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Abstract

We study the relationship between water nutrient pollution and U.S. agriculture using data
between the early 1970s and late 2010s. We estimate a positive causal effect of corn acreage
on nitrogen concentration in the country’s surface water quality. We find that a 10% increase
in corn acreage causes an increase in nitrogen concentration in water by at least 1% and show
that the magnitude of the acreage effect increases with precipitation but not with extreme-heat
degree days. Based on the average streamflow of the Mississippi River at the Gulf of Mexico
during this period and damages of about $16 per kilogram of nitrogen, this 1% increase in
average nitrogen concentration implies an annual external cost of $800 million. Using recent
climate models to project the implications of climate change for the magnitude of the estimated
effects, we conclude that climate change will not materially change the estimated relationship
between corn acreage and nitrogen concentration.
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1 Introduction

Nutrient pollution is one of the country’s most widespread, costly, and challenging environmental
problems. It is caused by excess nitrogen and phosphorus in the air and water. Although nutrients
such as nitrogen and phosphorous are chemical elements that plants and animals need to grow,
when too much nitrogen and phosphorus enter the environment, usually from a wide range of
human activities, the air and water can become severely polluted.

Some of the largest sources of nutrient pollution include commercial fertilizers, animal manure,
sewage treatment plant discharge, storm water runoff, cars, and power plants. In the Mississippi
River Basin (MRB), which spans 31 states and drains 40% of the contiguous U.S. (CONUS) into
the Gulf of Mexico (GoM), nutrients from row crops, large farms, and concentrated animal feeding
operations account for most of the nutrient pollution. Fertilizer runoff from agricultural crops has
been estimated to contribute somewhere between 50% (CENR (2000)) and 76% (David et al.
(2010)) of the annual and spring nitrogen riverine export from the MRB to the GoM fueling a
hypoxic (“dead”) zone, with oxygen levels that are too low for fish and other marine life to survive.
The GoM hypoxic zone is the second largest in the world behind the dead zone in the Arabian Sea
with a peak areal extent equal to that of New Jersey (8,776 square miles) recorded in the summer
of 2017.

According to the EPA (2016), 46% (about 546,000 miles) of U.S. streams and rivers are in poor
condition in terms of their phosphorous levels and 41% (about 495,000 miles) are in poor condition
in terms of their nitrogen levels based on sampling results from almost 2,000 sites benchmarked
against conditions represented by a set of least-disturbed sites. Excessive nitrogen and phosphorus
in water and the air can cause health problems, damage land and water, and take a heavy toll on
the economy.1 Reducing the areal extent of the hypoxic zone to a 5-year running average of 5,000
square kilometers, a target set in the Action Plan of the GoM Hypoxia Task Force, comes at an
estimated price tag of $2.7 billion per year (Rabotyagov et al. (2014b)).

In this chapter, we focus on water pollution and its relationship to U.S. agriculture. We use regres-
sion analysis to establish a causal link between farmers’ decisions about crop acreage and nutrient
pollution that is detrimental to surface water quality. In particular, we estimate the causal effects
of corn acreage on nitrogen concentration in water bodies using panel fixed-effect (FE) regres-
sions and what we call “(c)ounty-centric” analysis. We make few and transparent assumptions

1See CENR (2000), EPA (2007), and, more recently, Olmstead (2010), GOMNTF (2013) and Rabotyagov et al.
(2014a). Several papers assess the the cost of nitrogen pollution employing a variety of methodologies; see Dodds
et al. (2009), Compton et al. (2011), Birch et al. (2011), Rabotyagov et al. (2014b), and Sobota et al. (2015), among
others.
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that allows us to the assess the robustness of our findings to various factors. In contrast, most
prior estimates of effects similar to the ones estimated in this chapter are based on agronomic and
hydrologic models.

To perform our c-centric analysis, we combine annual county-level data on acres planted and nitro-
gen pollution. Data on acres planted are readily available from the U.S. Department of Agriculture
(USDA). We compile data on nitrogen pollution using U.S. Geological Survey (USGS) monitor-
ing sites within a 50-mile radius from the county centroids. Based on our preferred estimate of the
elasticity of nitrogen concentration (mg/L) with respect to corn acreage of about 0.1, an increase
in corn acres planted equal to 1 within-county standard deviation implies a 3.3% increase in the
level of nitrogen concentration. At the average nitrogen concentration of about 2.5 mg/L and the
average streamflow of the Mississippi River in the GoM in our sample, this effect entails close
to 50,800 additional metric tons of nitrogen in the GoM. Using the median potential damages of
nitrogen due to declines in fisheries and estuarine/marine life of $15.84 per kilogram ($2008) from
Sobota et al. (2015), the implied annual external cost is about $800 million. The magnitude of the
estimated effects depends on the amount of annual precipitation but not on extreme heat despite its
well-documented negative impact on crop growth and, hence, nutrient uptake.

We also explore the implications of climate change for nitrogen pollution using the NASA Earth
Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6) dataset to obtain out-of-
sample projections for precipitation and temperature, which we translate into projections of corn
acreage marginal effects on nitrogen pollution. The NEX-GDDP-CMIP6 dataset is comprised of
global downscaled climate scenarios derived from the General Circulation Model runs conducted
under the Coupled Model Intercomparison Project Phase 6 and across two of the four “Tier 1”
greenhouse gas emissions scenarios known as shared socioeconomic pathways (SSPs), namely,
SSP2-4.5 and SSP5-8.5. Abstracting from the impact that climate change may have an acreage,
yields, nitrogen fertilizer use, legacy nitrogen, runoff, and streamflow, all of which may contribute
to nitrogen pollution, the out-of-sample precipitation and temperature projections imply similar
effects of corn acreage on nitrogen concentration as in our estimation sample. This finding arises
because the climate models project relatively small changes in precipitation and because our esti-
mated effects of corn acreage on nitrogen concentration do not vary a lot with temperature.

The focus of this chapter is different from the chapter by Elbakidze et al. (2022) in this volume.
Elbakidze et al. study the effects of changes in nitrogen fertilizer use by U.S. farmers on sur-
face water quality due to climate change. Investigating the effect of climate-driven productivity
changes on water quality in the GoM using an integrated hydro-economic agricultural land use
model (IHEAL), they find that land and nitrogen use adaptation in agricultural production to cli-
mate change increases nitrogen loads to the GoM by 0.4%–1.58%. As we discuss later in the
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chapter, our findings are consistent with a new research in environmental science arguing that
there is a large amount of nitrogen stored in subsurface soil and groundwater and contributes to
the so-called legacy nitrogen, which may increase loadings in rivers and streams with a long delay.
The work by Elbakidze et al. does not address legacy nitrogen. Elbakidze et al. account for farm-
ers’ adaptation to climate change in their analysis while our reduced-form econometric analysis
does not.

The remainder of the paper is organized as follows. Section 2 provides a background on nutrient
pollution emphasizing the role of agriculture and shedding light on the impacts of climate change.
Section 3 is a simple theoretical backdrop for Section 4, where we describe the empirical approach
for estimating the causal effects of interest. Subsequently, having discussed the data and provided
some descriptive analysis in Section 5, we present the results from our regressions in Section 6.
We next explore the implications of climate change for nitrogen pollution in Section 7. We finally
conclude.

2 Background on Nutrient Pollution

Preamble. Nitrogen inputs to the ecosystem from both anthropogenic and natural sources, are
transported via atmospheric, surface flow, drain flow, and groundwater pathways. Nitrate-nitrogen
concentrations in the Mississippi River, which drains most U.S. cropland, increased dramatically
in the second half of the last century, especially between the early 1960s and the mid 1980s,
largely coinciding with the surge in commercial-fertilizer use for row crops in the MRB states
(e.g., see Capel et al. (2018)). The corn-and-soybeans cropping system that dominates the Corn
Belt is an inherently “leaky” system—some nitrogen loss to subsurface drainage water is inevitable
(McLellan et al. (2015)). In fact, the majority of agricultural nitrogen loss occurs via subsurface
drainage water, either as seepage through soils and shallow geologic units or in engineered drainage
structures such as drainage tiles and ditches.

Aside from oscillations in streamflow, artificial drainage and other changes to the hydrology of
the Midwest (e.g., dams and reservoirs), atmospheric deposition of nitrates within the MRB, non-
point discharges from urban and suburban areas, and point discharges, particularly from domes-
tic wastewater treatment systems and feedlots, all contribute to the nutrients that reach the GoM
(Goolsby et al. 1999). Between 1980 and 2016, close to 1.5 million metric tons of nitrogen (about
63% in the form of nitrate) per year were discharged, on average, to the GoM. From 1968–2016,
the average annual Mississippi streamflow was close to 21,500 cubic meters per second.2 During

2We refer to the average flow and total Mississippi-Atchafalya nitrogen flux (sum of NO3+NO2, TKN, and NH3)
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this time, there was a strong positive relationship between the streamflow of the Mississippi and
nitrogen flux in the GoM.

Dairy, beef, hog, poultry, and aquaculture systems can also cause significant discharges of nu-
trients to streams and rivers. Untreated wastewater from these systems generally has very high
concentrations of nitrogen, most often as ammonia–nitrogen, although high concentrations of ni-
trate–nitrogen are also possible. Urban and suburban areas have significant runoff from lawns,
parking lots, rooftops, roads, highways, and other impervious sources. The major point sources
of direct discharges of nutrients, particularly nitrogen-nitrogen, appear to be domestic wastew-
ater treatment plants. Fossil-fuel combustion in car engines and electric generating plants also
contributes to airborne nitrates that return to the earth’s surface with rain, snow, and fog (wet de-
position) or as gases and particulate (dry deposition). This nitrogen then enters streams and rivers
and/or is retained in terrestrial systems in the same pathways as nitrate–nitrogen fertilizer.

Damages and abatement costs of nitrogen pollution. In Table 1, we summarize studies related
to damages and abatement costs associated with nitrogen pollution noting that the estimation of the
economic value of the damages associated with nutrient pollution can be particularly challenging.3

The social cost of pollution in the context of water quality has received less attention than the
social cost of carbon in the context of climate change. Quantifying the social cost of nitrogen is
challenging due to multiple loss pathways associated with damages to water quality, air quality,
and climate change that occur over heterogeneous spatial and temporal scales (Gourevitch et al.
(2018)). The diversity of nitrogen loss pathways and endpoints at which damages occur makes it
challenging to construct a single cost metric. The impacts are largely driven by the location where
the nitrogen is emitted and applied, the transport and transformation of nitrogen into different
forms, and the expected damages along the flow path (Keeler et al. (2018)).

Nitrogen pollution and agriculture. Using too little nitrogen for a highly responsive crop such
as corn entails lower yields, poorer grain quality, and reduced profits. When too much nitrogen is
applied, crop yields and quality are not affected, but profit can be reduced somewhat and negative
environmental consequences are very likely. Thus, many farmers choose to err on the liberal side
in terms of nitrogen application rates. This extra nitrogen is often called “insurance” nitrogen; see
Mitsch et al. (1999) and CENR (2000), among others. Overall, nitrogen use efficiency (uptake)
and the “4Rs” in nutrient management—right source, rate, time, and place for plant nutrient ap-
plication based on local agronomic recommendations—in order to minimize nitrogen losses to the
environment are of paramount importance for addressing nitrogen pollution.

AMLE estimates using data in this link.
3EPA (2015) provides estimates of external costs associated with nutrient pollution impacts on tourism and recre-

ation, commercial fishing, property values, human health, as well as drinking water treatment costs, mitigation costs,
and restoration costs.
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The prevention of nutrient pollution, particularly in the form of nitrate–nitrogen, is possible through
a number of general approaches and specific techniques, ranging from modification of agricultural
practices to the construction and restoration of riparian zones and wetlands as buffer systems be-
tween agricultural lands and waterways.4 To provide some examples, on-site control of agricul-
tural drainage is possible via adoption of one or a combination of the following: nitrogen fertilizer
application rates, management of manure spreading, timing of nitrogen application, the use of ni-
trification inhibitors, the change of plowing (tillage) methods, and increasing drainage tile spacing.
Wetlands and riparian buffers can be effective means of off-site control.

Policy responses to nutrient pollution. As of this writing, the major federal response to nutrient
pollution from agriculture continues to be through research, education, outreach, and voluntary
technical and financial incentives. A number of USDA agencies provide support through edu-
cation, outreach, and research, while federal funds are provided through conservation programs
to help agricultural producers, who participate voluntarily, to adopt best management practices
in crop production to achieve nutrient pollution reduction. At a very high level, the USDA pro-
grams are distinguished between land-retirement and working-land programs with the spending
on conservation programs having increased substantially since the 2002 Farm Security and Ru-
ral Investment Act.5 In the case of the land-retirement programs, landowners receive payments
in exchange for taking land out of active agricultural production and putting the land into peren-
nial grasses, trees, or wetland restoration. Landowners or producers participating in working-land
programs receive payments to cover part or all of the costs of making changes in conservation
practices and management decisions on their land that remains in agricultural production.

In one of the most comprehensive assessments of conservation practices by U.S. farmers, the
USDA Conservation Effects Assessment Project (CEAP) national nitrogen loss report (NRCS
(2017b)) found that 29% of nitrogen applied as commercial fertilizer or manure was lost from
the fields through various pathways based on survey data for 2003–2006. The mean of the aver-
age annual estimates of total nitrogen loss was 34 lb per cultivated cropland acre per year. The
amount varied considerably, however, among cultivated cropland acres. Total nitrogen losses were
highest for acres receiving manure (56 lb per acre per year). Based on simulations performed us-
ing the APEX model in the report, the use of conservation practices during 2003–2006 reduced
total nitrogen loss (all loss pathways) by 14.9 lb per acre per year, on average, representing a 30%
reduction.

4EPA (2007), Ribaudo et al. (2011), NRCS (2017b), and Capel et al. (2018), among others, offer a very informative
discussion on controlling nitrogen pollution from agricultural sources.

5We refer to this link and Capel et al. (2018) for a succinct and very informative discussion of the various USDA
conservation programs.
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3 A Simple Theoretical Framework

We estimate the reduced-form effect of an increase in corn acreage on nitrogen pollution via OLS
regressions. We focus on this relationship in part because corn acreage is the driving force behind
the amount of nitrogen fertilizer used. In addition, acreage is much better measured than fertilizer
use. We observe nitrogen fertilizer sales by county, but we do not know in which county or year
that fertilizer was applied to a field. In contrast, we observe annual acreage by county.6

Our empirical analysis, which focuses on the relationship between corn acreage and nitrogen pol-
lution and it is motivated by the following. Farmers decide how to allocate acreage to various crops
including corn, which is the most fertilizer intensive and is the crop we focus on. Soybeans, the
other commonly planted crop in the U.S. Corn belt, require little nitrogen fertilizer. Farmers apply
about 150 lb of nitrogen fertilizer per planted acre of corn and 5 lb per planted acre of soybeans.
About 70% of soybean acres receive no nitrogen fertilizer.7 Crop production requires various in-
puts such as labor, capital, fuel, seeds, fertilizers, and chemicals. Farmers’ planting decisions are
based on the expected post-harvest crop price and expected costs. Weather conditions, especially
precipitation and temperature, during the growing season determine plant growth and eventually
yields. Pre-planting weather conditions may also affect planting decisions.

As farmers plant more corn acres, they use more nitrogen fertilizer, generally following agronomic
recommendations. The shape of the crop production function implies that fertilizer application
in excess of agronomic recommendations does not reduce yields, which provides an insurance
motivation to use extra fertilizer, as we discussed earlier. A combination of factors in and out
of the farmers’ control, including weather, determine the crop nitrogen uptake, and, hence, the
amount of surplus (excess) nitrogen that will not be used by the plants and will remain in the
soil. This surplus nitrogen will eventually find its way to lakes, rivers, and streams, contributing
to nutrient pollution. The amount of surplus nitrogen that enters waterways is determined in part
by the weather. Wetter conditions affect acreage, nutrient runoff, and streamflow, all of which
can contribute to nutrient pollution. All else equal, more rainfall means more nutrients carried

6Paudel and Crago (2020) use the nitrogen fertilizer sales data to estimate the effect of fertilizer on nitrogen
pollution. They obtain an elasticity of nitrogen pollution with respect to nitrogen fertilizer of about 0.15 for the
U.S. We find an elasticity of nitrogen pollution with respect to corn acres of a very similar magnitude. Adding the
assumption of no substitution between nitrogen fertilizer and other inputs to the assumption of a fixed amount of
nitrogen fertilizer per corn acre allows us to link the price elasticity of the demand for fertilizer (η f ert ) to the price
elasticity demand for corn (ηcorn) via η f ert = (p f ert/pcorn)×ηcorn. In terms of notation, p f ert and pcorn are the prices
of nitrogen fertilizer and corn, respectively. As we discuss later in the paper, fertilizer costs account for about 20%
of the value of corn production during the period we study, which coupled with a reasonable value of ηcorn of about
−0.3, also supported empirically in subsequent section, imply η f ert = −0.3× 0.2 = −0.06. Hence, the demand for
nitrogen fertilizer is highly inelastic.

7Based on the USDA ERS Fertilizer Use and Price data for 2018 (U.S. average).
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through the soil and along the surface into waterways. Thus, we expect increases in corn acreage
to increase nitrogen concentration, especially in wet years. Similarly, extreme heat, which has a
well-documented negative impact on crop growth (e.g., Jägermeyr et al. (2021), among others)
may limit nutrient uptake and contribute to runoff. On the one hand, it is plausible that farmers
may compensate for the loss in yields by fertilizing more. On the other hand, as discussed in the
chapter by Elbakidze et al. (2022), lower yields may reduce the profitability of crop production
and may result in decreased crop acreage, which could reduce nitrogen runoff.

