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1 Introduction

It is widely believed that poor access to markets – due mainly to poor transportation infrastructure

– limits agricultural productivity in rural areas of developing countries, by making it harder to

access productivity-enhancing inputs like fertilizer and to obtain high prices for harvest output

(World Bank, 2008; 2017).1 However, while remoteness no doubt limits market access, there is

little research to rigorously quantify its effect.

In this paper, we rigorously document market access among farmers in two regions – Kilimanjaro

and Manyara – of Northern Tanzania. Together, these two regions represent 6 percent of the land

area and population of the country. Our data collection exercise spans the entire supply chain of

maize (output) as well as of fertilizer (input) in all 1,183 villages in these two regions, including (1)

surveys with a random sample of 2,845 farmers in 246 randomly selected villages; (2) surveys with

532 agro-input retailers (agrovets) that sell fertilizer (this sample represents the universe of retail

locations available to farmers);2 (3) a retrospective panel of monthly buying and selling prices of

maize from a randomly selected sample of maize-sellers in each of the 226 markets in the area; (4)

collection of information on road quality, travel times, and travel costs to all villages from their

respective local markets as well as from 6 major urban centers, and travel times and costs between

each market and each major urban center; and (5) driving times and distances pulled from Google

Maps API for the universe of bilateral village pairs, as well as for pairs of villages and major urban

centers across central and northern Tanzania, plus Dar es Salaam.

We make three main contributions. First, we precisely document spatial price dispersion for

input and output prices, inclusive of trade costs. To do this, we use our extensive travel cost data to

estimate travel costs to every destination, and then take the most favorable prices for farmers. We

find clear evidence of large and economically meaningful spatial heterogeneity in both input and

output prices. For both, we find that the price difference between the 90th and the 10th percentile

of delivered input prices is equivalent to about 50% of the mean. We find similar evidence of greatly

reduced market access in remote rural areas using a variety of other measures.

Second, we conduct a reduced-form investigation of the correlation between usage and remote-

ness on the input side, and sales and remoteness on the output side, where remoteness of any

location is proxied by the weighted average of travel times from a set of local regional hubs. We

find striking correlations between remoteness and all measures of input usage and output sales.

In particular, we find that a standard deviation increase in remoteness is associated with a 9-17

percentage point reduction in the probability of using fertilizer and a 6-9 percentage point reduction

in the probability of selling maize. Put differently, we find that input usage in the most remote

villages in our study sample is approximately only a third of that in the least remote villages, while

1Transportation infrastructure is particularly underdeveloped in Africa as the continent has only 137 kilometers
of roads per 1000 square kilometers of land area, with only a quarter paved. In contrast, the average for developing
countries outside the region is 211 kilometers of roads per 1000 square kilometers, with more than half paved (World
Bank, 2010). For comparison, the US has 679 kilometers per 1000 square kilometers, with nearly 2/3 paved.

2As discussed later, we successfully surveyed 532 agrovet out of a universe of 585. For the remaining agrovets, we
impute prices as described later.
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maize sales are only 45 percent as high.

While we find clear evidence of reduced market access, and while it is also clear that this reduced

access will affect the choice set and decisions of farmers, it is not possible to quantify these effects

in the reduced form alone, since remote villages and villagers may differ in other ways as well. To

perform this quantification absent experimental variation, our third contribution is to develop a

spatial model of fertilizer adoption in which the decision to adopt fertilizer is based on local output

prices, innate farmer productivity, the distribution of delivered input prices and retailer quality,

and idiosyncratic shocks. Transportation costs affect the distribution of prices by increasing the

costs for farmers to reach a particular agrovet to buy inputs, as well as those to reach the local

market to sell their harvest.

On the input side, the structure of the model (which is based on Eaton and Kortum, 2002)

facilitates a decomposition of choosing an agrovet into three components, (1) the decision whether

to adopt anywhere; (2), the decision of which location to buy from; and (3) the decision of which

retailer to pick within that location. Our novel farmer surveys reliably record the first two of these

decisions, and also allow us to calibrate (1) local non-price factors that may affect adoption, and

(2) the implied trade cost of choosing an agrovet. On the latter, we derive a novel multinomial

logit specification that estimates the implied iceberg trade costs to each location as a function of

distance, while using location-specific dummies to account for other amenities available at each

location (which may represent unmodeled issues like experience in selling inputs and likelihood

of stockouts). The results suggest that transportation costs are large: our preferred specification

yields estimates of local iceberg cost that are, at the conservative end, 6% ad-valorem per kilometer

of travel. This is approximately 40% to reach the average closest agrovet, and thus these costs are

economically meaningful, and suggest significant non-pecuniary costs of travel. These may include

other factors such as the opportunity cost of the time to travel, risk-aversion related to potential

stockouts, or information frictions, among others. After estimating trade costs, we use the model

to build a market-clearing condition for fertilizer for each agrovet, which is a function of the spatial

distribution of fertilizer expenditures by each farmer and the probability that a farmer at each

location adopts at a given agrovet. We balance these market clearing conditions by finding a vector

of agrovet “amenities” that exactly rationalize the market-shares of each agrovet.

Finally, we use the estimated parameters from the model to simulate market access counter-

factuals. For input market access, our primary counterfactual is reducing trade costs incurred to

reach retailers by 50%, which is roughly equivalent to the realized reduction in travel time due

to road upgrading (Casaburi, Glennerster and Suri 2013). This policy roughly doubles adoption

relative to baseline, and also reduces the distance gradient by 18%. We also evaluate how the

costs for retailers to source inputs from distributors affect the adoption decision. After cutting

the wholesaler-retailer transportation costs by half, adoption rises by about 1 percentage point, or

4%, and yields a 4% reduction in the remoteness-adoption gradient. We also study hypothetical

entry counterfactuals, where we find that while agrovet entry in remote areas has a larger effect

on adoption, the profitability from doing so falls by 0.35 log points for each standard deviation
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increase in remoteness. Finally, subject to a number of caveats based on data availability for maize

markets, we reduce transportation costs by 50% for reaching output markets, and find a slightly

smaller change in adoption, though a slightly larger reduction in the adoption-remoteness gradient

(when compared with input market access).

