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5
Risk Response in Agriculture

Jeffrey LaFrance, Rulon Pope, and Jesse Tack

5.1   Introduction

Farm and food policies affect crop acres, asset management, intensive and 
extensive margin decisions, and risk management choices in agricultural 
production. For example, in 1991, less than 25 percent of cropland (82 mil-
lion acres) was covered by a federally subsidized crop insurance contract, 
with $11.2 billion in total liability, $740 million in insurance premiums, 
premium subsidies of 25 percent ($190 million) of gross farm premiums, 
and total indemnity payments of $955 million. Relative to premiums paid 
by farmers ($550 million), for each $1.00 in premiums paid by the typical 
insured farmer, $1.75 in indemnity payments were received.

Even with this relatively profi table insurance program, farmer participa-
tion rates remained quite low. This outcome is likely due to the race to the 
bottom problem in a pooling equilibrium (LaFrance, Shimshack, and Wu 
2000, 2001, 2002, 2004). However, Congress responded to the appearance 
of  an incomplete insurance market with increased subsidies and many new 
forms of insurance.

The 1996 Federal Agricultural Improvement and Reform Act and the 
amendments to the 1938 Federal Crop Insurance Act that are commonly 
known as the Agricultural Risk Protection Act of 2000 mandated higher 
subsidy rates, the development and marketing of new insurance products for 
virtually every crop and livestock product produced in the United States, and 
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substantial subsidies for crop insurance marketing fi rms and large private 
reinsurance companies.

This change in farm policy greatly expanded the federal crop insurance 
program. In 2003, the Federal Crop Insurance Corporation (FCIC) pro-
vided insurance products for more than 100 crops on 217 million acres 
(2/ 3 of all cropland). The total insurance liability was $40.6 billion, with 
$3.4 billion in insurance premiums, subsidies of almost 60 percent of gross 
premiums ($2.0 billion), and total indemnity payments of $3.2 billion. The 
current program includes subsidy payments to private companies marketing 
federal crop insurance equal to 24.5 percent of gross premiums for admin-
istration and oversight (A&O), and to private reinsurance companies equal 
to 13.6 percent of gross premiums. Reinsurance companies also have the 
right to sell up to 50 percent of their contracts back to the FCIC (that is, 
to the taxpayer) at cost. The FCIC’s Risk Management Agency’s (RMA) 
book of business shows that 20 percent of the insured farms account for 
nearly 80 percent of indemnity payments. This suggests substantial adverse 
selection, as well as moral hazard, because the majority of  the federally 
subsidized crop insurance products calculate premiums based on deviations 
from county- level yield trends. That is to say, FCIC insurance products are 
based on a pooling equilibrium established at the county level and, in some 
cases, larger areas known as risk regions.

The net effect is that for each $1.00 in premiums actually paid by farmers, 
they receive an average of $2.40 in indemnity payments, insurance marketing 
fi rms receive $0.40 in A&O subsidies, and reinsurance companies make in 
the neighborhood of $0.45 in profi t due to the combined direct subsidies on 
premiums and their reinsurance rights with the FCIC, which allow them to 
cream, or high grade, the insurance pool.

In 2004, the RMA issued a request for proposals to develop subsidized 
pasture and range insurance for 440 million acres of private, public, and 
Native American pasture and rangeland in the country. Many agricultural 
economists at land grant universities across the country actively consult 
with the RMA and private insurance companies to develop new and expand 
existing federally subsidized crop insurance products.

Although this is only one example of the ubiquitous nature of federal 
intervention in U.S. agriculture, there is a large literature on the impacts of 
subsidized crop insurance on variable input use and the intensive margin 
(Nelson and Loehman 1987; Chambers 1989; Quiggin 1992; Horowitz and 
Lichtenberg 1994; Smith and Goodwin 1996; Babcock and Hennessy 1996). 
The effects of subsidized crop insurance programs on the extensive margin 
also has been the subject of  considerable analysis (Gardner and Kramer 
1986; Goodwin and Smith 2004; Keeton, Skees, and Long 1999; and Young 
et al. 2000; LaFrance, Shimshack, and Wu 2000, 2001, 2002, 2004), all of 
which conclude that subsidized crop insurance results in additional plant-
ing of marginal crop acres. Williams (1988), Turvey (1992), Wu (1999), and 
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Soule, Nimon, and Mullarkey (2000) examine the impacts of  subsidized 
crop insurance on choices of  crop mixes and acreage decisions. Empiri-
cal results in this component of  the literature suggest that economically 
marginal land also is environmentally marginal. These results all suggest 
that subsidized crop insurance tends to increase environmental degradation. 
Even so, very little of the previous work in this area uses structural models 
or takes into account the dynamic nature of agricultural decision making 
under risk.

To better understand these and many other longstanding issues in U.S. 
agricultural policy, this chapter develops a comprehensive structural econo-
metric model of variable input use; crop mix and acreage choices; investment 
and asset management decisions; and consumption, savings and wealth 
accumulation in a stochastic dynamic programming model of  farm- level 
decision making over time. This model develops and establishes clear and 
intuitively appealing relationships between dynamic life- cycle consump-
tion theory, the theory of the competitive fi rm subject to risk, and modern 
fi nance theory.

We present, discuss, and apply a new class of variable input demand sys-
tems in a multiproduct production setting. All of the models in this class 
can be estimated with observable data; are exactly aggregable; are consistent 
with economic theory for any von Neumann- Morgenstern expected util-
ity function; and can be used to nest and test exact aggregation, economic 
regularity, functional form, and fl exibility. Implications of monotonicity, 
concavity in prices, and convexity in outputs and quasi- fi xed inputs are de-
veloped for a specifi c subset of this class of models. We then apply this to thir-
teen variable inputs in U.S. agriculture over the sample period 1960 to 1999.

The results obtained from this empirical variable cost model are used to 
help develop a structural model of the dynamic decision problems faced by 
a generic agricultural producer. In this life- cycle model of agricultural deci-
sions under risk, farmers create income and wealth through savings, invest-
ment in risky fi nancial assets, own- labor choices both on-  and off- farm, 
and agricultural production and investment activities. This disciplines the 
economic theory of agricultural production over time and under risk and 
helps to better identify risk preferences and other model parameters.

While it is beyond the scope of this chapter, one could solve the system of 
arbitrage equations derived in section 5.4 for optimal farmland, capital, and 
share allocations and use the estimated parameters to simulate the effects 
of a variety of different agricultural policy instruments. For example, one 
could use the parameter estimates to investigate the effect of policies target-
ing lower food prices, taking into account the supply lag driven by partial 
adjustment of land and capital over time. In addition, one could use these 
estimates to investigate how far the extensive margin will expand or con-
tract in response to a variety of  policy scenarios including subsidization 
of corn for ethanol, an increase in the variety of subsidized crop insurance 
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products, and the introduction of new revenue support programs such as 
the Average Crop Revenue Election (ACRE) program.

Our empirical fi ndings have important implications for the agricultural 
economy and associated policy instruments. The majority of  theoretical 
and empirical agricultural policy analysis assumes curvature of the farm-
 agents utility function and the inability of these agents to invest in off- farm 
revenue opportunities when making on- farm production decisions. While 
our empirical fi ndings do fi nd evidence of utility function curvature, we also 
fi nd that this function is much fl atter than is typically assumed or estimated. 
Importantly, this fi nding suggests that previous studies of  risk- reducing 
policy instruments have likely overstated on- farm impacts. We also fi nd evi-
dence that farmers respond to off- farm revenue opportunities, which has 
important implications for the current debate on the subsidization of corn 
for ethanol. Given the role of the general economy in providing farm- agents 
with off- farm revenue opportunities, this fi nding suggests that farm- level 
impacts of ethanol subsidization have been affected by the recent downturn 
in the economy. This is a subtle point that is not addressed in the literature 
surrounding this debate but implies that analysis conducted prior to the 
downturn is no longer relevant.

5.2   The Production Model and Two Results

Five longstanding questions in economics, econometrics, and agricultural 
economics are the choice of functional form; the degree of fl exibility; the 
conditions required for and regions of  economic regularity; consistency 
with aggregation from micro-  to macro- level data; and how best to handle 
simultaneous equations bias, errors in variables, and latent variables in a 
structural econometric model. In this chapter, we attempt to deal with all of 
these issues in a coherent framework for the analysis of a life- cycle model of 
agricultural production, investment, consumption, and savings decisions.

Analysis of  multiproduct behavior of  fi rms is common in economics 
(Färe and Primont 1995; Just, Zilberman, and Hochman 1988; Shumway 
1983; Lopez 1983; Akridge and Hertel 1986). A large literature on func-
tional structure and duality guides empirical formulations and testing based 
on concepts of nonjointness and separability (Lau 1972, 1978; Blackorby, 
Primont, and Russell 1977, 1978; Chambers 1984). Nonjoint production 
processes reduce to additivity in costs (Hall 1973; Kohli 1983). Separability 
in a partition of inputs or outputs often results in separability in a similar 
partition of prices (Blackorby, Primont, and Russell 1977; Lau 1978).

The neoclassical model of conditional demands for variable inputs with 
joint production, quasi- fi xed inputs, and production and output price 
risk is

(1) x(w, y�, z) � arg min {w�x : F(x, y�, z) � 0}
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where x ∈ � ⊆ R�
nx is an nx- vector of variable inputs, w ∈ � ⊆ R�

nx is an 
nx- vector of variable input prices, y� ∈ � ⊆ R�

nx is an ny- vector of planned out-
puts, z ∈ Z ⊆ R�

nx is an nz- vector of quasi- fi xed inputs.1 F : � � � � Z → R 
is the joint production transformation function, which is the boundary of a 
closed and convex production possibilities set that is characterized by free 
disposal in inputs and outputs. Let the variable cost function be denoted by 
c(w, y�, z) � w�x(w, y�, z). We assume throughout that the production process 
is subject to supply shocks of the general form

(2) y � y� � h(y�, z, ε), E[h(y�, z, ε) | x, y�, z] � 0.

In either a static or a dynamic setting, it is a simple matter to show that 
equation (1) is implied by equation (2) and the expected utility hypothesis 
for all von Newman- Morgenstern preferences (Pope and Chavas 1994; Ball 
et al. 2010).

