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Abstract

Crop farmers have few short-run options for reducing downside production risk from
changes in drought frequency and intensity due to ongoing climate change. However,
one recently available option is drought-tolerant (DT) varieties. We determine how
recent drought exposure, drought risk, and other climatic features have influenced
adoption of DT corn–a water-intensive crop of particular economic importance due to
its large share of U.S. agricultural value. Our empirical analysis is motivated by a
state-contingent economic framework that accommodates farmers’ beliefs about future
drought based on objective drought risk and exposure. Using a representative sample of
U.S. farmers’ fields, we implement a novel econometric method, spatial first differences,
that can reduce concerns of omitted variables bias. We find that long-run temperatures
and drought risk—rather than short-run drought exposure in recent prior years—led to
increased adoption of DT corn varieties in 2016. Farmers are more likely to plant DT
corn on highly erodible land and less likely to irrigate such varieties, consistent with
the fact that the western Corn Belt was of major marketing focus during the early
years of commercialization.
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1 Introduction

Ongoing climate change is causing complex and potentially irreversible changes to crop

growing conditions across the world. In the United States, increases in average temperatures,

accompanied by increases in the frequency of warm days and nights, and higher precipitation

variability over the central U.S. are amplifying drought risk (Intergovernmental Panel on

Climate Change, 2014). Widespread drought prevalence and risk are projected to increase

through 2050, with the Rocky Mountain states and the southwestern U.S. experiencing

greater drought frequency (Strzepek et al., 2010). These regions, along with the Central

Plains, are at high risk of a multi-decadal drought this century (Cook, Ault, and Smerdon,

2015), even as groundwater sources for irrigation in certain areas continue to decline (Steward

et al., 2013).

Using historical crop yield data, several applied econometric studies have found little

evidence of long-run adaptation to climate change in the production of major U.S. row crops.

For example, through a comparison of long difference and panel regression coefficients, Burke

and Emerick (2016) conclude that adaptation has offset no more than half of the negative

short run impacts of extreme heat on U.S. corn yields. Their median estimate of future

climate change impacts suggests that such limited adaptation will contribute to decreases in

annual yields by 15% in 2050. Much of this is driven by the finding that corn yields decline

sharply at temperatures above 28-29 ◦C (82.4-84.2 ◦F) (Schlenker and Roberts, 2009; Burke

and Emerick, 2016). However, past agricultural adaptations are imperfectly captured, and

the prospects of future adaptation-inducing technical progress (Heisey and Day Rubenstein,

2015) or large-scale price feedbacks (Auffhammer and Schlenker, 2014) cannot be precisely

forecasted over long time horizons.

In the short run, crop farmers have few potential tools for reducing downside production

risk from changes in drought frequency or intensity. Adoption of irrigation equipment,

increased irrigation, or adoption of more efficient equipment are only viable for farmers

with access to sufficient irrigation water. Regardless of irrigation availability, no-till crop

management and conservation tillage practices can be effective adaptation tools (Powlson

et al., 2014) because they reduce soil moisture evaporation and help improve soil water-
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holding capacity and infiltration. U.S. federal working lands conservation programs, such as

the Environmental Quality Incentives Program, pay farmers to use such practices. Federal

conservation easement programs like the Conservation Reserve Program can also help certain

farmers adapt to drought risk by retiring land from agricultural production (Wallander et al.,

2013). Apart from these technologies and management practices, one recent and increasingly-

available option is adoption of drought-tolerant (DT) crop varieties.

Non-genetically-engineered (non-GE) DT corn hybrid varieties were commercialized in

2011, while GE DT varieties were released on a limited basis in 2012. Adoption has been

rapid in the first five years since introduction: by 2016, just over 22% of U.S. corn acreage

was planted to DT varieties (McFadden et al., 2019). Currently, most DT corn acreage

is concentrated in drought-prone areas of the western Corn Belt—particularly in Nebraska

and Kansas. However, DT corn seed adoption is also significant in the eastern Corn Belt

and in regions of relatively lower corn productivity. Climate and drought risk, local growing

conditions, and seed company marketing strategies likely factor into farmers’ decisions about

which corn varieties to grow.

Corn presents a particularly attractive opportunity for studying the economic dimensions

of DT crop adoption. First, corn has been a major target of substantial U.S. breeding re-

search into drought tolerance for several decades, culminating in the commercial release of

multiple hybrid varieties. Despite the extensive challenges of identifying and manipulating

plant genetic material that mediates the plant’s complex response to drought, DT varieties

have been developed for other crops like soybeans (e.g. Nuccio et al., 2018), though U.S.

regulatory approval and commercialization have only occurred very recently, and the full

extent of uptake is unknown. Second, corn is a water-intensive crop that is sensitive to high

temperatures (e.g. Schlenker and Roberts, 2009), thus making its on-farm management in-

trinsically interesting—especially within the context of worsening climate conditions. Third,

corn is among the most economically important crops in the U.S. Since 2006, annual gross

cash receipts for corn have comprised at least 10% of receipts for all U.S. agricultural com-

modities (U.S. Department of Agriculture, Economic Research Service, 2022), and its share

of total annual U.S. planted crop acres has been well over 25% during this same period

(U.S. Department of Agriculture, National Agricultural Statistics Service, 2022). Given the
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sizeable physical and financial value at risk—risk with an increasingly large downside for the

U.S. agricultural economy as climate change deepens—an examination of the determinants

surrounding this particular drought adaptation tool would seem compelling.

The objective of this study is to determine how drought risk and recent drought exposure

impacts the adoption of DT corn in the U.S. We begin by detailing research and development

(R&D) of DT corn seeds and the subsequent use of these varieties across the U.S. Next, we

motivate our empirical analysis of adoption trends through a state-contingent framework

that accommodates farmers’ beliefs about future drought based on objective drought risk

and exposure. Although nationally-representative microdata of farmers’ fields are available,

they do not track the same field (or farm operation) over time, which generates concerns of

potential bias arising from unobserved heterogeneity. To alleviate this source of potential

bias, we implement a new and intuitive econometric method, spatial first differences, which

is designed to eliminate time-invariant confounds in cross-sectional regression models.

Our discrete choice analysis suggests that adoption is responsive to long-run drought

risk and climate conditions and not the severity or duration of recent droughts. We further

find that irrigation reduces the likelihood of adoption, while high erodability increases this

likelihood, both of which are consistent with the location-based marketing of these varieties

that initially targeted the western Corn Belt.

2 Research, Development, and Uptake of Drought-

Tolerant Corn Varieties

Private-sector research on drought tolerance in corn dates back to at least the 1950s (Cooper

et al., 2014). Initial research focused on varietal selection for yield performance under drought

conditions. Public-sector research began in the mid-1970s (Edmeades, 2012). In contrast to

the private sector, non-profit institutions like the International Maize and Wheat Improve-

ment Center (CIMMYT) began selecting for drought tolerance in tropical varieties using an

index of traits. The methods (e.g., conventional breeding, molecular breeding, and genetic

engineering) and germplasm (i.e., seeds and plants used in crop breeding research) used in
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both sectors have improved over the past several decades. To date, the international research

community has introduced several hundred varieties of DT corn that are adapted to growing

conditions in the U.S. and abroad.1

By 2012, both non-GE and GE DT corn hybrid varieties had been commercialized in

the U.S. Non-GE varieties were developed through the use of molecular breeding, which

entailed analysis of field trial data and subsequent selection based on statistical predictions

of yield performance and other traits under drought conditions. Non-GE DT corn acreage has

increased following its 2011 commercial release (Minford, 2015). By contrast, GE drought

tolerance involves insertion of a certain soil bacterium gene into the corn plant’s genetic

material, which causes expression of a specific protein that helps the plant mitigate drought

damages. GE DT corn acreage has also increased since commercialization in 2012 (Castiglioni

et al., 2008; Waltz, 2014), but at a slower rate than acreage to corn varieties with conventional

drought tolerance (McFadden et al., 2019).2

The percent of U.S. corn acreage planted to DT corn varieties increased swiftly in the

years following commercialization (fig. 1). In 2012, DT corn (all varieties) accounted for

a little over 2% of national corn acreage. By 2016, roughly 22% of U.S. corn acres were

drought-tolerant, a 20-percentage-point increase over five years. This growth is similar to

that of insect-resistant (Bt) and herbicide-tolerant (HT) corn varieties in their first five years

(1996-2000). Comparisons of adoption trends for these three technologies must be interpreted

cautiously because each is used to manage different factors that cause yield loss. Bt varieties

are mainly used to manage two insect pests common throughout the U.S. Corn Belt. HT

traits are used to manage weeds. In contrast, there are several areas of the eastern Corn

Belt (e.g., eastern Indiana, Ohio, and western Pennsylvania) where drought is less common.