In general, more rainfall due to a warmer and wetter atmosphere is increasing nitrogen pollution
exacerbating algae growth and expanding dead zones in coastal areas.8 Evidence suggests that
several projected outcomes of global climate change will act to increase the prevalence and neg-
ative impacts of dead zones.9 Warmer waters hold less oxygen than cooler water, thus making
it easier for dead zones to form. Warmer waters also increase metabolism of marine creatures,
thereby increasing their need for oxygen. Additionally, warmer temperatures and increased runoff
of freshwater will increase stratification of the water column, thus further promoting the formation
of dead zones. Increased runoff will also increase nutrient inputs into coastal water bodies. On
the other hand, projections of more intense tropical storms and lower runoff would act to decrease
stratification and thus make dead zones less likely to form or less pronounced if they do form.10

Diaz and Rosenberg (2008) assembled a database of over 400 dead zones worldwide showing that
their number is increasing exponentially over time. To characterize the severity of climate change
that these ecosystems are likely to experience over the coming century, Diaz and Rosenberg also
explored the future annual temperature anomalies predicted to occur for each of these systems.
The majority of dead zones are in regions predicted to experience over 2◦C warming by the end of
this century. Sinha et al. (2017) show that precipitation changes due to climate changes alone will
increase by 19% the riverine total nitrogen loading within the CONUS by the end of the century
for their business-as-usual scenario. The impacts are particularly large in the Northeast (28%),
the upper MRB (24%), and the Great Lakes Basin (21%). According to the authors, precipitation
changes alone will lead to a 18% increase in nitrogen loads in the MRB, which would require a
30% reduction in nitrogen inputs. The target of a 20% load reduction set by the GoM Hypoxia
Task Force in 2015, would require a 62% reduction in nitrogen inputs taking into account the

8In the U.S. Gulf coast, the frequency and severity of hurricanes, which have been linked to climate change, can
also play an important role in the areal extent the hypoxic zone formed every summer.

9Our discussion borrows heavily from the discussion on “Dead Zones and Climate Change” available in the VIMS
website here.

10According to Diaz and Rosenberg (2008), tropical storms and hurricanes influence the duration, distribution,
and size of the GoM dead zone in a complex way. In 2005, four hurricanes (Cindy, Dennis, Katrina, and Rita)
disrupted stratification and aerated bottom waters. After the first two storms, stratification was reestablished and
hypoxia reoccurred, but the total area was a fourth less than predicted from spring nitrogen flux. The other two
hurricanes occurred later in the season and dissipated hypoxia for the year.
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confounding effect of precipitation.11

4 Empirical Approach

We estimate panel fixed-effect (FE) OLS regressions of the form:

yit = δi +β1ait +β2ait pit + z′itγ +gi(t)+ εit , (1)

where i denotes the cross-sectional unit (county) and t denotes the time (year) in what we call the
(c)ounty-centric (henceforth, c-centric) analysis. The dependent variable yit is nitrogen concentra-
tion in milligrams per liter (mg/L), ait denotes corn acres planted, pit denotes precipitation, and
zit is a vector of weather-related control variables. The weather-related controls include precipita-
tion, squared precipitation, moderate-heat, and extreme-heat degree days. We use gi(t) to denote
alternative functions of time (e.g., time trend, year FE, etc.). Finally, εit is the error term.

For our c-centric analysis, yit is the average nitrogen concentration recorded at USGS monitoring
sites within a 50 mile-radius from the county centroids, and ait are corn acres planted in county i at
time t. As part of a series of robustness checks to our results, we estimate (1) using average nitrogen
concentration recorded at sites within larger (100- and 200-mile) radii, as well as accounting for
streamflow using only sites downstream of the county centroids).

Our specifications aim to capture the most salient factors that are both in the control and out of the
control of U.S. farmers and that influence the nitrogen concentration of waters draining cropland
some of which we have already discussed. Aside from weather, factors outside farmers’ control
include hydrologic conditions, terrain properties of the cropland (e.g., slope and elevation), and
soil properties (e.g., depth, texture, mineralogy, capacity to support crop growth, and suscepti-
bility to erosion). Factors in farmers’ control include agricultural management practices used to
boost profits, such as cropping systems, rate of and timing of nitrogen application, use and type
of drainage and tillage systems, deployment of programs aiming to combat nutrient pollution by
the U.S. Environmental Protection Agency (EPA) and conservation programs administered by the
USDA, among others.

Precipitation and temperature generally affect the farmers’ decision making during the spring

11In February 2015, the states and federal agencies that comprise the Mississippi River/GoM Watershed Nutrient
Task Force (Hypoxia Task Force or HTF) announced that the HTF would retain its goal of reducing the areal extent of
the GoM hypoxic zone to less than 5,000 km2, but that it will take until 2035 to do so. The HTF agreed on an interim
target of a 20% nutrient load reduction in the Gulf of Mexico by the year 2025 as a milestone toward achieving the
final goal in 2035.
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planting season (e.g., when and what to plant, and how much to fertilize). Miao et al. (2015)
include monthly precipitation in March to May to control for the effect of pre-planting weather
conditions on corn acreage in the U.S. They argue that a wet spring can make it difficult for corn
to be planted on time, and, hence, corn acreage may be switched to soybean acreage. During the
growing season, which is somewhere between March and September for most of the U.S., both
temperature and precipitation have an effect on crop growth and, hence, on the plants’ nutrient
uptake. In the absence of robust crop growth rates, nutrients that are not absorbed by the plants can
be carried over to streams, rivers, and lakes, depending on soil characteristics and precipitation.

Nitrogen concentrations in a basin like the MRB, which drains most of the cropland where corn
is grown and is characterized by an abundant supply of nitrogen in the soil, tend to peak in the
late winter and spring when streamflow is highest, and lowest in the late summer and fall when
streamflow is low. This strong positive relationship between concentration and streamflow has
been well documented in the Midwest; see Goolsby et al. (1999) and the references cited. Im-
portantly, the same strong positive relationship implies that nitrogen pollution is predominantly
due to non-point sources. Nitrogen concentrations generally decrease in the summer and fall as
streamflow and agricultural drainage decrease. Assimilation of nitrate by agricultural crops on the
land and aquatic plants in streams also helps decrease nitrogen concentrations in streams during
the summer. Moreover, in-stream denitrification rates also increase during the summer due to in-
creased temperatures and longer residence times of water in the streams. Hence, temperature and
precipitation are correlated with both acres planted and nitrogen concentration.

The fixed effects δi aim to capture time invariant spatial attributes such as soil properties and
texture, and water infiltration rates that affect both the farmers’ planting decisions and levels of
nitrogen in the water due to, say, transport and attenuation. For example, soil texture—the propor-
tions of sand, clay, and silt— influences the ease with which the soil can be worked, the amount of
water and air the soil holds, and the rate at which the water can enter and move through the soil.
Fine-grained (clayey) solid can hold more water than coarse-grained (sandy) soils.

Finally, gi(t) allows us to model in a flexible way trends in fertilization rates, and land manage-
ment practices, such as tillage, and subsurface tile drainage, for which data with good spatial and
time coverage are not available. They also allow us to account for farmers’ participation in con-
servation programs administered by the USDA and other unobservables that may exhibit spatially
differentiated trends and affect both the corn acreage and nitrogen concentration.

In the robustness checks discussed later in the chapter, we consider a long list of additional controls
to capture factors that may be correlated with both corn acres planted and nitrogen concentration as
discussed above to alleviate concerns for potentially biased estimates. We also explore alternative
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ways to measure nitrogen concentration including distance, streamflow, and time of the year, as
well as spatial and temporal variation in the effects of corn acreage on nitrogen concentration.

5 Data

5.1 Data Sources

Water quality. The data on nitrogen concentration are from the Water Quality Portal (WQP). The
WQP is a cooperative service sponsored by the USGS, the EPA, and the National Water Quality
Monitoring Council. It serves data collected by over 400 state, federal, tribal, and local agencies
with more than more than 297 million water quality records.

We accessed WQP data on sites and sample results (physical/chemical metadata) associated with
the parameter code 00600, which is described as “total nitrogen [nitrate + nitrite + ammonia +
organic-N], water, unfiltered, milligrams per liter” without imposing any other of the additional
filters available in the portal in December 2019. At the time we accessed the WQP data, there were
close to 754,000 observations in the sample results data and 41,800 observations in the site data.12

The site data contain information regarding the site’s location such as longitude and latitude,
county, and the 8-digit hydrologic unit (HUC8). The site data also contain information on the
agency operating the site (e.g., “USGS-IL”) and the site type (e.g., “stream,” “facility,” “lake,”
“well,” etc.) The sample results data contain a long list of variables related to water quality mea-
sures, such as the date, time, and method, of the water sample collection. Linking the site to the
sample results data is straightforward using the site location identifier field, which is present in
both datasets.

We measure nitrogen pollution using concentration in milligrams per liter (mg/L). We limit the
data to those for sites in the CONUS and for which we track “surface water” and “ground water”
concentration in the sample results data. For the interested reader, some additional information
regarding the WQP data used in the paper is available in Sections A.2–A.4.

Crops. Annual county-level data on corn acres planted are available from the National Agricultural
Statistics Service (NASS) of the USDA.13 Following Schlenker and Roberts (2009) and Annan
and Schlenker (2015), among others, in a long stream of literature in agricultural economics, and
to focus on rain-fed agriculture, we limit our sample to counties east of the 100th meridian and

12The WQP data can be accessed in this link using web service calls. A parameter code is a 5-digit number used in
the National Water Information System (NWIS) to uniquely identify a water quality characteristic.

13Table A1 shows corn production by state for 1970–2017.
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exclude Florida. This is the part of the country that accounts for more than 95% of the corn
produced during the time relevant for our analysis; as part of our robustness checks, we expand the
geographic scope of our analysis to the CONUS.

Weather. We use updated temperature and precipitation data from Schlenker and Roberts (2009),
which are available for each county during the growing season for 1970–2017 and are based on
PRISM gridded weather data. The data from Schlenker and Roberts have been used extensively
in the literature on the effects of climate change on U.S. agriculture and are discussed in great
detail elsewhere (Roberts et al. 2012). Following this stream of the literature, we use precipitation,
the square of precipitation, cumulative degree days (DDs) between 10◦C and 29◦C (moderate
heat), and cumulative degree days above 29◦C (extreme heat). In what follows, the precipitation is
measured in meters, the moderate heat is measured in 1,000 DDs, and the extreme heat is measured
in 100 DDs.

Hydrologic Units. We use the USDA Natural Resources Conservation Service (NRCS) watershed
boundary dataset (WBD) to identify hydrologic units of different size.14 We use 2-digit hydro-
logic unit codes (HUC2s) to explore spatial variation in our estimated acreage effects in the panel
FE regressions and to construct spatial FEs in robustness checks that pertain to cross-section re-
gressions. We use 4-digit hydrologic unit codes (HUC4s) to cluster the standard errors in our
regressions. We use HUC8s in an analysis based on an alternative data aggregation scheme, as part
of our robustness checks.

National hydrography dataset plus V21. As in Keiser and Shapiro (2018), we use the NHD
Plus flowline network to follow water pollution upstream and downstream. In particular, we use
the National Seamless Geodatabase built on NHD Plus to identify monitoring sites downstream of
counties of interest.

5.2 Data Overview and Descriptive Statistics

For our baseline estimates, we use data for counties east of the 100th meridian (EAST-100) exclud-
ing Florida for 1970–2017. We use the latitude and longitude of the county centroids to identify the

14The GBD files for hydrologic units of different size are available in the following link. The U.S. is divided into
successively smaller hydrologic units which are classified into four levels: regions, subregions, accounting units, and
cataloging units. The hydrologic units are arranged or nested within each other from the largest geographic areas
(regions) to the smallest geographic areas (cataloging units). Each hydrologic unit is identified by a unique hydrologic
unit code (HUC) consisting of 2–8 digits based on the four levels of classification in the hydrologic unit system. It
is common to refer to hydrologic units as watersheds and what we describe here as hydrologic accounting is also
described as watershed delineation. The word watershed is sometimes used interchangeably with drainage basin or
catchment.
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relevant EAST-100 counties which we obtain from the CENSUS TIGER shape files. As we dis-
cussed earlier, we calculate nitrogen concentration using USGS monitoring sites within a 50-mile
radius from the county centroids.

Table 2 shows basic summary statistics for nitrogen concentration, our measure of pollution, and
corn acres planted. These are the dependent and main explanatory variable of interest in our regres-
sion models. The table also shows summary statistics for precipitation (total annual and total by
month), as well as for moderate and extreme heat by month. Precipitation plays an important role
in our assessment of the effects of agriculture on nutrient pollution based on our earlier discussion
regarding the tight connection between nitrogen pollution and rainfall.

We have about 64,000 observations and 2,200 counties. On average, we track a county for 29 years
during the 48-year period 1970–2017. The mean nitrogen concentration is about 2.5 mg/L and both
the between-counties and within-county standard deviation are around 1.65 mg/L. Hence, pollution
exhibits similar variation across counties and within a county over time. On average, 38,000 acres
of corn are planted per year in a county. Contrary to nitrogen pollution, the variation in acres is
much larger across counties (48,000 acres) than within a county over time (11,000 acres). As a
benchmark for the acres planted, the mean (median) county land area is 603 (556) square miles
or 386,187 (355,969) acres. The total annual precipitation is, on average, close to 1.1 meters and
varies more across counties than within a county over time. On average, February and May are the
months with the smallest (0.067 meters) and largest (0.111 meters) total precipitation, respectively.
July is the month with the largest number of moderate-heat (430) and extreme-heat (21.6) DDs.
While monthly precipitation varies more within a county over time than across counties with the
exception of January, extreme and moderate heat DDs vary more across counties than within a
county over time for most months.

5.3 Nitrogen Concentration Across Space and Over Time

The choropleth maps in Figure 1 offer visualizations of the spatial variation for the variables used
in our analyses and provide some descriptive evidence on the spatial correlation between nitrogen
concentration and corn acreage. In general, we see higher concentration in watersheds in southern
Minnesota, Iowa, Illinois, Indiana, and Ohio that drain large areas of agricultural land. We explore
this spatial correlation in more depth using cross-section regressions.

In panel A of Figure 2, based on monitoring-site level data on average daily nitrogen concentrations
(mg/L), we show trends in nitrogen concentration. We also show flow-normalized annual nitrogen
concentration in the GoM using data from the USGS National Water Quality Network in panel B.
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Panels C and D provide information related to fertilizer use and acreage, which are important in
understanding the relationship between agriculture and nitrogen concentration.

The use of nitrogen fertilizer increased from about 2.5 million metric tons (mmts) in 1964 to 11.8
mmts in 2015; it reached its peak of about 12 mmts in 2013. Most of the almost 5-fold increase
took place before the early 1980s (panel C). By 1981, nitrogen use had steadily increased to 10.8
mmts.15 The expansion of nitrogen use during this time was due to expanded acreage (panel D),
increase in application rates, and a higher share of acres receiving fertilizer (from 85% to 97%);
the percent of U.S. corn acreage receiving nitrogen fertilizer has been 95%, on average, in the last
50 years or so. Since then fertilizer use has fluctuated over time following changes in cropping
system implementation and fertilizer crop prices, but has shown no persistent trend (Hellerstein
et al. (2019)). The application rates in the major corn producing states follow similar trends with
a notable increase between the mid-1960s and early 1980s. The fertilizer costs have oscillated
between 14% and 27% of the corn gross value of production averaging close to 20%.

Overall, there is an increase in nitrogen concentration between the early 1970s and early 1980s
from about 2 mg/L to a peak of about 3 mg/L. This pattern is consistent with the increase in
corn acreage and nitrogen fertilizer use. Following a downward trend between the mid 1980s and
the mid 1990s, nitrogen concentration has plateaued at about 2.3 mg/L in the last 20 years or so.
These are roughly the concentration levels in the early 1970s. The flow-normalized annual nitrogen
concentration in the GoM exhibits a very similar behavior over time.16

6 Econometric Estimates

Preamble. Table 3 shows detailed results of the panel FE regressions for our (c)ounty-centric
analysis. In panel A, we report results from regressing nitrogen pollution on corn acres planted
without controlling for weather. In panel B, we control for weather. In particular, we use 12 con-
trol variables (one for each month) for precipitation, squared precipitation, moderate-heat DDs,
and extreme-heat DDs, for a total of 48 variables. In panel C, we add the interaction of acres with
total annual (January–December) precipitation to the set of explanatory variables. The standard
errors are clustered at the HUC4 level (124 clusters) accommodating arbitrary correlation of the

15See Table 9 (percent of corn acreage receiving nitrogen fertilizer) in this link.
16Sprague et al. (2011) estimate changes in nitrate concentration and flux during 1980–2008 at 8 sites in the MRB

using the WRTDS model, which produces flow-normalized (FN) estimates of nitrate concentration and flux. Their
results show that little consistent progress had been made in reducing riverine nitrate since 1980, and that FN concen-
tration and flux had increased in some areas. Murphy et al. (2013), who extended the analysis in Sprague et al., show
that trends in FN nitrate concentration and flux were increasing or near-level at all sites for 1980–2018. They note,
however, that trends at some sites began to exhibit decreases or greater increases during 2000–2008.
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unobservables across time and space.17 To explore the implications of climate change for our esti-
mated effects, we also interact corn acreage with moderate- and extreme-heat DDs in a subsequent
section.

Baseline estimates. For the models without weather-related controls, the adjusted R-squared (R2)
is 0.26–0.53 depending on the specification with most of the fit improvement attributed to the
county FEs. Apart from the specifications with county-specific linear trends in columns A7 and
A8, the acres coefficient is statistically significant at 5% level with values between 3.862 (column
A5) and 23.581 (column A1). According to these estimates, the implied elasticities are 0.060–
0.364 and they are significant at 5% level. For the specifications with county-specific linear trends,
the elasticities are not significant at conventional levels.18

In the presence of weather-related controls, there is a notable change in the acres coefficient from
23.581 (column A1) to 18.458 (column B1) for the specification without county FEs. The model
fit improvements, however, are relatively minor. As it was the case for the models without weather-
related controls, the acres coefficients fail to be statistically significant at conventional levels for
the specifications with county-specific trends (columns B7 and B8). Apart from the specification
without county FEs (column B1), the elasticity of nitrogen concentration with respect to corn
acreage is between 0.061 (column B5) and 0.093 (column B6).