Planned output is a vector of latent, unobservable variables in produc-
tion with supply risk. Hence, to estimate the demand system in equation (1) 
directly, one must either identify and estimate the expectations formation 
process or address the errors in variables problem associated with using y in 
place of y� in the demand equations (Pope and Chavas 1994). One branch of 
the literature advocates specifying an ex ante cost function where planned 
output is replaced by cost, which is observable when the variable inputs are 
committed to the production process (Pope and Chavas 1994; Pope and Just 
1996; Chambers and Quiggin 2000; Chavas 2008; Ball et al. 2010; LaFrance 
and Pope 2010). In a joint production process, this requires making assump-
tions such that the input demands are functions of input prices, the levels of 
quasi- fi xed inputs, and the variable cost of production,

(3) x(w, y�, z) � x̃[w, z, c(w, y�, z)].

This approach makes particular sense in agriculture where outputs and 
output prices are observed ex post. The main result of LaFrance and Pope 
(2010) on this question is as follows (a proof of this result is presented in 
appendix A of this chapter).

Proposition 1. The following functional structures are equivalent:

(4) x(w, y�, z) � x̃[w,c(w, y�, z), z];

(5) c(w, y�, z) � c̃ [w, z, �(y�, z)];

(6) F(x, y�, z) � F̃ [x, z, �(y�, z)].

1. In this section, we use y� ∈ R�
ny to denote the ny- vector of planned or expected outputs to 

simplify notation. In later sections, we modify this notation to Y� � a•y�, where a is the ny- vector 
of acres planted to crops, y� now is the ny- vector of expected yields, and • is the Hadamard 
product. We also defi ne z explicitly in the following.
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In other words, outputs must be weakly separable from the variable input 
prices in the variable cost function. This, in turn, is equivalent to outputs 
being weakly separable from the variable inputs in the joint production 
transformation function.

This is a tight result—separability is both necessary and sufficient for the 
variable inputs to be estimable in ex ante form. Hereafter, we will call any 
such demand model an ex ante joint production system.

A second common issue in the empirical analysis of agricultural supply 
decisions is that some level of aggregation is virtually unavoidable. Micro-
 level data needed to study input use, acreage allocations, and asset manage-
ment choices at the farm level do not exist. Aggregation from micro- level 
decision makers to macro- level data has been studied extensively in con-
sumer theory.2 This has received less attention in production economics 
(Chambers and Pope 1991, 1994; Ball et al. 2010; LaFrance and Pope 2008, 
2010).

Recently, LaFrance and Pope (2009) obtained the indirect preferences for 
all exactly aggregable, full rank systems of consumer demand equations. 
Their result extends directly to production in the following way. Let K ∈ 
{1,2,3,4} and defi ne the smooth real- valued function, �: R � R → R, by

(7) �[�(w),�] =
�,                                         if K = 1,2 or K = 3 and ′� (s) = 0,

� + [�(s) + �(s,�)2 ]ds,
0

� ( w )

∫ if K = 3,4, and ′� (s) ≠ 0,             

⎧
⎨
⎪

⎩⎪

subject to �(0,�) � � and ∂�(0,�)/ ∂s � �(0) � �2, where � : � → R and 
� : R → R are smooth, real- valued functions, and � is 0° homogeneous. A 
class of full rank and exactly aggregable ex ante production systems can be 
characterized as follows.3

Proposition 2. Let  : � → R��,  ∈ ��, be strictly positive valued, 
increasing, concave, and 1° homogeneous; let � : � → R�, � ∈ ��, be posi-
tive valued and 0° homogeneous; let 
, 	, �, � : � → C � {a � ιb, a, b ∈ R}, 

, 	, �, � ∈ ��, be 0° homogeneous and satisfy 
� –  	� � 1, ι � 	– 1�; and let 
f : R�� → C, f ∈ ��, and f � � 0. Then the variable cost function for any full 
rank, exactly aggregable, ex ante joint production system is a special case of

2. An important subset of the literature on this topic includes Gorman (1953, 1961, 1981); 
Muellbauer (1975, 1976); Howe, Pollak, and Wales (1979); Deaton and Muellbauer (1980); 
Jorgenson, Lau, and Stoker (1980, 1982); Russell (1983, 1996); Jorgenson and Slesnick (1984, 
1987); Lewbel (1987, 1988, 1989, 1990, 1991, 2003); Jorgenson (1990); Diewert and Wales 
(1987, 1988); Blundell (1988); van Daal and Merkies (1989); Jerison (1993); Russell and Farris 
(1993, 1998); Banks, Blundell, and Lewbel (1997), LaFrance et al. (2002); LaFrance (2004); 
LaFrance, Beatty, and Pope (2006); and LaFrance and Pope (2009). The focus in the literature 
has been interior solutions and smooth demand equations. We remain faithful to this approach 
throughout the present chapter.

3. This result is consistent with exact aggregation as defi ned by Gorman (1981). One part 
of our ongoing work is to extend this class to Lau’s (1982) defi nition of exact aggregation, 
generalizing the left- hand side of equation (8) to f [c(w,y�,z)/,z], wherein cost and quasi- fi xed 
inputs vary across individual economic agents.
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(8) 

    
f

c(w,y,z)
(w)

⎛
⎝⎜

⎞
⎠⎟
= 
(w)�[�(w),�(y,z)]+	(w)

�(w)�[�(w),�(y,x)]+ �(w)

LaFrance and Pope (2009) present a complete proof of necessity in the 
case of consumer choice theory. Their proof applies to the current problem 
with only minor changes in notation. Sufficiency is shown here by consider-
ing the structure of the input demands generated by equation (8). This is 
accomplished simply enough by differentiating with respect to w and apply-
ing Shephard’s lemma. To make the notation as compact as possible, let a 
bold subscript w denote a vector of partial derivatives with respect to the 
variable input prices and suppress the arguments of the functions {
, 	, �, �, 
�, } to yield (after a large amount of straightforward but tedious algebra, 
which is presented in appendix B):

(9) x � 
w
�


c � 
[
	w � 	
w � (
2� � 	2)�w]
1
�
f�

 �[
�w � �
w � �	w � 	�w � 2(
�� � 	�)�w]
f

�
f�

 �[��w � ��w � (�2� � �2)�w]
f 2

�
f� �.

Thus, equation (8) generates input demands that have the fi nitely additive 
and multiplicatively separable structure of any full rank, exactly aggregable 
system (Gorman 1981; Lau 1982; Lewbel 1989). Note that there are poten-
tially up to four linearly independent variable cost terms on the right with 
four associated linearly independent vectors of input price functions. Hence, 
any system generated by equation (8) will have rank up to, but no greater 
than four, the highest possible rank (Lewbel 1987, 1990, 1991; LaFrance 
and Pope 2009).

A third issue when estimating a system of variable input demand equa-
tions such as equation (9) is the fact that quasi- fi xed inputs, planned out-
puts, variable input prices, and total variable cost all are jointly determined 
with the input demands. Consistent estimation under these conditions is 
addressed in the following empirical application.

5.3   The Econometric Cost Model, Data, and Estimates

Previous work at both state and national levels of aggregation with our data 
set strongly suggests that full rank three seriously overparameterizes the 
structural model for this data. As a result, we restrict attention here to a rank 
two model. In this part of the chapter, we analyze the conditional demands 
for thirteen variable inputs in U.S. agriculture: pesticides and herbicides; 
fertilizer; fuel and natural gas; electricity; purchased feed; purchased seed; 
purchased livestock; machinery repairs; building repairs; custom machinery 
services; veterinary services; other materials; and labor. The specifi cation of 
the variable cost function normalized by the farm wage rate is,
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(10) 
ct ( �wt ,At ,Kt ,at ,Yt ) = [
10 +�1

T �wt ]At + [
20 +�2
T �wt ]Kt

  + �wt
TB �wt + 2�T �wt +1× �(At ,Kt ,at ,Yt ),

where zt � [AtKtat]
T; At is farmland, Kt is the value of farm capital; at � 

[a1ta2t . . . anyt]
T is the ny- vector of acres planted to crops; At � a0t � �Tat, 

with a0t denoting farmland that is not devoted to crop production; Y�t � 
[a1ty�1t . . . anyty�nyt]

T is the ny- vector of planned crop production, with each ele-
ment defi ned as the product of acres planted to the crop times the expected 
yield per acre; and w̃t � [w1t/ wnxt, . . . , wnx– 1t/ wnxt]

T is the (nx –  1)- vector of 
variable input prices except the farm wage normalized by wnxt.

We treat the nx
th input, labor, asymmetrically with respect to the other 

inputs both in the structural and stochastic parts of the econometric model. 
To conserve and simplify notation from this point forward, we drop the tilde 
(~) over the fi rst nx –  1 input prices, absorb the normalization by wnx

 into the 
notation for variable cost and the nx – 1 fi rst input prices, and defi ne N � 
nx –  1.

We assume constant returns to scale so that �(At,Kt,at,Yt) is 1° homo-
geneous. Defi ne 
1(wt) � 
10 � �1

Twt, 
2(wt) � 
20 � �2
Twt, and 	(wt) � 

(w1
TBwt � 2�Twt � 1)1/2. The necessary and sufficient conditions for the vari-

able cost function to be increasing and concave in the variable input prices 
throughout an open set containing the data points are as follows (see appen-
dix C for a complete derivation of the cost function and �):

Monotonicity in w:

(11) 

      

∂c(wt ,At ,Kt ,at ,Yt )

∂w
= �1At + �2 Kt +

�

	(wt )
(Bwt + �)

= �1At + �2 Kt +
ct − 
1 (wt )A1 − 
2 (wt )Kt

wt

T
Bwt + 2�T

wt +1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
(Bwt + �) ≥ 0;

Concavity in w:

(12) 

      

∂2c(wt ,At ,Kt ,at ,Yt )

∂w∂wT
= �

	(wt )
B − �

	(wt )
2

(Bw+�)(Bw+�)T

=
c(wt ,At ,Kt ,at ,Yt )−
1(wt )At −
2 (wt )Kt

wt
TBwt + 2�Twt +1

⎡

⎣
⎢
⎢

× B −
(Bwt +�)(Bwt +�)T

(wt
TBwt + 2�Twt +1)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,

symmetric, negative semidefi nite. Setting B � LLT � ��T, where L is a 
(lower or upper) triangular matrix with nonzero main diagonal elements 
implies
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(13) 
     

B �

�T 1

⎡

⎣
⎢

⎤

⎦
⎥ =

L �

0T 1

⎡

⎣
⎢

⎤

⎦
⎥

LT 0T

�T 1

⎡

⎣
⎢

⎤

⎦
⎥ =

LLT +��T �

�T             1

⎡

⎣
⎢

⎤

⎦
⎥

is positive defi nite. It follows that [B –  (Bw � �)(Bw � �)T/ (wt
TBwt � 2�Twt � 1)] 

is positive semidefi nite and that

(14) wt
T 1⎡⎣ ⎤⎦

B �

�T 1

⎡

⎣
⎢

⎤

⎦
⎥

wt

1

⎡

⎣
⎢

⎤

⎦
⎥ = wt

TBwt + 2�Twt +1> 0∀wt ∈�+
nx −1.