In addition, there was no universal expectation that HT and Bt traits would subsequently

1The Drought Tolerant Maize for Africa (DTMA) project (2007-15) was an international partnership that
developed and released DT corn varieties adapted for sub-Saharan growing conditions. Wossen et al. (2017)
found average yields were 12.6% higher among DTMA DT corn adopters in Nigerian villages under mild
droughts than non-adopters. The Water Efficient Maize for Africa (WEMA) project (2013-18) is a public-
private partnership that has also developed and commercialized DT corn varieties for certain sub-Saharan
nations (Edmeades, 2012). A successor, the Stress Tolerant Maize for Africa project (2016-19), had the goal
of developing 70 varieties with more resistance to non-drought stresses, e.g., low soil fertility, diseases, and
pests (International Maize and Wheat Improvement Center (CIMMYT), 2018).

2As our study relies on data at the initial stage of the DT corn adoption path, it is infeasible to perform
an ex post analysis of the returns to drought tolerance R&D for the commercialized varieties.
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become “breakthrough” and widely-adopted crop production technologies. Nonetheless, the

pace of early DT corn adoption has been comparable to that of other major recent innovations

in corn varieties.3

Aggregation of national acreage trends masks significant regional variation in 2016 DT

corn adoption (fig. 2). Roughly 16-21% of corn in 2016 for the traditional Corn Belt (e.g.,

Iowa, Illinois, and Indiana) was drought-tolerant, with 14-20% shares of corn acreage in the

northern Great Lakes states of Minnesota, Wisconsin, and Michigan. The Great Plains ex-

hibit significant within-state variability, particularly in Nebraska, Kansas, and Texas, though

adoption is highest (39-42%) for cropland generally over or near the Ogallala Aquifer. Cer-

tain high-latitude regions, like North Dakota, had minimal adoption but also tend to have

relatively less corn production.

It is expected that adoption is correlated with incidences of recent and severe droughts

(fig. 3). The U.S. Drought Monitor indicates that substantial swaths of the Corn Belt ex-

perienced a “severe” (category D2) or worse drought in July 2012. One year later, droughts

were concentrated in western states, with many counties in Colorado, Nebraska, Kansas,

and Texas experiencing “extreme” (category D3) or “exceptional” (category D4) droughts.

These drought patterns are confirmed by spatial variation in July drought risk, as measured

by the standard deviation of the Palmer Modified Drought Index (PMDI). Counties that

had one or more severe-or-worse droughts in 2011-15 tended to have higher risk. However,

most counties in South Dakota, North Dakota, and Minnesota did not experience significant

drought over 2011-15, despite being higher-risk. Conversely, many Texas counties experi-

enced more frequent and/or more severe droughts during 2011-14 than might be implied by

their long-run risk. These discrepancies in short-run exposure and long-run risk partially

motivate our economic framework, which we discuss next.

3It should be noted that these traits are often bundled in the same variety. For example, 54% of corn fields
in our sample were planted to varieties with HT and Bt traits, while 20% were planted to varieties with DT,
HT, and Bt traits. Despite such bundling, it does not appear that climate, drought risk, and other regressors
of interest have larger effects on adoption of HT or Bt corn than DT corn. This conclusion is supported by
complementary multivariate econometric analysis, which we exclude here for space considerations (estimates
available upon request).
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3 Economic Framework

We define the farmer’s state-contingent and partial (drought and drought-abating) per-acre

profit (π) function as

πs = PYs
(
XD,XD

s

)
− PXXD − PXsXD

s , (1)

where P is the output price4, Ys is yield, XD is a vector of state-independent drought-

abating inputs, XD
s is a vector of state-contingent drought-abating inputs, PX is a vector

of prices for these inputs and s is an index for a state of the world.

We assume that yields are a multiplicative function of drought-free yields (Υ) and a

drought abatement function (ds(.) ∈ {0, 1}), defined over the unit interval. The drought

abatement function is the percentage of the drought-free yields that are not damaged by the

drought,

Ys = Υds
(
XD,XD

s ;Ds, I
)
. (2)

The drought abatement function is dependent on drought damage (Ds), drought abatement

(XD,XD
s ) and the ability to irrigate (I). In this framework, I is a set of exogenous parame-

ters indicating: 1) whether irrigation equipment has been previously installed on a field, and

2) whether irrigation water is available. This reflects the idea that, within a single growing

season, farmers cannot choose whether their fields are irrigable or if water is available. In

other words, farmers must make their drought abatement choices contingent on the capacity

to irrigate.5 When there is no drought or if the inputs fully abate damages from drought

then ds = 1 and yields are equivalent to drought-free yields. If the drought is devestating,

then ds = 0 and the crop is lost (Ys = 0).

The drought-abating inputs can be separated into a vector of inputs contingent on

droughtXD
s and inputs that are not contingent on droughtXD. Importantly, seed decisions

occur well before planting, and thus drought-tolerant (DT) seed use is not state-contingent

(i.e., farmers must make this decision before observing the state of drought during the grow-

4We assume that farmers consider output and input prices not to be state-contingent.
5To economize on notation in the remaining exposition, we do not explicitly index farmers’ optimal choices

by these irrigation parameters.
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ing season). Other examples of state-independent drought-abating inputs are adjustments

to planting dates, row spacing, seeding rates, and the installation or upgrade of irrigation

equipment. These also include conservation practices that have long-term effects on soil or-

ganic matter and water-holding capacity, such as conservation tillage and cover crops. The

set of state-contingent drought-abating inputs is somewhat limited but include increases in

irrigation application rates, changes in late season herbicide use to reduce competition from

weeds for water, and reductions in fertilizer applications to reduce water demand.

The farmer’s objective is to maximize state-contingent profits, choosing whether or not

to use drought-abating inputs

max
XD ,XD

s

W (π) , (3)

where W : Rs 7→ R is a non-decreasing continuous function of a profit vector (π =

π1, π2, ..., πs) indexed by state s ∈ S. Farmers will choose to use a drought-abating input if

W
(
π1
)
> W

(
π0
)
, (4)

where π1 = π
(
xD = 1|XD,XD

s ; I
)

and π0 = π
(
xD = 0|XD,XD

s ; I
)
.

A number of preference functions, W : Πs 7→ R , defined on the set of profit outcomes,

Π with elements, πs , have been used in the economics literature on choice under risk and

uncertainty. We present two commonly-used preference functions to motivate our empiri-

cal models. Such preferences give rise to empirical specifications suggesting that short-run

drought shocks and long-run drought risk can influence farmers’ economic decision making.

Given that farmers’ underlying preference structures are unknown and difficult to determine

empirically, we estimate separate regression models.6

6In earlier versions of this research that used drought severity indicators, we estimated the structural
regression models implied by the below derivations. We found many of the structural parameters were
individually significant and implied marginal effects similar to those from reduced-form weighted probit
regressions of adoption on the drought severity indicators.
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3.1 Mean-Variance Utility

The objective of a risk-facing farmer with risk-neutral preferences is simply to maximize

expected profits. However, some empirical agricultural production models have shown utility-

maximization models provide better fit than expected profit maximization (e.g. Lin, Dean,

and Moore, 1974). We choose the mean variance model with preference function

W (π) = v
(
µ(π), σ2(π)

)
. (5)

Note that v : (µ, σ2) 7→ R is a utility function, µ[π] =
∑S

s=1 ρsπs, where πs occurs with prob-

ability ρs and σ2[π] =
∑S

s=1 s

(
πs −

∑S
s=1 ρsπs

)2

. Substituting in the production function,

Ys = Υds, we can then choose a preference function such that

v1 − v0 = PΥ exp
{
µ[π1

s(ds)]− µ[π0
s(ds)]−

(
σ[π1

s(ds)]− σ[π0
s(ds)]

)}
− px. (6)

The preference function defines the marginal utility of drought abatement.7 With this pref-

erence function, a farmer will choose to use drought abating inputs if v1− v0 > 0, i.e., if her

utility from adopting these inputs exceeds her utility from not adopting them. Re-arranging

this inequality and applying the logarithmic transformation implies that

lnP + ln Υ + µ[π1
s(ds)]− µ[π0

s(ds)]−
(
σ[π1

s(ds)]− σ[π0
s(ds)]

)
> ln px. (7)

If the mean of utility (of profits) from adopting drought-abating inputs relative to the utility

from not adopting is approximately zero, i.e. µ[π1(ds)] ≈ µ[π0(ds)], which would be expected

to occur in long-run equilibrium, then (7) leads directly to an estimating equation once an

operationalized measure of long-run drought risk is assumed. Using the standard deviation of

the Palmer Modified Drought Index (PMDI) as our measure of drought risk, we can estimate

β0 + βΥ ln Υ + βσPMDI > ε, (8)

7The preference function is increasing in output prices, drought free-yields, and mean drought abatement.
The marginal utility of drought abatement is decreasing in the variance of drought abatement. As Chambers
and Quiggin (2000) note, the variance can be replaced by any index for riskiness. Without loss of generality,
we replace the variance with the standard deviation.
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where β0 subsumes prices, β captures the effects of variability in profits from adopting

drought-abating inputs relative to the variability in profits from not adopting drought-

abating inputs, as underlying functions of drought (conceptualized here as states), and ε

is an econometric error term.

