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ABSTRACT

The surprise economic shutdown due to COVID-19 caused a sharp improvement in urban air 
quality in many previously heavily polluted Chinese cities. If clean air is a valued experience 
good, then this short-term reduction in pollution in spring 2020 could have persistent medium-
term effects on reducing urban pollution levels as cities adopt new “blue sky” regulations to 
maintain recent pollution progress. We document that China’s cross-city Environmental Kuznets 
Curve shifts as a function of a city’s demand for clean air. We rank 144 cities in China based on 
their population’s baseline sensitivity to air pollution and with respect to their recent air pollution 
gains due to the COVID shutdown. The largest experience good effect should take place for cities 
featuring a high pollution sensitive population and where air quality has sharply improved during 
the pandemic. The residents of these cities have increased their online discussions focused on 
environmental protection, and local officials are incorporating “green” industrial subsidies into 
post-COVID stimulus policies.
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I. Introduction 

 

In recent years, China’s cities have enjoyed economic growth and declining urban 

air pollution. While economic growth rates varied across cities and regions, the nation’s 

economy as a whole was growing at a rate of roughly 6% per year over the last five 

years. Over the years 2015 to 2019, air pollution has declined annually by 6.9% in the 

average city and by 8.1% in the big cities. 

In early 2020, urban air pollution declined in China due to the COVID-19 induced 

economic shutdown (He et al. 2020).1  In the first three months of 2020, the PM2.5 

concentration in 285 Chinese cities declined by 11.9% (with a standard deviation of 

18.1%) relative to the same period in last year. These gains were not uniformly 

distributed. Some cities, such as Baoding and Xingtai in the Hebei Province, 

experienced large pollution reductions (roughly 25%) from an initial high pollution 

level of 80 μg/m3 in recent years.   

In this paper, we study how the early 2020 economic shutdown influences urban 

China’s air quality, citizen environmental engagement, and the nation’s regulatory and 

industrial policy dynamics. A stationary Environmental Kuznets Curve (EKC) yields 

the empirical prediction that when a developing country economy experiences a “V” 

shaped economic recovery that pollution will follow similar dynamics and may even 

rise with ongoing economic growth (Grossman and Krueger 1995).2 A local official in 

a developing country city might even choose to relax environmental regulations during 

an economic slowdown if he believes that such regulations hinder economic growth 

(Selden and Song 1995). 

In contrast, if clean air is a valued experience good, then the reduction in pollution 

in spring 2020 could have persistent effects on future urban pollution levels even if the 

local economies fully recover from the recent recession. In China’s polluted cities, blue 

skies represent a new good. Until they experience persistent air quality gains, urban 

                                                             
1 He et al. (2020) defines “city lockdown” when the following three measures are all enforced: (1) prohibition of 

unnecessary commercial activities for people’s daily lives, (2) prohibition of any type of gathering by residents, (3) 

restrictions on private (vehicles) and public transportation. 
2 A strict adherent to the view that there is a stable Environmental Kuznets Curve would posit that a city initially 

located to the left of the turning point, moves down the hill as per-capita income declines and then moves back up 

the hill as the economy recovers. 



3 

 

residents may under-estimate their own valuation of this new good. Research on 

experience goods have studied optimal pricing of such goods. Firms that market new 

products have incentives to initially price them at a low level to stimulate demand and 

to give consumers “a taste” of the new product (Riordan 1986, Shapiro 1983).  We 

know of no analogous research exploring the implications of local public goods 

improvements as “experience goods”. 

A “silver lining” of the COVID-19 pandemic is to offer millions of Chinese 

urbanites this clean air experience. While China does not hold direct elections, the 

Chinese people now have much more freedom to express their opinions online and in 

social media on environmental issues (which are not very sensitive as compared to other 

political topics). Urban leaders are increasingly held accountable to their citizens’ voice 

because of the rising information transparency. They are evaluated by the central 

government for political promotion. The criteria for promotion include social stability 

and environmental targets as well as local economic growth (Zheng et al. 2014). Both 

online and offline protests are regarded as threats to social stability. The local official 

performance criteria provides ambitious local leaders with career concerns to consider 

adopting “green policy”; especially if local residents increasingly desire such policies.  

The clean air as an experience good hypothesis posits that the demand for 

increased regulation will take place in those cities that both enjoy increased short run 

access to cleaner air and where the population is more sensitive to pollution exposure. 

This experience effect can vary by city. In those cities where people exhibit a stronger 

demand for cleaner air, we predict an even greater “experience good” effect as the 

COVID shutdown cleans up the air.  

In a recent research, we have used the content of social media “tweets” in China 

to measure for each city, to what extent local air pollution lowers residents’ sentiment. 

Using this city level index to measure the local population’s pollution sensitivity, we 

identify those cities whose residents have revealed that they face the highest marginal 

sentiment cost due to pollution (Zheng et al. 2019).  

In arguing that the COVID-19 induced shutdown may accelerate pollution 

reduction progress in China’s most polluted cities, we need to address the counter-
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factual of how pollution would have evolved in different Chinese cities if the COVID-

19 shock had not occurred. We study this by first examining recent urban pollution 

dynamics over the years 2015 to 2019 across China. We explore the key roles of 

industrial activity, the transport sector and the home sector in driving these dynamics. 

We then build on the work of He et al. (2020) to explore how the recent COVID-19 

shock affected pollution dynamics.  

In the last section of the paper, we use several new data sets to explore the nascent 

demand for more intense environmental regulations. We rank 144 cities in China based 

on their population’s baseline sensitivity to air pollution and with respect to their recent 

air pollution gains due to the COVID shutdown. The largest experience good effect 

should take place for cities featuring a high pollution sensitive population and where 

air quality has sharply improved during the pandamic. For these cities, we document 

that in mid-2020 the local population has increased the discussion of environmental 

protection on the Internet, and local officials are incorporating “green” industrial 

subsidies into post-COVID stimulus policies. If these regulations are effective, then this 

will shift the EKC down and lead to a time series path featuring less pollution as 

economic development takes place (Dasgupta et al. 1998). 