Given this, the variable cost function is concave in w if  and only if

(15) ct(w̃t,At,Kt,at,Y�t) � [
0 � �1
Tw̃t] At � [
2 � �2

Tw̃t]Kt

(LaFrance, Beatty, and Pope 2006). Hence, we impose B � LLT � ��T dur-
ing estimation and check the monotonicity conditions in equation (11) at 
all data points once the model is estimated and fi nd that they are satisfi ed. 
We develop the specifi cation for �(At,Kt,at,Y�t) in the section on life- cycle 
consumption and investment decisions and appendix C.

Applying Shephard’s lemma to equation (10) and rearranging terms then 
gives the empirical variable input demand equations in normalized expen-
ditures per dollar of capital as

(16) et =Wt �1

At

Kt

+ �2 +
(ct / Kt ) − 
1 (wt )(A2 / Kt ) − 
2 (wt )

w
t

T
Bwt + 2�T

wt +1

⎛

⎝⎜
⎞

⎠⎟
(Bwt + �)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ ut ,

where Wt � diag[wit] is the diagonal matrix with wi,t as the ith main diagonal 
element, and et � [w1,tx1,t . . . wnx– 1,txnx– 1,t]

T is the (nx –  1)- vector of normalized 
expenditures per dollar of capital on all inputs except labor, and we follow 
standard practice in the empirical analysis of demand systems and add a vec-
tor of random errors to the right- hand- side to obtain the empirical model. 
We assume that the errors terms for the twelve equations estimated follow 
to an unrestricted fi rst- order autoregressive (AR[1]) process,

(17) ut � Rut�1 � �t, �t i.i.d. (0, �), t � 1, . . . , T.

As noted in the preceding section, we apply this model to annual aggregate 
data on thirteen variable inputs in U.S. agriculture (pesticides and herbi-
cides, fertilizer, fuel and natural gas, electricity, purchased feed, purchased 
seed, purchased livestock, machinery repairs, building repairs, custom 
machinery services, veterinary services, other materials, and farm labor). 
The sample period is 1960 to 1999. These data were compiled by the United 
States Department of Agriculture’s (USDA) Economic Research Service 
(ERS) and is described in detail in Ball, Hallahan, and Nehring (2004). 
Farmland, equipment, buildings, and structures are treated as quasi- fi xed 
inputs. Hereafter, this data set is called the Ball data.

Due to the way that several variables are constructed in the Ball data, 
it is necessary to modify and augment this data for empirical implemen-
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tation. First, we defi ne the replacement cost of  owner- operator labor by 
the farm wage rate. This implies that the return to owner- operator labor 
in the Ball data due to management skill is treated as a part of the resid-
ual claimant’s quasi- rent. Second, we use a direct measure of the value of 
capital obtained from the ERS rather than the measures constructed in 
the Ball data. Third, estimates of  the price of  farmland are taken from 
state- level surveys conducted by the National Agricultural Statistics Ser-
vice (NASS), rather than the constructed measures in the Ball data. Finally, 
we adjust the measure of agricultural land. The Census of Agriculture has 
reported land in farms in four-  to fi ve- year intervals for 1954, 1959, 1964, 
1969, 1974, 1978, 1982, 1987, 1992, 1997, 2002, and 2007. These are the 
total farmland numbers used in the sample years that match the census 
years. The ERS reports the harvested acres for all major crops by state 
and year since 1947. This data is used to adjust the farmland measures 
in the Ball data as follows. First, the difference between total farmland in 
the Ball data and harvested acres is calculated for each noncensus year by 
state. Second, in each period between adjacent censuses, the average of this 
difference is calculated. This mean difference is treated as fi xed in each of the 
three-  or four- year intervals between census years and added to harvested 
acres to obtain the measure of farmland used in this study in those years of 
our sample period. We normalize costs, expenditures, and acres by capital 
rather than total land because we are more confi dent in the capital mea-
sure, and Pope, LaFrance, and Just (2007) have shown that defl ating by a 
variable that is subject to measurement error leads to difficult econometric 
issues.

Estimation is by nonlinear generalized method of  moments (GMM), 
which assumes a parametric 12 � 12 AR(1) process for the time series com-
ponent and White/ Huber robust covariance matrix estimator that is con-
sistent under heteroskedasticity of an unknown form. The instruments are 
variable cost per unit of capital, land per unit of capital, and variable input 
prices all lagged two periods, plus the following general economy variables 
lagged one period: real per capita disposable personal income; unemploy-
ment rate; the real rate of return on AAA corporate thirty- year bonds; real 
manufacturing wage rate; real index of prices paid by manufacturers for 
materials and components; and real index of prices paid by manufacturers 
for fuel, energy and power. Per capita disposable personal income is defl ated 
by the Consumer Price Index (CPI) for all items. The aggregate wholesale 
price variables are defl ated by the implicit price defl ator for gross domestic 
product (GDP). The real rate of return on corporate bonds is calculated as 
the nominal rate of return minus the midyear annual infl ation rate.

Table 5.1 presents the estimated 12 � 12 AR(1) matrix. The Eigen values 
of the implied autocovariance structure are well within the stability region, 
with two real roots and fi ve complex conjugate pairs:
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(18) �1 � 0.6772;

 �2 � 0.1294;

 �3,4 � 0.7594 � 0.2998ι, modulus � 0.8165;

 �5,6 � 0.4104 � 0.5273ι, modulus � 0.6682;

 �7,8 � 0.3056 � 0.3371ι, modulus � 0.4550;

 �9,10 � �0.4222 � 0.0832ι, modulus � 0.4304;

 �11,12 � �0.0863 � 0.2638ι, modulus � 0.2776.

A system of  twelve linear fi rst- order difference equations has the same 
dynamic structure as a single twelfth- order linear difference equation. This 
implies that the time series properties of this model are quite complex. No 
evidence is found for any additional serial correlation in the data.

The single equation and systemwide fi rst-  and second- order Brownian 
bridge tests for specifi cation error and parameter instability developed in 
LaFrance (2008) provide no evidence of misspecifi cation or parameter insta-
bility. (Appendix D presents and discusses this set of within- sample residual 
test statistics.)

Table 5.2 presents the parameter estimates for the structural part of the 
model. To obtain a positive defi nite B matrix, the lower four main diago-
nal elements of the Choleski factor L were restricted to 0.01, and the off- 
diagonal elements in the last four columns were restricted at 0.0. In other 
words, the estimated symmetric but not curvature restricted B matrix has 
four negative Eigen values. As a consequence, the standard errors in table 
5.2 are conditional on these inequality restrictions. The estimated structural 
parameters reported in table 5.2 generate a variable cost function that is 
increasing and weakly concave in all variable input prices throughout the 
data set. We conclude that this is a coherent and reasonable model of the 
short- run cost of production in U.S. agriculture.

5.4   Crop Acres, Capital, Savings and Investment, 
and Consumption in Agriculture

Although the organizational form of farms can vary widely, a recent 
report by Hoppe and Banker (2006) fi nds that 98 percent of  U.S. farms 
remained family farms as of 2003. In a family farm, the entrepreneur con-
trols the means of production and makes investment, consumption, and 
production decisions. In this section, we develop and analyze a model of 
the intertemporal nature of these decisions. The starting point is a model 
similar in spirit to Hansen and Singleton’s (1983), but generalized to include 
consumption decisions and farm investments as well as fi nancial investments 
and production decisions. The additional variable defi nitions required for 
this are as follows:
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Wt � beginning- of- period total wealth,
bt � current holding of bonds with a risk free rate of return rt,
ft � current holding of a risky fi nancial asset,
pF,t � beginning- of- period market price of the fi nancial asset,
�F,t�1 � dividend plus capital gains rate on the fi nancial asset,
ai,t � current allocation of land to the ith crop, i � 1, . . . , nY,
At � total quantity of farm land,
pL,t � beginning- of- period market price of land,
�L,t�1 � (pL,t�1 –  pL,t) /  pL,t � capital gain rate on land,
y�i,t � expected yield per acre for the ith crop, i � 1, . . . ,nY,
yi,t�1 � realized yield of the ith crop,
pY,t�1 � end- of- period realized market price for the ith farm product,
qt � vector of quantities of consumption goods,
pQ,t � vector of market prices for consumer goods,
mt � total consumption expenditures,
u(qt) � periodic utility from consumption.

As with all discrete time models, timing can be represented in multiple 
ways. In the model used here, all fi nancial returns and farm asset gains 
are assumed to be realized at the end of each time period (where deprecia-
tion is represented by a negative asset gain). Variable inputs are assumed to 
be committed to farm production activities at the beginning of each deci-
sion period, and the current period market prices for the variable inputs 
are known when these use decisions are made. Agricultural production per 
acre is realized stochastically at the end of the period such that

(19) yi,t�1 � y�i,t(1 � εi,t�1), i � 1, . . . , nY,

where εi,t�1 is a random output shock with E(εi,t�1) � 0. Consumption deci-
sions are made at the beginning of  the decision period, and the current 
market prices of consumption goods are known when these purchases are 
made. Utility is assumed to be strictly increasing and concave in qt. The 
total beginning- of- period quantity of land is At � �Tat, with � denoting an 
nY- vector of ones. Homogeneous land is assumed with a scalar price, pL,t.

To simplify our derivations, we require an uncommon piece of  matrix 
notation. The Hadamard/ Schur product of two n � m matrices A and B is 
the matrix whose elements are element- by- element products of the elements 
of A and B, A•B � C ⇔ cij � aijbij ∀i, j. This defi nition assists the derivation 
of the arbitrage conditions present in what follows.