3.2 Prospect Theory

Mean-variance models and other expected utility models have theoretical shortcomings and

do not always reconcile with empirical evidence (e.g. Schoemaker, 1982). For example,

individuals often over-weight low probability states and under-weight high probability states

(e.g. Kahneman and Tversky, 1979). This can have important implications for farmers’

decisions to use drought-abating inputs. In some regions, severe or extreme drought is rare,

but if some farmers attach substantial importance to these rare but damaging occurrences,

their adoption rates could be systematically higher than expected assuming that farmers did

not over-weight such events.8 For these reasons, we also use the following preference function

W (π) =
S∑
s=1

h(ρs)u(πs), (9)

where h(.) is a probability weight function, and u(.) is a utility function. Note this model

assumes farmers know the probability of each possible state and systematically weight these

probabilities. This model can be simplified by assuming that the marginal rate of substitution

between two state-dependent profits is MRSss′ =
u(π1

s)−u(π0
s)

u(π1
s′)−u(π

0
s′)

=
ws(π1

s−π0
s)

ws′(π1
s′−π

0
s′)

, where ws is the

preference weight a farmer assigns to profits in each state. The probability-weighted marginal

utility of drought abating inputs is ωs (π1
s − π0

s) = h(ρs)ws (π1
s − π0

s), where ωs is a weight

that combines the probability and preference weights. Farmers will adopt drought-abating

inputs if
S∑
s=1

ωs
(
π1
s − π0

s

)
> 0. (10)

8Similarly, if the frequency, duration, and severity of droughts are expected to increase under unmitigated
climate change, then adoption rates for those who systematically under-weight such events may be lower,
even as the objective probability of such occurrences increases over time.
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Substituting in the production function, Ys = Υds, farmers will adopt if

PΥ
S∑
s=1

ωs
(
d1
s − d0

s

)
> px, (11)

where d1
s ∈ (0, 1) is the percent of yields not damaged by drought when using a drought-

abating input, and d0
s ∈ (0, 1) is the percent of yields not damaged by drought when not using

a drought-abating input. We do not observe farmers’ preference weights on state-dependent

outcomes and probabilities when making their abatement decisions. A common approach is

thus to use the historically-observed states to proxy for the states that farmers face when

making such decisions. Here, we assume that farmers use their experience of realized states

from previous years to form their set of possible states. States can be defined according to

the drought severity categories from the U.S. Drought Monitor, for example, such that

PΥ
S∑
s=1

T∑
t=1

ωs
(
d1
s − d0

s

)
Dst > px, (12)

where Dst is an indicator for drought in state s and year t. Assume that drought-related

yield losses are reduced according to the function, exp
(∑S

s=1

∑T
t=1 ωs (d1

s − d0
s)Dst

)
.9 Sub-

stituting this into (12) and applying a logarithmic transformation, we get the following

inequality

lnP + ln Υ +
S∑
s=1

T∑
t=1

ωs
(
d1
s − d0

s

)
Dst − ln px > 0. (13)

This leads to an empirical equation that resembles

α0 + αΥ ln Υ +
S∑
s=1

T∑
t=1

αstDst > ε. (14)

9If there is no drought in any state (Dst = 0), then yields in all states are drought free (i.e., Ys = Υ).
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4 Empirical Strategy: Identification and Data

The motivating economic framework suggested that producers could consider short-run

shocks and/or long-run risk when making drought abatement adoption decisions.10 However,

owing to the standard ceteris paribus assumption in regression models, it would not be suit-

able to include both measures in the same specification. This is because long-run drought risk

will not be plausibly constant if drought frequency, duration, and severity change annually

during a half-decade period.11 We therefore estimate separate specifications.

Using weighted linear probability (LPM) regressions, we first estimate the “mean-variance

empirical model” of DT corn variety adoption on field i in year 2016 as

DTi = β0 + βDRσPMDI,i + βWW i + βIrrIrri + βSLSLi + εi, (15)

where DTi is an indicator of DT seed variety adoption; σPMDI,i is the standard deviation

of the PMDI measure in July for field i in 2016; W i is a vector of average temperature

and precipitation conditions, and their standard deviations, over the 30 previous years (as

a proxy for climate); Irri is a vector of variables denoting field irrigation capacity and their

interaction terms; and SLi is a vector of field-level soil characteristics, land attributes, and

corn basis from nearby grain elevators for February 2016. Note that σPMDI,i is a normalized

measure of variability in natural soil moisture over the past century (Wallander et al., 2013).

For purposes of model assessment, we compare estimated coefficients to average marginal

effects from corresponding weighted probit regressions.12

Similarly, we estimate the following “prospect-theoretic empirical model” of DT corn

variety adoption using weighted LPM regressions

DTi = α0 + f(αst, Dst,i) + αWW i + αIrrIrri + αSLSLi + εi, (16)

10Farmers may also consider short-run or seasonal climate forecasts when making agricultural decisions.
Appendix B in the Supplementary Information contains a discussion of this point.

11In contrast, it is plausible to hold long-run drought risk constant while varying the first two moments of
long-run average temperature and precipitation (and vice versa), which is done in our empirical application.

12Under the assumptions of the linear probability model for binary response variables, the ordinary least
squares (OLS) estimates of the coefficients are unbiased and consistent. Moreover, the LPM may be preferred
to standard probit models when there are several discrete covariates, each with a limited number of values
(Wooldridge, 2010).
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where f(αst, Dst,i) is a simple linear function of drought incidence with severity s in year t.13

We do not use drought severity indicators as suggested by our motivating framework because

of multicollinearity concerns. Rather, we make use of two variables designed to capture

the duration and severity of farmers’ recently-experienced droughts: 1) the total number

of months of severe, extreme, or exceptional droughts during years 2011-2015, and 2) the

most intense drought experienced during the growing season (May-September) throughout

2011-2015.

4.1 Identification and Causal Impacts of Climate in Cross-
Sectional Regressions

Over the past two decades, a surge in the number of empirical studies relating weather and

climate to economic outcomes has brought methodological improvements in econometric

applications. For agricultural outcomes, some studies have analyzed cross-sectional data

(e.g. Mendelsohn, Nordhaus, and Shaw, 1994), while others make use of panel data (e.g.

Deschênes and Greenstone, 2007; Schlenker and Roberts, 2009) or long [temporal] differences

(Burke and Emerick, 2016). Under certain conditions, Hsiang (2016) shows that, locally, the

marginal effect of climate is equivalent to the marginal effect of weather in linear regression

models estimated on data with repeat observations over time.

Credible identification of climate effects in cross-sectional analyses is particularly chal-

lenging because of omitted variables bias. Unmodeled factors that are correlated with out-

comes (e.g., adoption of seed technologies, crop yields, farmland values, revenues) and one

or more covariates will produce biased estimates. For example, cross-sectional regressions

of farmland values on temperatures that omit irrigation access will have biased estimates

because irrigation access is capitalized into valuation of farmland and is positively correlated

with temperature (Schlenker, Hanemann, and A. Fisher, 2005). Generally, climate is not

random over large areas. In our application, there are several unmodeled, time-invariant

13Farmer demographics, like education, as well as other dimensions that are more difficult to measure (e.g.,
risk preferences, broader human capital) are also expected to influence adoption (e.g. Wozniak, 1987). We
can link our surveyed fields to their operators using data from the 2016 ARMS Phase III, but the benchmark
sample size declines by roughly 40%. However, our estimates of the impacts of long-run drought risk change
only minimally after controlling for years of farming experience, indicators for education level (high school
diploma, some college, and four-year college degree), and gender.
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factors correlated with climate and DT variety adoption that could confound identification

of causal impacts: (i) input dealer recommendations, (ii) agricultural cooperative guidelines,

(iii) ethanol plant contract terms, (iv) university extension guidance, (v) local USDA of-

fice practices, and (vi) other location institutions that could induce correlations in farmers’

behavior over short distances.