This paper sits at the intersection of trade and development economics. On the development

side, our paper contributes to a literature examining why Sub-Saharan Africa has lagged behind the

rest of the developing world in agricultural technology adoption (World Bank 2008). Many studies

find evidence of large yield increases of using improved inputs (i.e. Duflo, Kremer and Robinson

2008; Beaman et al. 2013; Stewart et al. 2005; Udry and Anagol 2006), though the evidence is much

more mixed on whether using these inputs is profitable (i.e. Duflo, Kremer and Robinson 2008;

Beaman et al. 2013). Our results quantify the extent to which profitability, and thus adoption, will

tend to be lower in more remote locations, due to less favorable input and output prices for farmers.

In this sense, our work is closely related to Suri (2011), who shows that many Kenyan farmers with

high gross returns to hybrid seeds choose not to adopt them because the fixed costs of obtaining

seeds are too high, presumably due to travel costs. Our paper is differentiated by focusing on

heterogeneity in market access, rather than on heterogeneity in returns. Related work in Minten,

Koru, and Stifel (2013) also focuses on remoteness and profitability and documents significant

farmer-to-retailer transaction costs to reach price-controlled input cooperatives in a rugged region

in northern Ethiopia.3

Our paper is related to a rapidly growing literature about the effect of roads or other infrastruc-

ture improvements on development outcomes and on the spatial distribution of economic activity,4

which includes a whole host of outcomes other than just prices, including consumption diversity,

farm investments, human capital investment, migration, and occupation choice (Aggarwal, 2018a;

b; Adukia et al., 2016; Asher and Novosad 2016; Brooks and Donovan, 2017; Morten and Oliveira

2016). In our paper, we focus narrowly on the specific effect of transportation costs on market

access (i.e. the actual time and money costs of transportation and the presence of intermediaries

and the prices they charge) in isolation, without changing other margins.5

Our work is also related to a voluminous trade literature which attributes price differentials

across space to three primary components – marginal trade costs (e.g. Donaldson, 2018; Eaton

and Kortum, 2002; Keller and Shiue, 2007; Sotelo, 2018), spatially varying mark-ups (Atkin and

Donaldson, 2015; Asturias et al., 2017), and the organization of intermediaries (Allen and Atkin,

3Specifically, the authors document the farmer-reported cost of renting cargo transport (predominantly a donkey
in this region) and the time cost of travel for a trip to the market town along the only route of egress from their
villages. Our study differs in its focus on access to all, privately owned intermediaries for inputs, the costs of transport
along both rural and feeder roads, and also the quantification of the adoption decision through the lens of a spatial
economic model.

4A partial listing of papers includes Aggarwal (2018), Alder (2017), Adukia et al. (2016), Asher and Novosad
(2016), Banerjee et al. (2012), Bird and Straub (2016), Bryan and Morten (2017), Gertler et al. (2014), Ghani et al.
(2016), Khanna (2016), Shamdasani (2016), and Storeygard (2016). See Donaldson (2016) for a review.

5Technological advances may make it possible to decouple market access from traditional road infrastructure. For
example, Rwanda has a “droneport” already under construction just outside the city of Kibuye, and which will be
ready by 2020. Drones capable of transporting cargo of up to 20 kilos over a distance of 100 kms already exist.
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2016; Dhingra and Tenreyro, 2017; Bergquist, 2017; Casaburi and Reed, 2017; Chatterjee, 2018).

Our paper is most closely related to Atkin and Donaldson (2015), who estimate trade costs in a

situation in which an oligopolist intermediary buys products at wholesale prices, transports them

to distant markets and sells them directly to consumers. By contrast, we are interested in how

trade costs affect the buying decisions of final consumers (in this case, farmers), as well as pricing

decisions by retailers. 6

Finally, much of the trade literature, which has documented larger gains from integration when

there are input-output relationships (e.g. Yi, 2001; Costinot and Rodriguez-Clare, 2014; Sotelo,

2016) has only evaluated economies under the assumption of monopolistically competitive or purely

competitive sectors at a fairly aggregate level (e.g. international trade by industry).7 By contrast,

our model yields a structural discrete choice problem in which farmers choose whether to adopt,

and if so, choose the best agrovet from which to purchase fertilizer from a potentially concentrated

group of agro-retailers. 8

The rest of this paper proceeds as follows. Section 2 provides background and context on

our study region, and lays out the sampling strategy that was adopted for this project. Section

3 explains the data, and documents summary statistics about the various data-collection units.

Section 4 presents our main results. We put our findings in the context of a spatial model, which

is presented and calibrated in Section 5, and run policy counterfactuals in Section 6. Section 7

discusses the validity of our results outside of the study context of Northern Tanzania. Section 8

concludes with a discussion.

2 Background on fertilizer market and study regions

This study took place in the Kilimanjaro and Manyara regions9 of Northern Tanzania. The two

regions are a combined 57,000 square-kilometers (6% of the land mass of Tanzania), contain 1,183

villages, and had a population of 3.1 million in 2012 (National Bureau of Statistics, 2013). Compared

to developed countries, the quality of roads in Kilimanjaro and Manyara is very poor: for example,

the paved trunk road density is 2.2 percent in Kilimanjaro (i.e. there are 2.2 kilometers of paved

6Though not directly comparable since they are at different points in the supply chain, our average ad-valorem
“travel costs” of farmers procuring fertilizer, as calculated through interviews with transport providers, turn out to
be similar to those of the intermediaries in Atkin and Donaldson (2015). Our costs, however, are calculated over a
much shorter trip. Specifically, to find the best travel-adjusted price for fertilizer, our results suggest that for the
typical village, the best option is 10km away. In Atkin and Donaldson, ad-valorem estimates are calculated based on
the cost difference of a trip to the most remote location (500 miles away) relative to the least remote location (50
miles away), which is approximately a 720km difference.

7Our work is closely related to Sotelo (2016) develops a model of regional trade in agriculture and road quality
in Peru to study the impact of road and output shocks on regional welfare and crop choice. Our work differs in its
focus on local intermediaries and how their presence affects the landscape of market access.

8Yi (2001) provides an influential take on the role of vertical relationships in the growth of vertical trade that is
germane to our work. Intuitively, if inputs are traded from one country to another, and then final goods are traded
back to the origin country, the role of distance is amplified by the multiple stages of production. That is, since borders
must be crossed more than once, the costs of distance are amplified by the number of times the good crosses the
border prior to consumption. Our field work has identified that economy in rural Tanzania is similar to this setting,
where inputs are sourced from larger cities, and output, if sold at all, is trade back to these same cities.