 

II. Recent Trends in Urban Air Pollution in China 

 

We start by presenting recent trends in air pollution across China’s cities over the 

years 2015 to 2019. The pollution data reports each city’s PM2.5 concentration level 

based on the real time platform managed by the China Environmental Monitoring 

Station network.3 The data are released daily. We calculate each city’s annual mean 

value. Cities with larger populations have higher average pollution levels at the start of 

the period but have enjoyed greater pollution reductions over time than smaller cities. 

Smaller cities have also enjoyed air pollution reductions. During a time of economic 

                                                             
3 The quality of China’s official air quality data has been improved significantly in the last few years, as documented 

by recent studies. For instance, Liang et al. (2016) found that the US PM2.5 monitors show measured values highly 

consistent with those measured at China’s Ministry of Environmental Protection PM2.5 monitors located nearby. 

Stoerk (2016) compared the air quality data via Benford’s Law which suggests that misreporting of air quality data 

for Beijing has likely ended in 2012. 
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and population growth, China’s pollution levels have declined 15 μg/m3 on a base of 

55 μg/m3 (See Figure A1). 

Since big cities are richer, local leaders are more likely to enforce stringent 

environmental regulations (Grossman and Krueger 1995, Selden and Song 1995). 

When cities differ with respect to their environmental regulatory enforcement, this 

raises the possibility that footloose polluting industries will relocate to poorer cities that 

have less stringent regulations, which leads to the “domestic pollution haven” problem 

(Zheng et al. 2014). In Figure A2, we document the decline in the share of local output 

from manufacturing in both big and small cities. Big cities have experienced a larger 

decline. The transition to services and high tech in China’s major cities is an important 

factor that mirrors the transition that occurred in U.S cities (Kahn 1999). The nation’s 

industrial policy has contributed to this geographic shift. The 13th Five-Year Plan 

(2016-2020) offers forward guidance in determining the spatial distribution of 

industrial growth.4 Given that air pollution has declined in recent years in both big and 

small cities and in rich and poor cities, this suggests that any industrial composition 

shifts (i.e the local Bartik trends) has been offset by technique effects such that pollution 

per unit of economic activity declines.  

To explore recent changes in the urban population’s exposure to pollution, we 

calculate the urban population’s distribution of pollution exposure in 2015 and 2019. 

In each year, we tabulate the annual mean pollution data and weight the data by the 

city’s population. Figure 1 reports these two cumulative distribution functions (CDF). 

Define X80 as the 80th percentile of the CDF in 2015. X80 indicates that 20% of the 

total urban population lived in a city whose average pollution level was equal to or 

greater than X80. We find that there have been large reductions in pollution exposure 

to the dirtiest air. 

 

                                                             
4 According to the plan, large cities and cities in the eastern region focus on the development of high-tech industries, 

while middle-sized and small cities and cities in the central and western regions are responsible for the traditional 

manufacturing industry. From 2015 to 2018, the average drop in the share of manufacturing in total GDP of Chinese 

cities was 3 percentage points (equals to 6.8% of the mean manufacturing share in 2015). 178 cities experienced 

decline, and 99 cities experienced increase in this share. More than half of the cities with an increasing manufacturing 

share are in the western region. 
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// Insert Figure 1 about here // 

 

In the year 2015, roughly 20% of Chinese urbanites were exposed to less than 40 

units of PM2.5. In the year 2019, this percentage grew to almost 60%. The median 

Chinese urbanite was exposed to just over 50 units of pollution in 2015 while the 

median person was exposed to 35 units in 2019.5 The large distance between the two 

cumulative distribution functions highlights the significant pollution gains enjoyed by 

those who live in moderately polluted areas (by way of comparison Los Angeles 

features a PM2.5 average level of roughly 20). The Figure highlights that even at the 

high quantiles of the pollution exposure distribution that there has been significant air 

pollution exposure progress.  

 

III. Increasing Public Demand for Clean Air Shifts the Environmental Kuznets 

Curve 

 

3.1 Measuring Clean Air Demand Using Internet Search Data 

Traditional revealed preference methods rely on annual data such as real estate 

prices or survey data asking people to state their quality of life priorities. Scholars have 

also studied the demand for self-protective goods such as masks and air filters and 

studied how the demand varies across China (Sun et al. 2017, Ito and Zhang 2020, 

Barwick et al. 2018). 

Rising access to real time “big data” provides new facts about how local pollution 

and climate conditions affect our quality of life. In recent research, we have used 

billions of social media messages posted on the equivalent of China’s Twitter to explore 

how the population’s sentiment (expressed happiness) is affected by pollution and heat 

(Zheng et al. 2019). People from different cities in China vary with respect to how 

sensitive they are to air pollution. Zheng et al. 2019 measures this by estimate a city 

specific partial derivative of happiness (as revealed by social media content analysis) 

                                                             
5 It is important to note that these calculations do not incorporate private averting behavior (Sun et al. 2017). We 

also do not incorporate within city variation in pollution and the geographic distribution of people within the city.  
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with respect to that city/day PM2.5 (the “sentiment-pollution” elasticity)6.  

In that study, the researchers use their 144 city sample to estimate a second stage 

regression to understand the correlates of this pollution sensitivity. The relationship 

between city income and pollution sensitivity is monotonically positive – people are 

more sensitive to pollution in richer cities. At the same time, very dirty and clean cities 

have a relatively higher elasticity compared to cities in the intermediate pollution range. 

One explanation for this fact is that people who dislike air pollution most move and live 

in cleaner cities, and at the same time, people in dirtier cities come to recognize the 

health risks associated with the long-term pollution exposure.  

Using these city specific estimates of the sentiment-pollution elasticity, we divide 

cities into above median and below median elasticity groups, and test whether the time 

trends are equal for the two sets of cities over the years 2015 to 2019.  

We estimate equation (1) using city/year data to test whether cities with above 

median sentiment for avoiding pollution have a steeper negative time trend.   

Intuitively, we test if we observe a steeper decline in pollution in cities where residents 

have a greater demand for clean air.  We test if α2<0. 

