
Introduction to High
Performance Computing
Trends and Opportunities

William Gropp
NCSA and Department of Computer Science

wgropp.cs.Illinois.edu

Assumptions and Caveats
• I’m not an economist
• I do have expertise in developing algorithms, tools, and applications for HPC

• Algorithms for solving large systems of linear and nonlinear equations using parallel
computers, especially equations from PDEs

• Programming models and systems, including the parallel algorithms for their
implementation on millions of processes (starting with a few in the 1980s)

• Techniques for creating and managing code for performance
• I run a center whose mission is to solve the problems and challenges

 facing us today by using advanced computing and data
• I am assuming a wide range of HPC experience, and so I will focus on putting

HPC in context and talking about the trends in computing
• Last year there were excellent presentations on XSEDE, which provides

extensive support for the use of HPC resources supported by NSF
• I won’t duplicate much of that – look at those presentations or https://www.xsede.org/

What is High Performance Computing?
• My definition:

Computing where performance is
important

• Many different cuts, including
• By capability

• Capability and Capacity
• “Leadership” systems

• By use
• “Tightly coupled”
• High Throughput
• Big data; Machine/Deep Learning

• By configuration
• Homogenous and heterogeneous
• With accelerators (e.g., GPU)
• Cloud

• Note not a single metric for “high”
A very simplified view of computing.
Leadership systems now have accelerators of some
sort, possibly integrated on chip

NAP: https://doi.org/10.17226/21886

Some Examples of the Use of HPC
• Simulations using Partial Differential
Equations

• A 104 x 104 x 104 grid is 10(12+1) bytes –
10TB. Problems needing 1015 bytes (1
PetaByte) are solved today

• N-body simulations
• Range from molecular dynamics of

biomolecules to evolution of the universe
• Analysis of large data sets

• Images, genome sequences, research
publications

• Large collections of separate
computations

• Uncertainty quantification
The Reference Elevation Model of Antarctica (REMA)

https://www.pgc.umn.edu/data/rema/

HPC Hardware Architecture (at the extreme)

From “Abstract Machine
Models and Proxy
Architectures for
Exascale Computing
Rev 1.1,” J Ang et al

Sunway TaihuLight
• Heterogeneous

processors (MPE,
CPE)

• No data cache
• Tianhe2a has

some data cache

Adapteva Epiphany-V
• 1024 RISC

processors
• 32x32 mesh
• Very high power

efficiency (70GF/W)

DOE Sierra
• Power 9 with 4 NVIDA

Volta GPU
• 4320 nodes
DOE Summit similar, but
• 6 NVIDIA GPUs/node
• 4608 nodes

Next Generation
System?

All Heterogeneous
Increasing
diversity in
accelerator

choices
NCSA Deep Learning System

16 nodes of Power 9 with 4
NVIDIA Volta GPU +

FPGA

Trends in High Performance Computing
• Common to say computing performance

grows exponentially
• Consequence – just wait a while for more

speed
• Moore’s Law

• Really an observation about
semiconductor feature size

• Relation to performance better described
by Dennard scaling

• Reality more complex
• The performance of different parts of

computing systems have improved at
vastly different rates

• Floating point and integer oomputaitons
• Memory access
• Disk/SSD access

• Moore’s ”Law” isn’t – really an imperative
that has become an expectation, driving
progress – but limited by physics

100’s of PF

10’s of PF

1’s of PF

10’s of TF

Laptops and Desktops 10’s of GF

Branscomb Pyramid
Original 1993

Update 2006/2011

Commercial Data
Centers – 1000’s+ PF?

Measuring Performance: Benchmarks in HPC
• Model computations used in applications
• For HPC, best known is High Performance Linpack (HPL), and the list of
top systems according to this is the top500 (top500.org)

• Solves a linear system of equations using Gaussian Elimination
• System is dense – most (all in practice) matrix elements are non-zero
• Representative of many numerical calculations when originally proposed
• Not as representative today, but dense matrix operations on single cores/nodes

common and important, e.g., spectral elements, deep learning
• Other benchmarks include

• High Performance Conjugate Gradient (HPCG) – A sparse version of HPL; more
like current PDE simulations

• Graph 500 set, based on several graph kernels
• Application-specific benchmarks, e.g., used for procurements, evaluations, …

• HPL data collected for over 26 years
• What does it tell us about trends?

