel data (e.g., Deschenes and 
Greenstone 2007; Schlenker and Roberts 2009) , or long [temporal] differ­
ences (Burke and Emerick 2016). Under certain conditions , Hsiang (2016) 
shows that , locally , the marginal effect of climate is equivalent to the mar­
ginal effect of weather in linear regression models estimated on data with 
repeat observations over time. 

Credible identification of climate effects in cross-sectional analyses is par­
ticularly challenging because of omitted variables bias. Unmodeled factors 
that are correlated with outcomes (e.g., adoption of seed technologies , crop 
yields, farmland values , revenues) and one or more covariates will produce 
biased estimates. For example , cross-sectional regressions of farmland val­
ues on temperatures that omit irrigation access will have biased estimates 
because irrigation access is capitalized into valuation of farmland and is 
positively correlated with temperature (Schlenker , Hanemann , and Fisher 
2005). Generally , climate is not random over large areas. In our applica­
tion , there are several unmodeled , time-invariant factors correlated with 
climate and DT variety adoption that could confound identification of 
causal impacts : (i) input dealer recommendations , (ii) agricultural coopera­
tive guidelines , (iii) ethanol plant contract terms , (iv) university extension 
guidance , (v) local USDA office practices , and (vi) other location institutions 
that could induce correlations in farmers' behavior over short distances. 

One potential solution is to saturate the regression model with as many 
economically relevant covariates as possible. However , it is impossible to 
know if all important variables have been included; further , saturation can 
lead to overfitting and high standard errors in models with severe multi­
collinearity . For some economic outcomes (including many in agriculture) , 
accumulated evidence from a variety of studies can provide useful guidance 
on whether or not important covariates have been excluded (Hsiang 2016). 

Spatial first differences (SFD) have been proposed as a method for reduc­
ing concerns of omitted variables bias (Druckenmiller and Hsiang 2018). 
The framework rests on a fundamental premise of spatial statistics: obser­
vations closer together are more similar than those farther apart from one 
another. That is, the presence of unobserved location effects, C;, may drive 
most or all of the similarities among observations at short distances. As 
such , the SFD estimator results from an OLS regression of differenced out­
comes (y;) on differenced covariates X ; between spatially-adjacent observa­
tions i and i - 1: 

(17) 
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where£ is a mean-zero i.i.d error term, 13 is a vector of parameters, and a is 
a vector that measures the influence of fixed effects. 

Identification in the SFD framework rests on a Local Conditional Inde­
pendence Assumption: E[y; I X;_i] = E[y;_ 1 I X;_i] for all {i,i-1}, i.e., the 
expected outcome is the same for two neighbors if they receive the same 
treatment. This identification condition is nearly equivalent to that assumed 
to hold in first-differenced time series models and is similar to those for 
certain differences-in-differences panel estimators and regression disconti­
nuity designs. Importantly, the Local Conditional Independence Assump­
tion is weaker than the Conditional Independence Assumption underlying 
a cross-sectional regression in which spatial fixed effects have been omitted: 
E[y; I xj ] = E[y j I xj ] for all i "# j, i.e., distant units are comparable in that 
the same expected outcome would result if both observations were treated 
with xj- even though only j received Xr In practice, the SFD model elimi­
nates spatially correlated unobserved heterogeneity by filtering out the influ­
ence of factors that vary at short distances (not immediately adjacent obser­
vations) and differencing out common idiosyncratic influences at adjacent 
observations (Druckenmiller and Hsiang 2018). 

To control for potentially important location fixed effects that cannot be 
estimated in the cross-sectional analysis, we re-estimate LPM versions of 
(15) and (16) using differenced data on DT corn seed variety adoption and 
differenced data for all covariates. Distinct from the application in Drucken­
miller and Hsiang (2018), which differences county crop yields and covari­
ates in the north-south direction ( and then analyzes to what extent results are 
robust to differencing in the east-west direction), we define spatially adjacent 
fields to be fields that are closest to each other, regardless of direction . This 
assumes that the angle between neighboring fields is unimportant, which 
is plausible for our measures of adoption, weather, and climate.14 In par­
ticular, adoption of drought-tolerant seed varieties appears to be spatially 
correlated, though there are not pronounced spatial effects in any cardinal 
direction (figure 6.4). 