 

0 1 2it t i t it

it

Pollution Trend HS Trend X

city fixed effects

   



       

 
    (1) 

 

In equation (1), HS is a dummy variable, which equals 1 if the “sentiment-pollution” 

elasticity of city i is higher (than the median value), and 0 otherwise. The sample is 

restricted to the 144 cities whose “sentiment-pollution” elasticities have been estimated 

by Zheng et al. (2019). 

The regression results are presented in Table 1. As shown in columns (1) and (2), 

                                                             
6 In Zheng et al. (2019), they divide the full sample of city-day observations into 144 city subsamples and estimate 

the following equation using a fixed effect regression approach for each city i. This procedure generates a marginal 

city-specific partial derivative of sentiment with respect to PM2.5 - the “sentiment-pollution” elasticity, φ1,i.. It is 

expected to be negative – all else equal, people are more likely to be unhappy on days when their city’s pollution 

level is higher. 

0 1 2+ +it it it itSentiment Pollution X date fixed effects         

Sentimentit and Pollutionit represent the sentiment measure and the pollution level (PM2.5 concentration) of this city 

i on day t, respectively. We include other variables Xit which represents the city’s weather conditions, and date fixed 

effects.  
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PM2.5 declined by 8.0% per year on average in these 144 cities from 2015 to 2019. The 

decline rate is 7.5% per year in lower sentiment-pollution elasticity cities and 8.8% in 

the high elasticity cities. The results suggest that cities where the population is more 

susceptible to pollution have experienced a larger improvement in air quality. The high 

anti-pollution sentiment cities tend to be the relatively rich cities.  

 

// Insert Table 1 about here // 

 

As Chinese urbanites have grown richer and more educated, this group should 

increasingly demand “blue skies”. The subset of urbanites who live in the most 

pollution sensitive cities should be most responsive and place more pressure on local 

leaders (Zheng et al. 2014). 

To explore this hypothesis, we use Internet data to measure the bottom-up push 

from the public for environmental protection and how this varies across time by city. 

We use “environmental protection” as the keyword to create an environmental attention 

index (Baidu_index) at the city level using Baidu platform 

(http://index.baidu.com/v2/index.html#/). 7  Specifically, the Baidu_index = total 

entries of the key word “environment protection” in the Baidu search engine divided 

by the total population. This variable is measured in the number of entries per million 

people. This index reflects the public attention devoted to environment protection for 

each city in a given year.  

We study the yearly environmental attention index’s dynamics using Equation (2) 

(with the same specification as Equation (1)). In column (3) of Table 1, we find that it 

increases from 2015 to 2019 after controlling for climate and a city’s inherent 

characteristics, and urbanites in cities featuring a higher sentiment-pollution elasticity 

are paying more and more attention to environmental protection. In column (4), we 

document that in the cities with a larger higher environmental attention index, they have 

                                                             
7 In China, The central government’s Ministry of Enviromental Protection and local governments’ Environmental 

Protection Bueaus play the central role in pollution regulation. People use “environmental protection” on the social 

media or all kinds of Internet forums when they discuss the current environmental policies from those government 

bureaus or express their desire for such policies. 

http://index.baidu.com/v2/index.html#/
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experience an air quality improvement in the next year.  

 

0 1 2_ it t i t it

it

Baidu index Trend HS Trend X

city fixed effects

   



       

 
   (2) 

 

3.2 The Dynamic Environmental Kuznets Curve 

We test if the cities with a greater environmental awareness have an earlier EKC 

turning point such that subsequent economic growth is negatively correlated with 

pollution. Following the research design in Zheng et al. (2014), we estimate equation 

(3) below in order to examine how the shape of the EKC and in particular the GDP 

“turning point” varies as a function of the public sentiment-pollution elasticity and their 

demand for environmental protection. In equation (3), the unit of analysis is a city/year. 

Following the EKC literature, we include a quadratic in a city’s per-capita real GDP.8 

These variables proxy for the city’s enforcement of environmental regulation and the 

quality of the local capital stock. We expect that in richer cities that environmental 

regulations are more stringently enforced and that the capital stock is newer and more 

energy efficient.  

 

2

0 1 2

3

ln( ) ln( )

ln( )

it it it

it it it

Pollution GDPPC GDPPC

POP X year fixed effects

  

  

    

     
    (3) 

 

In equation (3), we also control for the city’s population level (the scale of activity) 

and the weather conditions in that city/year and year fixed effects to control for the 

macro conditions of the economy at that time. 

In column (1) of Table 2, the results are based on the sample of 285 cities. We find 

evidence of an inverted-U relationship between the city’s PM2.5 concentration and per-

capita GDP. The turning point is about 48.8 thousand Yuan (7,839 US dollars, in 2015 

                                                             
8 We recognize that Hilton and Levinson (1998) recommend using a more flexible functional form for per-capita 

income. In Appendix Table A1, we report such additional regressions. Our main findings are robust to such more 

flexible specifications. 
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constant price.9 We also calculate the count of cities whose per-capita GDP is such that 

they have passed the EKC turning point. During the years 2015-2018, 47% cities have 

passed the EKC turning point. In columns (2) and (3), we use the median value of the 

sentiment-pollution elasticity to divide the city sample into two subsamples. We find 

that the two subsamples have similar turning points, but in the subsample with the more 

pollution sensitive population, a larger proportion of cities pass this turning point. In 

columns (4) and (5), we find that cities with stronger bottom-up push for environmental 

protection have a much earlier turning point (RMB 37,423 vs. RMB 73,786), and also 

have a larger proportion of passing the turning point. These results support the claim 

that cities with a higher Baidu environmental attention index have an earlier EKC 

turning point. 

 

// Insert Table 2 about here // 

 

IV. The Impact of the COVID Induced Shutdown on Pollution Dynamics 

 

4.1 Estimating the Air Pollution Decline During the COVID Induced Shutdown in 

China 

We use the variation induced by the COVID shutdown to provide new insights 

about the distribution of pollution dynamics across China’s cities. Panel A in Figure A3 

shows the timeline around the 2020 Chinese New Year (CNY). The traditional CNY 

holiday (when almost all production activities pause) would end seven days since the 

CNY’s Eve, which is Jan 31st in year 2020. However, due to the COVID pandemic, 29 

provinces (out of 31 provinces) in China mandated businesses to not resume work 

before Feb 10th at the earliest.10 This unexpected post-CNY holiday shutdown provides 

us with the opportunity to identify the determinants of air pollution in China. 