One potential solution is to saturate the regression model with as many economically-

relevant covariates as possible. However, it is impossible to know if all important variables

have been included; further, saturation can lead to overfitting and high standard errors

in models with severe multicollinearity. For some economic outcomes (including many in

agriculture), accumulated evidence from a variety of studies can provide useful guidance on

whether or not important covariates have been excluded (Hsiang, 2016).

Spatial first differences (SFD) have been proposed as a method for reducing concerns

of omitted variables bias (Druckenmiller and Hsiang, 2018). The framework rests on a

fundamental premise of spatial statistics: observations closer together are more similar than

those farther apart from one another. That is, the presence of unobserved location effects,

ci, may drive most or all of the similarities among observations at short distances. As such,

the SFD estimator results from an OLS regression of differenced outcomes (yi) on differenced

covariates xi between spatially-adjacent observations i and i− 1:

yi − yi−1 = (xi − xi−1)β + (ci − ci−1) + (εi − εi−1), (17)

where ε is a mean-zero i.i.d error term, β is a vector of parameters, and α is a vector that

measures the influence of fixed effects.

Identification in the SFD framework rests on a Local Conditional Independence Assump-

tion: E[yi|xi−1] = E[yi−1|xi−1] for all {i,i-1}, i.e., the expected outcome is the same for two

neighbors if they receive the same treatment. This identification condition is nearly equiva-

lent to that assumed to hold in first-differenced time series models and is similar to those for

certain differences-in-differences panel estimators and regression discontinuity designs. Im-

portantly, the Local Conditional Independence Assumption is weaker than the Conditional

Independence Assumption underlying a cross-sectional regression in which spatial fixed ef-
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fects have been omitted: E[yi|xj] = E[yj|xj] for all i 6= j, i.e., distant units are comparable in

that the same expected outcome would result if both observations were treated with xj—even

though only j received xj. In practice, the SFD model eliminates spatially-correlated unob-

served heterogeneity by filtering out the influence of factors that vary at short distances (not

immediately adjacent observations) and differencing out common idiosyncratic influences at

adjacent observations (Druckenmiller and Hsiang, 2018).

To control for potentially important location fixed effects that cannot be estimated in

the cross-sectional analysis, we re-estimate LPM versions of (15) and (16) using differenced

data on DT corn seed variety adoption and differenced data for all covariates. Distinct from

the application in Druckenmiller and Hsiang (2018), which differences county crop yields

and covariates in the north-south direction (and then analyzes to what extent results are

robust to differencing in the east-west direction), we define spatially-adjacent fields to be

fields that are closest to each other, regardless of direction. This assumes that the angle

between neighboring fields is unimportant, which is plausible for our measures of adoption,

weather, and climate.14 In particular, adoption of drought-tolerant seed varieties appears

to be spatially correlated, though there are not pronounced spatial effects in any cardinal

direction (fig. 4).

4.2 Data: Field-level Agricultural Production and Gridded
Weather-Climate Observations

The Agricultural Resource Management Survey (ARMS) is our primary source of data.15

ARMS is a survey conducted each year on farms’ production practices (e.g., crop choice

and rotations, tillage operations, conservation program enrollment and assistance), input

use (e.g., GE trait choices, chemical applications, and irrigation use), soil and land char-

acteristics, farm business and household financial characteristics, and operator household

demographics (U.S. Department of Agriculture, Economic Research Service, 2016). We use

data from Phase II of the 2016 ARMS, which randomly-sampled one corn field per farm in

14To our knowledge, neither drought incidence (fig. 3) nor seed adoption (fig. 4) fall along strict geometric
patterns. Although major precipitation events captured in our sample generally moved west-east, this
directional component would be less important for our 30-year weather average calculations.

15Appendix A in the Supplementary Information contains an overview of the data used in this analysis.
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the survey.

The year 2016 is the first year in which ARMS Phase II surveyed farmers about their

use of DT corn seeds, for both the 2015 and 2016 seasons. Using a ‘base’ weight provided

by USDA’s National Agricultural Statistics Service (NASS), our sample expands to 73.3

million corn acres, representing just over 78% of 2016 U.S. corn acreage (U.S. Department

of Agriculture, National Agricultural Statistics Service, 2018b). Roughly 20% of 2016 sample

corn acres were planted with DT varieties (table 1), similar to the national average of 22%

(McFadden et al., 2019).

We merge drought-related weather and climate data with the ARMS data for the re-

gression analysis. The U.S. Drought Monitor produces expert-adjusted observational data

through a collaboration of USDA, the National Drought Mitigation Center at the University

of Nebraska-Lincoln, and the National Oceanic and Atmospheric Administration (NOAA).16

The main benefits of the U.S. Drought Monitor are that it provides: (i) drought categories

that are easy to interpret, and (ii) policy relevance.17 However, the U.S. Drought Monitor is

subject to expert review and revision, which could introduce noise and reduce comparability

across locations. We therefore base our classifications of severe, extreme, and exceptional

droughts (the Drought Monitor’s severity classes) on values of the PMDI, also produced

by NOAA.18 To construct field-level values of the drought measures, we interpolated PMDI

data at the 12 nearest stations within 100 miles of sample fields (within the continental U.S.)

using inverse distance weighting. This assigns more weight to stations closer to our sample

fields than more distant stations.

The PMDI itself is an “operational” version of the Palmer Drought Severity Index (PDSI),

16In order to produce drought estimates, the U.S. Drought Monitor first relies on data from other drought
and precipitation indices; fire risk data; satellite imagery of vegetation health; soil moisture data and model
estimates; and hydrologic data. These are synthesized to develop an initial weekly assessment of the percent
area of each county that is in one or more of five drought categories, including an “abnormally dry” category.
This initial assessment is sent to over 350 observers across the U.S. These observers include meteorologists,
climatologists, hydrologists, and extension agents whose weather expertise and knowledge of local conditions
inform their reports of drought impact. The initial assessment is subsequently revised to incorporate these
experts’ collective judgment(U.S. Drought Monitor, 2019).

17USDA uses the U.S. Drought Monitor as a guide to making disaster declarations and to help determine
eligibility for certain types of loans. The index is also used by USDA’s Farm Service Agency to help determine
eligibility for the Livestock Forage Program. This program compensates eligible livestock producers for
certain grazing losses, including losses resulting from qualifying drought conditions.

18PMDI values are mapped into Drought Monitor severity categories as follows: -1.0 to -1.99 (D0), -2.0 to
-2.99 (D1), -3.0 to -3.99 (D2), -4.0 to -4.99 (D3), and -5.0 to -5.99 (D4) (U.S. Drought Monitor, 2019).
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which quantifies the duration and intensity of long-term drought patterns. The PMDI uses

hydrologic models to estimate net soil moisture based on precipitation recharge and losses

from evapotranspiration, infiltration, and runoff. The PMDI introduced the concepts of

severe, moderate, and extreme drought based on PDSI values (Heddinghaus and Sabol, 1991;

Wallander et al., 2013). The fields in our sample experienced abnormally dry conditions (D0)

much more frequently than droughts across all years. However, nearly two-thirds of fields

experienced a severe or extreme drought at some point in 2012. More broadly, the 2012

drought affected two-thirds of all land in the U.S., causing agricultural losses estimated at

$30 billion (Rippey, 2015). By contrast, the 2013 drought was mainly severe for fields located

in western counties. On average, fields experienced roughly 4-5 months of severe-or-worse

droughts, in total, across the corn growing seasons of 2011-15. Similarly, many of the fields

were at risk of experiencing a drought of any severity in any given year; the weighted mean

of the standard deviation of long-run PMDI was 2.26 (table 1).

Yearly temperature and precipitation are taken from Oregon State University’s PRISM

Climate Group, from which we construct 30-year averages. The PRISM data uses point

observations, a digital elevation model, and other spatial datasets to generate estimates

of climatic parameters (e.g., temperature and precipitation) at 4 km x 4 km grids (Daly,

Neilson, and Phillips, 1994). For each of the 4 km grids, we aggregate to the county based

on distance to county centroids, clipped and weighted by cropland density. To avoid the

possibility that 2015 weather averages might correlate with our measures of drought, drought

risk, and other idiosyncratic effects in 2015, we calculate yearly averages from monthly

observations between 1985 and 2014. Only months in the corn growing season were used.