6.4.2 Data: Field-level Agricultural Production and Gridded 
Weather-Climate Observations 

The Agricultural Resource Management Survey (ARMS) is our primary 
source of data. 15 ARMS is a survey conducted each year on farms' produc­
tion practices (e.g., crop choice and rotations, tillage operations, conserva­
tion program enrollment and assistance), input use (e.g., GE trait choices, 
chemical applications, and irrigation use), soil and land characteristics, farm 

14. To our knowledge , neither drought incidence (fig. 6.3) nor seed adoption (fig. 6.4) fall 
along strict geometric patterns. Although major precipitation events captured in our sample 
generally moved west-east , this directional component would be less important for our 30-year 
weather average calculations. 

15. Appendix A in the Supplementary Information (http://www.nber.org/data-appendix 
/cl4693/Supplementar ylnformation.pdf) contains an overview of the data used in this analysis. 

http://www.nber.org/data-appendix/c14693/SupplementaryInformation.pdf
http://www.nber.org/data-appendix/c14693/SupplementaryInformation.pdf
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Fig. 6.4 US county adoption of DT corn, 2016 

County locations ol 
sample llelds 

~ 
Did not adopt DT 
Adopted DT 
No data 

Note: All surveyed states in 2016 are depicted (Colorado , Georgia , Illinois , Indiana , Iowa , 
Kansas , Kentucky , Michigan , Minnesota , Missouri , Nebraska , New York, North Carolina , 
North Dakota , Ohio , Pennsylvania , South Dakota , Texas, and Wisconsin). Multiple fields per 
county appear in the data set frequently , and within these counties , there can be several fields 
planted with DT varieties. The maximum number of DT fields per county was six. 
Source: USDA , Economic Research Service and National Agricultural Statistics Service, 2016 
Agricultural Resource Management Survey. 

business and household financial characteristics, and operator household 
demographics (US Department of Agriculture, Economic Research Ser­
vice 2016). We use data from Phase II of the 2016 ARMS, which randomly 
sampled one corn field per farm in the survey. 

The year 2016 is the first year in which ARMS Phase II surveyed farmers 
about their use of DT corn seeds, for both the 2015 and 2016 seasons. Using 
a "base" weight provided by USDA's National Agricultural Statistics Service 
(NASS), our sample expands to 73.3 million corn acres, representing just 
over 78 percent of 2016 US corn acreage (US Department of Agriculture, 
National Agricultural Statistics Service 2018b ). Roughly 20 percent of 2016 
sample corn acres were planted with DT varieties ( table 6.1 ), similar to the 
national average of 22 percent (McFadden et al. 2019). 

We merge drought-related weather and climate data with the ARMS 
data for the regression analysis. The US Drought Monitor produces expert­
adjusted observational data through a collaboration of USDA, the National 
Drought Mitigation Center at the University of Nebraska-Lincoln, and the 
National Oceanic and Atmospheric Administration (NOAA). 16 The main 

16. In order to produce drought estimates , the US Drought Monitor first relies on data from 
other drought and precipitation indices ; fire risk data ; satellite imagery of vegetation health ; 
soil moisture data and model estimates ; and hydrologic data. These are synthesized to develop 
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Table 6.1 Summary statistics (n = 1,768 fields) 

Sample Weighted Standard 
Units Mean Mean Error Min Max 

2016 DT adoption rate {0,1} 0.21 0.20 0.02 0 
Severe-or-greater drought duration Months 4.78 4.45 0.44 0 45 

Maximum drought intensity Index 3.67 3.57 0.11 -0.56 7.57 
Drought risk [O,oo) 2.27 2.26 0.03 1.60 3.08 

30-year temp. mean oc 20.82 20.50 0.19 16.57 28.03 
30-year temp. std. dev. oc 1.42 1.43 0.01 0.84 1.80 
30-year precip. mean In. 4.02 4.11 0.04 1.91 5.69 
30-year precip. std. dev. In. 1.96 2.03 0.03 0.95 2.92 

Irrigation {0,1} 0.10 0.06 0.02 0 
Irrigation x non-irr. corn share [0,1] 0.03 0.02 0.005 0 0.99 
Clay {0,1} 0.13 0.15 0.02 0 
Irrigation x clay {0,1} 0.01 0.004 0.002 0 
Irrigation x non-irr . corn share x clay [0,1] 0.002 0.001 0.001 0 0.94 

Highly erodible {0,1} 0.14 0.17 0.02 0 
Corn-soy soil index-mean [0,10] 5.72 6.01 0.16 0.35 9.59 
Corn-soy soil index-std. dev. [O,,oo) 1.09 1.18 0.04 0 3.38 

February 2016 basis $(USD) -0.12 -0.15 0.03 -0.80 1.13 

Note: Estimates are expanded to the population of US corn fields in 2016 using a base expansion factor 
from NASS. Standard errors are clustered at the crop reporting district (CRD) level. There are 142 CRDs 
in the full sample with 12.5 fields per CRD , on average. 