Panel B in Figure A3 presents the trends of air pollution before and after the 

                                                             
9 $1 = RMB 6.23, in 2015. 
10 The left two provinces (Qinghai and Tibet) set Feb 3th as the earliest day of resuming work, and the actual first 

day depended on the city-specific situation around that time.  
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Chinese New Year in 2017 through 2020. Air pollution since the CNY’s Eve of 2020 

was significantly lower than that of the same periods of 2017-2019. This divergence 

becomes much larger after the end of traditional CNY holiday. 

To quantify the reduction in pollution associated with the shutdown, we use 

city/year/day pollution data and present an event study in a difference-in-differences 

setting (Equations (4) and (5)): 

 

0 1 2 2020it t t

it

Pollution Shutdown Shutdown year

fixed effects

  



     

 
   (4) 

 

0 1 2

3 4

5

_ _

2020 _ 2020

_ 2020

it t t

t

t

it

Pollution SF holiday COVID shutdown

year SF holiday year

COVID shutdown year

fixed effects

  

 





    

    

  

 

   (5) 

 

We restrict the sample to twenty days before and sixteen days after the CNY’s Eve 

(until Feb. 10th, the first day of re-open). In Equation (4), Shutdown=1 indicates the 

seventeen days since the CNY’s Eve. year2020=1 indicates year 2020. We choose 2018 

and 2019 as the benchmark years. In Equation (5), SF_holiday=1 indicates the eight 

days since the CNY’s Eve, also the regular CNY holiday, so this period for all the three 

years has very little production activity. COVID_shutdown=1 indicates the 8th to 16th 

days since the CNY’s Eve, which are the unexpected shutdown days in 2020 due to 

COVID, but they are regular workdays in 2018 and 2019. Therefore, the extra decline 

of air pollution in the first period in 2020 was mainly due to the complete pause of 

holiday activities such as driving for family reunion, net of the possible increase of 

home cooking (which might add pollution); while the extra deline in the second period 

was attributed to the shutdown of production activity and the associated travel demand 

decline, net of the home cooking effect. 

We assume there is no difference in air pollution between the pre-CNY days in 

2020 and 2018/2019 after controlling for city fixed effects, year fixed effects, month 
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fixed effects, day of month fixed effects, and day of week fixed effects. The regression 

results are reported in Table 3. Compared to the years before 2020, air pollution 

significantly decreased by 14.9%-16.6% in the sixteen days after the CNY’s Eve (Panel 

A, columns (1) and (3)). After we decompose this post-CNY period into the regular 

CNY holiday (1st to 7th day after CNY eve) and the unexpected COVID shutdown 

period (8th to 16th day after CNY eve), the first period a 27.5% larger decline in pollution 

relative to 2018 and 2019, and this extra drop in the second period was 7.1%-9.7% 

(Panel A, columns (2) and (4)).  

 

// Insert Table 3 about here // 

 

By estimating equation (5) for each city, we obtain 285 estimates of δ4 and δ5. 

These measure the changes in air pollution during the CNY holiday and COVID 

shutdown days of 2020 relative to 2018 and 2019, respectively. Figure A4 present the 

changes in PM2.5 concentration during the CNY holiday and COVID shutdown days 

across cities in 2020. Most of Chinese cities (190 out of 285) experienced decreases in 

air pollution.11 

 

4.2 Understanding Why Pollution Declined in Early 2020 in Many Cities  

 

 We focus on three main determinants of air pollution – driving, industrial 

activities, and cooking12 , which were impacted by the COVID shutdown. First, the 

majority of the trips were cancelled, which would reduce the emission of air pollutants 

from vehicles. Second, factories were forced to close. This led to a significant reduction 

in industrial pollutant emissions.13  Third, the closure of restaurants and the ban on 

                                                             
11 Air pollution in cities in northeast and northwest China increased in CNY holiday of 2020, which might due to 

some meteorological factors and the weak impact of the initial COVID outbreak. 
12 We do not include coal consumption in explaining the air pollution changes to avoid double counting. Coal is the 

raw materials of production and living activities. The three activities that we focus on (driving, industrial activities, 

and cooking) represent the major activities for which coal is used.  According to the energy balance sheet of China 

in 2017, the industrial production itself consumed 94.8% coal in China. This consumption also includes the coal 

used for generate power which is used by industrial sector. 
13 Necessary production activities such as power supply, water supply and heating, and production activities of 

medical supplies related to epidemic control did not stop. 



13 

 

gatherings greatly reduced people’s dining out activities. During this time people could 

only cook at home, and this might lead to increased air pollution due to the decentralized 

low-efficient use of solid fuels (Chafe et al., 2014).  

To decompose recent pollution dynamics into key urban fundamentals, we 

construct three variables to reflect the driving, industrial activities, and cooking 

activities in Chinese cities. They are the total number of private cars (in log, Vehicle), 

GDP share from industrial sector (Industry), and the employment in the accommodation 

and restaurant industry (in logs, Cooking). We use the pre-COVID levels of the three 

variables to reflect the city’s scale in these three activities. We posit that cities featuring 

greater levels of transport, industry and cooking before the COVID shutdown would 

feature higher levels of air pollution.   

Panels C-D in Figure A3 plots these associations. The y-axis is the estimate of city-

specific θ2 by estimating equation (4) for each city. As expected, both the number of 

private cars and the industrial sector GDP share is positively correlated with the PM2.5 

drop from the COVID. The number of employees in accommodation and the restaurant 

industry is negatively correlated with the PM2.5 drop. 

We further quantify those associations by decomposing the pollution decline due 

to COVID into these three factors. We estimate the following equation where region 

fixed effects are included. The unit of analysis is a city. 