Revenue at t � 1 is the random price times production

(20) Rt�1 � 
i=1

nY

∑ ( pYi,t�1Y�i,tai,t(1 � εi,t�1)) � ( pY,t�1•at•y�t)
T(� � �t�1).

Wealth is allocated at the beginning of period t to investments, the variable 
cost of production, and consumption,

(21) Wt � bt � ft � pL,tAt � Kt � ct(wt,at,Kt,Y�t) � mt.
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Although some costs occur at or near harvest (near t � 1), we include 
all costs in (21) at time t because they are incurred before revenues are re-
ceived. Consumer utility maximization yields the indirect utility function 
conditioned on consumer good prices and consumption expenditure,

(22) υ(pQ,t, mt) � max
q∈R+

nQ

u(q) : pQ ,t
T q = mt{ }.

Realized end of period wealth is

(23) Wt�1 � (1 � r)bt � (1 � �F,t�1)ft � (1 � �L,t�1)pL,tAt

 �(1 � �K,t�1)Kt � (pY,t�1•at•y�t)
T(� � �t�1),

where �K,t�1 is the proportional change in the value of capital held at the 
beginning of the production period. Thus, the decision maker’s wealth is 
increased by net returns on assets and farm revenue. The owner/ operator 
decision maker’s intertemporal utility function is assumed to be

(24) Ut(q1, . . . ,qT) � 
t=0

T

∑(1 � r)�tu(qt).

The producer is assumed to maximize von Neumann- Morgenstern expected 
utility of  the discounted present value of  the periodic utility fl ows from 
goods consumption.

By Euler’s theorem, constant returns to scale implies linear homogeneity 
of the variable cost function in capital, land, and output. For the variable 
cost function derived and estimated in this chapter, this implies

(25) 
ct (wt ,at ,At ,Kt ,Yt ) �

∂ct (wt ,at ,At ,Kt ,Yt )

∂at
T

at +
∂ct (wt ,at ,At ,Kt ,Yt )

∂At

At

+
∂ct (wt ,at ,At ,Kt ,Yt )

∂Kt

Kt +
∂ct (wt ,at ,At ,Kt ,Yt )

∂Yt
T

Yt .

The vector of expected crop outputs satisfi es

(26) Y�t � y�t•at,

where y�j,t is the expected yield per acre, and aj,t is the number of acres planted 
for the j th crop. The variable cost function might depend on time due to tech-
nological change or other dynamic forces, and the subscript t indicates this 
possibility. To distinguish quasi- fi xed from variable inputs and to account 
for the possibility of  hysteresis in agricultural investments, we allow for 
adjustment costs for total farmland and capital,

(27) CAdj(At � At�1,Kt � Kt�1) � 
1
�
2

�A(At � At�1)
2 � 

1
�
2

�K(Kt � Kt�1)
2,

with �A,�K � 0.
This problem is solved by stochastic dynamic programming working 
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backward recursively from the last period in the planning horizon to the 
fi rst. In the last period, the optimal decision is to invest or produce nothing 
and consume all remaining wealth, that is, mT � WT. Denote the last peri-
od’s optimal value function by �T(WT,AT– 1,KT– 1). Then �T(WT,AT– 1,KT– 1) � 
υ(pQ,T, WT) is the optimal utility for the terminal period. For all other 
time periods, stochastic dynamic programming yields the Bellman back-
ward recursion (Bellman and Dreyfus 1962). For an arbitrary t � T, the 
La grangean for the problem at time t is

(28) �t � υ(pQ,t,mt) � (1 � r)�1Et{Vt�1[(1 � r)bt � (1 � �F,t�1)ft

 � pL,t�1At � (1 � �K,t�1)Kt � ( py,t�1•y�t•at)
T(� � �t�1),At,Kt]}

 � �t{Wt � mt � bt � ft � pL,tAt � Kt � ct(wt,at,At,Kt,y�t•at)

 �
1
�
2

�A(At � At�1)
2 � 

1
�
2

�K(Kt � Kt�1)
2} � �t(At � �Tat),

where Et(•) is the conditional expectation at the beginning of period t given 
information available at that point in time, �t is the shadow price for the 
beginning- of- period wealth allocation constraint, and �t is the shadow price 
for the land allocation constraint. The fi rst- order, necessary and sufficient 
Kuhn- Tucker conditions are the two constraints and the following:

(29) 
∂�t

��
∂mt

 � 
∂υt
�
∂mt

 � �t � 0, mt � 0, mt

∂�t
��
∂mt

 � 0;

(30) 
∂�t

��
∂bt

 � Et� ∂Vt�1
�
∂Wt�1

 � �t � 0, bt �, bt

∂�t
��
∂bt

 � 0;

(31) 
∂�t

��
∂ft

 � (1 � r)�1Et� ∂Vt�1
�
∂Wt�1

(1 � �F,t�1)� � �t � 0, ft � 0, ft

∂�t
�
∂ft

 � 0.

(32) 
∂�t

��
∂At

 � (1 � r)�1Et� ∂Vt�1
�
∂Wt�1

pL,t�1 � 
∂Vt�1
�
∂At


 ��t�pL,t � 

∂ct
�
∂At

 � �A(At � At�1)� � �t � 0, At � 0, At

∂�t
��
∂At

 � 0;

(33) 
∂�t

��
∂Kt

 � (1 � r)�1 Et� ∂Vt�1
�
∂Wt�1

 (1 � �K,t�1) � 
∂Vt�1
�
∂Kt�1

�
 � �t �1 � 

∂ct
�
∂Kt

 � �K(Kt � Kt�1)� � 0, Kt � 0, Kt

∂�t
��
∂Kt

 � 0;

(34) 
∂�t
�
∂at

 � (1 � r)�1Et� ∂Vt�1
�
∂Wt�1

 (pY,t�1•y�t)•(� � �t�1)� 

 � �t� ∂ct
�
∂at

 � 
∂ct
�
∂Y�t

•y�t � �t� � 0, at � 0, at
T 

∂�t
��
∂at

 � 0;



160    Jeffrey LaFrance, Rulon Pope, and Jesse Tack

(35) 
∂�t
�
∂y�t

 � (1 � r)�1Et� ∂Vt�1
�
∂W

pY,t�1•at•(� � �t�1)� � �t

∂ct
�
∂Y�t

•at � 0,

 y�t � 0, y�t
T 

∂�t
�
∂y�t

 � 0.

We also have the following implications of the envelope theorem:

 
∂Vt
�
∂Wt

 � �t;

(36)
 

∂Vt
�
∂At�1

 � �t�A(At � At�1);

 

∂Vt
�
∂Kt�1

 � �t�K(Kt � Kt�1);

where the variables {�t,At,Kt} are all evaluated at their optimal choices.
Combining the Kuhn- Tucker conditions with the results of the envelope 

theorem and assuming an interior solution for consumption, bonds, and 
risky fi nancial assets, we obtain the standard Euler equations for smoothing 
the marginal utility of consumption and wealth,

(37) 
∂υt
�
∂mt

 � Et� ∂υt�1
�
∂mt�1

 � 
∂Vt
�
∂Wt

 � Et� ∂Vt�1
�
∂Wt�1

 � �t � Et(�t�1),

and the standard arbitrage condition for excess returns to risky fi nancial 
assets,

(38) Et�(�F,t�1 � r)
∂Vt�1
�
∂Wt�1

� � 0.

The complementary slackness of the Kuhn- Tucker condition in equation 
(35) implies that for each crop we have the supply condition under risk,

(39) Et� ∂Vt�1
�
∂Wt�1

�pY,t�1 � (1 � r)
∂ct
�
∂Y�i,t

�� Y�i,t � 0, i � 1, . . . , ny.

For each crop produced in positive quantity, this reduces to the well- known 
result that the conditional covariance between the marginal utility of future 
wealth and the difference between the ex post realized market price the mar-
ginal cost of  production must vanish. The multiplicative factor 1 � r is 
multiplied by ex ante marginal cost so that these two economic values are 
measured at a common point in time—in the present case at the end of the 
production period.

To obtain the arbitrage condition for the level of investment in agriculture, 
we combine the linear homogeneity property of the variable cost function 
in (at,At,Kt,Y�t) from equation (25) with complementary slackness in Kuhn-
 Tucker conditions in equations (33) to (37),
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(40) 0 � 
∂�t
�
∂at

T
at � 

∂�t
�
∂At

 At � 
∂�t
�
∂Kt

 Kt,

which, after considerable rearranging and combining of terms, gives

(41) Et� ∂Vt�1
�
∂Wt�1

{sK,t(�K,t�1 � r) � sL,t(�L,t�1 � r) � t�1

 � sK,t�K(Kt�1 � (2 � r)Kt � (1 � r)Kt�1)

 � sA,t�A[At�1 � (2 � r)At � (1 � r)At�1]} � 0,

where sK,t � Kt/ (pL,tAt � Kt) is capital’s share of the value of the investment 
in agriculture in period t, sL,t � pL,tAt/ (pL,tAt � Kt) is land’s share of the value 
of the investment in agriculture in period t, sA,t � At/ (pL,tAt � Kt) is the ratio 
of the quantity of land to the value of the investment in agriculture at the 
beginning of the production period, and

(42) t�1 � 
Rt�1 � (1 � r)ct
��

pL,tAt � Kt

is the ex post net return to crop production over the variable cost of pro-
duction relative to the ex ante value of agricultural investment so that it 
is measured as a rate of return to agricultural production. The fi rst three 
terms inside of the square brackets of equation (41) represent the total sum 
of the excess returns to agriculture, including the rate of net return to crop 
production over variable costs. The last two terms in square brackets capture 
the effects of adjustment costs for farm capital and farmland. This has the 
standard one period ahead and one period behind second- order difference 
structure common to quadratic adjustment cost models in dynamic optimi-
zation problems.

To implement this system of Euler equations, we assume that the indi-
rect utility function for consumption goods is a member of the certainty 
equivalent class,

(43) υ( pQt,mt) � 
mt

�
C( pQt)

 � 
1
�
2

	� mt
�
C( pQt)�

2

,

where 0 � 	 � C ( pQt)/ mt ∀ t and C( pQt) is the CPI for all items. Then the 
marginal utility of money in each period is

(44) �t � 
1 � 	[mt/ C( pQt)]
��

C( pQt)
.