The interaction of acres with precipitation implies effects that are significant at 5% level even in
the presence of county-specific trends. Indeed, all but two of the 24 elasticities are significant at
5% level. Once again, apart from the specification without county FEs that implies elasticities of
0.278 (first precipitation quartile) to 0.395 (third quartile), we see elasticities of up to 0.086, 0.130,
and 0.178, depending on the precipitation quartile, all of which are significant at 1% level. For
the richest specification (column C8) that includes county FEs, county-specific trends, and year
FEs, the elasticities are significant at 1% level and equal to 0.076 and 0.118 for the second and
third precipitation quartiles, respectively; their counterpart for the first quartile is not significant at
conventional levels.

Figure 3 shows point estimates along with 95% CIs for the 48 weather-related controls. Among the
48 coefficients, only the ones associated with January precipitation and its square are statistically

17In Section A.5, we discuss results from cross-section regressions. In Section A.6, we discuss results from
(h)ydrologic unit-centric and (m)onitoring site-centric analyses. For the h-centric analysis, i denotes an 8-digit hydro-
logic unit (HUC8), yit is the average nitrogen concentration using sites located in the same HUC8, and ait are acres
planted planted in counties that lie in the same HUC8 weighted by their area. For the m-centric analysis, yit is the
concentration for monitor i and ait are the acres planted in counties within a 50-mile radius from the site. Regarding
the weather-related variables, in the case of the m-centric analysis, pit and zit are averages across counties within the
assumed radius of site i. For the h-centric analysis, we use averages of the same variables weighted by the area of the
counties that lie within the HUC8 polygons.

18Throughout the paper, we we refer to statistical significance at ≤ 10% as significance at conventional levels.
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significant. Based on multiple-hypotheses testing performed separately for each of the three sets of
weather-related controls, the 24 precipitation controls, as well as the 12 extreme-heat controls, are
jointly significant at 5%. The 12 moderate-heat controls are not jointly significant at conventional
levels.19

Statistical significance. In all, we see positive and statistically significant effects of corn acreage
on nitrogen pollution. The specifications that control for weather and contain an interaction of
corn acreage with precipitation generally imply larger effects than their counterparts that do not
contain such interactions. Spatial FEs matter more than time-related controls for the magnitude of
the effects. According to our preferred specification (column C8), the elasticity of nitrogen con-
centration with respect to corn acreage is 0.076 for the second precipitation quartile and increases
to 0.118 for the third quartile. In both instances, the elasticity is significant at 1% level.

Economic significance. The statistically significant effects reported above are also economically
meaningful according to a back-of-the-envelope calculation that utilizes the (median) potential
damage costs of nitrogen due to declines in fisheries and estuarine/marine life of $15.84 per kg
($2008) from Table 1 in Sobota et al. (2015). At the third precipitation quartile, a 1 within-county
standard deviation increase in corn acres planted implies a 3.3% increase in the level of nitrogen
concentration. At the average nitrogen concentration of about 2.5 mg/L and the average streamflow
of the Mississippi River in the GoM in our sample (≈ 21,500 cubic meters per second), this effect
entails close to 50,800 additional metric tons of nitrogen in the GoM. Hence, our estimated increase
in nitrogen concentration of 3% implies an external cost of $805.5 million per year in $2008,
or approximately $805.5× 1.14 = $918.3 in $2017 (the last year in our sample) using the GDP
deflator (FRED GDPDEF series).20

Reconciling our baseline estimates. Table 4 in Hendricks et al. (2014) gives the average nitrogen
loss from the edge-of-field (EoF) as predicted by the SWAT model—coupled with an econometric
model—for different land uses in Iowa, Illinois, and Indiana for 2000–2010. Nitrogen losses are
the sum of nitrate and organic nitrogen loss. Corn after corn generates the largest nitrogen losses
(34.7 lb per acre per year (lb/a/y), on average) because more fertilizer is applied to corn after corn
since there is no nitrogen carry-over from a previous soybean crop. The mean loss of 34.7 lb/a/y
reported by the authors is similar to the average estimate of total nitrogen loss of 34 lb/a/y in the
USDA CEAP national nitrogen loss report (NRCS (2017b)) we discussed earlier.

19We discuss additional estimates for the panel FE regressions summarized in Table 4–Table 6 and Figure 4 in
Section A.6. A detailed discussion of the motivation behind our additional estimates and any related data sources for
the panel FE regressions is available in Section A.6.1 and Section A.6.2. A similar discussion for the cross-section
regressions is available in Section A.6.3.

20We use the average flow for years 1970–2016 from column F (Total Mississippi-Atchafalaya River) available in
the following link.
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Assuming the mean annual EoF loss of about 35 lb/a/y from Hendricks et al. and 79,384,857
corn acres per year (average of national corn acres planted during the same period according to
USDA data), we have 1,260,294 metric tons of total nitrogen per year. This calculation assumes
that the EoF losses translate to an equivalent nitrogen loading in the GoM— admittedly a strong
assumption, because some nitrogen that leaves the field does not reach the GoM. Note that the
average annual total nitrogen flux of the Mississippi and the Atchafalaya rivers to the GoM between
is 1,460,419 metric tons for 1968–2016.21

In our case, the average nitrogen concentration is 2.5 mg/L. According to the USGS, the mean an-
nual flow of the Mississippi plus Atchafalaya to the GoM (Ibid) is about 21,376 cubic meters per
second for 1968–2016. This mean annual flow implies 1,685,245 metric tons of total nitrogen per
year, which translates to 46.8 lb/a/y using the average annual corn acreage for 1968–2016. How-
ever, a comparison of 46.8 lb/a/y with 35 lb/a/y from Hendricks et al. hinges on the assumption
that all nitrogen pollution recorded at the USGS monitoring sites is due to fertilizer loss from corn
fields but it is not. A better, albeit imperfect comparison, is to assume that 70% of the 1,685,245
metric tons are attributed to agriculture (David et al. (2010)) in which case we have 32.8 lb/a/y
(see Wu and Tanaka (2005) for a similar approach). This loss of 32.8 lb/a/y calculated using our
estimates is similar to the average loss of 34.7 lb/a/y in Hendricks et al.

According to our baseline panel FE estimates in column C8 of Table 3, a 28% increase in corn
acres planted—assuming an increase equal 1 within-county standard deviation (11,000 acres) and
using the mean acreage (38,000 acres) from Table 2 to calculate the percent increase—implies a
a 3.3% increase in nitrogen concentration when evaluated at the mean concentration of 2.5 mg/L.
A 3.3% increase in mean concentration of 2.5 mg/L implies an increase in flux equal to 55,613
metric tons. Assuming that this 3.3% increase in concentration is associated with a 28% increase
in 79,384,857 corn acres, the implied increase is 5.52 lb/a/y.

The effect of additional corn acres on measured nitrogen in waterways is an order of magnitude
smaller than agronomic estimates of excess nitrogen applied to those acres assuming EoF losses
translate to an equivalent nitrogen loading to streams and rivers. However, we do not interpret
our results as evidence that the amount of surplus nitrogen used on crops is much smaller than
previously believed. Instead, our findings are consistent with a new research in environmental
science arguing that there is a large amount of nitrogen stored in subsurface soil and groundwater
(e.g., Van Meter et al. (2017), Van Meter et al. (2018), Ilampooranan et al. (2019)) and contributes
to the so-called legacy nitrogen, which may increase loadings in rivers and streams with a long
delay.22 The presence of large quantities of legacy nitrogen has substantive policy implications

21See the USGS link here.
22Van Meter et al. (2016) study soil data from cropland in the Mississippi River Basin and find nitrogen accumula-
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because it increases the relative efficacy of downstream policies such as fluvial wetlands (i.e.,
those connected to waterways) and it is a topic we explore in more detail in Metaxoglou and Smith
(2022).

Using the elasticity estimate of 0.076 from column C8 of Table 3, an additional corn acre generates
an average of 3.5 lb/a/y of nitrogen in small (level 4) streams within a 50-mile radius from the
country centroids for median precipitation and average streamflow of 362 cubic feet per second
(cfs).23 This estimate is close to 10% of the USDA CEAP estimate of 34 lb/a/y of EoF losses. If
we instead use 5.52 lb/a/y, per our discussion in the previous paragraph, and a streamflow of 1,997
cfs, which is the average across all streams, an additional corn acre generates an average of 30
lb/a/y in streams and rivers, which is almost 80% of the NRCS estimate of surplus nitrogen.

Additional estimates. Panel A of Figure 4 shows that a more flexible specification for the interac-
tion of corn acreage with precipitation does not have a material effect on our estimated corn acreage
elasticities. Similar flexible specifications based on total precipitation for different time windows
during the year (March–August and April-September) produced very similar elasticities to the ones
shown here. In panels B and C of Figure 4, we explore the role of crop nutrient uptake. Holding
extreme-heat DDs and precipitation constant, additional moderate-heat DDs imply lower elastic-
ities. Holding moderate-heat DDs and precipitation constant, an increase in extreme-heat DDs
has no material impact on the magnitude of the acreage elasticities despite the well-documented
negative effect of extreme heat on yields. Holding moderate- and extreme-heat DDs constant, an
increase in precipitation implies larger elasticities. In all, the elasticity estimates when we interact
corn acreage with moderate- and extreme-heat DDs in addition to precipitation, are very similar
to their baseline counterparts obtained by interacting the corn acreage with precipitation alone.
The pattern in the magnitude of the elasticities just described also holds for panel FE regressions
estimated using counties in the MRB, and counties in the most northern (coldest) states east of the
100th meridian from Schlenker and Roberts (2009). The elasticity estimates for the most southern
(warmest) states from Schlenker and Roberts are generally noisy and indistinguishable from zero
at conventional levels. Their counterparts for the middle states exhibit very little variation across
the quartiles of precipitation and heat we considered. Yield shocks, calculated as deviations from
county-specific yield trends, do not matter for the magnitude of the acreage elasticities either.

The implied corn acreage elasticities for a number of models we estimated performing a series of
robustness checks discussed in detail in Section A.6 are summarized by precipitation quartile using
the kernel density plots in panel D of Figure 4. Similar to the baseline results, the coefficient of the

tion of 25–70 kg per hectare per year (22–62 lb per acre per year).
23This is the average streamflow based on the Enhanced Unit Runoff Method (EROM) Flow Estimation in the USGS

NHD Plus data for years 1971–2000 and is readily available by river segment (COMID).
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interaction of corn acreage and precipitation (coefficient β2 in equation (1)) is positive and highly
significant in the vast majority of the models we explored. Hence, the amount of precipitation
matters for the magnitude of the estimated acreage elasticities. With very few exceptions, the corn
acreage elasticities based on the second and third precipitation quartiles are highly significant.
Their counterparts based on the first precipitation quartile are not. For the second precipitation
quartile, the elasticities that are significant at conventional levels are 0.043–0.331. Their counter-
parts for the third precipitation quartile are 0.059–0.438. As a reminder, for our preferred baseline
specification in column C8 of Table 3, the acreage elasticities are 0.076 and 0.118 for the second
and third precipitation quartiles.

7 Climate Change and Nitrogen Pollution

According to our econometric analysis, corn acreage drives nitrogen concentration and the magni-
tude of the acreage effect depends on precipitation with more precipitation implying larger effects
for our baseline estimates that pertain to the part of the country east of the 100th meridian. An
additional specification in which we also interact corn acreage with moderate and extreme-heat
DDs, shows that, all else equal, an increase in moderate-heat DDs implies smaller effects, while
an increase in extreme-heat DDs has no material impact on the magnitude of the effects.

We now explore the implications of climate change for our findings regarding the relationship
between corn acreage and nitrogen concentration. In particular, we use the NASA Earth Ex-
change Global Daily Downscaled Projections (NEX-GDDP-CMIP6) dataset to obtain projections
for precipitation, moderate-, and extreme-heat DDs, and, in turn, projections of the marginal effects
(MEs) of corn acreage on nitrogen concentration. The NEX-GDDP-CMIP6 dataset is comprised of
global downscaled climate scenarios derived from the General Circulation Model runs conducted
under the Coupled Model Intercomparison Project Phase 6 (Eyring et al. (2016)) and across two
of the four “Tier 1” greenhouse gas emissions scenarios known as shared socioeconomic pathways
(SSPs), namely, SSP2-4.5 and SSP5-8.5.24

We use out-of-sample projections from 3 climate models (CanESM5, UKESM1-0-LL, and GFDL-
ESM4) and SSP2-4.5 and SSP5-8.5 for 3 weather-related variables available at a latitude/longitude
resolution of 0.25◦, namely, the mean of the daily precipitation rate (pr), the daily minimum near
surface air temperature (tasmin), and the daily maximum near surface air temperature (tasmax).
Projections of these variables from the climate models based on alternative SSPs allow us to obtain
projections of total annual precipitation, moderate-heat, and extreme-heat DDs, which in their turn

24The data are available here. Additional information including variable descriptions is available here.
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translate to projections of corn acreage ME on nitrogen concentration. These MEs do not take into
account the impacts of climate change on other factors affecting nitrogen concentration and loads
(e.g., streamflow, change in farmers’ behavior as in Elbakidze et al. (2022), etc.).

Although projections for the three weather-related variables are available until 2100, we obtain ME
projections for 2018–2050, as we are skeptical about the use of a model that has been estimated
using data for 1970–2017 to project MEs more than 20–30 years out of sample. We opt for pro-
jections of MEs as opposed to elasticities because the former do not require an assumption about
future values of nitrogen concentration and corn acreage while the later do. To the best of our
knowledge, projections of both acreage and nitrogen concentration with the spatial and temporal
coverage required to obtain projections of elasticities are not available. The MEs discussed are
estimated assuming an increase in corn acreage equal to the historical (in-sample) within-county
standard deviation and estimating different regressions for five sets of counties. The specification
of these regression equations is identical to specification C8 of Table 3. The sets of counties for
which we obtained projections of MEs are as follows: counties east of the 100th meridian ex-
cluding Florida (baseline), counties in the MRB, as well all counties in the northern, middle, and
southern states east of the 100th meridian as in Schlenker and Roberts (2009).

The precipitation projections are generally smaller than their historical counterparts across all cli-
mate models, SSPs, and quartiles of the precipitation distribution. A notable exception is the
median precipitation for the middle counties for which the projections exceed their historical coun-
terpart for all climate models and SSPs. The projected quartiles for moderate-heat DDs are larger
than their historical counterparts for all climate models and SSPs for all sets of counties and all
three quartiles of precipitation considered. The projected quartiles for extreme-heat DDs, on the
other hand, are generally smaller than their historical counterparts, especially for the lower quar-
tiles of the extreme-heat distribution. It is also the case that the differences between projected and
historical quartiles are generally larger for the moderate- and extreme-heat DDs than for precipita-
tion.

For the discussion that follows, it important to keep in mind that for the panel FE regressions in
which we interact acreage only with precipitation, the coefficient on the interaction is significant
at conventional levels for the MRB and northern counties, in addition to the baseline counties. For
the regressions in which we interact corn acreage with precipitation and DDs, in addition to the
baseline counties, the coefficient on the interaction of corn acreage with precipitation is significant
at conventional levels in the MRB and northern counties. The coefficients on the interaction of the
corn acreage with moderate-heat DDs, as well those on the interaction of the corn acreage with
extreme-heat DDs are indistinguishable from zero at conventional levels.
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For the baseline counties—depending on the climate model and SSP—the projected median pre-
cipitation is 1.047–1.078 meters (panel A, Table 7). Its third-quartile counterpart is 1.242–1.289
meters. The implied MEs based on the projected median precipitation are 0.048–0.053 mg/L,
which are similar in magnitude to the ME of 0.051 mg/L based on the historical median precipita-
tion. For the MRB counties, an area of particular interest for policies aiming to address the GoM
HZ areal extent, the median precipitation projections are 0.945–0.980 meters implying MEs of
0.045–0.051 mg/L, the lower end of which is slightly smaller than their historical counterpart of
0.056 mg/L but similar to their baseline counterparts. For the northern counties, the median precip-
itation projections are 0.875–0.937 meters implying MEs of 0.017–0.031 mg/L, respectively. Their
historical ME counterpart is 0.032 mg/L. For the middle counties, the median precipitation projec-
tions are 1.057–1.079 meters implying MEs of 0.133–0.134 mg/L, which are essentially identical
to their historical counterpart, noting that the coefficient of the interaction of corn acreage with
precipitation is statistically indistinguishable from zero. Finally, for the southern counties, the me-
dian precipitation projections are 1.233–1.298 meters implying MEs of −0.025 to −0.023 mg/L,
which are also essentially identical to their historical counterpart. Similar to the middle counties,
the coefficient of the interaction of corn acreage with precipitation is statistically indistinguishable
from zero for the southern counties.

Figure 5 shows the spatial variation of the MEs when we interact corn acres with precipitation pro-
jections for the two SSPs of the GFDL-ESM4 climate model. For comparison, we also show MEs
based on historical precipitation. For each county, we calculate MEs using the average precipita-
tion for either 1970–2017 (historical) or 2018–2050 (projected) and the appropriate coefficients of
the estimated panel FE regression. For the baseline counties, we see some of the largest MEs in
counties in the South (e.g., Louisiana, Mississippi, Alabama, Arkansas) and some of the smallest
effects in the Plains (e.g., northern Texas, Oklahoma) and in the upper Midwest (e.g., Michigan,
Wisconsin). We see a very similar spatial pattern in the MEs for the MRB counties. The lack of
variation across the middle and southern counties is because of the coefficients on the interaction
of corn acreage with precipitation being indistinguishable from zero. For the northern counties, we
see negative MEs in North and South Dakota, and some of the larger positive MEs in Pennsylvania
and New Jersey. The negative MEs are due to a combination of a large negative coefficient on corn
acreage and very low precipitation.