benefits of the US Drought Monitor are that it provides: (i) drought cat­
egories that are easy to interpret, and (ii) policy relevance. 17 However, the 
US Drought Monitor is subject to expert review and revision , which could 
introduce noise and reduce comparability across locations. We therefore 
base our classifications of severe, extreme, and exceptional droughts (the 
Drought Monitor's severity classes) on values of the PMDI, also produced 
by NOAA. 18 To construct field-level values of the drought measures , we 
interpolated PMDI data at the 12 nearest stations within 100 miles of sample 
fields (within the continental US) using inverse distance weighting. This 

an initial weekly assessment of the percent area of each county that is in one or more of five 
drought categories , including an "abnormally dry " category. This initial assessment is sent 
to over 350 observers across the US. These observers include meteorologists , climatologists , 
hydrologists , and extension agents whose weather expertise and knowledge of local conditions 
inform their reports of drought impact. The initial assessment is subsequently revised to incor­
porate these experts ' collective judgment (US Drought Monitor 2019). 

17. USDA uses the US Drought Monitor as a guide to making disaster declarations and to 
help determine eligibility for certain types of loans. The index is also used by USDA's Farm 
Service Agency to help determine eligibility for the Livestock Forage Program. This program 
compensates eligible livestock producers for certain grazing losses, including losses resulting 
from qualifying drought conditions. 

18. PMDI values are mapped into Drought Monitor severity categories as follows: -1.0 to 
- 1.99 (DO), - 2.0 to - 2.99 (DI) , - 3.0 to - 3.99 (D2) , -4.0 to -4.99 (D3) , and -5.0 to -5 .99 (D4) 
(US Drought Monitor 2019). 
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assigns more weight to stations closer to our sample fields than more distant 
stations. 

The PMDI itself is an "operational" version of the Palmer Drought Sever­
ity Index (PDSI) , which quantifies the duration and intensity of long-term 
drought patterns. The PMDI uses hydrologic models to estimate net soil 
moisture based on precipitation recharge and losses from evapotranspira­
tion , infiltration , and runoff. The PMDI introduced the concepts of severe, 
moderate , and extreme drought based on PDSI values (Heddinghaus and 
Sabol 1991; Wallander et al. 2013). The fields in our sample experienced 
abnormally dry conditions (DO) much more frequently than droughts across 
all years. However, nearly two-thirds of fields experienced a severe or extreme 
drought at some point in 2012. More broadly , the 2012 drought affected 
two-thirds of all land in the US, causing agricultural losses estimated at $30 
billion (Rippey 2015). By contrast , the 2013 drought was mainly severe for 
fields located in western counties. On average, fields experienced roughly four 
to five months of severe-or-worse droughts , in total, across the corn growing 
seasons of 2011- 15. Similarly, many of the fields were at risk of experienc­
ing a drought of any severity in any given year; the weighted mean of the 
standard deviation of long-run PMDI was 2.26 (table 6.1). 

Yearly temperature and precipitation are taken from Oregon State Uni­
versity's PRISM Climate Group , from which we construct 30-year averages. 
The PRISM data use point observations , a digital elevation model, and 
other spatial data sets to generate estimates of climatic parameters (e.g., 
temperature and precipitation) at 4 x 4 km grids (Daly, Neilson , and Phil­
lips 1994). For each of the 4 km grids, we aggregate to the county based on 
distance to county centroids, clipped and weighted by cropland density. To 
avoid the possibility that 2015 weather averages might correlate with our 
measures of drought , drought risk, and other idiosyncratic effects in 2015, 
we calculate yearly averages from monthly observations between 1985 and 
2014. Only months in the corn growing season were used. Nationally , the 
average 30-year growing season temperature was 20.5°C (69°F) , with mean 
precipitation of 4.1 inches (table 6.1). 

Our ARMS-based field-level measure of one aspect of irrigation capac­
ity, whether the field is irrigable, is a variable indicating if the corn crop was 
irrigated in that year. Only 6 percent of corn acres in our sample are irri­
gated , consistent with the fact that the vast majority of DT corn was grown 
on non-irrigated cropland in 2016, even among states that are major corn 
irrigators (McFadden et al. 2019). Our second measure of irrigation capacity 
is irrigation water availability, though we must proxy for this in the absence 
of spatially detailed , representative data on surface water and groundwater 
availability. We represent this as the share of each county's harvested corn 
acreage that was not irrigated , using data from the 2012 Census of Agri­
culture (U.S. Department of Agriculture , National Agricultural Statistics 
Service 2013). We expect large shares of non-irrigated acreage to signal a 
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general lack of water availability, but because availability only matters for 
irrigable fields, we prefer to include the [irrigable x water availability] interac­
tion term and omit the proxy in levels. Nationally, approximately 86 percent 
of harvested corn acreage in 2012 was not irrigated. 