9Tanzania has 31 regions in all, including 5 in Zanzibar.
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roads per 100 square kilometers of area), 0.15 percent in Manyara, and 0.7 percent in Tanzania

overall (TanRoads and PMO-RALG, 2014), compared to 68 percent in the US and an OECD

average of 134 percent10

The main crop grown in this area is maize. There are two growing seasons in this area: a longer,

more productive “long rains” season, which runs from March to June, and a less productive “short

rains” season from October to January. Input usage tends to be much higher in the long rains,

and some farmers decide not to plant in the short rains at all. Our main outcomes are based on

behavior in the long rains.

As in much of Sub-Saharan Africa, production capacity of fertilizer is virtually non-existent in

Tanzania and almost all of what is used is imported via the port at Dar es Salaam (FAOSTAT Online

database, 2016; Hernandez and Torero, 2011), and then transported throughout the country over

surface roads, including to the study regions. In all of these respects, the study area is fairly similar

to other countries throughout East Africa that predominantly grow maize and import fertilizer, such

as Kenya, and perhaps a little bit better than landlocked countries such as Malawi and Uganda,

that can receive fertilizer only after it has traversed the distance between a neighboring coastal

nation’s port and their shared border, and then must travel further inland to reach farmers.

3 Data and summary statistics

To construct our sample, we first assigned every village in our sample to a market catchment area.

This was done by visiting ward offices (the ward is the lowest administrative level in Tanzania)

and asking the ward officer to list the market that people from that village frequented. We use

this market designation as the unit over which to measure the price of maize, which is commonly

transacted in such markets, We use this market information in two main ways. First, we randomly

selected markets for inclusion in the price collection from this list. Second, it was not feasible to

travel individually from every village to a particular point to measure transport costs. Instead, we

measure transport costs, requiring routes to go through the market center – we measure distances

from every village to its closest market, and from every market to the main road. A map of the

villages in our sample is included as Figures 1.

We have four main sources of data we use in this draft: agrovet surveys, farmer surveys,

transport surveys, and maize price surveys. All were collected from January 2016 to December

2017 in Kilimanjaro and February to May 2018 in Manyara.11

10Information compiled from various resources. The Roads Act, 2007 (No. 13 of 2007) defines a a trunk road as
one that is primarily (i) a national route that links two or more regional headquarters or (ii) an international through
route that links regional headquarters and another major or important city or town or major port outside Tanzania.
A regional road is a secondary national road that connects (i) a trunk and district or regional headquarters; (ii) a
regional headquarters and district headquarters.

11We also collected data on maize intermediaries who buy directly from farmers (“agents”) and on larger warehouses
that buy from these agents (“stores”), as well as logbooks of transactions from stores. We do not utilize this data in
this version of the paper.
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3.1 Agrovet surveys

We conducted a census of all agricultural input retailers (known as “agrovets” locally) in the region,

finding a total of 585 that sold either fertilizer or seeds. agrovets. We then revisited these agrovets

to conduct a longer survey which took about 2 hours to complete. Of these 585, we did surveys

with 532 of them (see Web Appendix Table A1, which reports survey compliance and attrition).

The survey asked questions about varieties of fertilizer sold, and their prices, quantities, and the

wholesale costs of acquiring stock from the distributor. The survey took care to differentiate

fertilizer types by distributor, brand, and type – thus the level of granularity should be akin to

the barcode-level. The survey also included a number of questions about costs of travel to the

distributor, as well as some background characteristics.

3.2 Farmer surveys

We conducted farmer surveys in 246 randomly selected villages in three waves. The first wave

occurred in 115 villages in Kilimanjaro in early 2016, the second wave in 97 villages in Kilimanjaro

in 2017, and the third wave in 50 villages in Manyara in 2018. The surveys included questions

on input usage and prices, transport costs and agrovet choice, maize sales, harvest output, and a

series of household and demographic questions. Though the exact questions varied from survey to

survey, the general format was very similar across rounds. The main difference across rounds was

the sampling procedure and the number of farmers enrolled per village: in round 1, households were

selected from a random walk procedure12, while in rounds 2-3 households were pre-identified from

a village listing exercise conducted with local leaders. In Wave 1, we sampled only 5 households

per village for budget reasons, while in Waves 2-3 we selected 18 households per village. While this

differing sampling procedure could result in differential selection, we find no qualitative difference

in results from the two methods, and thus we pool all surveys together in the analysis.13

3.3 Measuring transport costs

One of the primary contributions of this work is to carefully document transport costs incurred by

farmers. We measured transportation costs in several ways. First, we collected GPS location for

every village in both the study regions,14 from which we calculated driving times and distances using

the Google API (via the statistical program R). Second, we conducted surveys of transportation

operators in every village in our sample, which were either motorbike taxis (“Boda Bodas”), or

consumer van taxis (“Dala Dalas”). In each village, we asked up to 3 operators how much it cost to

12In particular, enumerators were instructed to first find a landmark. These landmarks included a pri-
mary/secondary school within the village (1st choice), local church within the village (2nd), Boda stand within
the village (3rd). Once the landmark was identified, the enumerators randomly picked a direction to begin their
fieldwork, and selected every third homestead, or the next homestead after five minutes of walking, whichever came
first.

13Results disaggregated by survey method are available on request.
14We cross-checked these GPS coordinates, and filled in a handful of missing values, using a dataset of postal

geocodes from www.geopostcodes.com.
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travel to the major towns in Kilimanjaro (Arusha and Moshi), the capital city (Dar es Salaam) and

the market center. In Manyara, in addition to Arusha, Moshi and Dar es Salaam, we also asked

about trip costs and times to Babati, Dodoma, and Tanga.

Third, enumerators recorded information on road quality and travel times as part of their field

work. To get to a market center and village from a major hub, enumerators took the standard

routes, which usually entailed travel for some distance along a major trunk road, and then turning

off to travel for some time on unpaved feeder roads and village roads. To measure travel times, field

officers recorded their GPS location at the point at which they had to turn off the main road, and

then recorded the travel time, distance, and road quality on the road to the market center associated

with the village. Once reaching the market, enumerators took a second form of transportation to

the village, recording again distance, travel time, and road quality. We use this data to correlate

costs of travel with road quality, and to estimate the percentage of roads which are paved versus

gravel or dirt (to inform later counterfactuals).