 

0 1 2 3i t i i

i

Pollution Vehicle Industry Cooking

region fixed effects

   



       

 
  (6) 

 

The results are reported in Panel B in Table 3. We find that among the three 

activities, cooking mainly contributes to the changes in air pollution in the regular CNY 

holiday. This result is plausible as most of the production activities stopped during every 

year’s CNY holiday. Therefore, the PM2.5 change in this year relative to the previous 

years in this regular holiday window was not correlated with the production scale. 

However, in the post-CNY COVID shutdown days which only existed in year 2020, 

cities with more private cars, a larger share of the industrial production in the urban 
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economy, and fewer people employed in the restaurant sector experienced a larger 

decrease in air pollution.  

 

V. Blue Skies as an Experience Good  

 

We now compare a subset of Chinese cities to the rest of the cities. We focus our 

attention on the subset of cities that meet two criteria. The first criteria is that the city 

experienced a 2020 air pollution decline in the COVID pandemic (based on the city-

specific estimate of θ2 in equation (4)). The second criteria is that the city’s anti-

pollution sentiment is greater than the median (based on the estimates from Zheng et al. 

(2019)).  

 We divide the 144 Chinese cities into four quadrants based on their sentiment-

pollution elasticity and the PM2.5 change during the COVID shutdown. As shown in 

Panel A in Figure 2, the 49 cities in quadrant I are those where air pollution significantly 

declined and the population is more sensitive to air pollution. These cities are defined 

to be the “treated cities”. We examine whether their population exhibits a high demand 

for clean air. We study this using the Baidu data. 

 

// Insert Figure 2 about here // 

 

Here we construct a daily Baidu environmental attention index, and estimate the 

following DID model for city/year/day data. 

 

0 1_ +it i t itbaidu index Treat Post fixed effects          (7) 

 

In equation (7), the dependent variable is the daily count of the keyword 

“environment protection” in the Baidu search engine by city i at date t. The baidu_index 

in equation (7) is standardized by dividing it over its mean value. This makes the 

number comparable across different keywords. Treat equals 1 for the cities in quadrant 
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I in Figure 2 Panel A and equals zero for the cities in the other quadrants. City fixed 

effects and date fixed effects are included in the regression.  

The trends in Panel B in Figure 2 show that the quantity of Internet discussion 

activity mentioning “environmental protection” in Chinese cities in Quadrant I 

increased by more than in other cities during the same time period. The regression 

results confirm that this Baidu index in those cities increased 1.5 times of its mean 

higher than the other cities (see Table A2). The local population in the Quadrant I cities 

is increasingly interested in environmental protection and they seek more information 

about what the local officials are doing to further improve the local environment. 

 

5.2 Local Government Post-COVID Stimulus  

Whether the short-run improvement in air quality persists over time as the local 

economy recovers hinges on how such a bottom-up push pressure from the local pople 

nudges the local government to enact credible anti-pollution policies. In this section we 

investigate whether local governments in 2020 redesigned their environmental 

strategies and whether this “green push” is stronger for cities in Quadrant I. 

Since February 2020, both the central and local governments have issued many 

different “stimulus” polices aiming to re-boost the economy and make up the economic 

loss due to the COVID shutdown. In China, local governments have a strong “visible 

hand” in setting the priorities in local economic growth and allocating resources to 

implement their growth strategies. They are very good at implementing those industrial 

policies in a timely fashion (Zheng et al. 2017). Therefore, it is highly likely that those 

stimulus policies will be implemented as stated. 

 Some of the stimulus policies highlight the “greenness” and “sustainability”, 

while others do not. For instance, on March 4, 2020, the Standing Committee of the 

Political Bureau of the CCP Central Committee issued a guideline on speeding up the 

construction of “new infrastructure”14, e.g., 5G, IoT, big data center, etc., which are 

much greener than the old infrastructure such as highways and power plants. On 

                                                             
14 Source: http://cpc.people.com.cn/n1/2020/0305/c64094-31617516.html. 
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February 27, 2020, Guangzhou city government issued the stimulus policy of providing 

financial subsidy measures for the promotion and application of new energy buses15. 

While in Yinchuan city, on March 2, 2020, the city government issued a stimulus policy 

to boost and stabilize the industrial growth after the COVID pandemic aiming to fulfill 

the economic growth target set originally.16   

We collected the policy documents issued by local governments from February 

2020 to May 2020 from Bailu ThinkTank (http://www.bailuzhiku.com/policy/adlist), 

and extracted the stimulus policies related to industrial development. Here we focus on 

three types of “green industrial policies” – new energy vehicles, industrial upgrading 

(toward low energy intensity) and new IT infrastructure.17 Panel C in Figure 2 shows 

the statistical results for the four groups of cities presented in Panel A of this figure. We 

find that those cities in quadrant I have a larger share of their documents mentioning 

the “green industrial policies”. While those cities in quadrant IV have the very low share 

of pro-environment documents. This is suggestive evidence that the local governments 

for the quadrant I cities are responding to their citizens’ demand for blue sky and are 

taking actions to strike a balance between stimulating the economy and protecting the 

environment.  

 

VI. Conclusion  

 

In early 2020, cities all over the world have experienced an economic shutdown 

in order to reduce the contagion risk. A silver lining of this shutdown is that previously 

very dirty cities experienced blue skies. We posit that clean air is an experience good.  

The private sector often produces new goods such as electric vehicles or science 

fiction movies. Before a person experiences such a good, they may under-value it. 

Anticipating this issue, sellers of such new products will engage in advertising and offer 

initially low prices to attract consumers. In contrast to a private good, a city’s air quality 

                                                             
15 Source: http://www.gz.gov.cn/gfxwj/sbmgfxwj/gzsjtysj/content/post_5680165.html. 
16  Source: 

http://www.yinchuan.gov.cn/xxgk/bmxxgkml/szfbgt/xxgkml_1841/zfwj/yzbf/202003/t20200304_1978593.html. 
17 The policies we consider are all officially published with clearly Issued Numbers. All subordinate offices will 

receive this document and have to carry out the work following the guidance of the policy document.  
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is a local public good. It is produced as a byproduct of the activities of emissions within 

the airshed and that blow into the airshed. A byproduct of China’s development fueled 

by coal and heavy industry production is that there are many cities where ordinary 

people have not experienced clean air for decades. The 2020 shutdown offered a 

dramatic regime change. 