We also take certain field-level indicators of soil type and quality from 
the ARMS data. Roughly 15 percent of the sample acreage had a primarily 
clay soil type. Given that clay soils are better at retaining water than other 
soil types, we might expect lower DT corn adoption under adequate soil 
moisture. Further, the effect of soil type on DT corn adoption may depend 
on both measures of irrigation capacity, and so we include both interac­
tion terms, [irrigable x clay] and [irrigable x water availability x clay]. In 
contrast, adoption on highly erodible soils might be higher due to a com­
bination of steeper slopes and greater potential for soil detachment, which 
can contribute to soil moisture loss. Roughly 17 percent of sample acres are 
highly erodible. 

We control for other unobserved countywide land productivity attri­
butes through use of USDA's National Commodity Crop Productive Index 
(NCCPI) for corn and soybeans (Dobos, Sinclair Jr., and Robotham 2012). 
After re-scaling, these index values lie in [0,10], with higher values indicat­
ing higher inherent soil suitability for growing corn and soybeans .19 The 
NCCPI values are available at the geographic level of a "map unit" polygon, 
of which there are several thousand per US state. These polygon values 
are then aggregated to 30 m cells as part of USDA's Gridded Soil Survey 
Geographic Database (US Department of Agriculture, Natural Resources 
Conservation Service 2018). Our corn-soy soil productivity index is created 
by averaging over values of NCCPI for all 30 m cells within 3 km of each 
field's location. As expected, most fields are suitable for growing corn, with 
an average county value of 6.01, though there is significant variation in soil 
quality within our sample. 

National seed premiums for DT corn variety traits were roughly $10 per 
bag of 80,000 seeds in 2016 (McFadden et al.2019). Although some evidence 
suggests that DT seed premiums are lower in eastern states, where drought 
is less common, farm- or state-level data for DT corn premiums are not 
widely available (Farmers Business Network 2018). To proxy for the price of 
corn, we use a field-matched measure of basis, which can be thought of as a 
location-adjusted net corn price (Barr et al. 2011 ). In particular, we subtract 
the February 2016 cash price from the March futures price for the December 
contract. February is chosen as this is the time operators of most US corn 

19. USDA calculates this index as the product of ratings from five input category subrules: 
chemical (e.g., soil pH , cation exchange capacity , organic matter) ; water (e.g., available water­
holding capacity , precipitation during the growing season) ; physical (e.g., saturated hydraulic 
conductivity , rock fragments) ; climate (e.g., frost-free days, total precipitation); and landscape 
(e.g., slope gradient). Interested readers should consult Dobos , Sinclair Jr. , and Robotham 
(2012) for more information. 
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acreage make choices of seed varieties to plant. We assign cash spot prices 
to the nearest ARMS fields using USDA-collected cash grain bids data. 20 

The weighted average basis in our sample is -$0.15 . 

6.5 The Role of Drought Exposure and Climate on Adoption of 
Drought-Tolerant Corn Varieties 

We first discuss the LPM regression results for the models motivated by 
both behavioral assumptions and compare them with benchmark probit 
results. Next, we examine the extent of spatial variation in the data and the 
effects of controlling for potentially confounding locality factors through 
SFD estimation. Last, we provide an illustrative discussion of the role of 
climate change attitudes, beliefs, and potential barriers to adoption. 

6.5.1 Benchmark Adoption Estimates 

We find that long-run drought risk is positively associated with farmers' 
adoption of DT varieties, consistent with expectations and evidence about 
the geographic regions in which these technologies were first introduced 
(table 6.2, column la). Controlling for climate effects, a one-standard­
deviation increase in 100-year drought risk leads to increased adoption 
by 10.6 percentage points, a large but insignificant effect.21 Thus, long-run 
drought risk does not appear to have significant predictive content after 
controlling for 30-year temperature and precipitation means and standard 
deviations. However, an additional 1 °C increase in average climate condi­
tions increases adoption by 2.4 percentage points. Operators of fields that 
are of inherently lower productivity - those that are highly erodible - are 
more likely to have planted DT varieties. 