Nationally, the average 30-year growing season temperature was 20.5 ◦C (69 ◦F), with mean

precipitation of 4.1 inches (table 1).

Our ARMS-based field-level measure of one aspect of irrigation capacity, whether the

field is irrigable, is a variable indicating if the corn crop was irrigated in that year. Only

six percent of corn acres in our sample are irrigated, consistent with the fact that the vast

majority of DT corn was grown on non-irrigated cropland in 2016, even among states that

are major corn irrigators (McFadden et al., 2019). Our second measure of irrigation capacity

is irrigation water availability, though we must proxy for this in the absence of spatially-
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detailed, representative data on surface water and groundwater availability. We represent

this as the share of each county’s harvested corn acreage that was not irrigated, using data

from the 2012 Census of Agriculture (U.S. Department of Agriculture, National Agricultural

Statistics Service, 2013). We expect large shares of non-irrigated acreage to signal a general

lack of water availability, but because availability only matters for irrigable fields, we prefer

to include the [irrigable × water availability] interaction term and omit the proxy in levels.

Nationally, approximately 86% of harvested corn acreage in 2012 was not irrigated.

We also take certain field-level indicators of soil type and quality from the ARMS data.

Roughly 15% of the sample acreage had a primarily clay soil type. Given that clay soils are

better at retaining water than other soil types, we might expect lower DT corn adoption

under adequate soil moisture. Further, the effect of soil type on DT corn adoption may

depend on both measures of irrigation capacity, and so we include both interaction terms,

[irrigable × clay] and [irrigable × water availability × clay]. In contrast, adoption on highly-

erodible soils might be higher due to a combination of steeper slopes and greater potential

for soil detachment, which can contribute to soil moisture loss. Roughly 17% of sample acres

are highly erodible.

We control for other unobserved countywide land productivity attributes through use

of USDA’s National Commodity Crop Productive Index (NCCPI) for corn and soybeans

(Dobos, Sinclair, and Robotham, 2012). After re-scaling, these index values lie in [0,10],

with higher values indicating higher inherent soil suitability for growing corn and soybeans.19

The NCCPI values are available at the geographic level of a “map unit” polygon, of which

there are several thousand per U.S. state. These polygon values are then aggregated to 30

m cells as part of USDA’s Gridded Soil Survey Geographic Database (U.S. Department of

Agriculture, Natural Resources Conservation Service, 2018). Our corn-soy soil productivity

index is created by averaging over values of NCCPI for all 30 m cells within 3 km of each

field’s location. As expected, most fields are suitable for growing corn, with an average

county value of 6.01, though there is significant variation in soil quality within our sample.

19USDA calculates this index as the product of ratings from five input category subrules: chemical (e.g.,
soil pH, cation exchange capacity, organic matter), water (e.g., available water-holding capacity, precipitation
during the growing season), physical (e.g., saturated hydraulic conductivity, rock fragments), climate (e.g.,
frost-free days, total precipitation), and landscape (e.g., slope gradient). Interested readers should consult
Dobos, Sinclair, and Robotham (2012) for more information.
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National seed premiums for DT corn variety traits were roughly $10 per bag of 80,000

seeds in 2016 (McFadden et al., 2019). Although some evidence suggests that DT seed

premiums are lower in eastern states, where drought is less common, farm- or state-level

data for DT corn premiums are not widely available (Farmers Business Network, 2018). To

proxy for the price of corn, we use a field-matched measure of basis, which can be thought

of as a location-adjusted net corn price (Barr et al., 2011). In particular, we subtract the

February 2016 cash price from the March futures price for the December contract. February

is chosen as this is the time operators of most U.S. corn acreage make choices of seed varieties

to plant. We assign cash spot prices to the nearest ARMS fields using USDA-collected cash

grain bids data.20 The weighted average basis in our sample is -$0.15.

5 The Role of Drought Exposure and Climate on Adop-

tion of Drought-Tolerant Corn Varieties

We first discuss the LPM regression results for the models motivated by both behavioral

assumptions and compare them with benchmark probit results. Next, we examine the extent

of spatial variation in the data and the effects of controlling for potentially-confounding

locality factors through SFD estimation. Last, we provide an illustrative discussion of the

role of climate change attitudes, beliefs, and potential barriers to adoption.

5.1 Benchmark Adoption Estimates

We find that long-run drought risk is positively associated with farmers’ adoption of DT

varieties, consistent with expectations and evidence about the geographic regions in which

these technologies were first introduced (table 2, column 1a). Controlling for climate effects,

a one-standard-deviation increase in 100-year drought risk leads to increased adoption by

20We first removed outliers from the basis data and then fit an inverse distance weighted surface to the
remaining points. We looked for the nearest five purchasers (e.g., grain elevators) within a maximum of 70
miles from the field. This is generally the greatest distance growers will truck grain. Roughly 97% of fields
were within 70 miles of one or more grain purchasers. Among these fields, only 146 had fewer than five
purchasers within the 70-mile radius. The average distance to a purchaser was just over 16 miles.
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10.6 percentage points, a large but insignificant effect.21 Thus, long-run drought risk does

not appear to have significant predictive content after controlling for 30-year temperature

and precipitation means and standard deviations. However, an additional 1 ◦C increase in

average climate conditions increases adoption by 2.4 percentage points. Operators of fields

that are of inherently lower productivity—those that are highly erodible —are more likely

to have planted DT varieties.

Irrigation has an insignificant main-level effect with the expected negative sign, though

its impact varies by soil type. Specifically, the effect of irrigation on adoption is roughly

66 percentage points higher on fields with primarily clay soils located in areas with very

high shares of irrigated acreage. But as irrigation water becomes incrementally less available

(as proxied by a marginal increase in the county’s share of irrigated acreage), DT corn

adoption on irrigable fields is higher for non-clay fields but lower for clay fields. However,

both interaction terms involving the water availability proxy are insignificant.

The LPM results are robust to the exclusion of the climate controls (table 2, column 2a)

with few exceptions. The marginal effect of long-run drought risk nearly doubles to 0.197

and becomes significant at the 5% significance level, absorbing much of the influence of the

excluded moments of the 30-year weather distribution. Somewhat surprisingly, February

basis (our output price control) becomes significant at the 5% level. This suggests a degree

of collinearity between basis and our gridded climate data.

Our set of results are also robust to dropping the long-run drought risk index entirely

(column 3a), though the quality of fit somewhat changes. The 30-year temperature average

and precipitation variability increase the probability of adoption, with the latter having a

large 13.8-percentage-point effect. That average precipitation remains insignificant (though

with the expected sign) echoes a major finding in the climate econometrics literature on

crop yields: average precipitation effects are relatively small and variable (e.g. Schlenker and

Roberts, 2009; Burke and Emerick, 2016). One distinction, however, is that our study relies

on drought exposure, climate, and adoption data at a finer spatial scale than the county.

As expected, the average marginal effects from the probit model (columns 1b-3b) are

21For our sample, this would be roughly similar to an area with moderate drought risk becoming an area
with severe drought risk.
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very similar to the partial effects identified in the LPM regressions. Differences between the

two sets of estimates imply differences in impacts on adoption rates that are less than 1

percentage point, on average. Given that our focus is on identification of drought exposure

and climate effects, rather than out-of-sample prediction, it is of less importance if predicted

probabilities from the LPM regressions lie outside [0,1], although this did not occur for any

of the regression specifications.

The duration and severity of recent droughts do not appear to affect seed technology adop-

tion (table 3). Although the total duration (in months) of severe, extreme, or exceptional

droughts has the expected sign, its magnitude is near zero and insignificant. Similarly, the

severity variable suggests that adoption is roughly 2 percentage points higher as the five-year

maximal PMDI increases by one index value (columns 2a and 2b), though these estimates

are also insignificant. The switch in signs on this variable between the “drought shocks

& climate” regressions relative to the “shocks only” regressions is suggestive of substantial

collinearity with the temperature and precipitation climate variables. Though to some ex-

tent surprising, this null result is in agreement with other work suggesting climatic effects

of temperature and rainfall explain most of the variation in corn yields, though with some

remaining effects due to drought (e.g. Kuwayama et al., 2019).

Consistent with expectations, increased average temperatures and variability of rainfall

lead to higher adoption, though the latter is statistically insignificant. Similarly, adoption

rates are higher on highly erodible land. As with the estimates in table (2), irrigation leads

to lower adoption, with point estimates that are comparable but roughly 1-2 percentage

points lower and again insignificant. Irrigation effects are also moderated by the dominance

of clay in the topsoil profile, though interactions with the proxy for water availability remain

insignificant.