Figure 6 shows the spatial variation of MEs when we interact corn acres with precipitation, moderate-
heat DDs, and extreme-heat DDs for the two SSPs of the GFDL-ESM4 climate model. For each
county, we calculate MEs using the average precipitation, extreme-heat, and moderate heat DDs
for either 1970–2017 (historical) or 2018–2050 (projected) and different panel FE regressions for
each of the 5 sets of counties. Across the baseline set of counties, the median ME based on the
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historical data is 0.049. Its projections-based counterparts are 0.030 for SSP 245 and 0.027 SSP
585. All three median MEs are smaller than their counterparts based on the panel FE regression
in which we interact corn acreage with precipitation only. This is especially true for the projected
MEs. In terms of the spatial pattern of the MEs, we see some of the largest effects in Tennessee,
and in the northern parts of Alabama and Mississippi. Some of the smallest MEs are those for
counties along the 100th meridian, as well as in Georgia and South Carolina. Across the MRB
counties, we also see smaller median MEs when we interact corn acres with precipitation and the
DDs and more so when we use the 2018–2050 projections. The same is true for the middle and
northern counties. For the southern counties, the median historical and projected MEs are nega-
tive and larger in magnitude than their counterparts based on the interaction of corn acreage with
precipitation alone.

8 Conclusion and Policy Implications in an Era of Climate Change

We study the relationship between water nutrient pollution and U.S. agriculture using data from
1970–2017 documenting a causal positive effect of corn acreage on nitrogen concentration in the
country’s water bodies east of the 100th meridian using alternative empirical approaches. Accord-
ing to our baseline estimates, a 10% increase in corn acreage increases nitrogen concentration in
water by up to 1%. Annual precipitation plays an important role in the magnitude of the estimated
effects with higher precipitation exacerbating the acreage effect on nitrogen concentration. Tem-
perature also matters for the magnitude of the acreage effect. An increase in moderate-heat degree
leads to smaller effects due to its beneficial effect on the crop nutrient uptake. Extreme-heat degree
days do not seem to matter for the magnitude of the effect. The 1% increase in the average level
of nitrogen concentration in the Midwest coupled with the average streamflow of the Mississippi
River at the Gulf of Mexico during this period and damages of about $16 per ton of nitrogen,
implies an annual external cost of $800 million.

Our estimated effect of additional corn acres on measured nitrogen in waterways is an order of
magnitude smaller than agronomic estimates of excess nitrogen applied to those acres assuming
edge-of-field losses translate to an equivalent nitrogen loading to streams and rivers. Our findings
regarding the magnitude of the effect are consistent with a new line of research showing that large
amounts of nitrogen stored in subsurface soil and groundwater give rise to the so-called legacy
nitrogen, which may contribute to loadings in rivers and streams with a long delay, a topic we
explore in more detail in Metaxoglou and Smith (2022).

Given the role of precipitation and temperature on the magnitude of the estimated effect of corn
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acreage on nitrogen concentration, we explore the implications of climate change for our findings.
We use the NASA Earth Exchange Global Daily Downscaled Projections dataset to obtain precip-
itation and temperature projections for 2018–2050, which we translate to projections of marginal
effects of corn acreage on nitrogen concentration. The marginal effects based on precipitation
projections from the NASA GFDL-ESM4 climate model and two shared socioeconomic pathways
are very similar in magnitude to their counterparts calculated using historical data. The marginal
effects based on temperature projections are slightly smaller than those using historical data. These
estimated effects do not account for the impacts of climate change on acreage, nitrogen fertilizer
use, legacy nitrogen, runoff, and streamflow, all of which contribute to nutrient pollution.

Based on recent work identifying wetlands as a powerful weapon in the war against nutrient pollu-
tion, especially due to their efficacy in also removing legacy nitrogen, we ought to emphasize their
vulnerability to changes in landscapes and weather patterns impacted by climate change. Increased
flooding, drought spells, extreme heat, and frequency of severe storms due to climate change all
can negatively affect wetlands (Salimi et al. (2021)). Taking into consideration other ecosystem
services that wetlands also provide, such as absorbing floodwaters, providing habitat for wildlife,
and acting as net carbon sinks, increased attention by policymakers seems to be warranted, es-
pecially in the light of recent developments in redefining the Waters of the United States that are
protected by the Clean Water Act.
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9 Figures

Figure 1. Nitrogen concentration, corn acreage, and weather-related variables

A. nitrogen concentration B. corn acres planted

C. total annual precipitation D. May precipitation

E. July moderate-heat degree days F. July extreme-heat degree days

Note: In all panels, we show averages for 1970–2017. The shading of the choropleth maps is based on the deciles of the
empirical distribution. In panels D, E, and F, we show the months with the highest average values. The acres are in millions
and the nitrogen concentration is in mg/L. The precipitation is in meters. The moderate heat is in 1,000 degree days between
10◦C and 29◦C. The extreme heat is in 100 degree days above 29◦C. For additional details, see Section 5.2.
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Figure 2. Nitrogen pollution and related factors
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Note: In panel A, we regress the average daily nitrogen concentration at the USGS monitoring-site level for the CONUS on
site fixed effects (FEs), year FEs, day, day squared, day cubed, month, month squared, month cubed, and report the estimated
year FEs. The 95% confidence intervals shown are constructed using standard errors clustered by HUC8. Additional details
regarding the flow-normalized total nitrogen concentration in the Gulf in panel B are available in the following USGS link. In
panel C, we show U.S. consumption of nitrogen fertilizer from Table 1 in the USDA ERS report on fertilizer use and price. In
panel D, we show corn acres planted from the USDA Historical Track Records. For additional details, see Section 5.3.
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Figure 3. Panel FE regressions, weather related controls
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Note: The figure shows point estimates and 95% confidence intervals (CIs) for the 48 weather related controls in specification
C8 of the panel FE regressions in Table 3. The CIs are constructed using standard errors clustered by HUC4. The F statistics and
the p-values in squared brackets for the joint significance of the coefficients shown in the 4 panels are as follows: 2.06 [0.024]
for panel A, 2.94 [0.001] for panel B, 1.39 [0.178] for panel C, and 2.02 [0.027] for panel D. For additional details, see Section 6.
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Figure 4. Additional elasticity estimates based on panel fixed-effect regressions
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B. Interaction with heat and precipitation
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C. Interaction with yield residuals
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Note: In panels A–C, we report elasticity estimates along with 95% confidence intervals using standard errors clustered by
HUC4. In panels B and C, the legend pertains to the quartiles of total annual precipitation. We use the set of weather-related
controls, county fixed effects (FEs), year FEs, and county-specific trends as in column C8 in Table 3. In panel A, we use a
flexible specification (cubic spline) to model the interaction of corn acreage and precipitation. We use the gray vertical dashed
lines to indicate the precipitation quartiles and the horizontal light blue lines to indicate the elasticities from specification C8
in Table 3. In panel B, we interact corn acreage with total annual precipitation, annual moderate-, and extreme-heat degree
days. In panel C, we interact corn acreage with total annual precipitation and corn yield residuals. We obtain the yield
residuals by regressing yields on county-specific trends. In panel D, we summarize the elasticity estimates in Table 4–Table 6
by precipitation quartile using kernel density plots. For additional details, see Section A.6.
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Figure 5. Corn acreage marginal effects with GFDL-ESM4 precipitation projections

A. baseline, historical B. baseline, SSP 245 C. baseline, SSP 585

D. northern states, historical E. northern states, SSP 245 F. northern states, SSP 585

G. middle states, historical H. middle states, SSP 245 I. middle states, SSP 585

J. southern states, historical K. southern states, SSP 245 L. southern states, SSP 585

Note: We show corn acreage marginal effects (MEs) in mg/L for specification C8 of the panel fixed-effect (FE) regressions in
Table 3. We use baseline to refer to counties east of the 100th meridian excluding Florida. We define the northern, middle,
and southern states following Schlenker and Roberts (2009). For the MEs based on the historical data, we use precipitation
averages for 1970–2017. For the MEs based on the projections from two SSPs of the GFDL-ESM4 climate model, we use
precipitation averages for 2018–2050. The shading of the choropleth maps is based on deciles of the ME empirical distribution.
For additional details, see Section 7.
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Figure 6. Corn acreage marginal effects with GFDL-ESM4 precipitation and heat projections

A. baseline, historical B. baseline, SSP 245 C. baseline, SSP 585

D. northern states, historical E. northern states, SSP 245 F. northern states, SSP 585

G. middle states, historical H. middle states, SSP 245 I. middle states, SSP 585

J. southern states, historical K. southern states, SSP 245 L. southern states, SSP 585

Note: We show corn acreage marginal effects (MEs) in mg/L for the panel fixed-effect (FE) regressions in which we interact
corn acreage with precipitation, moderate-heat DDs, and extreme-heat DDs. In the regressions, we use the same set of weather-
related controls, county fixed effects (FEs), year FEs, and county-specific trends as in column C8 in Table 3. We use baseline
to refer to counties east of the 100th meridian excluding Florida. We define the northern, middle, and southern states following
Schlenker and Roberts (2009). For the MEs based on the historical data, we use precipitation, moderate-, and extreme-heat
DD averages for 1970–2017. For the MEs based on the projections from two SSPs of the GFDL-ESM4 climate model, we
use averages for 2018–2050. The shading of the choropleth maps is based on deciles of the ME empirical distribution. For
additional details, see Section 7.
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10 Tables

Table 1. Nitrogen pollution damages and abatement costs

A. Damages
Source Damages Details
Taylor and Heal (2021) $583 U.S., per ton of nitrogen
Sobota et al. (2015) $15,840 U.S., per ton of nitrogen
Van Grinsven et al. (2013a) $13,338–$53,351 E.U., per ton of nitrogen
Compton et al. (2011) $56,000 GoM fisheries decline, per ton of nitrogen
Compton et al. (2011) $6,380 CB recreational use, per ton of nitrogen
Blottnitz et al. (2006) $300 E.U., per ton of nitrogen
Dodds et al. (2009) $2.2 billion U.S., freshwater eutrophication, annually
Kudela et al. (2015) $4 billion U.S., algal blooms, annually
UCS (2020) $0.552–$2.4 billion GoM fisheries & marine habitat, annually
Anderson et al. (2000) $449 million U.S., algal blooms, annually

B. Abatement costs
Source Abatement costs Geographic scope
Xu et al. (2021) $6 billion Mississippi River Basin
Tallis et al. (2019) $2.6 billion Mississippi River Basin
Marshall et al. (2018) $1.9–$3.3 billion Mississippi River Basin
McLellan et al. (2016) $1.48 billion Mississippi River Basin
Whittaker et al. (2015) $9.25 billion Mississippi River Basin
Rabotyagov et al. (2014a) $2.6 billion Mississippi River Basin
USEPA (2001) < $1–$4.3 billion US, national
Ribaudo et al. (2001) $0.1–$7.91 billion Mississippi River Basin
Doering et al. (1999) −$0.1–$17.95 billion Mississippi River Basin

Note: In Van Grinsven et al. (2013a), the reported cost of e25–100 billion per year implies a cost of e4.11–16.43 per lb of
nitrogen using 0.6× 4.6 = 2.6 million tons of nitrogen attributed to agricultural sources. At an exchange rate of $1.5/ein
2008, we have a cost of 6.05–24.20 per lb of nitrogen in $2008. We report the cost per ton of nitrogen. In the case of USEPA
(2001), the costs are per year for the development of TMDLs. Table IV-1 in USEPA (2001) shows the leading causes of water
impairment (nutrients account for 11.5%) and leading sources (agriculture accounts for 24.6%). See Table 6.1 in Doering et al.
(1999), where the numbers are reported as net social benefits. See Table 2 in Ribaudo et al. (2001), where the numbers are
reported as net social benefits too. We use “CB” to refer to the Chesapeake Bay, “GoM” to refer to the Gulf of Mexico. For
additional details, see Section 2 in the main text and Section A.1 of the online appendix.
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Table 2. Summary statistics

variable panel obs years mean s.d. B s.d. W median
nitrogen 2,232 64,121 28.7 2.451 1.645 1.663 1.683
acres planted 2,232 64,121 28.7 0.038 0.048 0.011 0.015
precipitation annual 2,232 64,121 28.7 1.088 0.259 0.174 1.070

precipitation jan 2,232 64,121 28.7 0.073 0.041 0.039 0.060
precipitation feb 2,232 64,121 28.7 0.067 0.036 0.036 0.055
precipitation mar 2,232 64,121 28.7 0.092 0.038 0.046 0.081
precipitation apr 2,232 64,121 28.7 0.095 0.024 0.048 0.086
precipitation may 2,232 64,121 28.7 0.111 0.022 0.050 0.104
precipitation jun 2,232 64,121 28.7 0.109 0.017 0.050 0.101
precipitation jul 2,232 64,121 28.7 0.106 0.023 0.049 0.098
precipitation aug 2,232 64,121 28.7 0.099 0.021 0.047 0.091
precipitation sep 2,232 64,121 28.7 0.094 0.021 0.056 0.082
precipitation oct 2,232 64,121 28.7 0.082 0.019 0.049 0.072
precipitation nov 2,232 64,121 28.7 0.082 0.031 0.044 0.073
precipitation dec 2,232 64,121 28.7 0.078 0.038 0.043 0.067

moderate heat jan 2,232 64,121 28.7 0.018 0.027 0.017 0.004
moderate heat feb 2,232 64,121 28.7 0.027 0.035 0.017 0.011
moderate heat mar 2,232 64,121 28.7 0.070 0.062 0.027 0.051
moderate heat apr 2,232 64,121 28.7 0.138 0.076 0.030 0.125
moderate heat may 2,232 64,121 28.7 0.253 0.082 0.040 0.245
moderate heat jun 2,232 64,121 28.7 0.361 0.071 0.029 0.365
moderate heat jul 2,232 64,121 28.7 0.430 0.061 0.027 0.439
moderate heat aug 2,232 64,121 28.7 0.408 0.068 0.031 0.415
moderate heat sep 2,232 64,121 28.7 0.295 0.082 0.033 0.291
moderate heat oct 2,232 64,121 28.7 0.157 0.079 0.031 0.144
moderate heat nov 2,232 64,121 28.7 0.064 0.055 0.024 0.047
moderate heat dec 2,232 64,121 28.7 0.025 0.033 0.017 0.008

extreme heat jan 2,232 64,121 28.7 0.000 0.000 0.000 0.000
extreme heat feb 2,232 64,121 28.7 0.000 0.001 0.001 0.000
extreme heat mar 2,232 64,121 28.7 0.000 0.003 0.002 0.000
extreme heat apr 2,232 64,121 28.7 0.004 0.010 0.009 0.000
extreme heat may 2,232 64,121 28.7 0.022 0.034 0.026 0.006
extreme heat jun 2,232 64,121 28.7 0.106 0.100 0.071 0.066
extreme heat jul 2,232 64,121 28.7 0.216 0.172 0.119 0.167
extreme heat aug 2,232 64,121 28.7 0.174 0.165 0.108 0.108
extreme heat sep 2,232 64,121 28.7 0.061 0.074 0.054 0.024
extreme heat oct 2,232 64,121 28.7 0.006 0.016 0.011 0.000
extreme heat nov 2,232 64,121 28.7 0.000 0.001 0.001 0.000
extreme heat dec 2,232 64,121 28.7 0.000 0.000 0.000 0.000

Note: An observation is a county-year combination. The panel column indicates the number of counties. The years column
gives the average number of observations per county. We also report the between-counties (s.d. B) and within-county (s.d. W)
standard deviation. The acres are measured in millions and the nitrogen concentration is measured in mg/L. The precipitation
is measured in meters. The moderate heat is measured in 1,000 degree days between 10◦C and 29◦C. The extreme heat is
measured in 100 degree days above 29◦C. For additional details, see Section 5.2.
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Table 3. Panel fixed effect regressions and corn acreage elasticities

A. Acres only
(A1) (A2) (A3) (A4) (A5) (A6) (A7) (A8)

acres 23.581∗∗∗ 5.146∗∗∗ 4.202∗∗ 5.845∗∗∗ 3.862∗∗ 6.117∗∗∗ -0.523 2.741
(2.032) (1.714) (1.659) (1.902) (1.596) (1.941) (1.987) (1.955)

R2 0.26 0.46 0.47 0.47 0.48 0.48 0.52 0.53
Obs. 64,121 64,121 64,121 64,121 64,121 64,121 64,121 64,121
Clusters 124 124 124 124 124 124 124 124
elast est. 0.364∗∗∗ 0.079∗∗∗ 0.065∗∗ 0.090∗∗∗ 0.060∗∗ 0.094∗∗∗ -0.008 0.042
elast s.e. (0.031) (0.026) (0.026) (0.029) (0.025) (0.030) (0.031) (0.030)
elast pval 0.000 0.003 0.013 0.003 0.017 0.002 0.793 0.163

B. Acres plus weather
(B1) (B2) (B3) (B4) (B5) (B6) (B7) (B8)

acres 18.458∗∗∗ 5.212∗∗∗ 4.317∗∗∗ 5.490∗∗∗ 3.941∗∗ 6.058∗∗∗ -0.678 2.477
(1.872) (1.669) (1.640) (1.864) (1.525) (1.970) (1.941) (1.942)

R2 0.30 0.47 0.47 0.48 0.48 0.49 0.52 0.53
Obs. 64,121 64,121 64,121 64,121 64,121 64,121 64,121 64,121
Clusters 124 124 124 124 124 124 124 124
elast est. 0.285∗∗∗ 0.080∗∗∗ 0.067∗∗∗ 0.085∗∗∗ 0.061∗∗ 0.093∗∗∗ -0.010 0.038
elast s.e. (0.029) (0.026) (0.025) (0.029) (0.024) (0.030) (0.030) (0.030)
elast pval 0.000 0.002 0.010 0.004 0.011 0.003 0.727 0.205