3.4 Maize prices

To measure maize prices, we visited markets post-harvest in September and October of 2017 in

Kilimanjaro and February to May of 2018 in Manyara. During these visits, enumerators sampled

up to 3 maize sellers per market to document pre- and post-harvest prices for maize during recent

seasons. These data allow us to compare prices across markets at the same point in time, though

they are not intended to be used in panel analysis.

3.5 Summary statistics on villages

A map of Kilimanjaro and Manyara is shown in Figure 1. We surveyed all villages in these regions.

Summary statistics on villages are provided in Table 1. The average village has 2,842 people (see

table notes), and is located 11.3 kilometers from the nearest market center. It takes about 40

minutes by vehicle to reach the market and a round-trip costs about $1.92 on average. The average

village is over 70 km away from a major hub, and travel there would be an almost 3 hours-long

round-trip, and cost $6. For both measures, there are many villages that are much further away

than this - the standard deviation of both is large.

Panel B shows information on the quality of the rural roads connecting markets and villages.

Roads are about 1/3 paved, 1/3 dirt, and 1/3 gravel, and travel times according to google are fairly

slow: 30.6 km/hour on rural roads compared to 49.5 km/hour on the main roads.

4 Results

4.1 Defining remoteness

We define remoteness as proximity to major hub towns, where distributors are located. There

are a number of potential hubs, but they differ in their importance. To capture this, we weight
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the distance to each town by the population of that town – the rationale for this is that bigger

population centers will have more distributors than smaller ones. Our measure of remoteness for

each village v therefore becomes

remotenessv =
∑
h

dhv
poph

(1)

where pophis the population of hub h and dhv is distance from village v to that hub. For interpre-

tation, we standardize this measure to have mean 0 and standard deviation 1. The distribution of

this variable can be seen in Web Appendix Figure A1. The least remote areas (near major hubs)

are approximately -2 standard deviations from the mean, while the most remote are +3 standard

deviations away. The difference between these (5 standard deviations) is useful for benchmarking

differences in outcomes between the most and least remote areas (similar to the approach taken in

Atkin and Donaldson, 2015)

4.2 Calculating travel cost-adjusted prices

For each village, we assume that farmers are free to travel to any market to buy or sell, but must

incur a transportation cost, which we calibrate using information from transport surveys and google

distances. Specifically, using Google API, we calculate the route from every village to every agrovet.

This route will involve either (1) traveling only on local roads over a relatively short distance, or (2)

using local roads to connect to trunk roads. We calibrate the costs of local and trunk roads using

our transport operator surveys, and information collected by enumerators during their own travel.

We present these results in Table 2. Columns 1-3 show costs of traveling from market centers to

hub towns, which involves primarily traveling on trunk roads. We find a cost of about $0.021 per

km, or $1.20 per hour of travel. The remaining columns replicate this on rural roads, where we find

higher costs for rural travel.

With these, we calculate a travel cost-adjusted price of fertilizer for every village as follows:

rtcv = min
j
{rj + cjv} (2)

where rj is the price at agrovet j and cjv is the cost of traveling to an agrovet, and returning

with a bag of fertilizer from agrovet j to village v. Farmers must therefore make a round-trip

for themselves, and a one-way trip for the fertilizer itself. To calibrate these costs, we use survey

questions which asked those farmers who traveled to market about travel costs for themselves and

the fertilizer (Web Appendix Table A1). We do this for a 50 kg bag of fertilizer, the modal amount

purchased by farmers. We find that transporting a 50 kg bag of fertilizer costs about 75% as much

as transporting a person over the same distance, implying therefore that a farmer must make 2.75

trips to buy a bag (2 for himself and 0.75 for the bag).

For maize prices, we adopt a similar approach, but instead construct the maximum travel cost-

adjusted selling price for maize:

9



ptcv = max
m
{pm − cmv} (3)

Here, pm is the price of maize post-harvest for market m, and cmvis the cost of traveling from

village v to market m. We use a 120 kg bag for this calculation, and assume that the cost of

transport is twice that of fertilizer (i.e. proportional to the size).

We calculate these prices for every village-agrovet and village-market pair. We then take the

minimum input price and the maximum output price faced by each village. Our first main result

is that we find substantial heterogeneity in these measures of travel cost-adjusted prices. Figure 2

plots CDFs of village-level “best” prices of inputs and output, adjusting for travel costs, and show

tremendous heterogeneity in prices across villages. In Panel A, for maize prices, we observe that

one standard deviation in the best travel cost-adjusted selling price of maize is 15% of the mean,

and the ratio of this price between the 90th and the 10th percentile ratio is similar to about 40%

of the mean. Panel B shows the distribution of transportation cost-adjusted fertilizer prices, where

the standard deviation in travel cost-adjusted prices is 15% of the mean, and ratio of this price

between the 90th and the 10th percentile is equivalent to about 60% of the mean.

4.3 Reduced form analysis

4.3.1 Specification

From the above data sources, we are able to construct transportation costs to every village in our

sample, using either survey transport costs or Google maps. Our main empirical specification then

becomes:

mvt = θremotenessv + εvt (4)

where mvt is a measure of market access (or related outcome) at location v in year t.

TFor the market access measures estimated as above, we include no controls. However, for

farmer outcomes such as input adoption, it is clear that usage will depend not only on market

access but also other characteristics such as income and land suitability. Therefore, these are

estimated at the farmer level as:

mfvt = µremotenessv + βXfvt + εfvt (5)

where subscript f refers to farmer and Xfvtis a vector of other controls. These controls include a

host of characteristics from the survey, such as land ownership, income, asset ownership, education

and other demographic characteristics, as well as soil information from the FAO-GAEZ. All farmer-

level results are presented both with and without these controls.

4.3.2 Summary statistics and correlations with remoteness

Table 3 shows some statistics on demographic and background characteristics, buying and selling

of maize, production capacity and harvest output, and displays how these variables vary with
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remoteness. From Panel A, we see a number of differences: farmers in more rural areas are less

educated, own fewer assets, have less access to finance, and earn less income from sources outside of

farming. These farmers also tend to have larger families and larger farms. These differences must

be accounted for when doing policy counterfactuals.