5.2 Spatial Differences Estimates: Controlling for Unobserved
Location-Specific Heterogeneity

As a precursor to SFD estimation, we first examine variation in the differenced data (table

4). We choose thresholds corresponding to the 75th percentile (14 miles), 50th percentile (9
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miles), and 25th percentile (6 miles) of the distribution of distance between fields. Since we

are differencing data for each field from those at the next closest field, many of the means

are zero or close to zero.22 There is no broadly meaningful interpretation of small positive

or negative means because of this spatial, rather than temporal, differencing.

Relative to their means, many of the differenced drought and climate data have large

standard deviations. Across the three distance quartiles, the range of the absolute value of

the coefficient of variation (CV) for the drought duration measure is [49, 142], with a similar

CV range for the intensity measure: [31, 182]. Variability in the 30-year climate regressors

is somewhat lower. Clay content and the indicator of high erodibility have comparatively

large variation, as expected, while the interaction terms, corn-soy soil productivity index,

and basis have among the least variation in the differenced data.

We also computed correlation coefficients for each covariate for observations matched with

its closest other observation. If we observe relatively high correlations in all of the covariates

of interest at close distances, this could suggest (but does not prove) that location fixed

effects—if uncontrolled for—could bias estimation in levels. However, even if such effects

are absent, spatially differencing the data may help to reduce codependence among fields

in our data. Consistent with the summary statistics in table 4, many of the weather and

climate measures are highly correlated, even when the nearest-neighbor field is roughly 15

miles away. At this distance threshold, correlations in drought risk and 30-year temperature

averages are in excess of 0.97, and this correlation increases to over 0.99 for fields located to

their closest other fields less than five miles away. A similar pattern holds for basis. For these

reasons, we do not estimate the SFD model with these highly-spatially-dependent data.

There is significant variation in distances between our sample points (fig. 5), and there are

few fields whose nearest field exceeds 30 miles, generally the average north-south distance

of major U.S. corn growing counties (Druckenmiller and Hsiang, 2018). The differencing

process results in samples that get increasingly smaller (925, 613, and 356 fields), with an

accompanying decline in the models’ degrees of freedom. For purposes of comparison, we

22With first-differenced time series data, a single observation in levels generally appears in differencing
calculation exactly twice (e.g., subtract year 2014 from year 2015, subtract year 2015 from year 2016). There
are 30 fields in our levels dataset that are used more than twice to construct the differenced data (e.g., for
fields A, B, and C, the closest field is Field D). Our results are robust to their exclusion.
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estimate the same model in level terms, adding back in the climate and price variables that

were removed in the SFD estimation, for the samples that would have resulted had we not

spatially differenced (with comparable sample sizes). As in the LPM and probit results, all

standard errors have been clustered at the level of USDA’s crop reporting districts.23

For the SFD model estimated at the 14-mile distance, the drought-specific variables are

again insignificant (table 5, columns 1a and 1b). At this distance, it is unclear whether or not

the location effects have been completely differenced out, while the model is estimated with

fewer observations—and that exhibit less variation. Regarding other attributes, irrigation

and its interaction with clay are significant, while the presence of highly erodible land are

is insignificant. The corn-soy soil productivity index is now significant at the 5% level and

suggests that, relative to fields which are completely unsuitable for growing corn, DT varieties

are adopted at rates 77 percentage points higher among fields that are deemed to have the

highest suitability for corn.

Several of the estimated coefficients in the SFD model for the dataset at the 9-mile

threshold (2a) are qualitative similar to those obtained in the 14-mile sample (1a), as well as

level estimates at the 9-mile threshold (2b). The drought duration variable remains small and

insignificant, although the drought intensity variable is now marginally significant. There is

broad consistency in the signs and sizes of the soil coefficients between (1a) and (2a), though

the larger effect of the irrigation-clay interaction term is more precisely estimated in (2a).

Less variation in the corn-soy soil productivity index at smaller distances contributes to the

smaller coefficient estimate and insignificance.

Many of the SFD point estimates for fields with neighboring observations that are at a

distance of 6 miles or less (3a) are similar to counterparts at greater distances. By differencing

out potentially bias-inducing spatial fixed effects, the impacts of the weather and climate

effects are magnified, especially as seen in (3b). The restricted sample size is also contributing

to some of the increase in magnitude of these estimates. Given the novelty of the spatial first

differences approach, the consequences of restricting samples to observations that could be

23Crop reporting districts (CRDs) are groupings of counties that have similar geography, climate, and
cropping practices (U.S. Department of Agriculture, National Agricultural Statistics Service, 2018a). Most
states in our sample are each divided into nine adjacent CRDs. Clustering at this level is designed to mitigate
the effects of spatial autocorrelation in the econometric errors.
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“too close” (e.g., using other measures of spatial dependence, like Moran’s I statistic) have

not been fully explored.

5.3 Climate Change Beliefs, Attitudes, and Barriers to Adoption

Recent evidence suggests that the 2012 drought did not significantly affect agricultural ad-

visors’ climate change beliefs or adaptation attitudes. However, advisers indicated greater

concern about risks from pests and drought arising from 2012 yield damages (Carlton et al.,

2016). Against the current backdrop of learning requirements for progressing technologies

and evolving drought risk (Lybbert and Bell, 2010), further research is needed to assess the

potential of drought-tolerant crop varieties to serve as adaptation mechanisms. Although

substantial field trial evidence confirms that DT corn has higher average yields relative to

non-DT controls under water-stressed growing conditions (e.g. Gaffney et al., 2015; Nemali

et al., 2015; Adee et al., 2016), this is not necessarily proof of its adaptation efficacy. Adop-

tion of DT corn is an adaptation tool only if the economic gains from these varieties relative

to conventional varieties under a changing climate are larger than the gains under a constant

climate (Lobell, 2014).

Since the adoption data are only available for 2016, we cannot completely isolate short-

run drought effects from circumstances surrounding the 2012 or adjacent-year droughts. This

is of less concern if shocks similar in magnitude, timing, and duration to the 2012 drought are

not exceptionally rare events, which seems unlikely under climate change. The ideal dataset,

though, would contain repeated field-level observations over time, which would allow us to

distinguish short-run effects from recent-year effects. However, to the extent that long-run

drought risk will not lessen in coming years, our analysis suggests widespread disadoption

of DT corn under current economic, technology, and policy environments is unlikely.

Moreover, we do not formally identify barriers to early DT corn adoption. In the context

of sub-Saharan Africa, M. Fisher et al. (2015) find that poor market access, seed and labor

availability, and lack of information about the new varieties hampered adoption of DT corn

in 2012-13. Such factors are unlikely to significantly impact adoption in the U.S., where

there are far fewer impediments to flows of seed, labor, capital, and information. Participa-
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tion in Federal crop insurance is also unlikely to affect adoption in the U.S. (Weber, Key,

and O’Donoghue, 2016; McFadden et al., 2019). However, seed premiums and farmers’ per-

ceptions of possible yield penalties could have decreased early adoption rates. We do not

formally test this claim due to lack of price data. Rather, our results suggest U.S. DT corn

adoption is mainly influenced by—and is likely to continue to be influenced by—drought

exposure and risk.24

6 Conclusions and Policy Implications

Controlling for average weather conditions and the severity and duration of recent droughts,

in addition to potentially-confounding location fixed effects, we find that adoption of DT

corn is generally increasing in long-run average temperatures and drought risk. By contrast,

adoption does not appear to be significantly affected by the severity of the worst drought

experienced in the field in the previous five years, nor the duration of severe-or-worse droughts

during this same period. Farmers are more likely to plant DT corn on highly erodible fields,

and they are also less likely to irrigate on these fields, though the impact of irrigation on

adoption is affected by soil type (i.e., clay-dominant particles).