Irrigation has an insignificant main-level effect with the expected nega­
tive sign, though its impact varies by soil type. Specifically, the effect of 
irrigation on adoption is roughly 66 percentage points higher on fields with 
primarily clay soils located in areas with very high shares of irrigated acre­
age. But as irrigation water becomes incrementally less available (as proxied 
by a marginal increase in the county's share of irrigated acreage), DT corn 
adoption on irrigable fields is higher for non-clay fields but lower for clay 
fields. However, both interaction terms involving the water availability proxy 
are insignificant. 

The LPM results are robust to the exclusion of the climate controls 

20. We first removed outliers from the basis data and then fit an inverse distance weighted 
surface to the remaining points . We looked for the nearest five purchasers (e.g., grain elevators) 
within a maximum of 70 miles from the field. This is generally the greatest distance growers will 
truck grain. Roughly 97 percent of fields were within 70 miles of one or more grain purchas­
ers. Among these fields, only 146 had fewer than five purchasers within the 70-mile radius. The 
average distance to a purchaser was just over 16 miles. 

21. For our sample , this would be roughly similar to an area with moderate drought risk 
becoming an area with severe drought risk. 
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(table 6.2, column 2a) with few exceptions. The marginal effect of long-run 
drought risk nearly doubles to 0.197 and becomes significant at the 5 percent 
significance level, absorbing much of the influence of the excluded moments 
of the 30-year weather distribution . Somewhat surprisingly , February basis 
( our output price control) becomes significant at the 5 percent level. This 
suggests a degree of collinearity between basis and our gridded climate data . 

Our set of results are also robust to dropping the long-run drought risk 
index entirely (column 3a) , though the quality of fit somewhat changes. The 
30-year temperature average and precipitation variability increase the proba­
bility of adoption , with the latter having a large 13.8 percentage point effect. 
That average precipitation remains insignificant (though with the expected 
sign) echoes a major finding in the climate econometrics literature on crop 
yields: average precipitation effects are relatively small and variable (e.g., 
Schlenker and Roberts 2009; Burke and Emerick 2016). One distinction , 
however , is that our study relies on drought exposure, climate, and adoption 
data at a finer spatial scale than the county. 

As expected , the average marginal effects from the pro bit model ( columns 
1 b- 3b) are very similar to the partial effects identified in the LPM regres­
sions. Differences between the two sets of estimates imply differences in 
impacts on adoption rates that are less than 1 percentage point , on average. 
Given that our focus is on identification of drought exposure and climate 
effects, rather than out-of-sample prediction , it is of less importance if pre­
dicted probabilities from the LPM regressions lie outside [O, 1 ], although this 
did not occur for any of the regression specifications. 

The duration and severity of recent droughts do not appear to affect seed 
technology adoption (table 6.3). Although the total duration (in months) 
of severe, extreme, or exceptional droughts has the expected sign , its mag­
nitude is near zero and insignificant. Similarly , the severity variable sug­
gests that adoption is roughly 2 percentage points higher as the five-year 
maximal PMDI increases by one index value (columns 2a and 2b) , though 
these estimates are also insignificant. The switch in signs on this variable 
between the "drought shocks & climate " regressions relative to the "shocks 
only" regressions is suggestive of substantial collinearity with the tempera­
ture and precipitation climate variables. Though to some extent surprising, 
this null result is in agreement with other work suggesting climatic effects 
of temperature and rainfall explain most of the variation in corn yields , 
though with some remaining effects due to drought (e.g. , Kuwayama et al. 
2019). 

Consistent with expectations , increased average temperatures and vari­
ability of rainfall lead to higher adoption , though the latter is statistically 
insignificant. Similarly , adoption rates are higher on highly erodible land. As 
with the estimates in table 6.2, irrigation leads to lower adoption , with point 
estimates that are comparable but roughly 1- 2 percentage points lower and 
again insignificant. Irrigation effects are also moderated by the dominance 
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of clay in the topsoil profile, though interactions with the proxy for water 
availability remain insignificant. 

6.5.2 Spatial Differences Estimates : Controlling for Unobserved 
Location-Specific Heterogeneity 

As a precursor to SFD estimation , we first examine variation in the dif­
ferenced data (table 6.4). We choose thresholds corresponding to the 75th 
percentile (14 miles), 50th percentile (9 miles), and 25th percentile (6 miles) 
of the distribution of distance between fields. Since we are differencing data 
for each field from those at the next closest field, many of the means are zero 
or close to zero.22 There is no broadly meaningful interpretation of small 
positive or negative means because of this spatial , rather than temporal , 
differencing. 