C. Acres plus weather and interaction with precipitation
(C1) (C2) (C3) (C4) (C5) (C6) (C7) (C8)

acres 0.765 -9.793∗∗ -10.379∗∗∗ -8.444∗∗ -10.699∗∗∗ -7.947∗∗ -13.730∗∗∗ -9.566∗∗

(3.315) (3.968) (3.916) (3.602) (3.804) (3.542) (4.887) (4.495)
acres × prec 19.486∗∗∗ 16.342∗∗∗ 16.043∗∗∗ 15.355∗∗∗ 15.870∗∗∗ 15.277∗∗∗ 14.409∗∗∗ 13.517∗∗∗

(3.381) (3.899) (3.877) (3.667) (3.845) (3.715) (3.927) (3.805)
R2 0.31 0.47 0.47 0.48 0.48 0.49 0.52 0.53
Obs. 64,121 64,121 64,121 64,121 64,121 64,121 64,121 64,121
Clusters 124 124 124 124 124 124 124 124
elast 25 est. 0.278∗∗∗ 0.072∗∗ 0.059∗∗ 0.079∗∗∗ 0.052∗∗ 0.086∗∗∗ -0.015 0.037
elast 25 s.e. (0.029) (0.029) (0.027) (0.028) (0.025) (0.030) (0.035) (0.034)
elast 25 pval 0.000 0.013 0.031 0.006 0.042 0.005 0.666 0.275
elast 50 est. 0.333∗∗∗ 0.119∗∗∗ 0.105∗∗∗ 0.123∗∗∗ 0.097∗∗∗ 0.130∗∗∗ 0.026∗∗ 0.076∗∗∗

elast 50 s.e. (0.032) (0.030) (0.029) (0.031) (0.027) (0.033) (0.032) (0.032)
elast 50 pval 0.000 0.000 0.000 0.000 0.000 0.000 0.032 0.001
elast 75 est. 0.395∗∗∗ 0.170∗∗∗ 0.155∗∗∗ 0.171∗∗∗ 0.147∗∗∗ 0.178∗∗∗ 0.071∗∗ 0.118∗∗∗

elast 75 s.e. (0.037) (0.036) (0.035) (0.037) (0.034) (0.040) (0.033) (0.035)
elast 75 pval 0.000 0.000 0.000 0.000 0.000 0.000 0.032 0.001
precip 25 0.885 0.885 0.885 0.885 0.885 0.885 0.885 0.885
precip 50 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070
precip 75 1.274 1.274 1.274 1.274 1.274 1.274 1.274 1.274
mean acres 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038
mean N 2.451 2.451 2.451 2.451 2.451 2.451 2.451 2.451
county FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
trend ✓
year FE ✓ ✓ ✓
state × trend ✓ ✓
county × trend ✓ ✓

Note: We control for weather (precipitation, squared precipitation, moderate-heat degree days, and extreme-heat degree days)
in all 8 models of panels B and C. The standard errors reported in parentheses are clustered by HUC4. The elasticities in the
bottom of each panel are calculated using the means of corn acreage (mean acres) and nitrogen concentration (mean N), and
3 precipitation quartiles (precip25, precip50, precip75) in panel C. The acreage is in millions, the concentration is in mg/L,
and the precipitation is total annual (January–December) in meters. The asterisks denote statistical significance as follows: 1%
(***), 5% (**), 10% (*). For additional details, see Section 6.
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Table 7. Projections of precipitation, moderate, and extreme heat degree days

precipitation moderate heat extreme heat
source year 25% 50% 75% 25% 50% 75% 25% 50% 75%

A. Baseline
Historical 1970-2017 0.885 1.070 1.274 1.700 2.149 2.695 0.150 0.415 0.854
CANESM5 SSP245 2018-2050 0.848 1.070 1.269 2.309 2.877 3.496 0.061 0.244 0.739
CANESM5 SSP585 2018-2050 0.852 1.078 1.289 2.395 2.960 3.593 0.071 0.301 0.812
GFDL-ESM4 SSP245 2018-2050 0.870 1.073 1.275 1.985 2.557 3.232 0.048 0.198 0.559
GFDL-ESM4 SSP585 2018-2050 0.866 1.062 1.251 2.016 2.590 3.265 0.052 0.213 0.615
UKESM1-0-LL SSP245 2018-2050 0.834 1.073 1.282 2.360 2.923 3.568 0.070 0.362 0.968
UKESM1-0-LL SSP585 2018-2050 0.838 1.047 1.242 2.411 2.989 3.633 0.116 0.488 1.342

B. Mississippi River Basin
Historical 1970-2017 0.789 1.008 1.230 1.699 2.043 2.402 0.177 0.401 0.756
CANESM5 SSP245 2018-2050 0.695 0.963 1.203 2.278 2.705 3.151 0.055 0.234 0.716
CANESM5 SSP585 2018-2050 0.691 0.967 1.218 2.356 2.798 3.263 0.072 0.292 0.834
GFDL-ESM4 SSP245 2018-2050 0.720 0.980 1.208 1.928 2.369 2.818 0.033 0.146 0.452
GFDL-ESM4 SSP585 2018-2050 0.726 0.975 1.191 1.965 2.408 2.880 0.034 0.160 0.523
UKESM1-0-LL SSP245 2018-2050 0.673 0.960 1.199 2.308 2.725 3.170 0.058 0.296 0.813
UKESM1-0-LL SSP585 2018-2050 0.686 0.945 1.163 2.343 2.789 3.258 0.098 0.395 1.092

C. Northern states east of the 100th meridian
Historical 1970-2017 0.801 0.940 1.087 1.421 1.642 1.887 0.061 0.142 0.286
CANESM5 SSP245 2018-2050 0.761 0.905 1.068 1.936 2.206 2.478 0.015 0.070 0.207
CANESM5 SSP585 2018-2050 0.767 0.907 1.074 1.979 2.281 2.590 0.018 0.084 0.243
GFDL-ESM4 SSP245 2018-2050 0.797 0.937 1.089 1.621 1.876 2.139 0.008 0.048 0.140
GFDL-ESM4 SSP585 2018-2050 0.793 0.927 1.069 1.649 1.911 2.176 0.008 0.050 0.137
UKESM1-0-LL SSP245 2018-2050 0.725 0.875 1.031 1.967 2.256 2.535 0.008 0.068 0.218
UKESM1-0-LL SSP585 2018-2050 0.731 0.883 1.019 1.992 2.305 2.612 0.021 0.109 0.296

D. Middle states east of the 100th meridian
Historical 1970-2017 0.881 1.055 1.222 2.005 2.196 2.379 0.302 0.494 0.730
CANESM5 SSP245 2018-2050 0.848 1.066 1.215 2.622 2.856 3.058 0.106 0.307 0.711
CANESM5 SSP585 2018-2050 0.845 1.072 1.225 2.681 2.935 3.187 0.150 0.401 0.830
GFDL-ESM4 SSP245 2018-2050 0.868 1.076 1.244 2.305 2.542 2.752 0.089 0.249 0.536
GFDL-ESM4 SSP585 2018-2050 0.878 1.064 1.204 2.329 2.572 2.786 0.105 0.283 0.565
UKESM1-0-LL SSP245 2018-2050 0.866 1.079 1.216 2.650 2.894 3.107 0.156 0.445 0.817
UKESM1-0-LL SSP585 2018-2050 0.857 1.057 1.189 2.682 2.960 3.197 0.249 0.617 1.160

E. Southern states east of the 100th meridian
Historical 1970-2017 1.111 1.279 1.475 2.673 3.000 3.368 0.636 0.991 1.414
CANESM5 SSP245 2018-2050 1.072 1.253 1.438 3.354 3.693 4.058 0.232 0.628 1.377
CANESM5 SSP585 2018-2050 1.082 1.275 1.468 3.427 3.788 4.177 0.270 0.676 1.372
GFDL-ESM4 SSP245 2018-2050 1.047 1.243 1.433 3.090 3.435 3.813 0.235 0.535 1.139
GFDL-ESM4 SSP585 2018-2050 1.047 1.233 1.401 3.110 3.471 3.853 0.256 0.604 1.370
UKESM1-0-LL SSP245 2018-2050 1.123 1.298 1.460 3.435 3.758 4.120 0.503 1.024 1.675
UKESM1-0-LL SSP585 2018-2050 1.074 1.253 1.436 3.480 3.808 4.184 0.601 1.382 2.227

Note: We report quartiles of total annual precipitation, moderate-heat, and extreme-heat degree days based on projections from
3 climate models (UKESM1-0-LL, CANESM5, and GFDL-ESM4) and two shared socioeconomic pathways (SSPs), namely
245, 585, for 2018–2050. We also report quartiles based on historical data for 1970–2017. The precipitation is total annual and
it is measured in meters. The moderate heat is measured in 1,000 degree days between 10◦C and 29◦C. The extreme heat is
measured in 100 degree days above 29◦C. We use baseline to refer to counties east of the 100th meridian excluding Florida. We
classify states as northern, middle, and southern following Schlenker and Roberts (2009). For additional details, see Section 7.
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Table 8. Marginal effects of corn acreage on nitrogen concentration
alternative climate models & SSPs

A. Baseline
model & SSP year P25% P50% P75% ME25% ME50% ME75%
Historical 1970-2017 0.885 1.070 1.274 0.025 0.051 0.080
CANESM5 SSP245 2018-2050 0.848 1.070 1.269 0.020 0.051 0.080
CANESM5 SSP585 2018-2050 0.852 1.078 1.289 0.020 0.053 0.083
GFDL-ESM4 SSP245 2018-2050 0.870 1.073 1.275 0.023 0.052 0.081
GFDL-ESM4 SSP585 2018-2050 0.866 1.062 1.251 0.023 0.050 0.077
UKESM1-0-LL SSP245 2018-2050 0.834 1.073 1.282 0.018 0.052 0.082
UKESM1-0-LL SSP585 2018-2050 0.838 1.047 1.242 0.018 0.048 0.076

B. Mississippi River Basin
model & SSP year P25% P50% P75% ME25% ME50% ME75%
Historical 1970-2017 0.789 1.008 1.230 0.018 0.056 0.095
CANESM5 SSP245 2018-2050 0.695 0.963 1.203 0.001 0.048 0.090
CANESM5 SSP585 2018-2050 0.691 0.967 1.218 0.000 0.048 0.092
GFDL-ESM4 SSP245 2018-2050 0.720 0.980 1.208 0.005 0.051 0.091
GFDL-ESM4 SSP585 2018-2050 0.726 0.975 1.191 0.006 0.050 0.088
UKESM1-0-LL SSP245 2018-2050 0.673 0.960 1.199 -0.003 0.047 0.089
UKESM1-0-LL SSP585 2018-2050 0.686 0.945 1.163 -0.001 0.045 0.083

C. Northern states east of the 100th meridian
model & SSP year P25% P50% P75% ME25% ME50% ME75%
Historical 1970-2017 0.801 0.940 1.087 0.002 0.032 0.063
CANESM5 SSP245 2018-2050 0.761 0.905 1.068 -0.007 0.024 0.059
CANESM5 SSP585 2018-2050 0.767 0.907 1.074 -0.006 0.024 0.060
GFDL-ESM4 SSP245 2018-2050 0.797 0.937 1.089 0.001 0.031 0.064
GFDL-ESM4 SSP585 2018-2050 0.793 0.927 1.069 -0.000 0.029 0.059
UKESM1-0-LL SSP245 2018-2050 0.725 0.875 1.031 -0.015 0.017 0.051
UKESM1-0-LL SSP585 2018-2050 0.731 0.883 1.019 -0.014 0.019 0.049

D. Middle states east of the 100th meridian
model & SSP year P25% P50% P75% ME25% ME50% ME75%
Historical 1970-2017 0.881 1.055 1.222 0.144 0.134 0.125
CANESM5 SSP245 2018-2050 0.848 1.066 1.215 0.146 0.133 0.125
CANESM5 SSP585 2018-2050 0.845 1.072 1.225 0.146 0.133 0.124
GFDL-ESM4 SSP245 2018-2050 0.868 1.076 1.244 0.145 0.133 0.123
GFDL-ESM4 SSP585 2018-2050 0.878 1.064 1.204 0.144 0.133 0.126
UKESM1-0-LL SSP245 2018-2050 0.866 1.079 1.216 0.145 0.133 0.125
UKESM1-0-LL SSP585 2018-2050 0.857 1.057 1.189 0.145 0.134 0.126

E. Southern states east of the 100th meridian
model & SSP year P25% P50% P75% ME25% ME50% ME75%
Historical 1970-2017 1.111 1.279 1.475 -0.030 -0.024 -0.017
CANESM5 SSP245 2018-2050 1.072 1.253 1.438 -0.031 -0.025 -0.018
CANESM5 SSP585 2018-2050 1.082 1.275 1.468 -0.031 -0.024 -0.017
GFDL-ESM4 SSP245 2018-2050 1.047 1.243 1.433 -0.032 -0.025 -0.018
GFDL-ESM4 SSP585 2018-2050 1.047 1.233 1.401 -0.032 -0.025 -0.020
UKESM1-0-LL SSP245 2018-2050 1.123 1.298 1.460 -0.029 -0.023 -0.017
UKESM1-0-LL SSP585 2018-2050 1.074 1.253 1.436 -0.031 -0.025 -0.018

Note: For each climate model and SSP combination, we report precipitation (P) quartiles and marginal effects (MEs) calculated
assuming an increase in corn acreage equal to 1 within-county standard deviation using the appropriate set of counties in each
panel. For comparison, we show MEs calculated using data for 1970–2017. The precipitation is total annual and it is measured
in meters. In panel A, the MEs are in mg/L and they are calculated using specification C8 in of the panel fixed-effect (FE)
regressions in Table 3. In panels B–E, the MEs are also in mg/L and they are calculated for the same specification of the panel
FE regressions estimated using counties in the Mississippi River Basin, and the northern, middle, and southern states following
the classification in Schlenker and Roberts (2009). For additional details, see Section 7.
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A Appendix

A.1 Nitrogen pollution damages and abatement costs

In this section, we discuss in more detail studies related to nitrogen pollution damages and abate-
ment costs that are summarized in Table 1 of the main text. We also discuss some additional
studies.

Taylor and Heal (2021) estimate the economic effects of U.S. algal blooms generated by nitrogen
fertilizers excluding health effects, which, according to the authors, can be viewed as lower bounds
for the external costs of the fertilizers. Based on their estimates, 1 ton of nitrogen entails an
external (damage) cost of $583 (they also report the range $370–$1,400) to downstream coastal
counties. Blottnitz et al. (2006) estimate damage costs of nitrogen fertilizer equal to e0.3 per
kg (see their Table 2) that is about 60% of the market price of fertilizer (farmers’ private cost) at
the time. Damages pertain to global warming due to the production of fertilizer, damages due to
air pollutants emitted during the production of fertilizer, global warming due to the application of
fertilizer, eutrophication due to leaching of fertilizer, and damages due to to the release of volatile
substances from fertilizer.

Sobota et al. (2015) compile damages from specific nitrogen inputs from Compton et al. (2011) and
Van Grinsven et al. (2013b) per kg of nitrogen input (see their Table 1). They provide damages for
air/climate, land, freshwater, drinking water, and coastal zones. The damages from coastal nitro-
gen loadings ($2008), which are relevant for some analysis in this paper, are due to recreational use
($6.38), and declines in fisheries and estuarine/marine habitat ($15.84). The damages from recre-
ational use are for the Chesapeake Bay and are from Figure 2 in Birch et al. (2011). Van Grinsven
et al. (2013a) provide a range of damages from nitrogen pollution that account for human health,
ecosystems, and climate from nitrogen for E.U. 27 in 2008 (see their Table 2). The range of the
total damages attributed to nitrogen loss to rivers and seas from agricultural sources is e25–100
billion per year. The damages of e25–100 billion per year implies damages of e4.11–16.43 per
lb of nitrogen using 0.6×4.6 = 2.6 million tons of nitrogen attributed to agricultural sources. At
an exchange rate of about $1.5/ein 2008, we have damages of 6.05–24.20 per lb of nitrogen in
$2008.

UCS (2020) found that, on average, 87,000 tons of excess nitrogen (per year) have washed off Mid-
west cropland into the Mississippi and Atchafalaya rivers, and ultimately into the Gulf of Mexico
(GoM). This nitrogen has contributed between $552 million and $2.4 billion ($2018) of damages
to ecosystem services generated by fisheries and marine habitat every year during 1980–2017. Ho
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et al. (2019) argue that freshwater algal blooms result in damages of more than $4 billion annually
in the U.S. alone (citing Kudela et al. (2015)), primarily due to harm to aquatic food production,
recreation and tourism, and drinking water supplies. Dodds et al. (2009) calculate potential annual
value losses in recreational water usage, waterfront real estate, spending on recovery of threatened
and endangered species, and drinking water, due to nutrient pollution and the resulting eutroph-
ication in U.S. freshwaters. The combined damages are approximately $2.2 billion annually. In
an early paper, Anderson et al. (2000) discuss annual economic impacts from harmful U.S. algal
blooms. The estimates ($2000) are for 1987–1992 and pertain to public health, commercial fishery,
recreation & tourism, and monitoring management. Their low, average, and high estimates of the
15-year capitalized impacts are: $309 million, $449 million, and $743 million, respectively (see
also GOMNTF (2015)).

Averted damages and abatement costs. Xu et al. (2021) use an integrated assessment model
(IAM) to evaluate the effects of energy and nitrogen fertilizer prices on nitrogen runoff to the GoM
and to assess abatement costs. They find that changes in energy costs have a modest impact on
land-use change and nitrogen runoff, while the price of nitrogen fertilizer has a more notable effect
on acreage and nitrogen delivery to the GoM. The cost of achieving the GoM Hypoxia Task Force
goal of nitrogen reduction is $6 billion, which corresponds to the average cost of $29.3 per kg of
nitrogen runoff abatement.