This allows us to identify the effects of risk aversion separately from those 
of adjustment costs and hysteresis in agricultural investment decisions. We 
assume that the preferences of agricultural producers are of the same class 
as all other individuals in the economy. This allows use of the observable 
variable per capita personal consumption expenditure, rather than the latent 
variable wealth, to model the empirical arbitrage equations.
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5.4.1   Empirical Arbitrage Equations and Data

Let n � ny be the number of crops included in the empirical model. The 
specifi cation that we choose for ∂ct/ ∂Y�i,t is (see appendix C for a complete 
derivation),

(45) 

∂ct

∂Yi ,t

=	(wt )
� �i + �ij

j=1

nx

∑
Yj ,t

Kt

⎛

⎝
⎜

⎞

⎠
⎟ , with

	(wt )
� = �wt

TB̂ �wt + 2�̂T �wtwnx ,t +wnx ,t
2 .

We use the estimated 	
�

(wt) obtained from the ex ante variable input demand 
system, and w̃t � [w1,t . . . wnx– 1,t]

T is the vector of variable input prices other 
than the farm wage.4 The n � 3 empirical arbitrage/ Euler equations, there-
fore, are

(46) Consumption /  Bonds:

  	(mt�1 � mt) � u1,t�1,

 Risky Assets:

  (1 � 	mt�1)(�F,t�1 � r) � u2,t�1,

 Crops:

  (1 � 	mt�1) pYi ,t+1 − (1+ r)	(wt)
� �i+

�ijYj ,t+1

Ktj=1

n

∑
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= ui ,t+1,

  i � 3, . . . , n � 2,

 Agriculture:

  (1 � 	mt�1){sK,t(�K,t�1 � r) � sL,t(�L,t�1 � r) � t�1

  � sA,t�A(At�1 � (2 � r)At � (1 � r)At�1)

  � sK,t�K[Kt�1 � (2 � r)Kt � (1 � r)Kt�1]} � un�3,t�1.

The estimation method for this part of  the modeling exercise again 
is nonlinear three- stage least squares/ generalized method of  moments 
(NL3SLS/ GMM) with a parametric AR(1) correction for autocorrela-
tion and White/ Huber heteroskedasticity consistent estimated covariance 
matrix. We restrict the parameter matrix � � [�ij] to be positive semidefi nite 
by estimating it in Choleski factored form, � � QQT, where Q is a lower 
triangular matrix.

4. All prices, costs, and revenues, including the value of farm capital, are defl ated by the CPI 
in this part of the empirical analysis.
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5.4.2   Empirical Results

We analyze acreage and supply decisions under risk for ten crops with 
the greatest value in the United States in 2006: soybeans, corn, cotton, hay, 
potatoes, rice, sugar beets, sugarcane, tobacco, and wheat. Crop revenues 
includes the value of government payments that is been imputed in the Ball 
data, to at least partially capture the effects of  farm- level price, income, 
and other subsidy and stabilization programs on the distribution of real-
ized farm revenues. The ten crops analyzed in this study account for 94 to 
95 percent of total farm revenue from crop production and an even larger 
share of crop acreage. In addition to the ten crop production decisions under 
risk, we estimate Euler equations for the excess return to investing in agricul-
ture, personal consumption expenditures, and the rate of return to stocks as 
measured by the Standard & Poor 500 index.

To ensure a consistent defi nition of real values in this component of the 
model, we defl ate all nominal prices, revenues, costs, and other values by that 
year’s CPI for all items. We scale all aggregate economic data—for example, 
the total value of agricultural investment in U.S. agriculture—by the U.S. 
population to measure these variables all in per capita units. As noted in the 
preceding, real per capita personal consumption expenditures represents the 
Euler equation for the marginal utility of money over time.

Table 5.3 presents the unrestricted 13 � 13 AR(1) coefficient matrix. 
Similar to the variable cost function model, Eigen values of  the implied 
autocovariance structure are well within the stability region, with fi ve real 
roots and four complex conjugate pairs:

�1 � 0.8960;
�2 � – 0.5510;
�3 � 0.2829;
�4 � 0.1800;
�5 � – 0.0471;
�6,7 � 0.2966 � 0.6058ι, modulus � 0.6745;
�8,9 � 0.5789 � 0.0674ι, modulus � 0.5828;
�10,11 � – 0.0048 � 0.5157ι, modulus � 0.5157;
�12,13 � – 0.4497 � 0.1827ι, modulus � 0.4854.

Also similar to the properties of  the cost function estimates, there is no 
evidence of any additional serial correlation in the error terms, and all of 
the systemwide and single equation Brownian bridge tests fail to reject the 
null hypothesis of no model specifi cation errors or parameter instability at 
all standard levels of signifi cance.

Table 5.4 presents the parameter estimates for the conditional mean com-
ponents of the arbitrage model. To obtain a positive defi nite � matrix, the 
lower four main diagonal elements of the Choleski factor Q were restricted 
to 0.01, and the off- diagonal elements in the last four columns were restricted 
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at 0.0. In other words, the estimated symmetric but not curvature restricted 
� matrix has four negative Eigen values. As a consequence, the standard 
errors in table 5.2 are conditional on these inequality restrictions. The esti-
mated structural parameters reported in table 5.4 generate a system of ten 
linear marginal cost functions that are increasing in planned output levels 
throughout the sample period. We conclude that this is a coherent and rea-
sonable model of U.S. agricultural production.

The point estimate for the curvature parameter in the quadratic indirect 
utility function is 	̂ � 6.571 � 10– 5, with an estimated classical Gaussian 
asymptotic standard error of 2.793 � 10– 7 and an estimated White/ Huber 
robust standard error of 5.914 � 10– 7, both implying a highly signifi cant risk 
aversion parameter. On the other hand, the point estimates for the quadratic 
adjustment cost parameters are mixed. The point estimate for adjustment 
costs on farmland is �̂A � – 4.455 � 10– 6, with an estimated classical Gaussian 
asymptotic standard error of 1.985 � 10– 6 and an estimated White/ Huber 
robust standard error of  1.477 � 10– 6. In both cases, this is statistically 
different from zero at the 5 percent signifi cance level, although economi-
cally, the sign is not what we would expect a priori. The point estimate for 
adjustment costs in farm capital is �̂K � 4.012 � 10– 11, with an estimated 
classical Gaussian asymptotic standard error of 2.738 � 10– 11 and an esti-
mated White/ Huber robust standard error of 2.383 � 10– 11. While this has 
the expected sign, the classical standard error implies this is not statistically 
different from zero at the 10 percent level of signifi cance, while the robust 
standard error implies that it marginally is signifi cant at the same level. We 
suspect that either this level of aggregation across agents cannot capture 
these effects or else there is at most only a small level of adjustment cost in 
the farm sector. On the other hand, if  there is no adjustment cost mecha-
nism in U.S. agriculture, and if  the quadratic indirect utility model is cor-
rectly specifi ed, then the Euler equations estimated here are theoretically and 
empirically correct even with national aggregate data.

5.5   Conclusions

This chapter has developed and analyzed a new structural model of vari-
able input use, production, acreage allocations, capital investment, and 
consumption choices in the U.S. farm sector. The theoretical framework 
identifi es and incorporates the restrictions that are necessary and sufficient 
to estimate variable input use using only observable data and to aggregate 
from micro units of behavior to county- , state- , region- , or country- levels of 
data and analyses. We defi ned, specifi ed, and estimated a dynamic life- cycle 
model of decision making under risk. We disciplined the model and associ-
ated parameter estimates for risk aversion in agricultural production and 
investment decisions with the interactions that naturally occur among the 
available alternative investment and savings opportunities in the economy.
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Current work applies this to state- level data, which should mitigate the 
issues related to aggregating across different production regions, climates, 
and output choice sets. We incorporate input and output specifi c techno-
logical change in the empirical model, which should help address issues due 
to specifi cation errors and structural change that cannot be captured in the 
aggregate setup. We are specifying and estimating the variable input use 
decisions and the asset management choices simultaneously to exploit cross-
 equation parameter restrictions and increase the efficiency of our parameter 
estimates. And last, the data set is in the fi nal stages of being updated to the 
twenty- fi rst century, which will make the model and empirical analysis more 
timely and relevant to current farm policies.

One of the central issues guiding agricultural policy is how risk affects 
choice and welfare. Here, that is manifest in the movement toward general 
equilibrium found in the cross- moment equations in equation (46) and the 
cost structure in equation (45). This provides a rich mechanism for policy 
analysis. The conventional agricultural focus is how policies affect the risk 
environment and thereby production choice and welfare. Thus, for example, 
in a partial equilibrium model of  the farm sector, one often studies the 
effects of a particular policy on the risk environment on the portfolio of crop 
choice (Chavas and Holt 1996). Here, it is clear that the evolution of  wealth 
and income in all forms, and consumption, “cause” production choices. 
Although this point is not new (e.g., Wright and Hewitt 1994), it has not 
been formally modeled and estimated.

With the results in table 5.2, one can trace the effects of any policy altering 
the distribution of agricultural crop income on the choices that restore equi-
librium. More specifi cally, it means that signifi cant responses may be outside 
of agriculture by changing nonagricultural investment and consumption. 
These responses likely will alter the normative and positive conclusions of 
the effects of policies substantially.

Indeed, returning to the example of crop insurance discussed in the intro-
duction, the social value of public insurance will likely be reduced as more 
margins for adjustment (arbitrage conditions) are included in the analysis. 
In contrast, an increase in uncertainty (the covariance term) in nonagri-
cultural investments as witnessed recently could increase the demand for 
risk- reducing agricultural instruments. The key point is that unless one has 
a model that provides for these interactions, one will not obtain reasonable 
policy conclusions.

The second general policy insight that can be obtained here is a distinc-
tion between long- run and shorter- run effects, which has been one of the 
foundations of agricultural policy analyses, preceding the seminal work of 
Nerlove (1958). Yet models in current vogue can only be interpreted as long-
 run analyses where adjustment costs are zero. This means that one has a 
natural structural way in the current model to distinguish short- run and 
long- run elasticities. For example, this implies that policies that raise the 
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return to insurance (e.g., through public subsidies) have larger responses in 
the long run than in the short run.