Top500 Performance Trends

Images from https://www.top500.org/statistics/perfdevel/

Two Views of Moore’s “Law”

Scientific American, 2004

We are
here The Bottom of the Top500

2009

Two Lists of Top Systems – June 2017
Top500 – Dense Matrix HPCG – Sparse Matrix

Figures from top500.org and hpcg-benchmark.org

Two Lists of Top Systems – June 2018
Top500 – Dense Matrix HPCG – Sparse Matrix

Figures from top500.org

Two Lists of Top Systems – June 2019

Figures from top500.org

Le
ad

er
sh

ip
 S

ys
te

m
s

Two Graph Benchmarks (June 2018)

Figures from graph500.org

Breadth First Search Single Source Shortest Path

Growth of Accelerators in the Top500

Some Observations
• Leading systems exploit specialized processors

• NVIDIA GPUs for many; DSP-based engines for others
• Same approaches used in everything from cellphones to large data
systems (e.g., Google TPU; Microsoft FPGA search accelerators)

• I/O, Memory often the critical resource
• Compare HPCG and Graph500 to HPL performance

• Systems (and software and algorithms) optimized for algorithm/data
structure combinations

• Not just for science domains
• Many opportunities to build communities around shared tools and expertise

Changing Landscape of Computing
• Dennard scaling ended more than a decade ago

• The popular interpretation of “Moore’s Law” in terms of performance is
really due to Dennard scaling

• Moore’s law (never really a “law”, more an imperative) is ending
• Because of redefinition in terms of progress, will not have a definitive end

date
• Ability to gather, share, combine, and explore data is creating
new demands and opportunities

• Specialization is driving computer architecture, and hence
software and algorithms

• Not new, but the extent to which systems are specializing is making
“business as usual” unworkable

Do I really need HPC?
• How fast should my code run?

• Performance models can help here
• Should be based on the algorithms and data used
• Typically needs to consider separately

• Computations performance
• Memory moved

• Within a node
• Between nodes

• Data accessed
• For parallel computations, also effective concurrency

• Relatively simple models with a startup cost and an asymptotic rate often surprising
effective

• Some adjustments needed for multicore nodes, e.g.,
• Modeling MPI Communication Performance on SMP Nodes: Is it Time to Retire the Ping Pong Test,

W Gropp, L Olson, P Samfass, Proceedings of EuroMPI 16, https://doi.org/10.1145/2966884.2966919

• You can also rely on established applications and libraries that have been
tuned for HPC systems

Algorithms Vs. Machines
• Is it better to improve the algorithm or the
machine?

• Both of course!
• Algorithm improvements have been
substantial – E.g. solve a sparse linear
system

• Algorithm and Hardware improvement
provided similar speedup*

• *Note that Full MG is O(1) per mesh point –
no more room to improve asymptotically

• Without changing the problem – different model,
different approximation, etc.

One Example of Tradeoff in Performance and Productivity

Navigating the Maze of Graph Analytics Frameworks using Massive Graph Datasets
Nadathur Satish, Narayanan Sundaram, Md. Mostofa Ali Patwary, Jiwon Seo, Jongsoo Park, M. Amber
Hassaan, Shubho Sengupta, Zhaoming Yin, and Pradeep Dubey; Proceedings of SIGMOD’14

Factor of
100!

MPI

• HPC Focus is typically on scale
• “How will we program a million (or a billion) cores?
• “What can use use to program these machines?”

• The real issues are often overlooked
• Performance models still (mostly) process to process and single core

• Node bottlenecks missed; impacts design from hardware to algorithms
• Dream of “Performance Portability” stands in the way of practical solutions

to “transportable” performance
• Increasingly complex processor cores and nodes
• HPC I/O requirements impede performance, hurt reliability

Diversion: Where are the real problems in using HPC
Systems?

Programming Models and Systems
• In past, often a tight connection between the execution model and the

programming approach
• Fortran: FORmula TRANslation to von Neumann machine
• C: e.g., “register”, ++ operator match PDP-11 capabilities, needs

• Over time, execution models and reality changed but programming models
rarely reflected those changes

• Rely on compiler to “hide” those changes from the user – e.g., auto-vectorization for
SSE(n)

• Consequence: Mismatch between users’ expectation and system abilities.
• Can’t fully exploit system because user’s mental model of execution does not match real

hardware
• Decades of compiler research have shown this problem is extremely hard – can’t expect

system to do everything for you.