UCS (2020) show how improved agricultural practices in the Midwest can offer economic benefits
to the GoM fishing industry. Their findings are based on nitrogen-loss reduction scenarios achieved
through changes in agricultural practices, derived from four previously published studies (NRCS
(2017a), Kling et al. (2014), Rabotyagov et al. (2014a), and Tallis et al. (2019)). Their calculations
show that 98 million to 2.8 billion ($2018) in damages to Gulf fisheries and marine habitat could
have been averted every year from 1980–2017 through shifts in agricultural practices (see their
Figure 5 and Appendix 3 for details). Moreover, reductions in the May GoM nitrogen loading of
the Mississippi and Atchafalaya rivers due to shifts in agricultural practices upstream ranged from
just over 5% to 45%.

Tallis et al. (2019) analyze 5 financial mechanisms to increase adoption of beneficial practices in
the Mississippi River Basin (MRB) aiming to reduce GHG emissions and nutrient runoff in Iowa,
Illinois, Indiana, and Ohio. They estimate the nutrient runoff savings and the associated costs.25

The 5 mechanisms could save up approximately 168,000 tons of nutrient runoff each year, which

25Examples of beneficial practices considered include cover crops, nutrient management, land retirement, conserva-
tion tillage, and sub-surface tile management. The five mechanisms are: crop insurance incentives, increased private
technical services, expansion and redistribution of Farm Bill funds, creation of new state funds, redirection of federal
disaster funds. In general, nutrient management costs include annualized installation and implementation costs, and
foregone income associated with changes in crop yields net of savings from reduced commercial fertilizer purchases.
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is equivalent to a 25% reduction (see their Table 1). This reduction exceeds the intermediate HTF
target (20% reduction by 2025) and achieves more than half of the long-term HTF target (45%
reduction). The reductions could be achieved at a cost of about $15 per kg of nitrate reduced for a
total cost of $2.6 billion.

Marshall et al. (2018) model changes that would achieve the 45% reduction in nitrogen and phos-
phorous loads from cropland to the GoM at least cost to consumers and producers using 2 im-
plementation scenarios, the USDA REAP model, and data from the USDA CEAP.26 In the Gulf
Constraints (GC) scenario, the objective is to reduce overall nutrient loads regardless of where
they originate. In the Regional Constraints (RC) scenario, they require a 45% reduction in nutrient
loads in each of the 135 REAP regions in the MRB. The study aims to identify the combination of
conservation practices, crop rotations, tillage, irrigation, and land-use change that meets nutrient-
reduction goals at least cost.

Under the GC scenario, domestic consumer surplus, falls an estimated 2.5%, or $1.9 billion relative
to the baseline case. Under the RC scenario, consumer surplus drops an estimated 4.4%, or $3.3
billion. These dollar amounts do not account for benefits to the consumers due to improvements
in water quality. Under the GC scenario, meeting a 45% nutrient-reduction goal at the Gulf is
estimated to increase producer net returns within the MRB by 1.3%, or $847 million. The RC
scenario, on the other hand, decreases producer net returns by 0.4% or $264 million. Hence,
depending on the scenario, the reduction of 3,305 square miles in the average size of the summer
hypoxic zone is at a cost between $1.053 (GC) and $3.564 (RC) billion. The implied cost is
$123,015 per square kilometer (GC) to $416,358 per square kilometer (RC), which is of the same
order of magnitude of the cost in Rabotyagov et al. (2014a) discussed below.

McLellan et al. (2016) use the SPARROW model to explore the downstream water quality impacts
for a set of agricultural conservation and landscape restoration practices in the Upper Mississippi
Ohio River basins (UMORB). Their modeling aims to identify scenarios (types and levels of prac-
tice implementation at various locations throughout the UMORB) capable of achieving the HTF
target of 45% reduction in nitrogen loads delivered to the UMORB outlet at Cairo, Illinois. The
authors consider adaptive nitrogen management (ANM) on 25% of the land in the UMORB, and
cover crops on 20% of the land in the UMORB excluding Minnesota and Wisconsin. They then
vary the levels and locations of implementation of the buffer, wetland, and stream practices, as
needed to achieve a 45% reduction in nitrogen loads at the UMORB outlet. The annualized costs
of implementing the proposed restoration scenario is about $1.48 billion in their Table 5 with a
detailed breakdown provided in their Table 4.

26To give some context, this is the reduction required to limit the average size of the summer hypoxic zone in the
Gulf from 5,236 square miles (13,561 square kilometers) to 1,931 (5,000 square kilometers, 5-year moving average).
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Whittaker et al. (2015) use the SWAT model to simulate the reduction in nitrogen loads in the
Upper Mississippi River Basin (UMRB) that would result from enrolling all row crop acreage in
the USDA CRP. Nitrogen loads at the outlet of the UMRB are used to predict the areal of the
hypoxic zone, and net cash farm rent is used as the price for participation in CRP.27 Over the
course of the 42-year (1960–2001) simulation, the direct CRP costs are more than $388 billion
($9.25 billion annually), and the assumed HTF goal (5-year moving average) of hypoxic area less
than 5,000 square kilometers is met in only 2 years (see their graphical abstract).

In Rabotyagov et al. (2014a), a reduction of about 60% in the areal extent of the hypoxic zone in
the GoM is required to achieve the goal of 5,000 square kilometers at a cost of $2.7 billion per
year using the HUMUS-CEAP model. Hence, the abatement cost is equal to (2.7×109)/7,500 =

$360,000 per square kilometer per year—a 60% reduction in 12,500 square kilometers implies
5,000 square kilometers. The reduction requires investment on approximately 178,000 square
kilometers of cropland implying an average cost of $62 per acre of cropland.

Kling et al. (2014) use the LUMINATE IAM combining SWAT with a land-use economic model
(see their Figure 2) to analyze the costs and benefits of cover crop scenarios in the UMRB and the
Ohio-Tennessee River Basin (OTRB).28 The cover crop scenario in the paper consists of planting
rye within the typical 2-year rotations of corn and soybeans or continuous corn, in which the
rye cover crop was planted in the fall after corn or soybean harvest and then harvested shortly
before planting of the following row crop in the spring. Based on the assumed costs of cover crop
adoption from $61.8–$86.6 per hectare ($25–$35 per acre), the abatement cost of a kg of nitrogen
is $12.02–$17.10 for the UMRB and $7.74–$10.88 for the OTRB (see their Table 4).

Compton et al. (2011) provide abatement costs for reducing nitrogen from various sources and from
integrated projects (Table 3). The abatement cost for agriculture is $10 per kg of nitrogen. The
abatement cost for agricultural drainage water is $2.71 per kg of nitrogen. Both of these abatement
costs are from Birch et al. (2011). As a benchmark, the price of nitrogen fertilizer (private cost
to the farmers), was 0.44 per kg of nitrogen from 1980—2000 and it was 1.21 per kg of nitrogen
in 2008. Birch et al. (2011) report marginal abatement cost per ton of reactive nitrogen by source
in 2000 in the Chesapeake Bay watershed. In the case of nitrate nitrogen from agriculture, the
abatement cost per ton of reactive nitrogen is 10,000 according to their Table 2.

USEPA (2001) reports a range of TMDL implementation costs from under $1 billion per year

27Although the CRP average price at the county level is available, where a large part of land goes into the CRP, the
authors argue that the average cash rent price (for non-irrigated cropland) is a better estimate.

28As the authors discuss, winter cover crops including rye, oats, winter wheat or other close grown crops, are used
in the Corn belt region to maintain and improve the quality of soil resources, and mitigate export of sediment and
nutrients from cropland landscapes.
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to $4.3 billion per year depending on the efficiency of the TMDLs in Table ES-1. The table
breaks down the costs by type of source (point and non-point). Table IV-1 shows leading causes
of impairment—nutrients account for 11.5%—and leading sources of impairment (agriculture ac-
counts for 24.6%) based on the States’ 303(d) lists in 1998.

Ribaudo et al. (2001) analyze the cost effectiveness of intercepting nitrogen through wetland
restoration of 0.4, 2.0, 4.0, and 7.0 million hectares (equivalently, 1, 5, 10, 18 million acres)
targeted to maximize nitrogen reductions in the MRB using the USMP market equilibrium and the
EPIC biophysical models. Restoring 1 million acres of wetlands was estimated to remove 97,000
tons of nitrogen from field runoff per year (see their Table 1). The welfare cost is $1,022 million
and the net welfare cost is $468 million (equivalently, (468× 106)/97,000 = $4,824 per ton of
nitrogen removed). The cost per ton when restoring 5, 10, and 18 million acres is $3,651, $4,062,
and $4,620, respectively. Expressed in dollars per lb of nitrogen removed, the cost is $1.7–$2.2
depending on the wetland acreage. Expressed in dollars per acre of wetland, the cost of nitrogen
removed is $345–$468. Assuming that these costs are expressed in $2000 (it is not clear from the
paper, hence, based on the year of publication), when expressed in $2017 they would be close to
40% higher taking into account only the inflation (GDP implicit price deflator).29

Finally, in one of the earliest studies we are aware of, Doering et al. (1999) analyze the costs of the
following nitrogen loss reduction strategies in the MRB: (1) EoF nitrogen loss reductions of 20%–
60% through economically optimum actions; (2) fertilizer reductions of 20% and 45%, (3) 500%
increase in fertilizer tax; (4) wetland acreage of 1–18 million acres (assuming filtering capacity
of 15 grams of nitrogen per square meter per year); (5) 27 million acres acres of riparian buffers
assuming filtering of 4 grams of nitrogen per square meter per year (equivalently, 4,046.86 ×
4/1,000 ≈ 16.2 tons per acre per year). The analysis is based on the USDA ERS USMP economic
model coupled with the EPIC biophysical model (see Section 4.1 of Topic 6) using the 1997 USDA
Economic Baseline and the 1992 NRI and is summarized in their Table 6.1. Depending on the loss
reduction strategy, Doering et al. report net social costs of −$0.1 (hence, savings are possible) to
$17.95 billion.

29According to the note in Table 2 of the paper, welfare costs include changes in consumer and producer surpluses
plus wetland restoration costs. Government costs include restoration and easement costs. Net welfare costs include
producer and consumer surplus, wetland restoration costs, erosion benefits, and wetland benefits. Government costs
are shown for information only, and are already included under welfare costs. The cost of wetland restoration consists
of permanent easement and restoration. Easement costs equal the full opportunity costs of removing productive crop-
land from production. Restoration costs are the one-time cost of converting cropland back into a functioning wetland.
Landowners participating in wetland restoration sell a conservation easement to the government to restore and protect
wetlands. The landowner and the NRCS develop a plan for the restoration and the maintenance of the wetland. The
government pays for the easement and 100% of the costs of restoring the wetland.
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A.2 Water Quality Portal Data

In this section, we provide some additional details regarding the data from the Water Quality Portal.

Table A2 shows that the split of surface- and ground-water monitoring sites is roughly 96% and
4%. According to Table A3, 94% of the activities are routine samples. Table A4 shows that
approximately 14% of the nitrogen data are subject to censoring. In more detail, the reported value
for nitrogen concentration is less than or equal to a historical lower reporting limit. The hydrologic
event is equal to routine sample for about 88% of the data. Setting aside storms (5.6%), no other
hydrologic event accounts for more than 3% of the data (Table A5). Finally, 98% of the result
value measurements are actual with the remaining 2% being estimates (Table A6).

Table A7 shows a breakdown of the nitrogen data by decade keeping in mind that the 2010s stop in
2018. There is a steady decline in the number of monitoring sites, counties, and 8-digit hydrologic
units. The decrease is more notable in 2010s and seems to be rather unlikely that the smaller
number of years explain the decrease. For example, the number of monitors drops from about
12,700 in the 1970s to about 4,400. We also see a drop in the number of counties and 8-digit
hydrologic units from 1,653 (1,334) to 871 (690). The drop in coverage across multiple dimensions
documented here is consistent with the findings in Sprague et al. (2017).

Table A8 shows a breakdown of the nitrogen data by site type following the categories in Read
et al. (2017). Stream (84%) and lake (8%) site types account for about 92% of all observations.
No other site type accounts for more than 3.8%, which is the case of well sites.

Table A9 shows alternative calculations of nitrogen concentration based on parameter codes we
identified in the technical information regarding the data and graphics on the U.S. Geological Sur-
vey National Water-Quality Assessment annual reporting Web site. These alternative calculations
are based on sums of alternative parameter codes. As the table shows, our calculation of nitrogen
concentration is essentially identical to those alternative ones.

A.3 Total Nitrogen Calculation using the USGS NWQN Methods

In this section, we describe the approach we followed to construct what we call the USGS-NWQN
data for which the calculation of total nitrogen follows the NWQN methodology described here.

The steps for collecting the data associated with the relevant parameter codes are as follows. First,
we downloaded the data from the WQP portal using web service calls based on parameter codes.
Second, We limited the data to years 1970–2018 and to those for which the activity media name
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field is “water” and the activity media subdivision name field is “surface water” or “groundwater.”
Finally, we excluded data with for which the organization identifier field is “usgs-ak,” “usgs-hi,”
and “usgs-pr.”

We converted mg/L of nitrate or nitrite to mg/L of nitrogen following the NWQN methods. For the
parameter codes 71850 and 71851, we multiplied the concentrations (result values) by 0.2259. For
the parameter code 71856, we multiplied the concentrations by 0.3045. We calculated dissolved
NO3+NO2 (nitrate plus nitrite) concentrations following the NWQN methods. Among the param-
eter codes used in these calculations, parameter code 00631 accounted for 51% of the observations
for dissolved nitrate plus nitrite concentrations. Parameter code 00630 accounted for 29% of the
observations for dissolved nitrate plus nitrite concentrations, and parameter code 00618 accounted
for 13% of the observations. Parameter code 00620 accounted for 5% of the observations while
the rest of the parameter codes accounting for the remaining 2% of the observations.

We calculated total organic nitrogen plus ammonia concentrations following NWQN methods.
Parameter code 00625 accounted for 93% of the observations. Parameter codes 00605 and 00608
accounted for 5% of the observations, and parameter codes 00605 and 00610 for the remaining 2%
of the observations.

We calculated total nitrogen concentrations using the following NWQN methods:

• Method 1: dissolved NO3+NO2 + total organic nitrogen plus ammonia (638,135 obs)

• Method 2: dissolved NO3+NO2 + 00623+45970 (19,818 obs)

• Method 3: 62854+45970 (16,542 obs)

Once we completed the steps described above, parameter code 00600 accounted for 91% of the
observations for nitrogen concentrations. NWQN Method 1 accounted for the remaining 9% of
the observations. In all, using imputed nitrogen concentrations following the NWQN methodology
allowed us to have a sample of 681,313 obs while using parameter code 00600 allowed to have a
sample of 620,816 observations, which is an increase of 9.7% in the number of observations; see
Table A10.

A.4 Alternative Calculations of Total Nitrogen Concentration

For the USGS-NWIS data discussed in the main text, we use the USGS parameter code 00600.
We accessed the data from the WQP portal using web service calls based on this parameter code.
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Subsequently, we limited the data to those for the CONUS for which the activity media name
is “water” and the activity media subdivision name is “surface” or “groundwater.” Finally, we
excluded observations for which the nitrogen concentration was negative or exceeded 50 mg/L.

For the USGS+EPA data, we used the NWIS parameter codes 00600, 71887, and 62855 in the case
of the USGS data. Subsequently, we limited the data to those for the CONUS for which the activity
media name is “water” and the activity media subdivision name is “surface” or “groundwater.”
Finally, we excluded observations for which the nitrogen concentration was negative or exceeded
50 mg/L. In the case of EPA STORET data, we limited the data to those for CONUS for which the
activity media name is “water”. We also limited the data to those for which the result measure unit
code is “mg/L” or “µ g/L.” and the characteristic name is one of the following: (i) nitrogen, mixed
forms (nh3), (nh4), (ii) organic, (no2) and (no3), (iii) nutrient-nitrogen, (iv) total nitrogen, mixed
forms, and (v) total nitrogen, mixed forms (nh3), (nh4), organic, (no2) and (no3).

A.5 Cross-Section Regressions

We estimate year-specific OLS regressions of the form:

yit = δi +β1ait +β2ait pit + z′itγ + εit . (A1)

We also estimate a “between” model using OLS regressions of the form:

yi = δi +β1ai +β2ai pi + z′iγ + εi. (A2)

Following our earlier notation, we use δi to denote various spatial FEs such as state FEs, and FEs
for hydrologic units of different size. The between model in equation (A2), which allows us to
assess longer-term impacts of agriculture on nitrogen pollution than the panel FE regression dis-
cussed earlier, resemble models used in hydrology (e.g., David et al. (2010)), and the Ricardian
approach in accessing agricultural damages due to climate change (e.g., Mendelsohn et al. (1994))
taking into account adaptation. The similarity with the hydrology models is mainly due to the
cross-sectional nature of the regressions and the controls considered keeping in mind that the hy-
drology models tend to employ nonlinear specifications often aiming to identify factors that best
describe variation in nitrogen pollution as opposed to estimating causal effects.

The validity of the cross-section approach hinges on the assumption that there are no omitted
variables correlated with both planting decisions and pollution that our spatial FEs fail to account
for, in which case our estimates will be biased; a classical example of omitted variable bias (OVB).
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For example, if counties that grow a lot of corn also tend to adopt more conservation efforts that our
spatial FEs fail to account for, our cross-section regressions will be understating the true effect of
acreage on nitrogen pollution. Numerous of our robustness checks in a subsequent section involve
additional controls aiming to alleviate such OVB-related concerns.

We show our year-specific and between elasticity estimates based on the cross-section regressions
using data for 1975–2017 in Figure A1. Our year-specific elasticities are based on equation (A1).
Their between counterparts are based on equation (A2). Hence, we report 43 year-specific esti-
mates and a single between estimate. We start our analysis in 1975 as opposed to 1970 due to the
small number of observations in the early years of our sample for the year-specific regressions.30

We use the 6 panels to report results from two specifications that differ in the set of spatial FEs
included: no spatial FEs (panels A–C), and HUC4 FEs (panels D–F). We also experimented with
HUC2 and state FEs and obtain results that are very similar to those using HUC4 FEs. All spec-
ifications contain the same 48 weather controls and an interaction of acres with total annual pre-
cipitation as in panel C of Table 3. The standard errors are clustered at the HUC4 level. The
reader should keep in mind the substantial variation in the number of counties when we discuss
our year-specific estimates. In particular, the year-specific estimates are based on 802–1,915 coun-
ties depending on the year noting that there is a downward trend in the number of observations
over time.