If the Environmental Kuznets Curve is stable over time, then a “V” shaped 

recovery for the macro economy would predict that air pollution will return to its 

previous high levels in cities in polluted developing nations such as China. We have 

argued that because clean air is an experience good that a silver lining of the recent blue 

sky episode is to stimulate increased demand for this good. While co-ordination costs 

often inhibit collective action, in this case the large pollution reduction helps to co-

ordinate urban pressure as each person in a previously dirty city experiences clean air 

and knows that every other local urbanite is also experiencing cleaner air. Past research 

on the “silver lining” of environmental disasters in the United States demonstrates that 

more aggressive pro-environment regulation is proposed in the aftermath of such 

shocks as Three Mile Island and the Exxon Valdez oil spill (Kahn 2007). 

The most novel part of our empirical work uses recent Internet search data and 

policy document text analysis to test the “clean air as an experience good” hypothesis. 

We document that Internet discussion intensity related to environmental protection has 

increased and this increase has been most pronounced in cities which had both been 

polluted and where there is a latent demand for pollution progress (the subset of cities 

with the large anti-pollution sentiment elasticity). 
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Figure 1. Cumulative Distribution Function of Population Pollution Exposure in 2015 and 

2019 (weighted by 2015 population) 
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Figure 2. Looking Forward – Blue Skies After COVID 

 

 
A. Four Quadrant Grouping of Cities 

 
B. Baidu Index in Early 2020 

 
C. Share of City That Implementing the 

“Green Industrial Policies” 

 

Notes: (1) dSentiment/dPM2.5 is the “sentiment-pollution” elasticities, which is reported in Zheng, S., Wang, J., Sun, 

C. et al. Air pollution lowers Chinese urbanites’ expressed happiness on social media. Natural Human Behavior, 

2019 (3), 237–243. (2) The PM2.5 decline during the COVID shutdown is estimated based on the city-specific 

estimate of θ2 in equation 4. 
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Table 1. Trends in the PM2.5 Concentration (144 city-year data, 2015-2019) 

 (1) (2) (3) (4) 

Dependent variables: ln(PM2.5) ln(PM2.5) Baidu_index ln(PM2.5) 
Trend -0.080*** -0.073*** 0.000**  

 (0.004) (0.005) (0.000)  

High_Sentiment×Trend  -0.013** 0.001**  

  (0.007) (0.000)  

Baidu_index     

     

Lag of.Baidu_index    -2.288*** 

    (0.732) 

Lag of .lnPM2.5    0.537*** 

    (0.048) 

Control variables Y Y Y Y 

N 718 718 718 574 

R2 0.950 0.951 0.460 0.942 

Notes: Columns (1), (2) and (4) report results from estimating fitting version of equation 1; column (3) reports results 

from estimating equation 2. Control variables include temperature, rainfall, and city fixed effects. Robust standard 

errors clustered at the city level are reported in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.  

 

 

Table 2.  Estimates of the Urban Environmental Kuznets Curve 

Dependent variable: ln(PM2.5) 

 (1) (2) (3) (4) (5) 

 All cities 
High 

sentiment 

Low 

sentiment 

High 

Baidu_index 

Low 

Baidu_index 

ln(GDP_pc) 0.783*** 0.571*** 0.677** 0.429*** 0.699*** 

 (0.078) (0.148) (0.296) (0.155) (0.160) 

ln(GDP_pc) 2 -0.247*** -0.173*** -0.218** -0.163*** -0.175*** 

 (0.024) (0.038) (0.089) (0.039) (0.063) 

Turning point (RMB in 2015) 48,829 49,041 47,373 37,423 73,786 

Number. (%) of cities passing the 

Turning Point 

527 

(47.0%) 

236 

(82.2%) 

173 

(60.5%) 

474 

(83.9%) 

20 

(3.6%) 

Control variables Y Y Y Y Y 
N 1,121 287 286 565 556 

R2 0.393 0.466 0.340 0.401 0.383 

Notes: This Table reports results from estimating equation 3. Control variables include population, temperature, 

rainfall, and year fixed effects. Robust standard errors clustered at the province/year level are reported in parentheses. 

* p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table 3. The Effects of the Economic Shutdown on Air Pollution and the Determinants of Air 

Pollution Changes 

Panel A: The Effects of the Shutdown on Air Pollution 

Dependent variable: ln(PM2.5) 

 29 province sample  
28 province sample 

(drop Hubei) 

Shutdown -0.130***   -0.120***  

 (0.022)   (0.022)  

Shutdown×year2020 -0.149***   -0.166***  

 (0.026)   (0.027)  

SF_holiday  -0.092***   -0.086*** 

  (0.019)   (0.019) 

COVID_shutdown  -0.347***   -0.331*** 

  (0.032)   (0.034) 

SF_holiday×year2020  -0.275***   -0.276*** 

  (0.030)   (0.031) 

COVID_shutdown×year2020  -0.071*   -0.097** 

  (0.037)   (0.038) 

Control variables Y Y  Y Y 

N 31,376 31,376  30,044 30,044 

R2 0.392 0.399  0.391 0.397 

Panel B: The Determinants of Air Pollution Changes 

 29 province sample  
28 province sample 

(drop Hubei) 

Dependent variables 

Air pollution 

change in 

2020 

Chinese New 

Year holiday 

(δ4) 

Air pollution 

change in 

2020 

COVID 

shutdown 

(δ5) 

 

Air pollution 

change in 

2020 

Chinese New 

Year holiday 

(δ4) 

Air pollution 

change in 

2020 

COVID 

shutdown 

(δ5) 

ln(Vehicle) -0.011 -0.114***  0.005 -0.105*** 

 (0.035) (0.033)  (0.036) (0.035) 

Industry_share -0.268 -0.583***  -0.331 -0.630*** 

 (0.233) (0.220)  (0.237) (0.225) 

ln(Restaurant_emp) 0.078*** 0.095***  0.068** 0.086*** 

 (0.028) (0.027)  (0.030) (0.028) 

Region fixed effects Y Y  Y Y 

Constants 0.509 2.345***  0.265 2.160*** 

 (0.541) (0.522)  (0.575) (0.546) 

N 269 269  258 258 

R2 0.279 0.462  0.301 0.452 

Notes: In Panel A, Columns (1) and (3) report results from estimating equation 4; columns (2) and (4) report results 

from estimating equation 5. Dependent variable is log of PM2.5 concentration. Control variables include city fixed 

effects, year fixed effects, month fixed effects, day of month fixed effects, and day of week fixed effects. Robust 

standard errors clustered at city level are reported in parentheses. Panel B reports results from estimating equation 6. 