Relative to their means , many of the differenced drought and climate data 
have large standard deviations. Across the three distance quartiles , the range 
of the absolute value of the coefficient of variation (CV) for the drought 
duration measure is [49, 142], with a similar CV range for the intensity mea­
sure : [31, 182]. Variability in the 30-year climate regressors is somewhat 
lower. Clay content and the indicator of high erodibility have comparatively 
large variation , as expected , while the interaction terms , corn-soy soil pro­
ductivity index, and basis have among the least variation in the differenced 
data. 

We also computed correlation coefficients for each covariate for observa­
tions matched with its closest other observation. If we observe relatively high 
correlations in all of the covariates of interest at close distances , this could 
suggest (but does not prove) that location fixed effects- if uncontrolled 
for- could bias estimation in levels. However, even if such effects are absent , 
spatially differencing the data may help to reduce codependence among 
fields in our data. Consistent with the summary statistics in table 6.4, many 
of the weather and climate measures are highly correlated , even when the 
nearest-neighbor field is roughly 15 miles away. At this distance threshold , 
correlations in drought risk and 30-year temperature averages are in excess 
of 0.97, and this correlation increases to over 0.99 for fields located to their 
closest other fields less than five miles away. A similar pattern holds for basis. 
For these reasons , we do not estimate the SFD model with these highly 
spatially dependent data. 

There is significant variation in distances between our sample points 
(figure 6.5), and there are few fields whose nearest field exceeds 30 miles, 
generally the average north-south distance of major US corn growing coun-

22. With first-differenced time series data , a single observation in levels generall y appear s in 
differencin g calculation exactly twice (e.g., subtract year 2014 from year 2015, subtract year 
2015 from year 2016). There are 30 fields in our levels data set that are used more than twice 
to construct the differenced data (e.g., for fields A, B, and C, the closest field is Field D) . Our 
result s are robust to their exclusion. 
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Fig. 6.5 Surveyed fields' locations, 2016 
Note: To preserve privacy and meet USDA data disclosure requirements , dots representing 
field locations are disproportionately large relative to map scale. 
Source: USDA , Economic Research Service and National Agricultural Statistics Service, 2016 
Agricultural Resource Management Survey. 

ties (Druckenmiller and Hsiang 2018). The differencing process results in 
samples that get increasingly smaller (925, 613, and 356 fields), with an 
accompanying decline in the models' degrees of freedom. For purposes of 
comparison, we estimate the same model in level terms, adding back in the 
climate and price variables that were removed in the SFD estimation, for 
the samples that would have resulted had we not spatially differenced (with 
comparable sample sizes). As in the LPM and probit results, all standard 
errors have been clustered at the level of USDA's crop reporting districts . 23 

For the SFD model estimated at the 14-mile distance, the drought-specific 
variables are again insignificant ( table 6.5, columns 1 a and 1 b ). At this dis­
tance, it is unclear whether or not the location effects have been completely 
differenced out, while the model is estimated with fewer observations ­
and that exhibit less variation. Regarding other attributes, irrigation and its 
interaction with clay are significant, while the presence of highly erodible 
land is insignificant. The corn-soy soil productivity index is now significant 
at the 5 percent level and suggests that relative to fields which are completely 
unsuitable for growing corn, DT varieties are adopted at rates 77 percentage 

23. Crop reporting districts (CRDs) are groupings of counties that have similar geography , 
climate , and cropping practices (US Department of Agriculture , National Agricultural Sta­
tistics Service 2018a). Most states in our sample are each divided into nine adjacent CRDs. 
Clustering at this level is designed to mitigate the effects of spatial autocorrelation in the econo­
metric errors. 
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points higher among fields that are deemed to have the highest suitability 
for corn. 

Several of the estimated coefficients in the SFD model for the data set 
at the 9-mile threshold (2a) are qualitative similar to those obtained in the 
14-mile sample (la) , as well as level estimates at the 9-mile threshold (2b). 
The drought duration variable remains small and insignificant , although 
the drought intensity variable is now marginally significant. There is broad 
consistency in the signs and sizes of the soil coefficients between (la) and 
(2a), though the larger effect of the irrigation-clay interaction term is more 
precisely estimated in (2a). Less variation in the corn-soy soil productivity 
index at smaller distances contributes to the smaller coefficient estimate and 
insignificance. 

Many of the SFD point estimates for fields with neighboring observations 
that are at a distance of 6 miles or less (3a) are similar to counterparts at 
greater distances . By differencing out potentially bias-inducing spatial fixed 
effects, the impacts of the weather and climate effects are magnified, espe­
cially as seen in (3b ). The restricted sample size is also contributing to some 
of the increase in magnitude of these estimates. Given the novelty of the 
spatial first differences approach , the consequences of restricting samples to 
observations that could be "too close" (e.g., using other measures of spatial 
dependence, like Moran's/ statistic) have not been fully explored. 