The vast majority of the elasticities are significant at conventional levels in the absence of spatial
FEs without exhibiting a clear pattern, such as an upward or downward trend, over time. Depending
on the precipitation quartile, the between elasticities are 0.141–0.332. They are of similar magni-
tude to those reported in column C1 of Table 3, which makes sense because that model excludes
county FE and therefore identifies coefficients using cross-sectional variation. Their year-specific
counterparts are 0.045–0.280 (first quartile), 0.075–0.303 (median) and 0.078–0.412 (third quar-
tile). In the presence of HUC4 FEs, the between estimates are 0.096–0.202 and are somewhat
smaller than those in the absence of spatial FEs. The year-specific elasticities are now 0.032–
0.153 (first quartile), 0.063–0.206 (median), 0.062–0.326 (third quartile).31

30The 6 panels in the figure show elasticity estimates along with 95% CIs based on the same calculations as in the
case of the panel FE regressions, namely using the mean concentration, mean acreage, and appropriate precipitation
quartiles, all of which vary across years. In other words, the difference between the elasticities reported in the bottom
of panel C of, say, Table 3 and the elasticities shown in Figure A1 is due to coefficient estimates, as well as summary
statistics of the relevant components of the elasticity calculation. The same holds when we compare the elasticities in,
say, 1980, to the elasticities in, say, 1995 in Figure A1.

31For the specifications without spatial FEs, all 48 weather-related controls are jointly significant in the case of
the between regression. They are also jointly significant for the vast majority of the year-specific regressions. In the
presence of HUC4 FEs, the 24 precipitation-related controls fail to be significant at conventional levels in the case
of the between regression. Their moderate- and extreme-heat counterparts, however, are jointly significant. All 48
weather-related controls are jointly significant for most of the year-specific regressions.
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A.6 Additional estimates

In the case of the panel FE regressions, we control for other sources of nitrogen pollution (eco-
nomic activity, fossil-fuel combustion, atmospheric deposition, animal manure, point sources), as
well as agricultural best management practices. We also control for the acres of other major crops
(e.g., soybeans), acres enrolled to the Conservation Reserve Program, and fertilizer sales. Addi-
tionally, we explore heterogeneous effects exploring temporal (by decade) and spatial variation
(e.g., counties in the MRB) in acreage effects, and alternative time windows (e.g., during the corn
growing season) for the measurement of nitrogen concentration. Moreover, we interact corn acres
with runoff as opposed to precipitation and we use alternative measures of nitrogen concentration
accounting for streamflow (downstream monitoring sites) and stream levels. Furthermore, we ex-
amine the role of crop uptake by interacting corn acreage with heat and yield shocks and the idea
that long-run acreage may matter more than its annual fluctuation. In addition, we explore the
role of censoring in the measurement of nitrogen concentration and alternative data filters used
in Keiser and Shapiro (2018). We use alternative datasets (e.g., EPA data from STORET) and
extend the geographic scope of our analysis to the CONUS, we employ a flexible modeling of
the interaction of acres and precipitation (splines), and alternative radii (100 and 200 miles) for
the measurement of nitrogen pollution. We employ different data aggregation schemes perform-
ing monitoring-site- and hydrologic-unit-centric analyses. Finally, we perform statistical inference
using alternative clustering schemes.

Discussion. Similar to the baseline results, the coefficient of the interaction of corn acreage and
precipitation (coefficient β2 in equation (1)) is positive and highly significant in the vast majority
of the models we explored. Hence, the amount of precipitation matters for the magnitude of the
estimated acreage elasticities. With very few exceptions, the corn acreage elasticities based on
the second and third precipitation quartiles are highly significant. Their counterparts based on the
first precipitation quartile are not. For the second precipitation quartile, the elasticities that are
significant at conventional levels are 0.043–0.331. Their counterparts for the third precipitation
quartile are 0.059–0.438. As a reminder, for our preferred baseline specification in column C8 of
Table 3, the acreage elasticities are 0.076 and 0.118 for the second and third precipitation quartiles.

The acreage elasticity estimates are very similar for the specifications that include Bureau of Eco-
nomic Analysis (BEA) series that vary by state and year aiming to control for overall economic
activity that also contributes to nitrogen pollution; see models M1 and M2 in Table 4. Their
counterparts for the specifications that include BEA series exhibiting variation by county and year
(M3) are larger. Adding fuel consumption—an additional source of nitrogen pollution—from the
Energy Information Administration State Energy Data System (EIA-SEDS) to the specifications
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has a very small effect on the magnitude of these elasticities (M4–M6). The specifications for
which the beginning of our sample shifts to the mid 1990s and the number of observations drops
from about 64,000 to somewhere between 24,000 (M7–M9, M12) or 33,500 (M10 and M11), im-
ply elasticities that are not significant at conventional levels. We should note, however, that the
main driver behind this finding is the shorter sample size and not the additional controls.32 The
specification with controls from the TREND nitrogen dataset of Byrnes et al. (2020) imply elastic-
ities that are somewhat larger than their baseline counterparts. The elasticities that are significant
at conventional levels and are based on the second precipitation quartile are between 0.075 and
0.164. Their counterparts based on the third precipitation quartile are 0.117–0.223. The high end
of these elasticities are from a model where we also control for economic activity using data from
the BEA regional economic accounts, fossil-fuel consumption from the EIA-SEDS, and nitrogen
yields from waste water treatment plants (see model M13 in Table 4).

As Table 5 and Table 6 show, in the case of median precipitation, the elasticities are not signifi-
cant at conventional levels in the following instances: (i) when we control for CRP acres and the
acres of other major crops, (ii) when we explore temporal (1970s, 1990s, and 2010s) and spatial
variation (MRB, northern states, southern states), (iii) when we consider alternative time windows
during the year to track nitrogen concentration (all windows), (iv) when we use downstream mon-
itoring sites (both on the mains stems and all tributaries), (v) when we use downstream monitoring
sites located in rivers and streams of levels 1–3 (SL1–SL3). The range of the elasticities that are
significant at conventional levels is 0.043–.0.331. We see the largest effect of corn acreage on
nitrogen concentration tracked in downstream monitoring sites located in SL4 rivers and streams
(see Downstream SL4 in Table 6). For the third precipitation quartile, the elasticities are not sig-
nificant at conventional levels in the following instances: (i) when we explore temporal variation
(1970s, 1990s, 2010s), (ii) when we explore spatial variation (northern states, southern states), and
(iii) when we use downstream monitoring sites SL1 and SL2 rivers and streams. The range of the
elasticities that are significant at conventional levels is 0.059–0.438.

A.6.1 Panel fixed-effect regressions: additional controls

In this section, we discuss a series of additional controls related to economic activity, fossil fuel
combustion, atmospheric deposition, animal manure, point sources of nitrogen pollution, agricul-
tural management practices, tillage, and drainage for the estimates reported in Table 4. In what
follows, we discuss the rationale behind these additional controls and data sources.

32Our elasticities are either highly similar or smaller to the ones reported here when we use the shorter samples but
we exclude the additional controls.
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Economic activity. We use the BEA series SAEMP25 (total employment, number of jobs) and
SAGDP2 (GDP by state, all industry total) to control for economic activity as a potential source of
nitrogen pollution (e.g., urban non-point pollution). Both series exhibit variation by state and year.
We also use three BEA series that exhibit variation by county and year, namely, CAINC30110
(per capita personal income, dollars), CAINC45190 (fertilizer and lime, incl. ag. chemicals 1978-
fwd.), and CAINC45370 (farm earnings). The last economic series used to control for economic
activity is the county-level monthly unemployment rate from the BLS Local Area Unemployment
Statistics, which starts in 1990. We deflate all dollars using the GDP deflator.

Fossil-fuel combustion. We consider controls related to nitrogen pollution from fossil fuels.
Fossil-fuel combustion releases nitrogen into the atmosphere, which is then redeposited on land
and water through the water cycle—rain and snow. The first control is fossil-fuel consumption
from the EIA State Energy Data System that exhibits variation by state and year. The second con-
trol is NOx emissions from fuel combustion (electric utilities, industrial, and other) from the EPA
Air Pollutant Emissions Trends data. The data on NOx emissions exhibit variation by state and
year and are available beginning in 1996.

Atmospheric deposition. Atmospheric deposition is a significant non-point source of nitrogen
pollution (e.g., see Alexander et al. (2008) and Robertson and Saad (2006), among others). To
control for atmospheric deposition, we use annual county level data on atmospheric deposition
(kilograms of nitrogen per hectare per year) from Byrnes et al. (2020).

Animal manure. Animal manure can be a significant source of nitrogen and other nutrients needed
for crop growth. Improper use or disposal of manure can lead to the buildup of nitrogen in soils
and the loss of nitrogen to surface or ground water. We control for animal manure using annual
county level data on manure from livestock (kilograms of nitrogen per hectares per year) from
Byrnes et al. (2020).

Point sources of nitrogen pollution. Waste water treatment plants (WWTPs) and commercial and
industrial point sources that discharge directly to streams are major contributors to surface-water
nitrogen loads. We use data on the nitrogen yields (kilograms per square kilometer) for WWTPs
in the EPA Clean Water Needs Survey (CWNS) from Dataset 16 in Falcone (2018) to control for
point sources. The data are available for approximately two-year intervals between 1978 and 2012
at the 10-digit hydrologic unit level.

Agricultural management. Agricultural best management practices (BMPs) are designed to min-
imize the environmental impacts of agriculture while sustaining crop productivity (Dubrovsky et al.
(2018)). BMPs reduce nutrient losses to streams through management of nutrient inputs on the
land surface and through curtailment of erosion and runoff of nutrients from the land surface to
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streams. Three common BMPs are conservation tillage (see below), nutrient management plans,
and conservation buffers. Comprehensive nutrient management plans help guide decisions on the
placement, rate, timing, form, and method of nutrient application to avoid inputs in excess of crop
requirements and to minimize loss to streams, groundwater, or the atmosphere. Nutrient man-
agement plans can incorporate a variety of agronomic tests to balance the amount of nutrients
currently available in the soil against the amount required for crop production, and to identify the
ideal timing for crop growth and irrigation to minimize runoff and leaching. Conservation buffers
are areas of permanent vegetation often planted adjacent to streams, lakes, ponds, and wetlands or
along the edges of agricultural fields to help reduce runoff or leaching of nutrients by filtering out
nutrients and sediments, enhancing infiltration, and increasing plant uptake. We believe the spatial
fixed effects (FEs) and spatially differentiated trends in our specifications adequately control for
agricultural BMPs.

Tillage. Tillage is used to control weeds, incorporate crop residue, and prepare land for planting,
but minimizing soil disturbance and maintaining soil cover are critical to improving soil health
(Claassen et al. (2018)). Conservation tillage, particularly no-till or strip-till, used in conjunction
with soil cover practices, such as conservation crop rotations and cover crops, entail numerous
benefits, such as improved agricultural productivity, greater drought resilience, and better environ-
mental outcomes. To name a few examples, compared to conventional tillage, conservation tillage
increases water infiltration, and reduces water runoff and sediment yield (Capel et al. (2018)).
Similar to the best management practices discussed above, we believe the spatial FEs and spatially
differentiated trends in our specifications adequately control for tillage practices.

Drainage. Drain flow is water that moves off the landscape through artificial subsurface drains
following rainfall or irrigation. Information on the location and areal extent of artificial drainage
networks is crucial to understanding and quantifying their potential effects on water quality (Capel
et al. (2018)). For example, subsurface tile drainage can provide both economic benefits for crop
production through the removal of excess water from the soil column, and environmental improve-
ments in soil and water quality through reductions in runoff, erosion, and phosphorous transport.
Unfortunately, tile drains also transport nitrogen from fertilizer and other sources in water-soluble
nitrate form more readily from the field to surface water.

The locations of surface drainage ditches are well known, because they are easily observable on
the landscape. The extent of subsurface drainage systems, however, is poorly known in most areas
because of their distributed nature, the extended period of installation, incomplete location maps,
and a general lack of recent, systematic surveys of their spatial distributions. In addition to the
lack of drainage information in recent decades, the lack of a consistent data collection method
has resulted in great uncertainty as to the locations of subsurface drains throughout the country.
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Networks of subsurface drainage systems have been installed beneath agricultural fields in the last
few decades. In many cases, these systems have been installed as patterned drainage to improve
control over soil water and thus increase crop yield. Landowners, however, are not required to
report the installation of subsurface drainage systems or keep track of their locations. As a result,
the locations of these networks are largely unknown.

The drainage-related datasets that we are aware off exhibit only spatial variation. The most recent
dataset is based on a 30-meter resolution of tile-drained croplands using a geospatial modeling
approach in Valayamkunnath et al. (2020).33 We believe the spatial FE and spatially differenti-
ated estimates of the effects of corn acreage on nitrogen pollution adequately control for drainage
practices.

A.6.2 Panel fixed-effect regressions: other checks

The discussion in this section pertains to the additional estimates reported in Table 5, Table 6, and
Figure 4 in the main text.

Conservation programs, acres of other major crops, and fertilizer sales. Agricultural conser-
vation programs, ranging from voluntary technical assistance only to payment-based voluntary and
cross-compliance programs, have been implemented since the Food Security Act of 1985 with an
early focus on the viability of agricultural production through soil conservation. The Farm Security
and Rural Investment Act of 2002 substantially increased the level of public funding for conserva-
tion and initiated the goal of maximizing environmental benefit. Subsequently, the Conservation
Effects Assessment Project (CEAP) was established to provide science-based guidance on the best
use of funding for conservation and to facilitate the alignment of conservation programs with na-
tional environmental protection priorities such as the restoration of the Gulf of Mexico (Garcia
et al. (2016)).

We control for CRP acres, soybean acres, and wheat acres, as well as the acres of other major crops
(cotton, rice, and sorghum) and fertilizer sales. Similar to the corn acres, we interact the acres of
major crops, CRP acres, and fertilizer sales with precipitation. The major crops’ acreage is from
the USDA NASS. Annual county-level data on CRP acres is from Conservation Reserve Program

33Two older datasets have been compiled by USGS and are 30-meter resolution rasters. The first is for the CONUS
in the early 1990s (Nakagaki et al. (2016)). The second is for 12 Midwest states in 2012 (Nakagaki and Wieczorek
(2016)). Both datasets are built using information from the State Soil Geographic Database Version 2 (STATSGO2),
the National Land Cover Dataset (NLCD), and Sugg (2007). The latter dataset also uses information on state-level
acreages of agricultural land drained by tiles from the 2012 Census of Agriculture. The third dataset is from Sugg
(2007), who combines information from the USDA STATSGO database and the 1992 NLCD to calculate the percent
of cropland with subsurface drainage at the county level for 18 states, which include the Corn Belt and Lakes states.
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Statistics from the USDA Farm Service Agency.34 We use annual county-level data on fertilizer
sales from Alexander and Smith (1990) and Brakeball and Gronberg (2017).

Temporal variation in corn acreage effects. We check whether acreage elasticities exhibit tem-
poral variation by estimating decade-specific panel FE regressions.

Spatial variation in corn acreage effects. We check for spatial variation in the acreage elasticities
by estimating different panel FE regressions for the top corn producing states, all other states
(CONUS excluding the top corn states), and the Mississippi River Basin.35

Alternative time windows to measure nitrogen concentration, precipitation, and degree days.
Transport of nutrients to streams and groundwater varies seasonally, in large part following sea-
sonal patterns in human activities, such as fertilizer application in the beginning of the growing
season. The transport of nutrients to streams also varies as precipitation and runoff change; loads
and water discharge are usually highest during the late winter, spring, and early summer when
runoff is highest. We consider several alternative windows during the year to measure nitrogen
concentration, precipitation, and degree days, and estimate 4 different regressions. The first three
windows (April–September, March–August, May–October) are around the typical U.S. crop grow-
ing season, which also stimulates spring and summer algae blooms directly influencing the hypoxic
zone in the GoM. In the case of the fourth window (January–June), we aim to capture the effects
of spring runoff.

Interacting corn acreage with runoff instead of precipitation. Runoff is water that flows over
the landscape and directly into the surface waters that drain the watershed (for example, streams).
The importance of runoff as a water flow path is affected by precipitation, vegetation, topography,
and soil characteristics. Precipitation in excess of what the landscape can assimilate at a given
time produces runoff (Capel et al. (2018)).36 We use runoff data from Wolock and McCabe (2018)
based on a water-balance model in Mccabe and Wolock (2011) to estimate a regression using the
interactions of acres with runoff instead of precipitation.

Nitrogen concentration accounting for streamflow. We refine the measurement of pollution
and acreage to account for streamflow. Using the NHD Plus data and R routines developed by
the USGS, we are able to identify downstream monitoring sites for each county. We estimate
two different regressions (based on main stems flowlines and tributaries flowlines) using nitrogen

34We set the CRP acres equal to zero for years 1975–1985.
35The top corn producing states are Iowa, Illinois, Minnesota, Nebraska, Indiana, South Dakota, Ohio, Wisconsin,

Missouri, and Michigan. In the case of the Mississippi River Basin, we include counties lying the following HUC2s:
Ohio (05), Tennessee (06), Upper Mississippi (07), Lower Mississippi (08), Missouri (10), Arkansas-White-Red (11).

36According to Table 6.2. in Goolsby et al. (1999) that pertains to a regression model for total nitrogen and nitrate
yields in the Mississippi River Basin, runoff is included among the explanatory variables and is assumed to represent
other unmeasured inputs such as atmospheric deposition, ground water discharge, soil erosion, etc.
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concentration data for downstream monitoring sites.37

Nitrogen concentration accounting for streamflow and stream levels. We estimate 4 different
regressions using downstream monitoring sites located in rivers and streams of levels 1–4. For
the less familiar reader, and using the Mississippi River Basin flowline network as an example, the
main stem of the Mississippi River is level 1, while the Ohio and Missouri rivers that discharge into
the Mississippi River are level 2. Rivers and streams of level 3 (4) discharge into their counterparts
of level 2 (3).