Robust standard errors are reported in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 

 

  



23 

 

Clean Air as an Experience Good 

Online Appendix 

 

Matthew E. Kahn, Weizeng Sun, Siqi Zheng 

 

Appendix 1: Data Appendix 

PM2.5 data. We collect the data of PM2.5 concentration from the real time release 

platform of national urban air quality of China Environmental Monitoring Station. The 

data is daily released since May 13th 2014. 

The air pollution data of China in early time was found to be manipulated by local 

government and inaccurate (Ghanem and Zhang 2014). However, since 2013, the 

central government of China has issued a series of policies to ensure the quality of air 

monitoring and avoid data manipulation18. More recent studies have documented the 

improvement of air pollution data quality of Chinese cities. For example, Liang et al. 

(2016) found that the US PM2.5 monitors show measured values highly consistent with 

                                                             
18  On September 10, 2013, the State Council issued the “Air Pollution Prevention and Control Action Plan” 

(APPCAP), emphasizing the government’s objective of establishing a centrally-managed national air quality 

monitoring network, which includes the construction of urban stations, background stations, and regional stations. 

The Plan aims to enhance the management of the quality of monitoring data, objectively reflect the air quality status, 

strengthen the construction of the online monitoring system for primary pollution sources and promote the 

application of environmental satellites. By 2015, all cities, at the prefecture-level and above, were equipped with 

monitoring stations for fine particulate matter and stations under government supervision. Remote quality control 

systems had been set up in 1,436 national control monitoring stations, with the function of data recording and alarm 

systems under abnormal circumstances. Fu Deqian, Deputy Head of China National Environmental Monitoring 

Center, noted that “there are several monitoring stations in one city and the data from all stations should be similar. 

If the data reported in one station is inconsistent with the others’, the alarm will be triggered.” (see 

http://www.chinanews.com/sh/2016/12-10/8089501.shtml)  

According to the statistics of the Environmental Monitoring Department of the Ministry of Ecology and Environment, 

in 2015, there were no cases of data falsification. The “Measures for Environmental Monitoring Data Falsification” 

issued by the Ministry in December 2015 required local environmental departments to carry out inspection of 

environmental data quality and punish data falsifications. 

In July 2016, the Chinese Academy of Engineering organized a mid-term assessment of the implementation of 

APPCAP and carried out quality control on the monitoring data, especially the PM2.5 data. By integrating the data 

from the Ministry of Ecology and Environment, the Chinese Academy of Sciences, the China Meteorological 

Administration, and relevant scientific research institutes on long-term ground-based positioning observations, 

comprehensive observations of typical processes, and satellite remote sensing inversion, a variety of technical 

methods had been used to assess air quality conditions, pollution trends across the country. By comparing the 

synchronous data of 28 monitoring stations of the Chinese Academy of Sciences, China Meteorological 

Administration, and other institutions, it is found that the multi-party monitoring data of similar stations indicate 

good consistency, reveal that the monitoring data is systematic and comparable, and is suitable for evaluation. (see 

http://www.gov.cn/xinwen/2016-07/06/content_5088795.htm) 

In November 2016, the Ministry issued the “Thirteenth Five-Year Plan - Environmental Monitoring Quality 

Management Work Plan” and “Work Plan About Strengthening the Quality Management of Ambient Air Automatic 

Monitoring”, required 1,436 state-controlled monitoring stations in 338 prefecture-level cities nationwide to transfer 

their monitoring rights. Through public bidding, the third party firm which wins the bid, will be responsible for the 

project's operation and maintenance. Meanwhile, all stations are required to install video surveillance systems to 

plug the loopholes of manipulated data falsification. 

http://www.chinanews.com/sh/2016/12-10/8089501.shtml
http://www.gov.cn/xinwen/2016-07/06/content_5088795.htm
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those measured at China’s Ministry of Environmental Protection PM2.5 monitors 

located nearby. Stoerk (2016) compared the air quality data via Benford’s Law which 

suggests that misreporting of air quality data for Beijing has likely ended in 2012. 

COVID information. The number of death from COVID comes from the Big Data 

Analysis Platform of Global COVID Epidemic Situation (https://www.zq-

ai.com/#/fe/xgfybigdata). 

Economic and social data. The data of city-year GDP, population, % of GDP from 

industrial sector, number of employment in accommodation and restaurant industry 

come from China City Statistical Yearbook. The data city-year number of private cars 

comes from the statistical yearbooks of each province. The data of city-year mortality 

comes from the statistical yearbooks of each city. 

Temperature and rainfall. The city-year average temperature and total rainfall is 

calculated based on the hourly monitoring data of automatic ground stations uploaded 

by National Meteorological Information Center. 

Baidu index. The Baidu keyword search index is created from the Web tools 

(http://index.baidu.com/v2/index.html#/). It provides the city-day entries of each key 

word in https://www.baidu.com/. The index reflects the public attention on the event 

corresponding to the key word. 

Industrial policy information. The policy documents issued by local governments 

from February 2020 to May 2020 from are download from Bailu ThinkTank 

(http://www.bailuzhiku.com/policy/adlist). We employ the text analysis tool to extract 

the stimulus policies related to industrial development and identify if they are 

environmental friendly. 