Panel B shows production capacity, based on GIS data from the FAO-GAEZ database, which

provides information on counterfactual yields with and without inputs. The key concern here would

be that more remote areas are less suitable for fertilizer, for whatever reason. At the mean, the

FAO estimates that using inputs would more than quadruple yields. We do find that the yield

increase is lower in rural areas – in villages one standard deviation away from the mean, yields

using inputs are 260% of those without inputs, compared to over 300% at the mean. Comparing

the most and least remote areas (roughly from -2 to 3 standard deviations), we estimate a yield

increase of over 500% in the least remote areas compared to 200% in the most remote. Thus, while

we should expect lower usage in remote areas since returns are lower, the yield increases are still

extremely large everywhere. We control for these measures in our main regressions.

Finally, Panel C shows harvest output from the most recent long rains. Total yields are similar

by remoteness, but yield per acre is lower in rural areas (since farm size is larger). In particular, 1

standard deviation increase in remoteness is associated with a reduction in harvest output per acre

of about 20%. This is consistent with lower input usage in rural areas, or with differences in other

factors such as soil quality.

In conclusion, Table 3 makes clear that it is difficult to pinpoint the role of input prices on

outcomes, since access to roads is correlated with so many characteristics. Ultimately this motivates

the use of an economic model to conduct counterfactuals.

4.3.3 Access to input markets

Table 4 shows how remoteness correlates with access to input markets. We first tabulate access to

retailers over a distance that is reasonably traveled by farmers. Web Appendix Figure A2 shows

a CDF of the distance farmers travel to access inputs, conditional on purchase. We find that

approximately 60% of purchases are made within 10 km of a farmer’s village, and 80% within 20

km. We therefore show results within 10 km of a farmer’s village. Panel A shows several measures

of retailer activity in the area, including a dummy for whether there is at least one retailer within

10 km, the number of retailers within 10 km, and the minimum distance to a retailer. On each

measure, we find clear evidence of reduced access in remote villages, all significant at 1%.

Panel B of Table 4 shows our key measure of access, travel cost-adjusted prices. We find that

one standard deviation of remoteness raises prices by about $2.3, equivalent to about 9.5% of the

mean. This implies a difference in prices of approximately 50% between the most and least remote

villages in our study sample. We then decompose this price difference into differences in the price

itself, and in the travel cost. We find that the contributions of retail prices and transportation costs

are approximately equal in their contribution toward the increase in delivered prices.

To investigate this further, we look at agrovet pricing in Web Appendix Table A3. We note
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that these results should be taken with some caution, since they are conditional on entry (i.e. the

agrovet location is not exogenous), and so we take these as more descriptive than definitive. Panel

A shows the gradient of distance on sales and product variety, showing little heterogeneity except

for the costs of reaching a wholesaler. In surveys, we find that nearly all agrovets travel themselves

to distributors to access inputs, and we find that these costs are higher in rural areas (naturally),

since they must travel further.

Panel B shows the relationship on prices and markups. Note that these regressions are the

fertilizer type level (i.e. product barcode). We find some weak evidence that rural shops face

slightly higher wholesale prices (significant at only 10%) and some stronger evidence that they

charge higher retail prices. The effect is modest though statistically significant: a 1 standard

deviation increase in distances is associated with 2.5% higher prices. We then calculate markups,

inclusive of transport costs. We find no strong evidence of differential markups in rural areas – while

retail prices are higher, this is largely due to transport costs directly passing through to farmers.

From this, we conclude that much of the higher retail prices are a result of higher marginal costs

of accessing inputs.15

4.3.4 Access to output markets

Table 5 performs a similar analysis, but on the output side. As before, Panel A shows that more

remote villages are less likely to have a market within 10 km and have to travel farther to reach a

market where maize is sold. Panel B shows travel cost-adjusted prices for maize. Since there are

large seasonal price fluctuations in rural Tanzania as in much of rural Africa,16 we use a price for

the single point in time which is most relevant for farmers: immediately post-harvest. Our surveys

show that most farmers who sell do so shortly after harvest. We find that travel cost-adjusted

prices of output are lower in remote areas. As before, we decompose this into the retail price and

the travel costs, finding that while retail maize prices rise modestly, transport costs to the closest

maize market rise by $3.9 with each standard deviation in remoteness, overwhelming the increase

in price of maize.

Finally, we show 2 other measures of price, measured at the village level: (1) we asked farmers

what the “going price” of maize was after the last harvest; (2) we collected information on sales

15In Web Appendix Table A4, we conduct two robustness checks. First, we only surveyed retailers within the
regional boundaries and thus have no information on retailers in neighboring regions. While most of these boundary
areas are remote, it is nevertheless possible that there exist lower-priced retailers just over regional boundaries. Since
we miss these, we may overstate travel cost-adjusted prices. To address this, we drop all villages within 10 km of
regional boundaries – results are actually stronger. Second, while we had high survey completion rates among agrovets
(91% – see Web Appendix Table A1), we nevertheless do not have the universe of retail options. This suggests that
retail price heterogeneity is understated. However, it may affect the regression results. To address this, we conduct a
bounding exercise in Web Appendix Table A4, Panel B. In this exercise, we estimate the distribution of prices within
regions. We then assign prices in the tails of this distribution (the 10th or 90th percentile) to missing agrovets in a
way that attenuate our regression results – for example, in remote areas, we assign agrovets low prices. This exercise
lowers the coefficient marginally, but the qualitative results are unchanged.

16Aggarwal, Francis and Robinson (2018) document an average price increase of about 46% over the season for
the years 2006-16 in Kisumu market in neighboring Kenya; Bergquist, Burke, and Miguel document increases in the
range of 15-30% for a sample of markets in the east African region.
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prices for all farmers who sold maize. While this latter measure is affected by selection, we minimize

this problem by taking the average sales prices across the village. Both of these show no correlation

with distance.