6.5.3 Climate Change Beliefs, Attitudes , and Barriers to Adoption 

Recent evidence suggests that the 2012 drought did not significantly affect 
agricultural advisors' climate change beliefs or adaptation attitudes. How­
ever, advisers indicated greater concern about risks from pests and drought 
arising from 2012 yield damages (Carlton et al. 2016). Against the current 
backdrop of learning requirements for progressing technologies and evolv­
ing drought risk (Lybbert and Bell 2010), further research is needed to assess 
the potential of drought-tolerant crop varieties to serve as adaptation mech­
anisms. Although substantial field trial evidence confirms that DT corn 
has higher average yields relative to non-DT controls under water-stressed 
growing conditions (e.g., Gaffney et al. 2015; Nemali et al. 2015; Adee et al. 
2016), this is not necessarily proof of its adaptation efficacy. Adoption of 
DT corn is an adaptation tool only if the economic gains from these varieties 
relative to conventional varieties under a changing climate are larger than 
the gains under a constant climate (Lobell 2014). 

Since the adoption data are only available for 2016, we cannot completely 
isolate short-run drought effects from circumstances surrounding the 2012 
or adjacent-year droughts . This is of less concern if shocks similar in mag­
nitude, timing , and duration to the 2012 drought are not exceptionally 
rare events, which seems unlikely under climate change. The ideal data set, 
though , would contain repeated field-level observations over time, which 
would allow us to distinguish short-run effects from recent-year effects. 
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However, to the extent that long-run drought risk will not lessen in coming 
years, our analysis suggests that widespread disadoption of DT corn under 
current economic , technology , and policy environments is unlikely. 

Moreover, we do not formally identify barriers to early DT corn adoption. 
In the context of sub-Saharan Africa , Fisher et al. (2015) find that poor 
market access, seed and labor availability, and lack of information about 
the new varieties hampered adoption of DT corn in 2012- 13. Such factors 
are unlikely to significantly impact adoption in the US, where there are far 
fewer impediments to flows of seed, labor, capital , and information. Par­
ticipation in federal crop insurance is also unlikely to affect adoption in the 
US (Weber, Key, and O'Donoghue 2016; McFadden et al. 2019). However, 
seed premiums and farmers' perceptions of possible yield penalties could 
have decreased early adoption rates. We do not formally test this claim due 
to lack of price data. Rather, our results suggest US DT corn adoption 
is mainly influenced by- and is likely to continue to be influenced by­
drought exposure and risk .24 

6.6 Conclusions and Policy Implications 

Controlling for average weather conditions and the severity and dura­
tion of recent droughts , in addition to potentially confounding location 
fixed effects, we find that adoption of DT corn is generally increasing in 
long-run average temperatures and drought risk. By contrast, adoption does 
not appear to be significantly affected by the severity of the worst drought 
experienced in the field in the previous five years, nor the duration of severe­
or-worse droughts during this same period. Farmers are more likely to plant 
DT corn on highly erodible fields, and they are also less likely to irrigate on 
these fields, though the impact of irrigation on adoption is affected by soil 
type (i.e., clay-dominant particles). 

There are three main caveats of this research . First , use of cross-sectional 
data has limited our ability to fully tease out the effects of field- and farm­
specific factors on adoption. We have included a large set of covariates sug­
gested by theory and past empirical evidence, though some relevant pre­
dictors may be absent from our regressions- as is the case with nearly all 
cross-sectional analysis. Second , there are no widely available data at fine 
spatially varying scales for DT corn price premiums relative to prices of 
other corn varieties. Several empirical studies of climate change and agricul­
ture assume an underlying market equilibrium such that prices are constant 

24. The pace of DT corn adoption could increase if private seed companie s increa singly 
combine drought tolerance with HT and /or Bt trait s. Increa sed stacking could result from com­
panie s selling additional varietie s with all three trait s, or through a gradual market withdra wal 
of HT and /or Bt varietie s that are not drought tolerant . The latter type of marketing strateg y 
ha s been used for some types of farm machiner y and technologie s that-initiall y introduced 
as options-graduall y become standard equipment. 
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across space (Blanc and Reilly 2017). Such an assumption is not unrealistic 
for integrated markets in the US, but the existence of thousands of agri­
cultural cooperatives, seed retailers, and other agricultural input dealers 
suggests the likelihood of at least modest variability in seed prices across 
the country (e.g., Shi, Chavas, and Stiegert 2010).25 Third, the form of our 
analysis does not provide rigorous evidence about how uptake of drought­
tolerant crop varieties could evolve under climate change. This type of anal­
ysis would make use of drought severity projections based on output from 
appropriately downscaled general circulation models (Hsiang and Kopp 
2018). Much progress has been made recently to forecast drought severity 
into the 21st century using climatological models (e.g., Cook, Ault, and 
Smerdon 2015), but more research is necessary to generate a set of robust 
drought projections for use in climate economics studies. 