There are three main caveats of this research. First, use of cross-sectional data has limited

our ability to fully tease out the effects of field- and farm-specific factors on adoption. We

have included a large set of covariates suggested by theory and past empirical evidence,

though some relevant predictors may be absent from our regressions—–as is the case with

nearly all cross-sectional analysis. Second, there are no widely-available data at fine spatially-

varying scales for DT corn price premiums relative to prices of other corn varieties. Several

empirical studies of climate change and agriculture assume an underlying market equilibrium

such that prices are constant across space (Blanc and Reilly, 2017). Such an assumption is

not unrealistic for integrated markets in the United States, but the existence of thousands

24The pace of DT corn adoption could increase if private seed companies increasingly combine drought
tolerance with HT and/or Bt traits. Increased stacking could result from companies selling additional
varieties with all three traits, or through a gradual market withdrawal of HT and/or Bt varieties that are
not drought tolerant. The latter type of marketing strategy has been used for some types of farm machinery
and technologies that—initially introduced as options—–gradually become standard equipment.
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of agricultural cooperatives, seed retailers, and other agricultural input dealers suggests the

likelihood of at least modest variability in seed prices across the country (e.g. Shi, Chavas, and

Stiegert, 2010).25 Third, the form of our analysis does not provide rigorous evidence about

how uptake of drought-tolerant crop varieties could evolve under climate change. This type of

analysis would make use of drought severity projections based on output from appropriately

downscaled general circulation models (Hsiang and Kopp, 2018). Much progress has been

made recently to forecast drought severity into the twenty-first century using climatological

models (e.g. Cook, Ault, and Smerdon, 2015), but more research is necessary to generate a

set of robust drought projections for use in climate economics studies.

A number of general policy implications emerge from our analysis. We find a negative

relationship—though not generally statistically significant—between irrigation use and DT

corn adoption, which is consistent with the notion that these technologies may not be com-

plementary. Although irrigable fields are currently less likely to be planted to DT corn

varieties, this relationship could fundamentally change as irrigation water sources become

scarcer under a worsening climate. Faced with increasingly drier conditions, there could

be some threshold beyond which irrigators would choose to adopt DT varieties if they per-

ceive them to be a cost-effective way of limiting yield losses from mild-to-moderate droughts.

However, if such a case were to occur, it is unknown if DT varieties would be chosen as a way

to help preserve irrigation water availability (via the crop’s improved water use efficiency)

or if they would be chosen as a “last resort” option due to perceptions of yield penalties. In

either case, decision-makers could consider availability and use of crops with greater water

use efficiency when designing agricultural water policy.

In a similar vein, it is possible that U.S. farmers are using DT corn varieties as a kind

of shallow loss insurance. That these varieties can serve as shallow loss insurance that

complements conventional crop insurance policies is supported by the fact that: 1) drought

tolerance does provide some yield loss protection against mild-to-moderate droughts, and

2) greater shares of DT corn fields than non-DT corn fields are insured under the U.S.

25Although evidence suggests that some spatial variability in drought-tolerant seed prices exist (e.g. Farm-
ers Business Network, 2018), the extent to which this input price variability is tightly-linked to underlying
agricultural productivity is unclear. By leaving out input prices, we minimize the risk of bias from bad con-
trol (Angrist and Pischke, 2008). However, we present results of a robustness check of our levels estimates
to inclusion of state-level DT corn premiums in Appendix C of the Supplementary Information.
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federal crop insurance program (McFadden et al., 2019). Regardless of mechanism, our

results suggest adoption increases with average temperature and drought risk, which are

both projected to increase under multiple climate scenarios. In the short run, optimal crop

insurance premiums may need to be adjusted to account for the crop’s greater resistance to

drought, though these adjustments would likely need to be revisited as droughts intensify

and become more prolonged.

Despite the positive linkages between temperature, drought risk, and adoption, farmers’

learning about the net benefits of DT corn varieties could be hampered by random weather

shocks during the growing season (Lybbert and Bell, 2010). For example, a farmer who

chooses to plant DT corn, faces a substantially water-stressed growing season, and then

suffers crop failure may believe that the DT variety or all similar varieties are ineffective

even though they were not bred to thrive in such conditions. Conversely, a farmer who

plants a DT corn variety could face routine weather conditions and a subsequently poor

yield realization due to an unrelated factor (e.g., nutrient deficiency, pest infestation) but

misattribute the outcome to a DT yield penalty. These scenarios suggest farmers’ learning

about DT seed efficacy is more challenging than that for other variable inputs (e.g., labor,

fertilizer, energy, pesticides), reiterating the importance of extension programs. While these

characteristics do not demonstrate a new role for extension, they highlight the need for clear

communication of the idea that several years of data on DT seed use and experimentation

may be required before farmers are able to make a fully-informed “final” determination of

appropriateness of the technology for their operation.

A prime area for further research is a causal analysis of how weather shocks impact DT

corn yields and net returns relative to their non-DT counterparts. The main private-sector

companies selling DT corn varieties have published field trials demonstrating efficacy of the

seeds under water-limited growing environments. Many but not all of these results have been

replicated by university researchers on test plots, but there have been no studies that analyze

the impacts of weather shocks on DT varieties’ yields and economic returns using data on

farmers’ marketplace behavior across the United States. If implemented carefully, such a

study would be able to inform policymakers and other market participants of the potential

of drought tolerance, in isolation, to serve as a climate change adaptation mechanism.
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Figure 1: Adoption of insect-resistant, herbicide-tolerant, and drought-tolerant corn in the United
States since 1996.
Note: The HT and Bt genetically-engineered (GE) traits were commercially introduced in corn in
1996. The year in which GE varieties of drought-tolerant (DT) corn were introduced was 2012.
For year 2016, the DT adoption rate is calculated from Phase II ARMS data. Since Phase II of
ARMS does not survey corn each year, estimates of adoption rates are unavailable prior to 2016.
For years 2012-15, DT corn acreage is taken from various industry sources and then divided by
total harvested acreage of corn for grain. Adoption rates for Bt and HT corn include minimal
acreages of stacked varieties (1996-2000), whereas adoption rates for DT corn include varieties that
are overwhelmingly stacked with Bt and/or HT traits (2012-2016).
Source: Fernandez-Cornejo and McBride (2002) for Bt and HT corn adoption rates; USDA, Na-
tional Agricultural Statistics Service (2018) and various industry estimates for DT (2011-15);
USDA, Economic Research Service and National Agricultural Statistics Service, 2016 Agricultural
Resource Management Survey.
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Figure 2: DT shares of U.S. state corn acreage, 2016.
Note: In 2016, total U.S. corn acreage planted to DT varieties was 18.6 million acres.
Source: USDA, Economic Research Service and National Agricultural Statistics Service, 2016 Agri-
cultural Resource Management Survey.
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Figure 3: U.S. Drought Monitor index of droughts, 2011-15.
Note: The U.S. Drought Monitor sorts drought into five categories: abnormally dry (a drought
precursor, D0), moderate (D1), severe (D2), extreme (D3), and exceptional (D4). These can be
thought of in terms of potential impacts: short-term dryness (D0), some damage to crops (D1),
crop losses likely (D2), major crop losses (D3), and exceptional and widespread crop losses (D4),
although actual agricultural impacts will vary by crop and irrigation use.
Source: U.S. Drought Monitor, 2019.
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Figure 4: U.S. county adoption of DT corn, 2016.
Note: All surveyed states in 2016 are depicted (Colorado, Georgia, Illinois, Indiana, Iowa, Kansas,
Kentucky, Michigan, Minnesota, Missouri, Nebraska, New York, North Carolina, North Dakota,
Ohio, Pennsylvania, South Dakota, Texas, and Wisconsin). Multiple fields per county appear in the
dataset frequently, and within these counties, there can be several fields planted with DT varieties.
The maximum number of DT fields per county was six.
Source: USDA, Economic Research Service and National Agricultural Statistics Service, 2016 Agri-
cultural Resource Management Survey.
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Figure 5: Surveyed fields’ locations, 2016.
Note: To preserve privacy and meet USDA data disclosure requirements, dots representing field
locations are disproportionately large relative to map scale.
Source: USDA, Economic Research Service and National Agricultural Statistics Service, 2016 Agri-
cultural Resource Management Survey.
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Table 1: Summary Statistics (n = 1,768 fields)

Sample Weighted Standard
Units Mean Mean Error Min Max

2016 DT adoption rate {0,1} 0.21 0.20 0.02 0 1

Severe-or-greater drought duration Months 4.78 4.45 0.44 0 45
Maximum drought intensity Index 3.67 3.57 0.11 −0.56 7.57

Drought risk [0,∞) 2.27 2.26 0.03 1.60 3.08
30-year temp. mean ◦C 20.82 20.50 0.19 16.57 28.03
30-year temp. std. dev. ◦C 1.42 1.43 0.01 0.84 1.80
30-year precip. mean In. 4.02 4.11 0.04 1.91 5.69
30-year precip. std. dev. In. 1.96 2.03 0.03 0.95 2.92

Irrigation {0,1} 0.10 0.06 0.02 0 1
Irrigation x non-irr. corn share [0,1] 0.03 0.02 0.005 0 0.99
Clay {0,1} 0.13 0.15 0.02 0 1
Irrigation x clay {0,1} 0.01 0.004 0.002 0 1
Irrigation x non-irr. corn share x clay [0,1] 0.002 0.001 0.001 0 0.94