 

  

https://www.zq-ai.com/#/fe/xgfybigdata
https://www.zq-ai.com/#/fe/xgfybigdata
http://index.baidu.com/v2/index.html#/
https://www.baidu.com/
http://www.bailuzhiku.com/policy/adlist
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Appendix 2: Figure Appendix 

 

Figure A1. Trends in the PM2.5 Concentration in Big and Small Cities 

 

Note: Big cities include 35 major cities in China: Beijing, Tianjin, Shijiazhuang, Taiyuan, Hohhot, Shenyang, Dalian, 

Changchun, Harbin, Shanghai, Nanjing, Hangzhou, Ningbo, Hefei, Fuzhou, Xiamen, Nanchang, Jinan, Qingdao, 

Zhengzhou, Wuhan, Changsha, Guangzhou, Shenzhen, Chongqing, Chengdu, Guiyang, Kunming, Xi’an, Lanzhou, 

Yinchuan, Urumqi; Small cities include other 250 cities in China. 

 

 

Figure A2. Trends in the GDP Share from Industrial Sector in Big and Small Cities 

 

Note: Big cities include 35 major cities in China: Beijing, Tianjin, Shijiazhuang, Taiyuan, Hohhot, Shenyang, Dalian, 

Changchun, Harbin, Shanghai, Nanjing, Hangzhou, Ningbo, Hefei, Fuzhou, Xiamen, Nanchang, Jinan, Qingdao, 

Zhengzhou, Wuhan, Changsha, Guangzhou, Shenzhen, Chongqing, Chengdu, Guiyang, Kunming, Xi’an, Lanzhou, 

Yinchuan, Urumqi; Small cities include other 250 cities in China. 
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Figure A3. The Impact of the COVID Induced Shutdown on Pollution Dynamics 

 

A. Timeline of 2020 COVID in China 
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Notes: (1) In Figure 2A and 2B, the left vertical line indicates the 2020 Chinese new year’s Eve (Jan 24th, 2020); the 

middle vertical line indicates the non-virus first working day after the 2020 Chinese New Year holiday (Jan 31st, 

2020); the right vertical line indicates the real first working day after the Chinese New Year holiday in 2020 (Feb 

10th, 2020). (2) Figure 2C reports the relationship between decrease in PM2.5 and number of private cars; Figure 2D 

reports the relationship between decrease in PM2.5 and GDP share of industrial sector; Figure 2E reports the 

relationship between decrease in PM2.5 and cooking. 
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Figure A4. Changes in PM2.5 during the COVID Shutdown Days 

 

A. Changes in PM2.5 during the Chinese New Year 

holiday of 2020 (δ4 of equation 5) 

 

B. Changes in PM2.5 during the COVID shutdown 

days of 2020 (δ5 of equation 5) 
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Appendix 3: Table Appendix 

 

Table A1. EKC Results Based on a More Flexible Functional Form for Per-Capita Income  

Dependent variable: PM2.5 

 (1) (2) (3) (4) (2) (3) (4) 

 All cities 
Low 

sentiment 

High 

sentiment All cities Low 

sentiment 

High 

sentiment All cities 

X1 1.292 1.131 1.719 1.105 2.613** -2.729 2.427** 

 (1.077) (1.006) (2.378) (0.968) (1.132) (2.521) (1.027) 

X2 -2.854*** -0.300 -4.065** -0.566 -1.262 -2.799** -1.105 

 (0.829) (1.069) (1.554) (1.050) (0.961) (1.173) (0.957) 

X3 -0.678*** -2.575*** -0.425 -2.498*** -0.701 0.037 -1.017** 

 (0.255) (0.629) (0.288) (0.620) (0.499) (0.355) (0.475) 

X1×High_Sentiment    0.192    

    (2.750)    

X2×High_Sentiment    -4.035**    

    (2.026)    

X3×High_Sentiment    2.145***    

    (0.701)    

High_Sentiment    2.602    

    (12.059)    

X1×High_Baidu_index       -2.951 

       (3.286) 

X2×High_Baidu_index       -2.319 

       (1.555) 

X3×High_Baidu_index       0.773 

       (0.681) 

High_Baidu_index       12.315 

       (15.178) 

ln(population) 9.734*** 8.484*** 10.354*** 9.632*** 12.948*** 5.904*** 10.901*** 

 (1.006) (1.082) (1.160) (0.874) (1.270) (2.161) (1.100) 

Temperature -0.345 0.143 -0.745*** -0.324 -0.029 -0.914*** -0.414** 

 (0.209) (0.204) (0.239) (0.204) (0.259) (0.201) (0.198) 

Rainfall -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Year fixed effects Y Y Y Y Y Y Y 

Constant -0.387 -1.485 2.383 -0.804 -28.038*** 48.593*** -11.042 

 (6.146) (8.876) (10.989) (7.186) (8.617) (13.409) (8.082) 

F test    2.95   2.33 

(p-value)    (0.023)   (0.059) 

N 573 286 287 573 285 288 573 

R2 0.339 0.257 0.416 0.348 0.425 0.334 0.355 

Note: Robust standard errors clustered at province/year level are reported in parentheses. * p < 0.10, ** p < 0.05, *** 

p < 0.01. 
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Table A2. Baidu Environment Attention Index (city-day data, January 24th, 2020-April 5th, 

2020) 

Dependent variable: Baidu_index 

 (1) (2) 

Key words: “environment protection” non-environmental words 

Treat×Post 1.467** 0.145 

 (0.593) (0.252) 

City fixed effects Y Y 

Date fixed effects Y Y 

Constant 1.612*** 1.790*** 

 (0.159) (0.068) 

N 13,156 65,780 

R2 0.691 0.522 

Note: This Table reports results from estimating equation 7. Robust standard errors clustered at city level are reported 

in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 

 

We present one placebo test to address concerns about omitted variables that 

simultaneously affected air pollution and people’s environmental attention might bias 

our DID estimations. To address this endogeneity concern, we further create another 

five Baidu search index using keywords that are not related with air pollution: COVID-

19, pneumonia, education, medical treatment, health. Column (2) of Table A2 shows 

the results of this placebo test. We find a small and insignificant effect on Baidu 

searches for non-environmental words. 
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