A number of general policy implications emerge from our analysis. We 
find a negative relationship - though not generally statistically significant­
between irrigation use and DT corn adoption, which is consistent with the 
notion that these technologies may not be complementary. Although irri­
gable fields are currently less likely to be planted to DT corn varieties, this 
relationship could fundamentally change as irrigation water sources become 
scarcer under a worsening climate. Faced with increasingly drier conditions, 
there could be some threshold beyond which irrigators would choose to 
adopt DT varieties if they perceive them to be a cost-effective way of limit­
ing yield losses from mild-to-moderate droughts. However, if such a case 
were to occur, it is unknown if DT varieties would be chosen as a way to 
help preserve irrigation water availability (via the crop's improved water 
use efficiency) or if they would be chosen as a "last resort " option due to 
perceptions of yield penalties. In either case, decision makers could consider 
availability and use of crops with greater water use efficiency when designing 
agricultural water policy. 

In a similar vein, it is possible that US farmers are using DT corn varieties 
as a kind of shallow loss insurance . That these varieties can serve as shal­
low loss insurance that complements conventional crop insurance policies 
is supported by the fact that: (1) drought tolerance does provide some yield 
loss protection against mild-to-moderate droughts, and (2) greater shares 
of DT corn fields than non-DT corn fields are insured under the US federal 
crop insurance program (McFadden et al. 2019). Regardless of mechanism, 
our results suggest adoption increases with average temperature and drought 

25. Although evidence suggests that some spatial variability in drought-tolerant seed prices 
exist (e.g., Farmers Business Network 2018), the extent to which this input price variabilit y is 
tightly linked to underlying agricultural productivity is unclear. By leaving out input prices , we 
minimize the risk of bias from bad control (Angrist and Pischke 2008). However , we present 
results of a robustness check of our levels estimates to inclusion of state-level DT corn premi­
ums in appendix C of the Supplementar y Informati on (http://www.nber.org/data-appendix 
/cl4693/Supplementarylnformation.pdf). 

http://www.nber.org/data-appendix/c14693/SupplementaryInformation.pdf
http://www.nber.org/data-appendix/c14693/SupplementaryInformation.pdf
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risk , which are both projected to increase under multiple climate scenarios. 
In the short run , optimal crop insurance premiums may need to be adjusted 
to account for the crop's greater resistance to drought , though these adjust­
ments would likely need to be revisited as droughts intensify and become 
more prolonged. 

Despite the positive linkages between temperature , drought risk , and 
adoption , farmers' learning about the net benefits of DT corn varieties could 
be hampered by random weather shocks during the growing season (Lybbert 
and Bell 2010). For example, a farmer who chooses to plant DT corn , faces 
a substantially water-stressed growing season , and then suffers crop failure 
may believe that the DT variety or all similar varieties are ineffective even 
though they were not bred to thrive in such conditions. Conversely, a farmer 
who plants a DT corn variety could face routine weather conditions and a 
subsequently poor yield realization due to an unrelated factor (e.g., nutri­
ent deficiency, pest infestation) but misattribute the outcome to a DT yield 
penalty. These scenarios suggest farmers' learning about DT seed efficacy 
is more challenging than that for other variable inputs (e.g., labor , fertil­
izer, energy, pesticides) , reiterating the importance of extension programs. 
While these characteristics do not demonstrate a new role for extension , they 
highlight the need for clear communication of the idea that several years of 
data on DT seed use and experimentation may be required before farmers 
are able to make a fully informed "final" determination of appropriateness 
of the technology for their operation . 

A prime area for further research is a causal analysis of how weather 
shocks impact DT corn yields and net returns relative to their non-DT coun­
terparts. The main private-sector companies selling DT corn varieties have 
published field trials demonstrating efficacy of the seeds under water-limited 
growing environments. Many but not all of these results have been replicated 
by university researchers on test plots , but there have been no studies that 
analyze the impacts of weather shocks on DT varieties ' yields and economic 
returns using data on farmers' marketplace behavior across the US. If imple­
mented carefully, such a study would be able to inform policy makers and 
other market participants of the potential of drought tolerance, in isolation , 
to serve as a climate change adaptation mechanism. 
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