The Easy Part – Internode communication
• Often focus on the “scale” in extreme scale as the hard part

• How to deal with a million or a billion processes?
• But really not too hard

• Many applications have large regions of regular parallelism

• Or nearly impossible
• If there isn’t enough independent parallelism

• Challenge is in handling definition and operation on distributed data
structures

• Many solutions for the internode programming piece
• The dominant one in technical computing is the Message Passing Interface

(MPI)

Modern MPI
• MPI is much more than message passing

• I prefer to call MPI a programming system rather than a programming model
• Because it implements several programming models

• Major features of MPI include
• Rich message passing, with nonblocking, thread safe, and persistent versions
• Rich collective communication methods
• Full-featured one-sided operations

• Many new capabilities over MPI-2
• Include remote atomic update

• Portable access to shared memory on nodes
• Process-based alternative to sharing via threads
• (Relatively) precise semantics

• Effective parallel I/O that is not restricted by POSIX semantics
• But see implementation issues …

• Perhaps most important
• Designed to support “programming in the large” – creation of libraries and tools

• MPI continues to evolve – MPI “next” Draft released at SC in Dallas last November

Applications Still Mostly MPI-Everywhere
• “the larger jobs (> 4096 nodes) mostly use message passing with no
threading.” – Blue Waters Workload study,
https://arxiv.org/ftp/arxiv/papers/1703/1703.00924.pdf

• Benefit of programmer-managed memory locality
• Memory performance nearly stagnant (will High Bandwidth Memory save us?)
• Parallelism for performance implies locality must be managed effectively

• Benefit of a single programming system
• Often stated as desirable but with little evidence
• Common to mix Fortran, C, Python, etc.
• But…Interface between systems must work well, and often don’t

• E.g., for MPI+OpenMP, who manages the cores and how is that negotiated?

• Long history of tools and techniques to produce fast code for loops
• Vectorization, streams, etc., dating back nearly 40 years (Cray-1) or more

• Many tools for optimizing loops for both CPUs and GPUs
• Compiler (auto) vectorization, explicit programmer use of directives (e.g., OpenMP or

OpenACC), lower level expressions (e.g., CUDA, vector intrinsics)
• Is there a clear choice?

• Not for vectorizing compilers (e.g., see S. Maleki, Y. Gao, T. Wong,
M. Garzarán, and D. Padua, An Evaluation of Vectorizing Compilers.
PACT 2011)

• Probably not for the others
• Similar results for GPU programming

• Vector tests part of baseenv; OpenACC and OpenMP vectorization
tests under development (and some OpenACC examples follow)

• Need to separate description of semantics and operations
from particular programming system choices

The Hard Part: Intranode Performance
Example: Generating Fast Code for Loops

Often Overlooked – IO Performance Often Terrible
• Applications just assume I/O is
awful and can’t be fixed

• Even simple patterns not handled
well

• Example: read or write a submesh
of an N-dim mesh at an arbitrary
offset in file

• Needed to read input mesh in
PlasComCM. Total I/O time less
than 10% for long science runs
(that is < 15 hours)

• But long init phase makes
debugging, development hard

• Meshio library built to match
application needs

• Replaces many lines in app with a
single collective I/O call

• Meshio
https://github.com/oshkosher/meshio

• Work of Ed Karrels

 Original Meshio Speedup

PlasComCM 4500 1 4500

MILC 750 15.6 48

Just how bad Is current I/O performance?
Sustained
maximum I/O
bandwidth

“A Multiplatform Study of I/O Behavior on Petascale Supercomputers,” Huong Luu,
Marianne Winslett, William Gropp, Robert Ross, Philip Carns, Kevin Harms, Prabhat,
Suren Byna, and Yushu Yao, proceedings of HPDC’15.

1000X

Summary: Challenges in Building HPC Applications
• Popular focus in on the computation
• Much of the limitations in performance are due to memory

• Is the data needed available?
• How easy and fast is it to access?
• Data moves in aggregates (e.g., cache lines, memory rows, network

packets, disk blocks)
• All is not lost!