Highly erodible {0,1} 0.14 0.17 0.02 0 1
Corn-soy soil index – mean [0,10] 5.72 6.01 0.16 0.35 9.59
Corn-soy soil index – std. dev. [0, ∞) 1.09 1.18 0.04 0 3.38

February 2016 basis $ (USD) −0.12 −0.15 0.03 −0.80 1.13

Note: Estimates are expanded to the population of U.S. corn fields in 2016 using a base expansion
factor from NASS. Standard errors are clustered at the crop reporting district (CRD) level. There
are 142 CRDs in the full sample with 12.5 fields per CRD, on average.
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Table 3: Prospect-Theory-based Model: Weighted Linear Probability Model Estimates and
Probit Average Marginal Effects

LPM (marginal effects) Probit (average marginal effects)

(1a) (2a) (1b) (2b)
Drought shocks & climate Drought shocks only Drought shocks & climate Drought shocks only

Severe-or-greater drought duration 0.002 0.002 0.002 0.002
(0.004) (0.004) (0.004) (0.004)

Maximum drought intensity −0.006 0.022 −0.006 0.022
(0.018) (0.017) (0.017) (0.017)

30-year temp. mean 0.027** 0.027**
(0.011) (0.011)

30-year temp. std. dev. 0.183 0.208
(0.220) (0.213)

30-year precip. mean −0.096 −0.094
(0.060) (0.060)

30-year precip. std. dev. 0.136 0.131
(0.085) (0.083)

Irrigation −0.093 −0.079 −0.080 −0.073
(0.083) (0.074) (0.064) (0.061)

Irrigation x non-irrigated corn share 0.077 0.059 0.074 0.063
(0.125) (0.122) (0.134) (0.132)

Clay 0.007 0.010 0.007 0.009
(0.038) (0.037) (0.038) (0.036)

Irrigation x clay 0.679** 0.649** 0.656*** 0.633***
(0.270) (0.272) (0.189) (0.207)

Irrigation x non-irrigated corn share x clay −0.757 −0.664 −0.586 −0.511
(0.597) (0.585) (0.479) (0.484)

Highly erodible 0.073* 0.080** 0.072* 0.080**
(0.038) (0.039) (0.037) (0.039)

Corn-soy soil index mean −0.007 −0.001 −0.006 −0.001
(0.008) (0.008) (0.008) (0.008)

Corn-soy soil index std. dev. 0.006 0.007 0.009 0.008
(0.026) (0.027) (0.026) (0.027)

February 2016 basis 0.057 0.036 0.070 0.037
(0.084) (0.045) (0.083) (0.045)

Constant −0.456 0.107
(0.401) (0.067)

Observations 1,768 1,768 1,768 1,768
Correctly classified (%) 79 79 79 79
F -statistic 2.04** 1.60 2.06** 1.50
R-squared 0.03 0.02

Note: Estimates are expanded to the population of U.S. corn fields in 2016 using a base expansion
factor from NASS. Standard errors (not shown) are clustered at the crop reporting district (CRD)
level. Goodness-of-fit statistics for the probit regressions are with respect to the fitted model.
Significance is denoted as ***p<0.01, **p<0.05, and *p<0.10.
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Table 4: Summary Statistics, Spatial First Differenced Data

Mi. < 14 Mi. < 9 Mi. < 6

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

2016 drought-tolerant corn adoption 0.014 0.516 0.027 0.532 0.045 0.534

Severe-or-greater drought duration −0.042 2.037 −0.013 1.846 0.011 1.465
Maximum drought intensity 0.013 0.403 0.002 0.363 −0.005 0.278

Drought risk 0.001 0.066 0.002 0.053 −0.002 0.039
30-year temp. mean −0.003 0.360 −0.003 0.284 0.008 0.208
30-year temp. std. dev. 0.001 0.022 0.001 0.020 0.001 0.020
30-year precip. mean −0.004 0.114 −0.004 0.102 0.003 0.097
30-year precip. std. dev. −0.004 0.091 −0.003 0.082 0.001 0.075

Irrigation 0.006 0.246 0.007 0.249 0.008 0.231
Irrigation x non-irrigated corn share 0.008 0.160 0.008 0.157 0.011 0.155
Clay −0.005 0.449 −0.031 0.435 −0.056 0.439
Irrigation x clay −0.002 0.080 −0.007 0.080 −0.011 0.105
Irrigation x non-irrigated corn share x clay 0.0001 0.040 −0.002 0.029 −0.003 0.038

Highly erodible 0.002 0.445 0.010 0.453 0.011 0.443
Corn-soy soil index mean −0.007 0.080 −0.010 0.073 −0.009 0.065
Corn-soy soil index std. dev. 0.001 0.042 −0.0003 0.041 0.0003 0.038

February 2016 basis 0.002 0.039 −0.001 0.029 0.0002 0.023

Note: For all regressors except the two soil index variables and February 2016 basis, the sample
sizes are the following: 929 fields (mi. < 14), 615 fields (mi. < 9), and 358 fields (mi. < 6).
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Table 5: Spatial First Difference Estimates at the 75th, 50th, and 25th Percentiles of Distance
between Fields

SFD Levels

Mi. < 14 Mi. < 9 Mi. < 6 Mi. < 14 Mi. < 9 Mi. < 6
(1a) (2a) (3a) (1b) (2b) (3b)

Severe-or-greater drought duration −0.008 −0.022 −0.042 −0.0003 −0.002 −0.003
(0.018) (0.028) (0.049) (0.005) (0.005) (0.005)

Maximum drought intensity −0.025 −0.095* −0.072 0.009 −0.002 0.026
(0.057) (0.057) (0.121) (0.028) (0.027) (0.032)

30-year temp. mean 0.039** 0.044** 0.050**
(0.017) (0.018) (0.021)

30-year temp. std. dev. 0.338 0.460 0.680*
(0.321) (0.380) (0.372)

30-year precip. mean 0.045 0.031 0.052
(0.078) (0.092) (0.100)

30-year precip. std. dev. −0.028 −0.007 0.038
(0.107) (0.122) (0.148)

Irrigation −0.293** −0.318 −0.150 −0.067 −0.192** −0.116
(0.148) (0.232) (0.286) (0.139) (0.083) (0.112)

Irrigation x non-irrigated corn share 0.315 0.279 0.091 −0.009 0.052 −0.103
(0.244) (0.305) (0.373) (0.186) (0.145) (0.130)

Clay −0.095 −0.111 −0.263** −0.040 −0.020 −0.023
(0.057) (0.078) (0.126) (0.029) (0.041) (0.048)

Irrigation x clay 0.714* 0.964*** 1.083** 0.375 0.912***
(0.366) (0.318) (0.483) (0.481) (0.130)

Irrigation x non-irrigated corn share x clay −0.883 −1.661** −1.582 0.358
(0.610) (0.669) (0.988) (0.560)

Highly erodible 0.058 0.111 0.071 0.059 0.119** 0.046
(0.063) (0.074) (0.071) (0.045) (0.054) (0.064)

Corn-soy soil index mean 0.768** 0.406 0.219 −0.036 −0.057 −0.035
(0.307) (0.326) (0.604) (0.117) (0.147) (0.165)

Corn-soy soil index std. dev. 0.509 0.016 0.485 −0.267 −0.421 −0.899***
(0.457) (0.427) (0.675) (0.283) (0.305) (0.335)

February 2016 basis 0.061 0.083 0.106
(0.123) (0.139) (0.155)

Constant −0.027 −0.031 −0.032 −1.120* −1.400* −1.845**
(0.023) (0.027) (0.050) (0.651) (0.720) (0.702)

Observations 925 613 356 926 614 357
Correctly classified (%) 79 81 83 80 80 83
R-squared 0.03 0.04 0.08 0.03 0.06 0.07
Clusters 113 99 91 113 99 91

Note: Estimates are expanded to the population of U.S. corn fields in 2016 using a base expansion factor
from NASS. Standard errors (not shown) are clustered at the crop reporting district (CRD) level. Linear
probability models in (1b), (2b), and (3b) are estimated for the regressions in level terms. The R-squared
values for the SFD estimates are analogous to the within R-squared from a fixed effects panel estimator,
while the R-squared for the levels models (LPMs) are overall R-squared values. Irrigation-related interaction
terms are dropped in the specifications of the last two columns due to multicollinearity. Significance is
denoted as ***p<0.01, **p<0.05, and *p<0.10.
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