4.3.5 Farmer decisions

The results so far show clear evidence of reduced market access on both input and output markets,

and of higher prices for inputs and lower (travel cost-adjusted) prices for output. These results

should imply lower input usage and maize sales in rural areas. We investigate this in Table 6,

where we present results with and without a full set of farmer controls from the surveys (Columns

2-3). In Panel A, we present indicators for using inputs as well as the quantity used, for both

seeds and fertilizer. In all specifications, these relationships are very strong (significant at 1%) and

large. We find that use of fertilizer is 9-17 percentage points lower in villages 1 standard deviation

away, and that of hybrid seeds is 5-7 percentage points lower. Since the distance between the least

and most remote regions is about 5 standard deviations, the regressions predict approximately a

minimum of 45 percentage point lower usage in the most remote villages, which translates to about

80% of the mean in the least remote areas. The effect for seeds is smaller but still evident.

Similarly, in Panel B, we see strong evidence that sales are lower in remote areas. While the

regression predicts that 44% of farmers will sell in the semi-urban areas, this declines to only 14%

in the most remote areas. This is predominantly coming from a decline in sales to agents (since

agents are by far the most common way to sell maize), but there are declines in sales at the market

as well.

Consistent with this, Panel C shows buying behavior. Rural farmers are more likely to buy

maize and are more likely to be net buyers of maize. Interestingly, we find a lot of heterogeneity

in net buying behavior. We find that 37% of farmers buy maize but sell none, 24% sell maize but

buy none, and only 8% buy and sell maize (the other 30% do not transact on either side of the

market). The proportion that report buying and selling is lower than in other recent work such as

Bergquist, Burke and Miguel (2018).17

5 Model

The reduced form results summarized above suggest that more remote farmers suffer from reduced

access to input retailers as well as selling opportunities. However, as other factors are also correlated

with distance, we now quantify the impact of access to input and output markets by developing a

spatial model of fertilizer adoption. In the model, we will be careful to develop a rigorous model of

retailer choice, including for reasons unrelated to trade costs, as well as allowing for other factors

that may affect adoption but not related to input access.

17See Web Appendix Figures A3 and A4 for a scatter plot of several of the key outcomes.
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5.1 Model Preliminaries

Production and Inputs

We begin the model by presenting the two technologies available to farmers, and the role of retailer

choice in (potentially) affecting farmer productivity. The production function without fertilizer is:

Yi = θ̃i0K
α0
i L1−α0

i (6)

Here, θ̃i0 is baseline productivity without fertilizer for farmer i, Ki is land held by farmer i, and Li

is labor hired/used by farmer i. If the going wage rate in i is wi and the selling price of maize is

pi, holding land fixed, profits can be derived as:

Πi0 = α0(1− α0)
1−α0
α0 θ̃

1−α0
α0

i0 p
1
α0
i w

− 1−α0
α0

i Ki

= θi0πi0 (7)

Here, θi0 = α0(1−α0)
1−α0
α0 θ̃

1−α0
α0

i0 and πi0 = p
1
α0
i w

− 1−α0
α0

i Ki. The former term, θi0, will be represented

by a random variable with a village-specific mean, and the latter will be calculated as a function

of observed data for farmer i and elasticities that must be estimated.

The production function with fertilizer splits up variable inputs into labor and fertilizer, and

also provides a productivity shock, θ̃ijv:

Yi = θ̃ijvK
αL(1−α)βM (1−α)(1−β) (8)

Note that we are assuming that the exponents on capital and labor may be different for the tech-

nology with fertilizer, and that farmer i will receive a productivity of fertilizer that potentially

varies by agrovet j in location v. We discuss the motivation for this assumption shortly. Writing

the delivered price of fertilizer to i from agrovet j in v as rijv, solving for the optimal labor and

fertilizer inputs, profits from adoption can be written as:

Πi = θijvπir
−σ
ijv (9)

where σ ≡ 1−α
α (1− β), πi = p

1
α0
i w

−β 1−α0
α0

i Ki, and θijv = κ2θ̃
κ1
ijv.

18 Here, the profitability of fertilizer

is a function of the productivity shock, θijv, which we will assume is random and with a central

moment that is dependent on the source of the fertilizer, the (delivered) price of fertilizer itself,

rijv, and deterministic profits based on local observables and technology πi.

18κ1 and κ2 are constant functions of model parameters
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Input and Agrovet Choice

Farmers have a choice of whether to purchase fertilizer, and if so, where to purchase fertilizer, which

itself is affected by prices for fertilizer at each agrovet location as well as the travel costs to get there

and back. Suppose that the set of villages that contain an agrovet is defined as V, where the price

charged at location v ∈ V by agrovet j is rjv. The per-unit cost to the farmer i, inclusive of transport

costs, will be written as rijv = rjvτiv, where τiv is an iceberg trade cost for farmer i in traveling to

v and back. Further, we assume that θijv, is a random variable that could represent unobserved

inputs purchased at agrovet j or location v, or perhaps other networking and information that is

acquired at location v that may increase profitability. Whatever the interpretation, we assume that

θijv is distributed according to Fréchet distribution with location parameter Tjv and dispersion

parameter ε. Precisely:

Pr (θijv < θ) = exp
(
−Tjvθ−ε

)
(10)

Using this distributional assumption, the unconditional distribution of profits for farmer i buying

from agrovet j in location v is written as:

Pr (Πijv < π) = exp
(
−Tjvπεi r−εσijv π

−ε
)

(11)

We also assume that the outside option of not buying fertilizer is random. Specifically, θi0 is

distributed Fréchet with location parameter Ti0. Thus, the distribution of profits is written as:

Pr (Πi0 < π) = exp
(
−Ti0πεi0π−ε

)
(12)

Here, we allow for the average productivity of the outside option of not buying fertilizer to vary

by village i through the location parameter Ti0. This may reflect difficulties in using or adopting

fertilizer that are specific to a location (poor soil quality, lack of training, existing norms, etc...).