• A hierarchy of tools exist
• Low-level programming systems (C/Fortran, OpenMP, MPI, CUDA, OpenACC, …)
• Software libraries on top of these (PETSc, Trilinos, SCALAPACK, …)
• Higher level systems on top of those (Matlab, R, Python, …)
• Applications and workflows on these (NAMD, LS-DYNA, …)

• (End of Diversion)

Sources of HPC for research
• Federal agencies

• NSF through XSEDE and PRAC
• DOE through INCITE
• Other agencies through specific systems – e.g., DoD HPCMP

• Institutions
• Many provide some shared resource

• Illinois has 324 nodes in a campus cluster + a share of Blue Waters + others
• Indiana just announced a substantial Cray supercomputer
• …

• It appears NSF is increasing expecting institutions to provide some HPC for researchers
• Cloud (commercial and otherwise)

• Cycles cannot be stored, so if you are very flexible, you may be able to get a great deal –
e.g., https://aws.amazon.com/ec2/spot/ https://cloud.google.com/preemptible-vms/
https://docs.microsoft.com/en-us/azure/batch/batch-low-pri-vms
https://www.ibm.com/cloud/blog/transient-virtual-servers

Requesting Time on National Resources
• Ask for time (national requests)

• https://portal.xsede.org/allocations/research
• https://www.olcf.ornl.gov/2019/04/15/incite2020/ (closed in June, but annual call)
• https://science.osti.gov/ascr/Facilities/Accessing-ASCR-Facilities (ASCR general info)
• https://www.hpc.mil/ (for work on DOD Grants – see

https://www.hpc.mil/images/hpcdocs/users/New_Users_Brief_2_Who_May_Run_on_HP
CMP_Resources_rev2_distro_a.pdf)

• Check your favorite agency
• Take advantage of “exploratory” or “startup” allocations to benchmark, show

readiness
• E.g, https://portal.xsede.org/allocations/startup

• Focus on science, but also show that you are using the resource wisely
• XSEDE 5x oversubscribed; DOE INCITE similar or worse

• Look for partners with complementary expertise
• Or try to start as part of an established project

Clouds and All That
• Cloud computing is a term for many things,

including
• Load sharing among users
• Flexible allocation on demand
• Framework for data and software sharing

• Multiple cost studies show beneficial for
users (compared to a dedicated system)
with

• Less than 20-30% use of a dedicated system
• Highly variable use that is uncorrelated with

other users
• Typical supercomputing systems run at

80+% utilization
• Clouds would be more expensive

• You don’t need to believe anyone – do the
numbers yourself

• But do them carefully!
Gahan Wilson

More on Cloud Cost studies
• DOE Magellan report

• https://www.osti.gov/scitech/servlets/purl/1076794
• Measured performance (hence cost) on cloud system, compared to

supercomputer centers
• Clouds 3-5X more expensive
• Not surprising – margins thin on hardware, availability on demand requires excess

capacity – cost is higher
• National Academy Report

• http://tinyurl.com/advcomp17-20
• Update on cloud pricing

• Adds File (Data) I/O, networking
• Compute power vague (achieved performance more dependent on memory bandwidth,

latency, cache capabilities)
• Magellan conclusion still hold

• NASA Report “Evaluating the Suitability of Commercial Clouds for NASA’s
High Performance Computing Applications: A Trade Study”

• https://www.nas.nasa.gov/assets/pdf/papers/NAS_Technical_Report_NAS-2018-0
1.pdf

• Another update on cloud pricing; similar results
• “Do the numbers”

Where do Clouds Fit?
• Clouds provide a complimentary

service model
• Access to systems (different

configurations, sometimes at scale)
• On-demand access
• Access to different (and often newer)

software frameworks
• Easy ways to share data with services

(“Data Lakes”)
• Complement center resources

• Lower cost but not on demand
• Expert support (not uncommon to get

2-10x performance improvement)
• Increasing real-time needs for

instruments
• Not either/or – can and do use both

to solve problemshttps://aws.amazon.com/blogs/aws/natural-language-processing-at-clemson
-university-1-1-million-vcpus-ec2-spot-instances/

Summary
• High performance computing is any computing where performance is important
• The technology (both hardware and software) are mostly familiar

• Programming languages, operating systems and runtimes, nodes are often “server”
versions of commodity products

• HPC ecosystem typically batch-oriented (for reasons of cost), but alternative interfaces
such as science gateways are available

• Parallelism (needed for performance and scaling of resources such as memory)
does introduce challenges

• In software and in algorithms
• The technology is going though a disruptive period

• End of Dennard scaling leading to architectural innovation, ending over 30 years of
hardware and software stability

• There are many sources of HPC help
• Access to systems
• Advice and help on applications and workflows
• Communities of users and developers

Questions For the Workshop
• What is the greatest challenge (e.g., access, software,
performance, productivity?)

• What are the three things that would have the most impact?
• What are the most important categories of HPC needed? At what
scale?

• How should different communities organize to accelerate their use
of HPC?