Appendix A

Let x ∈ � ⊆ R�
nx

� be an nx- vector of variable inputs; let w ∈ � ⊆ R�
nx

� be an 
nx- vector of variable input prices; let y ∈ � ⊆ R�

nx
� be an ny- vector of outputs; 

let z ∈ Z ⊆ R�
nx

� be an nz- vector of quasi- fi xed inputs; let F : � � � � Z → R 
be a transformation function that defi nes the boundary of a closed, convex 
production possibilities set with free disposal in inputs and outputs; let X : 
� � � � Z → �, be an nx- vector of variable input demand functions; and 
let C : � � � � Z → R�� be a variable cost function,

(A1) 
     
c =C(w,y,z) � min

x
{wTx : F (x,y,z) ≤ 0,x ≥ 0}� wTX (w,y,z),

where the symbol T denotes vector and matrix transposition. The purpose 
of this appendix is to prove that short- run cost- minimizing variable input 
demands, x � X(w,y,z), can be written in the form x � X̃(w,c,z) if  and only 
if  c � C [w,z,�(y,z)] ⇔ F [x,z,�(y,z)].

The neoclassical model of conditional demands for variable inputs with 
joint production, quasi- fi xed inputs, and production uncertainty is

(A2) X(w,y,z) � arg min {wTx : F(x,y,z) � 0, x � 0},

where x is an nx- vector of positive variable inputs with corresponding posi-
tive prices, w; y is an ny- vector of planned outputs; z is an nz- vector of quasi-
 fi xed inputs; F is the real valued transformation function that defi nes the 
boundary of a closed, convex production possibilities set with free disposal 
in the inputs and the outputs; X maps variable input prices, planned outputs, 
and quasi- fi xed inputs into variable input demand functions; and C(w,y,z) 
� wTX(w,y,z), is the positive- valued variable cost function. By Shephard’s 
lemma, we have

(A3) X(w,y,z) � ∇wC(w,y,z) � � ∂C
�
∂w1

, . . . ,
∂C
�
∂wnx


T

.

X is homogeneous of degree zero in w by the derivative property of homo-
geneous functions. Integrating with respect to w to recover the variable cost 
function, we obtain

(A4) c � C(w,y,z) � C̃ [w,y,z,�(y,z)],

where � : � � Z → R is the constant of integration. In the present case, this 
means that � is constant with respect to w. In general, � is a function of y 
and z, and its structure cannot be identifi ed from the variable input demands 
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because it captures that part of  the joint production process relating to 
quasi- fi xed inputs and outputs that is separable from the variable inputs.

Under standard conditions, the variable cost function is strictly decreas-
ing in z, strictly increasing in y, jointly convex in (y,z), increasing, concave 
and homogeneous of degree one in w. We are free to choose the sign of  � so 
that, with no loss of generality, ∂C̃/ ∂� � 0.

Because C̃ is strictly increasing in �, a unique inverse exists such that 
� � �(w,y,z,c), where � : � � � � Z � R� → R, is the inverse of C̃ with 
respect to �. �(w,y,z,c) is called the quasi- indirect production transformation 
function, analogous to the quasi- indirect utility function of consumer theory 
(Hausman 1981; Epstein 1982; LaFrance 1985, 1986, 1990, 2004; LaFrance 
and Hanemann 1989). For all interior and feasible (y,z), the function � is 
strictly increasing in c, strictly decreasing and quasi- convex in w, and posi-
tively homogeneous of degree zero in (w,c).

The following two identities are simple implications of the inverse func-
tion theorem:

(A5) c � C̃[w,y,z,�(w,y,z,c)];

and

(A6) � � �[w,y,z,C̃(w,y,z,�)].

This lets one write the conditional demands for the variable inputs as

(A7) x � ∇wC̃ � G(w,y,z,c).

Equation (A7) gives the rationale for writing the factor demands as a func-
tion of c as well as (w,y,z). Thus, given the preceding regularity conditions 
for F and C, one can always write the system of factor demands as functions 
of cost.

Now defi ne the quasi- production transformation function by

(A8) υ(w,y,z) � min
w≥0

{�(w,y,z,wTx}.

The terminology quasi- production transformation function indicates that υ(x, 
y, z) only reveals part of the structure of the joint production process. It 
cannot, and does not, reveal �(y,z). This is analogous to the situation where 
one only recovers part of a direct utility function when analyzing the market 
demands for a subset of consumption goods.

The identity �(y,z) � �{w,y,z,C̃ [w,y,z,�(y,z)]} implies

(A9) �(y,z) � �{w,y,z,C̃ [w,y,z,�(y,z)]} � min
w≥0

{�(w,y,z,wTx)} 

 � υ(x, y, z),

for all interior and feasible (x,y,z). This inequality follows from the fact that 
�(y,z) is feasible but not necessarily optimal in the minimization problem. 
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The part of F(x,y,z) not contained in υ(x,y,z) is given by (Diewert 1978; 
Epstein 1975; Hausman 1981; LaFrance and Hanemmann 1989),

(A10) F(x,y,z) � F̃ [x,y,z,�(y,z)].

The quasi- production transformation function is the unique solution, 
� � υ(x,y,z), to the implicit function, F̃(x,y,z,�) � 0; in other words, 
F̃ [x,y,z,υ(x,y,z)] � 0.

The function υ(x,y,z) in equation (A9) conveys full information about the 
marginal rates of substitution between variable inputs but only partially so 
for outputs and quasi- fi xed inputs. This is again analogous to the situation 
in consumption theory when one analyzes only a subset of the goods pur-
chased and consumed. This can be shown by applying the implicit function 
theorem to F̃, which gives

(A11) ∇xυ(x,y,z) � �
∇xF̃[x,y,z,υ(x,y,z)]
���
∇�F̃ [x,y,z,υ(x,y,z)]

,

 ∇yυ(x,y,z) � �
∇yF̃[x,y,z,υ(x,y,z)]
���
∇�F̃ [x,y,z,υ(x,y,z)]

,

 ∇zυ(x,y,z) � �
∇zF̃[x,y,z,υ(x,y,z)]
���
∇�F̃ [x,y,z,υ(x,y,z)]

.

This demonstrates that υ conveys full information on marginal rates of 
substitution between variable inputs,

(A12) 
∂υ(x,y,z)/ ∂xi
��
∂υ(x,y,z)/ ∂xj

 � 
∂F̃[x,y,z,υ(x,y,z)]/ ∂xi
���
∂F̃ [x,y,z,υ(x,y,z)]/ ∂xj

 

 � 
∂F(x,y,z)/ ∂xi
��
∂F(x,y,z)/ ∂xj

, ∀ i, j � 1, . . . , nx,

but only partial information on marginal rates of product transformation 
between outputs,

(A13) 
∂F(x,y,z)/ ∂yi
��
∂F(x,y,z)/ ∂yj

 

 � 
∂F̃ [x,y,z,�(y,z)]/ ∂yi � ∂F̃ [x,y,z,�(y,z)]/ ∂� · ∂�(y,z)/ ∂yi
�������
∂F̃ [x,y,z,�(y,z)]/ ∂yj � ∂F̃ [x,y,z,�(y,z)]/ ∂� · ∂�(y,z)/ ∂yj

 � 
∂υ(x,y,z)/ ∂yi
��
∂υ(x,y,z)/ ∂yj

, ∀ i, j � 1, . . . , ny,

and marginal rates of substitution between quasi- fi xed inputs,
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(A14) 
∂F(x,y,z)/ ∂zi
��
∂F(x,y,z)/ ∂zj

 

 � 
∂F̃ [x,y,z,�(y,z)]/ ∂zi � ∂F̃ [x,y,z,�(y,z)]/ ∂� · ∂�(y,z)/ ∂zi
�������
∂F̃ [x,y,z,�(y,z)]/ ∂zj � ∂F̃ [x,y,z,�(y,z)]/ ∂� · ∂�(y,z)/ ∂zj

 � 
∂υ(x,y,z)/ ∂zi
��
∂υ(x,y,z)/ ∂zj

, ∀ i, j � 1, . . . , nz,

This background leads directly to the following result.

Proposition 1. The following functional structures are equivalent:

(A15) x � X(w,y,z) � X̃(w,c,z);

(A16) c � C(w,y,z) � C̃(w,z,�(y,z));

and

(A17) 0 � F(w,y,z) � F̃(x,z,�(y,z)).

Proof. (A16) ⇒ (A15). Differentiating equation (A16) with respect to w, 
Shephard’s lemma implies,

(A18) x � ∇wC̃.

C̃ is strictly monotonic in and has a unique inverse with respect to �, say 
� � �̃(w,z,c). Substituting this into equation (A18) obtains

(A19) x �∇wC̃ [w,z,�̃(w,z,c)] � X̃(w,c,z).

(A17) ⇒ (A15) ⇒ (A16). If  the representation of technology has the sepa-
rable structure in equation (A17), then

(A20) arg min {wTx : F̃ [x,z�(y,z)] �0, x � 0} � X̃[w,z,�(y,z)].

This implies that the variable cost function has the separable structure

(A21) wTX̃[w,z,�(y,z)] � C̃[w,z,�(y,z)].

(A16) ⇒ (A17). Given equation (A16), the quasi- production transformation 
function satisfi es

(A22) υ̃(x,z) � min
w≥0

��(w,z,wTx{ }.

This implies that

(A23) �(y,z) � �{x,z,C̃[x,z,�(y,z)]} � υ̃(x,z),

for all interior, feasible (x,y,z) ∈ � � � � Z, with the boundary of the closed 
and convex production possibilities set defi ned by equality on the far right. 
Because υ̃ is independent of y, equations (A11) and (A13) imply
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(A24) 
∂F(x,y,z)/ ∂yi
��
∂F(x,y,z)/ ∂yj

 � 
∂�(y,z)/ ∂yi
��
∂�(y,z)/ ∂yj

, ∀ i, j � 1, . . . , ny.

Hence, the marginal rates of transformation between outputs are indepen-
dent of variable inputs,

(A25) 
∂

�
∂xk

 � ∂F(x,y,z)/ ∂yi
��
∂F(x,y,z)/ ∂yj

� � 
∂

�
∂xk

 � ∂�(y,z)/ ∂yi
��
∂�(y,z)/ ∂yj

� � 0, 

 ∀ i, j � 1, . . . , ny, ∀ k � 1, . . ., nx,

Thus, y is separable from x in the joint production transformation function 
(Goldman and Uzawa 1964, Lemma 1); that is, F(x,y,z) � F̃ [x,z,�(y,z)]. �

Appendix B

Sufficiency Algebra for Proposition 2

Defi ne the function � : R� � R → R by

(B1) �(x,y) � y � �x

0
[�(s) � �(s,y)2]ds,

where � : R → R is an arbitrary smooth function, and w is subject to the 
pair of initial conditions, w(0,y) � y and ∂w(0,y)/ ∂x � �(0) � y2, to ensure 
that the defi nition is unique and smooth. Given two arbitrary smooth func-
tions � : R�

nx
� → R� and � : Rnz � Rny → R, by the Leibniz rule of differentiation, 

we have

(B2) 
∂�[�(w), �(z,y�)]
��

∂w
 � {�[�(w)] � �[�(w), �(z,y�)]2}

∂�(w)
�

∂w
.