Farmer i chooses among locations v ∈ V and agrovets j ∈ Jv at each location to find the most

profitable option. Solving the standard discrete choice problem (which is derived in the technical

appendix), the probability that farmer i buys from agrovet j at location v is written as:

λijv =
Tjvπ

ε
i r
−εσ
ijv

Ti0πεi0 +
∑

v′∈V
∑

l∈Jv′
Tlv′π

ε
i r
−εσ
ilv′

(13)

Decomposing Choice Probabilities

Note that (13) can be broken up into the probability of adoption for i, and the probability i buys
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from j at location v conditional on buying:

λijv =

∑
v′∈V

∑
l∈Jv′

Tlv′r
−εσ
ilv′

Ti0

(
πi0
πi

)ε
+
∑

v′∈V
∑

l∈Jv′
Tlv′r

−εσ
ilv′︸ ︷︷ ︸

µi

·
Tjvr

−εσ
ijv∑

v′∈V
∑

l∈Jv′
Tlv′r

−εσ
ilv′︸ ︷︷ ︸

λijv|adopt

(14)

= µi · λijv|adopt (15)

Conditional on buying, all i-specific variables drop out of the choice probability. Imposing the

iceberg assumption for transport costs between farmer i and location v, we can write:

λijv|adopt =
Tjvr

−εa
jv τ−εaiv∑

v′∈V
∑

l∈Jv′
Tlv′r

−εa
lv′ τ

−εa
iv′

(16)

where εa = εσ. Since trade costs are specific to location, not agrovet, we can pull the iceberg cost

out of the sum across agrovets at each location:

λijv|adopt =
Tjvr

−εa
jv τ−εaiv∑

v′∈V τ
−εa
iv′

∑
l∈Jv′

Tlv′r
−εa
lv′

(17)

Finally, we can rearrange in the form of two probabilities: the probability of buying from some

agrovet in location v, and then conditional on v, the probability of buying at agrovet j within v.

Precisely:

λijv|adopt =
τ−εaiv

∑
l∈Jv Tlvr

−εa
lv∑

v′∈V τ
−εa
iv′

∑
l∈Jv′

Tlv′r
−εa
lv′︸ ︷︷ ︸

λiv|adopt

·
Tjvr

−εa
jv∑

l∈Jv Tlvr
−εa
lv

(18)

To characterize this probability, we will be estimating a functional form for trade costs, the elasticity

(εa), and then also a vector of Tlv’s. We address each component in order.

5.2 Calibrating the Farmer’s Problem

Estimating Transport Costs through Location Choice

The adopt-location-agrovet decomposition detailed above is helpful in that for two of those stages,

we have accurate measures of the probability in question for a large portion of the random sample of

farmers. Adoption probabilities, µi, which we will use later, are measured extensively within each

village. More novel is our measurement of bilateral probabilities for choosing a particular location

to purchase from some agrovet, λiv|adopt. While farmers had a somewhat difficult time recalling the

exact agrovet they went to for inputs, in most cases they recalled the location (village) in which the

agrovet was located. We now exploit this data to estimate transport costs, as revealed by location

choices.

To begin, within a location v, we can construct the following index that measures the “return”
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of buying inputs at this location, not including the costs of transport:

φv =
∑
l∈Jv

Tlvr
−εa
lv (19)

Essentially, this is similar to a transformation of an inverse price index, but not accounting for

trade costs. These φv’s are integrated into the choice probability for location v as follows:

λiv|adopt =
τ−εaiv φv∑

v′∈V τ
−εa
iv′ φv′

(20)

To estimate equation (20), we need a dataset that identifies when each farmer i chooses location

v to purchase fertilizer. Thus, defining I as the set of farmers who adopt adoption, and V as the

set of locations with an agrovet, we construct a IXV dataset of bilateral visit indicators. There

will be many zeros in this dataset. For each bilateral combination, we will also measure distance

between the farmer’s village and the potential purchase location.

Exponentiating the village share equation, and re-writing log (φv) into a location v fixed effect,

dv, we can write:

λiv|adopt =
exp (dv − εa log (τiv))∑

v′∈V exp (dv′ − εa log (τiv′))
(21)

As the main objective from this section is to assess the role of trade costs in agrovet choice (and

consequently, adoption), we need to specify a functional form for trade costs, τiv. As a starting

point, we will estimate a simple linear relationship between the elasticity adjusted log trade cost

and distance, with dummy variables for whether location v is outside the village’s urban or rural

market-catchment areas:

−εa log (τiv) = βdistdistiv

Here, distiv is the kilometer distance between farmer i and location v.

To allow for a potentially non-linear cost of travel for farmers by distance (for example, if

required technologies differ at longer distance), we will also use distance bins Dh
iv, which are equal

to one if the distance between i and v is in bin h, and zero otherwise. These will be used as the

primary specification as follows:

−εa log (τiv) =
∑
h

βhD
h
iv (22)

With the distance bins, the multinomial logit is written as:

λiv|adopt =
exp

(
dv +

∑
h βhD

h
iv

)∑
v′∈V exp

(
dv′ +

∑
h βhD

h
iv′
) (23)
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These cost estimates will include more than just the monetary costs of travel - there may be other

hassle/search costs associated with fertilizer purchases, and the distance bins will absorb these

aspects of the farmer decision problem as well.

Equation (23) can be estimated by McFadden’s alternative-specific conditional logit. The results

from doing so are presented in Table 7. In the first column, we present the linear specification

of distance. Assuming εa ≈ 5 (which will be supported by later results), the results suggest that

iceberg transport costs for fertilizer are 3.4% ad-valorem per kilometer. As technologies may change

discretely depending on the distance to each agrovet (walking short distances, taking transit for

long distances), our preferred specification using distance bins is presented in column 2 of Table

7. The estimates suggest costly travel for farmers acquiring fertilizer. To interpret the coefficients,

we take two approaches. In the first, we can compare two locations with the same “return” from

fertilizer, dv, and then focus on the reduction in probability if one is (0,5] km way rather than 0 km

away (essentially in the same village). In this case, the probability that one chooses the location

(0,5] km away compared to 0km away (in the home village) for idiosyncratic reasons that overcome

trade costs is 0.25.19

We can also interpret the results as log changes in trade costs via:

log (τiv) = − 1

εa

∑
h

βhD
h
iv (24)

Dividing the coefficient estimates by εa give us the log change in trade costs. Given the iceberg

assumption, this is also interpreted as the log change in the delivered price. Thus, at the central

estimate of εa ≈ 5, the comparison is equivalent to a 6.4% ad-valorem trade cost per km (measured

at 5km). Using the upper bound of each bin as a conservative measure to calculate ad-valorem

trade costs, the ad-valorem equivalent rises modestly over the next few bins - for example, choosing

an agrovet 15-20km away, the approximate ad-valorem equivalent trade cost evaluated at the upper

cutoff is 7.2% per km.