Lagged acreage. Our baseline results point to larger effects of corn acreage on nitrogen pollution
in the absence of county FEs than in their presence. This finding is consistent with the notion that
long-run corn acreage matters more than annual fluctuations. To investigate this conjecture further,
we use time averages of corn acres in place of contemporaneous corn acres. We report results from
three different regressions with the following acreage variables: (i) average of the current and prior
year’s corn acreage, (ii) average of the current and past two years’ acreage, and (iii) average of the
current and past three years’ acreage.

Reporting limits in nitrogen concentration. In our baseline results, we exclude values of nitrogen
concentration in excess of 50 mg/L noting that the 99% of the concentration empirical distribution
is 20 mg/L. We also exclude values of nitrogen concentration that are identified as being lower than
a reporting limit (e.g., less than 2.5 mg/L). We consider two robustness checks in terms of how we
handle observations with values lower than the reporting limits. In the first regression, we set such
values equal to zero. In the second regression, we set such values equal to the reporting limit.

Alternative radii. Our baseline results are based on USGS monitoring sites within 50-mile radii
from the county centroids. We explore the sensitivity of our acreage elasticities to 100- and 200-
mile radii. Apart from the effect on (potentially) altering the number of USGS monitoring sites and
corn acreage used in the analysis, increasing the radii may alter (e.g., due to attenuation/removal)
the share of the edge-of-field nutrient losses that reaches the monitoring sites where nitrogen con-
centration is measured.38

Data filtering. In this robustness check, we filter the nitrogen pollution data as in Keiser and
Shapiro (2018). In particular, we only consider data for surface water and routine samples associ-
ated with lakes and streams.

Alternative datasets and extended geographic scope (CONUS). In our baseline results, we use

37See, for example, this link.
38In general, nutrient removal rates increase with transport distance and nutrient sources that are further upstream

deliver smaller nitrogen loads (Marshall et al. (2018) and Robertson and Saad (2006)). As Kling (2011) discusses,
the degree of attenuation depends not only on physical features but also on the land use choices that gives rise to
non-constant diffusion coefficients.
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the WQP data on parameter code 00600 to measure nitrogen pollution in the Eastern part of the
country (east of the 100th meridian excluding Florida). We will refer to these data as the “USGS-
NWIS” data. In what follows, we will use the term “EAST-100” to refer to the analysis pertain-
ing to the Eastern U.S.. We also present results for the CONUS using the USGS-NWIS data.
Moreover, we present results for the CONUS based on two additional datasets. The first dataset
(“USGS-NWQN”), which is discussed in more detail in Section A.3, is based on imputation meth-
ods developed by the USGS. The second (“USGS+EPA”) dataset, which is discussed in more detail
in Section A.4, is based on a combination of the USGS-NWIS and EPA-STORET data and allow us
to increase coverage in the later years of our analysis. Figure A2 and Figure A3 show the coverage
in terms of monitoring site-date combinations, number of monitoring sites, number of counties,
and number of 8-digit hydrologic units, by year for the alternative datasets. The use of the EPA
STORET data allows us to increase significantly our sample size starting in the mid-1980s.

Alternative data aggregation. We explore two alternative data aggregation schemes that entail
(h)ydrologic unit-centric and (m)onitoring-site centric analyses. C-centric type analyses are gen-
erally common in the economics literature and have been utilized to produce estimates of climate
change on agriculture (e.g., Mendelsohn et al. (1994), Deschenes and Greenstone (2007)). M-
centric and h-centric analyses are common in the environmental economics and science literature
(e.g., Olmstead et al. (2013) and David et al. (2010)), and probably more so in the case of h-centric
analyses, employing biophysical and water-quality models like the APEX, SPARROW, and SWAT.
We calculate acres planted assuming a radius of 50 miles from the monitoring sites in the case of
the m-centric analysis. For the h-centric analysis, we use monitoring sites and counties that lie
within the HUC8 boundaries.

Statistical inference with alternative clustering schemes. We explore alternative clustering
schemes for the purpose of statistical inference. In particular, we consider standard errors cal-
culated by 2-digit hydrologic unit and year (HUC2 × year), by 4-digit hydrologic unit and year
(HUC4 × year) and year.

A.6.3 Cross-section regressions

For the cross-section regressions described in Section A.5, we obtain a smaller set of additional
estimates based on the following: (i) elimination of the acres’ interaction with precipitation, (ii)
alternative nitrogen concentration measurement adjusting for streamflow, and (iii) extended geo-
graphic scope plus additional data and specifications.

In this section, we discuss robustness checks to our baseline elasticity estimates for the cross-
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section regressions in Figure A1 of the main text. As a reminder, our baseline elasticity estimates
for the between case are 0.141 (first precipitation quartile) to 0.332 (third precipitation quartile)
in the absence of spatial FEs, and they are 0.096 (first quartile) to 0.202 (third quartile) in the
presence of HUC4 FEs. Their year-specific counterparts that are significant at conventional levels
(≤ 10%) are 0.045–0.412 (no spatial FEs) and 0.032–0.326 (HUC4 FEs) depending on the year
and the quartile of precipitation.

Elimination of acres’ interaction with precipitation: In general, the elimination of the interac-
tion of corn acres with precipitation entails elasticities that are smaller. Pooling the data across
years (1975–2017), the corn acreage elasticities are 0.096 (without spatial FEs) and 0.138 (with
HUC4 FEs). The year-specific elasticities that are significant at conventional levels are 0.047–
0.239 (without spatial FEs) and 0.049–0.138 (with HUC4 FEs).

Streamflow: Adjusting for streamflow (using downstream USGS monitoring sites on main flow-
lines) the between corn acreage elasticities are 0.177 (first quartile)–0.307 (third quartile) in the
absence of spatial FEs. With HUC4 FEs, the elasticities are 0.106 (first quartile)–0.170 (third
quartile).

Extended geographic scope plus additional data and specifications. In a series of robustness
checks that resemble in the panel FE regressions, we use additional data (USGS+EPA as opposed
to the USGS-NWIS) and expand the geographic scope of our analysis from the EAST-100 to the
CONUS. These additional data allow us to alleviate some of the concerns regarding the substantial
variation in the number of observations used to obtain the year-specific elasticity estimates. For
example, using data for all years (1975–2017), we have 3,029 counties. Moreover, we consider
several additional controls to mitigate potential concerns for confounding factors (e.g., GDP, per-
capita income, population) that introduce a bias in our baseline elasticity estimates (Table A11).

For the CONUS estimates using USGS+EPA data that pertain to the 48 CONUS states, 18 HUC2s
and 205 HUC4s, there is still variation in the number of observations for the various years. The
number of observations is between 2,055–2,758 depending on the set of additional controls. The
range of the between elasticity estimates is 0.111–0.291 (first precipitation quartile), 0.094–0.296
(median), 0.078–0.299 (third quartile) depending on the set of additional controls and the spatial
FEs.

We also produced a set of elasticity estimates based on cropland acres as opposed to corn acres
for the CONUS using the USGS+EPA data and the series of controls shown in Table A11. This
analysis is limited to the Census-of-Agriculture (CoA) years because we use the CoA as our source
of cropland acres. For the regressions that utilize cropland acres, we adjust our weather-related
controls such that we use total annual precipitation and its square and the following annual degree
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days: 0C◦, 5C◦, 8C◦, 10C◦, 12C◦, 20C◦, 25C◦, 29C◦, 30C◦, 31C◦, 32C◦, 33C◦, 34C◦. Hence, we
use 2 as opposed to 24 precipitation-related controls and a much richer set of variables capturing
degree days compared to the baseline models. Finally, the elasticity estimates are based on an
increase in cropland acres and quartiles of precipitation. Similar to prior calculations based on corn
acreage, we calculate these elasticities using mean cropland acres and mean nitrogen concentration.

For our between estimates based on CoA years, we have observations for approximately 2,350
counties. When we use data for a particular CoA year, the number of observations is between
1,733–2,146 depending on the set of additional controls. The range of the between elasticity
estimates is 0.088–0.403 (first quartile), 0.055–0.428 (median), 0.086–0.448 (third quartile) de-
pending on the set of additional controls and the spatial FEs.

A notable observation regarding the cropland elasticity estimates is that additional controls (e.g.,
CRP acres, population, GDP, per-capita income) have a de minimis effect on their magnitude once
we control for weather. The only exception is when we control for corn acres. For example,
moving from the specification in which we control for CRP acres, population, GDP, and land area
to the specification in which we also control for corn acres, the between cropland elasticities drop
from 0.251 to 0.088 (first quartile), 0.279 to 0.101 (median), and 0.303 to 0.112 (third quartile) in
the case of HUC4 FEs.
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A Appendix Figures

Figure A1. Corn acreage elasticities for cross-section regressions
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B. no fixed effects, 50% precipitation
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C. no fixed effects, 75% precipitation
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D. HUC4 fixed effects, 25% precipitation
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E. HUC4 fixed effects, 50% precipitation
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F. HUC4 fixed effects, 75% precipitation

Note: The figure shows point estimates and 95% confidence intervals (CIs) for the elasticity of nitrogen concentration with
respect to corn acres based on equations (A1) and (A2) using three precipitation quartiles. The left-most point estimates (red
diamonds) and their CIs are based on the between model in equation (A2). The standard errors are clustered by HUC4. The
specifications control for weather (precipitation, squared precipitation, moderate heat, and extreme heat). For additional details,
see Section A.5.
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Figure A2. Alternative datasets used to track nitrogen concentration I
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A. USGS-NWIS, site & date combs.
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B. USGS-NWQN, site & date combs.
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C. USGS+EPA, site & date combs.
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D. USGS-NWIS, monitoring sites
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E. USGS-NWQN, monitoring sites
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F. USGS+EPA, monitoring sites

Note: The figure shows the coverage implied by alternative datasets in terms of monitoring-site and date combinations in panels
A–C, and monitoring sites in panels D–F, respectively. For additional details, see Section A.6.2.
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Figure A3. Alternative datasets used to track nitrogen concentration II
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A. USGS-NWIS, counties
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B. USGS-NWQN, counties
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C. USGS+EPA, counties
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D. USGS-NWIS, hydrologic units
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E. USGS-NWQN, hydrologic units
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F. EPA+STORET, hydrologic units

Note: The figure shows the coverage implied by alternative datasets in terms of monitoring-site and date combinations in panels
A–C, and monitoring sites in panels D–F, respectively. For additional details, see Section A.6.2.
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A Appendix Tables

Table A1. Ranking of top 20 corn producing states

rank state production cumulative %
1 IA 81,235,491 19.035
2 IL 71,624,041 35.818
3 NE 48,475,417 47.177
4 MN 40,363,933 56.635
5 IN 34,377,920 64.690
6 OH 20,079,440 69.395
7 WI 16,704,529 73.310
8 SD 15,932,910 77.043
9 KS 13,118,720 80.117

10 MO 13,004,924 83.164
11 MI 11,429,575 85.842
12 TX 8,157,810 87.754
13 KY 6,546,971 89.288
14 CO 5,289,274 90.527
15 ND 5,234,568 91.754
16 PA 5,146,824 92.960
17 NC 4,405,036 93.992
18 TN 3,051,323 94.707
19 NY 2,759,176 95.354
20 GA 2,501,139 95.940

Note: We report total production for years 1970–2017 in 1,000 bushels. For additional details, see Section 5.1 in the main text.
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Table A2. USGS-NWIS WQP data diagnostics, Activity Media Subdivision Name

value obs. obs. %
surface water 693,671 95.978
groundwater 29,068 4.022

Note: For additional details, see Section A.2.

Table A3. USGS-NWIS WQP data diagnostics, Activity Type Code

value obs. obs. %
sample-routine 680,274 94.124
not determined 18,174 2.515
sample-composite without parents 11,774 1.629
quality control sample-field replicate 11,670 1.615
quality control sample-field spike 446 0.062
quality control sample-field blank 202 0.028
quality control sample-reference sample 67 0.009
quality control sample-other 62 0.009
quality control sample-spike solution 39 0.005
quality control sample-reference material 13 0.002
quality control sample-blind 12 0.002
unknown 6 0.001

Note: For additional details, see Section A.2.

Table A4. USGS-NWIS WQP data diagnostics, Detection Quantitation Limit Type Name

value obs. obs. %
612,111 84.693

historical lower reporting limit 103,289 14.291
laboratory reporting level 5,003 0.692
lower reporting limit 1,496 0.207
method detection limit (mdl) 795 0.110
upper reporting limit 39 0.005
lower quantitation limit 3 0.000
elevated detection limit 3 0.000

Note: For additional details, see Section A.2.
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Table A5. USGS-NWIS WQP data diagnostics, Hydrologic Event

value obs. obs. %
routine sample 632,764 87.551
storm 40,579 5.615
not determined (historical) 19,404 2.685
regulated flow 8,238 1.140
snowmelt 6,469 0.895
flood 4,119 0.570
tidal action 3,475 0.481
not applicable 3,031 0.419
under ice cover 2,494 0.345
spring breakup 1,078 0.149
drought 644 0.089
hurricane 211 0.029
volcanic action 100 0.014
earthquake 79 0.011
spill 23 0.003
affected by fire 16 0.002
dambreak 9 0.001
backwater 6 0.001

Note: For additional details, see Section A.2.

Table A6. USGS-NWIS WQP data diagnostics, Result Value Type Name

value obs. obs. %
actual 709,831 98.214
estimated 12,908 1.786

Note: For additional details, see Section A.2.
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Table A7. Breakdown of USGS-NWIS WQP nitrogen data

decade monitors dates states counties HUC8s obs R. obs D.
1970 12,702 2,992 49 1,653 1,334 127,658 1,128
1980 11,700 3,393 49 1,626 1,332 139,579 29,308
1990 11,006 3,566 49 1,670 1,232 128,577 37,670
2000 10,349 3,252 49 1,387 1,029 117,701 18,963
2010 4,402 3,004 47 871 690 105,813 23,559
All 40,001 16,207 49 2,529 1,758 619,328 110,628

Note: The column “obs. R” indicates the number of observations for which the the Result Measure Value is available. The
column “obs. D” indicates the number of observations for which the Detection Quantitation Limit Measure/Measure Value is
available. For additional details, see Section A.2.

Table A8. Breakdown of WQP nitrogen data

group 1 group 2 obs. obs. %
stream stream 604,604 83.655
lake lake 58,675 8.118
groundwater well 27,306 3.778
facility facility 11,932 1.651
marine estuary 10,575 1.463
spring spring 4,233 0.586
other land 1,427 0.197
groundwater subsurface 1,225 0.169

854 0.118
marine ocean 761 0.105
other wetland 739 0.102
other atmosphere 402 0.056
other surface 6 0.001

Note: For additional details, see Section A.2.

Table A9. Alternative total nitrogen concentration calculations

calculation obs. R2 intercept slope
00625+00631 277,364 0.997 -0.001 0.998
49570+62854 15,723 0.998 0.007 0.996
00623+00631+49570 15,723 0.998 0.007 0.996

Note: An observation is identified as monitoring site-date combination. For each monitoring site, we collected the average
daily Result Measure Value of the relevant parameter code and calculated the three sums indicated in the leftmost column of
the table. The four rightmost columns report the results of a regression of the average daily Result Measure Value of parameter
code 00600 used in the paper on the three alternative sums. There are 543,111 observations with non-missing values for
parameter code 00600. See also the National Water Quality Network (NWQN) sample collection and reporting methods link.
For additional details, see Section A.2.
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Table A10. Alternative nitrogen concentration calculations

A. dissolved nitrate plus nitrite 00613
calculation obs. intercept slope R2

00630 63,860 -0.0459 1.0010 0.9762
00618 367,968 0.0191 1.0025 0.9952
00620 28,299 -0.0205 1.0073 0.9891
71851 366,995 0.0198 1.0025 0.9953
71850 487 0.1066 0.9667 0.9316
00620+00613 15,363 -0.0316 0.9922 0.9937
00620+71856 16,641 -0.0321 0.9922 0.9935
00620+00615 20,121 -0.0028 0.9711 0.9913
71851+00613 223,843 0.0055 1.0000 0.9941
71851+71856 233,714 0.0053 1.0000 0.9941
71851+00615 16,834 -0.0113 0.9998 0.9998
71850+00613 59 0.1474 0.9032 0.8090
71850+71856 99 0.0894 0.9747 0.9111
71850+00615 19 0.1841 0.5836 0.5362

B. total organic nitrogen plus ammonia 00625
calculation obs. intercept slope R2

00605+00608 271,805 0.0044 1.0000 1.0000
00605+00610 267,772 0.3535 0.7825 0.7961

C. total nitrogen 00600
calculation obs. intercept slope R2

method 1 577,683 0.0122 0.9980 0.9804
method 2 19,818 -0.0011 1.0001 0.9965
method 3 16,542 -0.0005 1.0001 0.9996

Note: An observation is identified as a monitoring site-and-date combination. For each monitoring site, we collected the average
daily Result Measure Value for the relevant parameter code from the WQP. The four rightmost columns report the results of
a regression of the average daily Result Measure Value for dissolved nitrate plus nitrite, total organic nitrogen plus ammonia,
and total nitrogen, on the average daily Result Measure Value of the parameter codes indicated in the leftmost column. These
parameter codes are based on the authors’ review of USGS methodologies. For additional details, see Section A.3.
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Table A11. Additional controls in cross-section regressions based on CONUS and USGS+EPA data

model controls
1 none
2 weather
3 weather, population, GDP
4 weather, population, per-capita income
5 weather, CRP acres
6 weather, CRP acres, population, GDP
7 weather, CRP acres, population, per-capita income
8 weather, CRP acres, population, GDP, land area
9 weather, CRP acres, population, GDP, land area, corn acres

Note: For additional details, see Section A.6.3.

72