Given a monotonic, smooth function f : R�� → C, f � � 0, defi ne the re-
lationship between f and � by f � (
� � 	)/ (�� � �), 
,	,�,� : Rnx

�� → C, 
and 
� –  	� � 1. Let the cost function be c : R�

nx
� � R�

nz
� � R�

ny
� → R�� 

and denote an arbitrary positive- valued, 1° homogeneous, increasing, and 
concave defl ator by  : R�

nx
� → R��. The projective transformation group 

representation of any exactly aggregable ex ante cost function is

(B3) f� c(w,z,y�)
�

(w) � � 

(w)�[�(w), �(z,y�)] � 	(w)
���
�(w)�[�(w), �(z,y�)] � �(w)

.

Hereafter, suppress all arguments of all functions and use bold italics sub-
scripts to denote vector- valued partial derivatives. For example, rewrite 
equation (B2) compactly as �w � (� � �2)�w.

The inverse of equation (B3) with respect to � is � � (�f –  	)/ (– �f � 
). 
Combine this with the identifi cation normalization 
� –  	� � 1 to obtain 
the following:
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(B4) �� � � � �� �f � 	
�
��f � 
  � � � 

��f � 	� � ��f � 
�
���

��f � 

 � 

1
�
��f � 


,

or equivalently, – �f � 
 � 1/ (�� � �). Multiply each side of this by the cor-
responding side of equation (B3) to obtain (– �f � 
)f � (
� � 	)/ (�� � �)2. 
These relationships are used in what follows to simplify expressions.

Our task is to differentiate equation (B3) with respect to w, combine terms, 
and rewrite the expression that results so that the elements of  {1, f, f 2} 
appear on the right. Differentiating gives

(B5) f � · � cw
�


 � 
cw
�
2  � 

(
w� � 
�w � 	w)
��

(�w � �)
 � 

(
� � 	)(�w� � ��w � �w)
���

(�w � �)2

 � (��f � 
)[
w� � 
(� � �2)�w � 	w] 

 � (��f � 
)f [�w� � �(� � �2)�w � �w].

The second line follows from 1/ (�� � �) � – �f � 
, (
� � 	)/ (�� � �)2 � 
(– �f � 
)f, and �w � (� � �2)�w. Group terms in � on the second line of 
equation (B5) to obtain

(B6) f � · � cw
�


 � 
cw
�
2  � (��f � 
)[	w � 
��w � (�w � ���w)f ]

 � (� �f � 
)(
w � �w f )� � (��f � 
)2�w�2.

Substituting � � (�f –  	)/ (– �f � 
) into the second line of equation (B6) 
now leads to

(B7) f � · � cw
�


 � 
cw
�
2  � (��f � 
)[	w � 
��w � (�w � ���w)f ]

 � (��f � 
)(
w � �w f )� �f � 	
��
��f � 
  

 � (��f � 
)2�w � �f � 	
�
��f � 
 

2

 � (��f � 
)[	w � 
��w � (�w � ���w)f ] 

 � (
w � �w f )(�f � 	) � �w(�f � 	)2.

Expanding the quadratic forms and grouping terms in f in the last line of 
equation (B7) gives
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(B8) f � · � cw
�


 � 
cw
�
2  � ��f [	w � 
��w � (�w � ���w) f ]

 � 
[	w � 
��w � (�w � ���w) f ]

 � 
w	 � (
w� � �w	)f � �w� f 2

 � �w (	2 � 2	�f � �2f 2)

 � 
(	w � 
��w) � (�	w � 
�w � 2
���w) f 

 � �(�w � ����)f
2 � 
w	 � �w	2 

 � (
w� � �w	 � 2	��w)f � (��w� � �w�2) f 2

 � 
	w � 	
w � (
2� � 	2)�w

 � [
�w � �
w � �	w � 	�w � 2(
�� � 	�)�w] f

 � [��w � ��w � (�2� � �2)�w] f 2.

Grouping terms in �w as well gives

(B9) f � · � cw
�


 � 
cw
�
2  � 
	w � 	
w � (
�w � �
w � �	w � 	�w) f 

 � (��w � ��w)f 2� [(�f � 	)2 � �(��f � 
)2]�w.

Finally, solving for cw � x gives

(B10) x � 
w
�


c � �[
	w � 	
w � (
2� � 	2)�w]
1
�
f �

 � [
�w � �
w � �	w � 	�w � 2(
�� � 	�)�w]
f

�
f �

 � [��w � ��w � (�2� � �2)�w]
f 2

�
f ��

 � 
w
�


c � 

�
f �

{
	w � 	
w � (
�w � �
w � �	w � 	�w) f 

 � (��w � ��w)f 2 � [(�f � 	)2 � (��f � 
)2 �]�w}.

Appendix C

Specifying the Cost Function

The fi rst nx –  1 variable input prices, w, and total variable cost, c, are nor-
malized by the average wage rate for hired farm labor, wnx

. We consider the 
following transformation of normalized variable cost, which nests the price 
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independent generalized logarithmic (PIGLOG) and price independent gen-
eralized linear (PIGL) class of models,

 f (c) � 
(cκ � κ � 1)
��

κ
, f �(c) � cκ, f ″(c) � (κ � 1)cκ�2, κ ∈ R�.

This includes all of the real- valued Gorman functional forms, with f(c) � c 
when κ � 1, and limκ→0 f(c) � 1 � ln c. Therefore, the highest rank that the 
variable input demands can achieve is three (Gorman 1981; Lewbel 1987; 
LaFrance and Pope 2009).

Previous empirical work considered translated Box- Cox functions of 
input prices, (wi

� � � –  1)/ �, � ∈ [0,1], i � 1, . . . , nx –  1, to nest models 
with that have log prices, power functions of prices, and are linear prices. 
In the national model � � 1 is optimal on this interval and for our data set. 
Hence, we restrict attention here to normalized input prices. Our previous 
empirical results using this data at state-  and national- levels of aggregation 
and various levels of aggregation across inputs, suggests quite strongly that 
rank three overparameterizes this data set (Ball et al. 2010). Hence, we focus 
here on rank two:

(C1) f [c(w,A,K,a,Y�)] � 
(w,A,K ) � 	(w)�(A,K,a,Y�),

 ⇔ �̃(w,c,A,K ) � 
f (c) � 
(w,A,K)
��

	(w)
,

 
(w,A,K ) � (
10 +�1
Tw)A+ (
20 +�2

Tw)K ,

 	(w) �     wTBw+ 2�Tw+1,

 Y� � y�•at � [y�1a1 . . . y�ny
any

]T,

where y�i is the expected (planned) yield for the i th crop, ai is the acreage 
planted to this crop, and the symbol • denotes the Hadamard/ Schur prod-
uct for matrices and vectors. This appendix identifi es restrictions on the 
parameters in equation (C1) that are necessary and sufficient for economic 
regularity of the variable cost function.

Monotonicity in w:

(C2) cκ�1
∂c
�
∂w

 � �1A � �2K � 
�
�
	

(Bw � �) � 0

 ⇔ x̃ � c1�κ ��1A � �2K � � f � 

�

	2 (Bw � �)� � 0,

where x̃ � [x1 . . . xnx– 1]
T is the (nx–1)- vector of the fi rst nx– 1 input quantities, 

excluding labor.
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Concavity in w:

(C3) (κ � 1)cκ�2
∂c
�
∂w

∂c
�
∂wT  � cκ�1

∂2c
�
∂w∂wT  � 

�
�
	

B � 
�

�
	3

(Bw � �)(Bw � �)T

⇔ 
∂2c

�
∂w∂wT  � �1 � κ

�
c x̃x̃T � c1�κ�f � 


�
	2 �B � 

(Bw � �)(Bw � �)T

���
	2 �,

The fi rst matrix on the right- hand side of the second line is rank one and is 
negative semidefi nite if  and only if  κ � 1. The matrix in square brackets on 
the far right of the second line will be positive semidefi nite if  B � LLT � ��T, 
where L is a triangular matrix with nonzero main diagonal elements. This 
makes the following nx � nx matrix positive defi nite:

(C4) 
B �

�T 1

⎡

⎣
⎢

⎤

⎦
⎥ =

L �

0T 1

⎡

⎣
⎢

⎤

⎦
⎥

LT 0T

�T 1

⎡

⎣
⎢

⎤

⎦
⎥ =

LLT +��T �

�T              1

⎡

⎣
⎢

⎤

⎦
⎥,

since it gives a Choleski factorization of the matrix on the left. It follows 
from this that

 
      
wTBW + 2�Tw+1= wT 1⎡⎣ ⎤⎦

B �

�T 1

⎡

⎣
⎢

⎤

⎦
⎥

w

1

⎡

⎣
⎢

⎤

⎦
⎥ > 0 ∀w∈�++

nx −1,

and

 �B � 
(Bw � �)(Bw � �)T

���
wTBw � 2�Tw � 1 �

is positive semidefi nite, by the Cauchy- Schwartz inequality in nx- dimensional 
Euclidean space. Given this, the second term on the right- hand side of the 
second line of  equation (12) will be negative semidefi nite if  and only if  
f � 
.

Constant returns to scale (CRS):

(C5) � � 
∂�
�
∂A

A � 
∂�
�
∂K

K � 
∂�
�
∂aT a � 

∂�
�
∂Y�T

Y�.

We believe that we have a much more accurate measure of capital than we 
do of land. Hence, we normalize � by the value of capital rather than land 
in farms.

Monotonicity in (A,K,a,Y�):

(C6) 

       

c�−1 ∂c
∂A

= 
10 +�1
Tw+	

∂�

∂A
≤ 0,c�−1 ∂c

∂K
= 
20 +�2

Tw+	
∂�

∂K
≤ 0,

c�−1 ∂c
∂a

=	
∂�

∂a
≤ 0,c�−1 ∂c

∂Y
=	

∂�

∂Y
≥ 0.
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Joint Convexity in (A,K,a,Y�):

(C7) 

    

∂2c

∂A2

∂2c

∂A∂K

∂2c

∂A∂a
T

∂2c

∂A∂Y
T

∂2c

∂K∂A

∂2c

∂K 2

∂2c

∂K∂a
T

∂2c

∂K∂Y
T

∂2c

∂a∂A

∂2c

∂a∂K

∂2c

∂a∂a
T

∂2c

∂a∂Y
T

∂2c

∂Y∂A

∂2c

∂K∂Y

∂2c

∂a∂Y

∂2c

∂Y∂Y
T

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

     

= 1−�

c

∂c

∂A

∂c

∂K

∂c

∂a

∂c

∂Y

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

∂c

∂A

∂c

∂K

∂c

∂a

∂c

∂Y

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

T

+ c1−�
	

∂2
�

∂A2

∂2
�

∂A∂K

∂2
�

∂A∂a
T

∂2
�

∂A∂Y
T

∂2
�

∂K∂A

∂2
�

∂K 2

∂2
�

∂K∂a
T

∂2
�

∂K∂Y
T

∂2
�

∂a∂A

∂2
�

∂a∂K

∂2
�

∂a∂a
T

∂2
�

∂a∂Y
T

∂2
�

∂Y∂A

∂2
�

∂K∂Y

∂2
�

∂a∂Y

∂2
�

∂Y∂Y
T

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

.

The fi rst matrix on the right is rank one and will be positive semidefi nite 
if  and only if  κ � 1. Therefore, c(w,A,K,a,Y�) will be concave in w and 
jointly convex in (A,K,a,Y�) more than locally if  and only if  κ � 1. We esti-
mated the rank two model using the Box- Cox transformation on cost. The 
NL3SLS/ GMM point estimate for κ is 1.124 with a classical (Gaussian) 
asymptotic standard error of .152 and a White/ Huber heteroskedasticity 
consistent standard error of .111. We cannot reject a null hypothesis of κ � 1 
in either case at the 25 percent signifi cance level. Hence, in this chapter, we 
restrict our attention to κ � 1.

Given this restriction, the cost function will be jointly convex in (A,K,a,Y�) 
if  and only if  the Hessian matrix for �,

(C8) 

     

∂2
�

∂A2

∂2
�

∂A∂K

∂2
�

∂A∂a
T

∂2
�

∂A∂Y
T

∂2
�

∂K∂A

∂2
�

∂K 2

∂2
�

∂K∂a
T

∂2
�

∂K∂Y
T

∂2
�

∂a∂A

∂2
�

∂a∂K

∂2
�

∂a∂a
T

∂2
�

∂a∂Y
T

∂2
�

∂Y∂A

∂2
�

∂K∂Y

∂2
�

∂Y∂a
T

∂2
�

∂Y∂Y
T

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

.



Risk Response in Agriculture    179

is positive semidefi nite. Given these considerations, the specifi cation for � 
employed in the chapter is

(C9) �(At,Kt,at,Y�t) =

−�1At − �2Kt −	3
Tat +	4

TYt +
1
2

�5At
2 + at

T�6at +Yt
T�7Yt

Kt

⎛

⎝
⎜

⎞

⎠
⎟ ,

where �1,�2,�5 � 0, 	3,	4 � 0, and �6,�7 are symmetric and positive semidefi -
nite. The implied constraints for monotonicity can be written as

(C10) 
       

∂ct

∂At

< 0∀ t ⇔ min
t

�1 − �5

At

Kt

⎛
⎝⎜

⎞
⎠⎟
> max

t


0 + �1

T
wt

	(w)

⎛

⎝
⎜

⎞

⎠
⎟ ,

∂ct

∂Kt

< 0∀ t ⇔ min
t

�2 +
1

2

�5At

2 + at

T�6a6 +Yt

T�7Y

K
t

2

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
> max

t


2 + �3

T
wt

	(w)

⎛

⎝
⎜

⎞

⎠
⎟ ,

 
∂ct

∂at

< 0∀ t ⇔ 	3 > max
t

�6a6

Kt

⎛
⎝⎜

⎞
⎠⎟

,

 
∂ct

∂Yt

> 0∀ t ⇔ 	4 + min
t

�7Yt

Kt

⎛
⎝⎜

⎞
⎠⎟
> 0.

These can be imposed iteratively in estimation if  necessary (LaFrance 1991). 
In this chapter, we checked for the monotonicity conditions at each data 
point given the parameter estimates obtained without imposing monoto-
nicity.

Also, given that Kt � 0, the implied curvature conditions are that the 
matrix

(C11) 

       

�5Kt
2 −�5At Kt 0ny

T 0ny

T

−�5At Kt (�5At
2 + at

T�6a6 +Yt
T�7Yt ) −Ktat

T�6 −KtYt
T�7

0ny
−Kt�6a6 K t

2�6 0ny ×ny

0ny
−Kt�7Y7 0ny ×ny

Kt
2�7

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

is positive semidefi nite. This can be imposed during estimation with the 
Choleski factors, �6 � L6L6

T and �7 � L7L7
T with L6 and L7 lower triangular 

Choleski factors for �6 and �7, respectively, and the inequality �5 � 0. In 
this chapter, only the matrix �7 � L7L7

T is estimated as part of the arbitrage 
conditions.
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Appendix D

Specifi cation Errors and Parameter Stability Tests

Many diagnostic procedures for testing parameter stability and model speci-
fi cation errors have been developed. Few are designed for large systems of 
nonlinear simultaneous equations in small samples. These properties pre-
clude using recursive- forecast residuals or Chow tests based on sequential 
sample splits to analyze specifi cation errors or nonconstant parameters 
(Brown, Durbin, and Evans 1975; Harvey 1990, 1993; Hendry 1995). It is 
desirable to test whether the data are consistent with the model specifi cation 
and constant parameters. LaFrance (2008) derived a set of specifi cation and 
parameter stability diagnostics for this class of problems. These test statistics 
rely on the estimated in- sample residuals and have power against a range 
of alternatives, including nonconstant parameters and specifi cation errors. 
The purpose of this section is to discuss briefl y the main ideas that underpin 
this class of test statistics.

If  the model is stationary and the errors are innovations, then consistent 
estimates of the model parameters can be found in any number of ways. 
Given consistent parameter estimates, the estimated errors converge in prob-
ability (and, therefore, in distribution) to the true errors, ε̂t →

P  εt. Therefore, 
for each i � 1, . . . , nx –  1, by the central limit theorem for stationary Mar-
tingale differences, we have

(D1) 
1

T !i

εit
t=1

T

∑ →
D

N(0,1),

where !i
2 � E(ε2

it) is the variance of the residual for the i th demand equation. 
Moreover, for any given proportion of the sample, uniformly in z ∈ [0, 1],

(D2) 
1

T !i

εit
t=1

[ zT ]

∑ →
D

N(0,z),

where [zT ] is the largest integer that does not exceed zT. The variance is z 
because we sum [zT ] independent terms each with variance 1/ T. Multiplying 
equation (D1) by z and subtracting from equation (D2) then gives

(D3) 
1

T !i

εit − εi( )
t=1

[ zT ]

∑ →
D

W (z)− zW (1) �B(z),

where W(z) is a standard Brownian motion on the unit interval, with 
W(z) ~ N(0, z), and B(z) is a standard Brownian bridge, or tied Brownian 
motion. For all z ∈ [0,1], B(z) has an asymptotic Gaussian distribution, with 
mean zero and standard deviation [z(1 – z)]1/2 (Bhattacharya and Waymire 
1990). For a given z—that is, to test for a break point in the model at a fi xed 
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and known date—an asymptotic 95 percent confi dence interval for B(z) is 
�1.96[z(1 – z)]1/2. To check for an unknown break point, a statistic based 
on the supremum norm,

(D4) QT = sup
z∈[0,1]

Bt (z)

has an asymptotic 5 percent critical value of 1.36 (Ploberger and Krämer 
1992).

We can use consistently estimated residuals and consistently estimated 
standard errors to obtain sample analogues to these asymptotic Brownian 
bridges. This gives

(D5) BiT (z) �
1

T !̂i

ε̂it − ε̂i( )→
D

B(z),
t=1

[ zT ]

∑

also uniformly in z ∈ [0, 1] so long as the model specifi cation is correct and 
the parameters are constant across time periods. This statistic is a single 
equation fi rst- order specifi cation/ parameter stability statistic because it is 
based on the fi rst- order moment conditions, E(εit) � 0 ∀ i, t. A systemwide 
fi rst- order specifi cation/ parameter stability statistic can be defi ned by

(D6) BT (z) �
1

T

1

nx

"̂it − "̂( )
i=1

nq

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥t−1

[ zT ]

∑ →
D

B(z),

where 
̂ t � Σ̂– 1/ 2ε̂t is the tth estimated standardized error vector and ξ̂� � 
∑T

t=1∑nx
i=1ξ̂it/ nxT.

Similar methods apply to second- order stationarity and parameter stabil-
ity. We focus on systemwide statistics. Let � be factored into LLT, where L is 
lower triangular and nonsingular. Defi ne the random vector 
t by �t � L
t. 
In addition to the preceding assumptions, add supi,t E(�4

it) � �. Estimate the 
within- period average sum of squared standardized residuals by

(D7) υ̂t � 
1
�
nx


̂T
t
̂t � 

1
�
nx

�̂T
t�̂

�1�̂t,

where �̂t is the vector of consistently estimated residuals in period t, and 
�̂ �∑T

t=1�̂t�̂t
T/ T is the associated consistently estimated error covariance 

matrix. The mean of the true υt is one for each t, and the martingale difference 
property of �t is inherited by υt –  1. A consistent estimator of the asymptotic 
variance of υt is

(D8) !̂#
2 = 1

T
( #̂t

2 −1)
t=1

T

∑ .

A systemwide second- order specifi cation/ parameter stability test statistic 
is obtained by calculating centered and standardized partial sums of υ̂t,
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(D9) BT (z) = 1

T !̂#

⋅ ( #̂t −1)
t=1

[ zT ]

∑ ⎯→
T→�

D

B(z),

uniformly in z ∈ [0, 1], where the limiting distribution on the far right follows 
from the identity υ̂� � ∑T

t=1υ̂t/ T � 1.
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