Finally, we repeat the exercise from the reduced form section of the paper and calculate best

trade-cost-adjusted-prices for agrovets for all villages in the region, using the estimates of iceberg

costs as described above. These results are presented in Figure 3. Here, there is significantly more

heterogeneity in best trade cost adjusted prices for fertilizer, which suggests sizable non-pecuniary

costs of traveling to acquire fertilizer.

Calibrating Non-price Attributes of Each Agrovet

In the conditional multinomial logit used above, if enough farmers were sampled such that every

location with an agrovet was chosen, it would be possible to estimate precisely a value of φv for each

19This is calculated precisely by calculating the ratio of probabilities:

λ0−5km

λ0km
=

exp (dv − 1.38)

exp (dv − 0)
= 0.25
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location (up to the usual normalization), and use this in resulting counterfactuals. Unfortunately,

funding was not sufficient to survey such a large sample, and thus, to recover all non-price attributes

of all locations that contain an agrovet, we must employ a combination of agrovet revenue shares

from our agrovet survey, and the spatial distribution of fertilizer expenditures from the farmer

survey.

To derive a market-clearing condition that we intend to calibrate, we start from an equation

that summarizes expected agrovet sales as aggregated from spatial farmer-level demand. Defining

expected agrovet sales at j in v as E [vjv], we have:

E [vjv] =
∑
i

Liµiλijv|adoptE [Fi|adopt at jv] (25)

where E [Fi|adopt at jv] is expected fertilizer expenditures by i , conditional on adopting at jv,

and Li is the village population to use as weights in the demand equation. Noting that µi =
E[Fi]

E[Fi|adopt] , which is the ratio of the unconditional expected expenditures on fertilizer to the expected

expenditures on fertilizer, given adoption, we can write:

E [vjv] =
∑
i

Liλijv|adopt
E [Fi|adopt at jv]

E [Fi|adopt]
E [Fi] (26)

Using the properties of the Fréchet distribution, it is straightforward to show that E[Fi|adopt at jv]
E[Fi|adopt] =

1; that is, the expected expenditures conditional on adoption anywhere is the same as the expected

expenditures at some j, conditional on choosing j.20 Thus, we have:

E [vjv] =
∑
i

λijv|adoptE [Fi] (27)

Imposing the definition of λijv|adopt:

E [vjv] =
∑
i

Li

(
Tjvτ

−εa
iv r−εajv∑

v′∈V
∑

l∈Jv′
Tlv′τ

−εa
iv′ r

−εa
lv′

)
E [Fi] (28)

Finally, we can combine the agrovet-specific non-price attributes and the price into an “agrovet-

effect” (ηjv ≡ Tjvr−εajv ), and also impose the specification for transportation costs, to get:

E [vjv] =
∑
i

Li

(
exp

(
−
∑

h βhD
h
iv

)
ηjv∑

v′∈V
∑

l∈Jv′
exp

(
−
∑

h βhD
h
iv′
)
ηlv′

)
E [Fi] (29)

To implement this equation, we use observed agrovet fertilizer revenues for each agrovet to proxy

for E [vjv], and village-level fertilizer expenditures from the farmer’s survey to proxy for E [Fi]. That

is, for this equation, we take i to represent villages and sum up expenditures within each village.

However, we again run into an number of issues where our farmer survey was not large enough

20See technical appendix for a proof
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to survey farmers from every village in the region, and the population of farmers within each

village. To this end, there are two issues to consider. First, within each village, while we surveyed

approximately 16 maize farmers per village, in some villages zero or full adoption is reported. In

reality, this may be accurate, or may be biased toward the bounds by a small sample. Further,

village adoption at the bounds will also complicate the calibration of the overall adoption decision

(which we describe in a moment). To facilitate a feasible calibration that is consistently applied

across market clearing conditions and the adoption decision, we first winsorize the village adoption

data to fall between 0.025 and 0.975.21Then, for those villages that report zero adoption in the

sample, we assign a small value of E [Fi] that is calculated via the model using the reported land

holdings of the village in the sample, the winsorized adoption share (0.025), and then the 1st

percentile value of fertilizer expenditures per acre of land across the entire sample of farmers who

adopt,
(
Fi
Ki

)
1

.22

Focusing on the sampling of villages, if we assume that the farmer sample captures the entire

geography of demand, there will exist agrovets in other locations that appear more remote than

they actually are since no farmers were surveyed in that location. This will cause a bias in estimates

of ηjv’s by assigning a large value for agrovet locations without any farmers surveyed to make-up for

the incorrectly assigned remoteness. At present, the only solution to this problem is to assume that

all villages within a market-catchment area share the same characteristics as the (one) surveyed

village in that area. Since village selection within a market catchment area was random, this should

only add random measurement error to the village i observables that are used in the calibration.

Two other empirical issues to consider are more straightforward. Since agrovet fertilizer revenues

and farmer expenditures are from different surveys, and the latter aggregated from a farmer level

sample, we normalize each to sum to one. After doing so, we can recover ηjv by solving the non-

linear system of equations formed using J agrovets and their revenue shares, as written in (29),

under the normalizing assumption that
∑

v

∑
j ηjv = 1.23 Then, after recovering the ηjv’s, we

calibrate the value of εa using the following regression (based on ηjv = Tjvr
−εa
jv ):

log(ηjv) = −εa log(rjv) + βexperjv + district+ ujv︸ ︷︷ ︸
log(Tjv)

(30)

where log(Tjv) will be recovered as the components of the regression not equal to the elasticity-

adjusted log agrovet price. To account for other local factors that may be correlated with prices

and location quality, we include agrovet-level experience at that location, experiv, and district fixed

effects. Running this regression, instrumenting for current agrovet prices with one-year lagged

21This effectively means that villages with zero adoption in the sample are assigned a level of adoption 50% lower
than the lowest observed (positive) adoption share in the sample. Or, alternatively, that we would need to double
the within-village sample size to find one farmer who adopts.

22Precisely, imputed (small) values for expected fertilizer expenditures are calculated by: E [Fi] = 0.025
(
Fi
Ki

)
1
·Ki

23This normalizing assumption is required since the probabilities within the sum in equation (29) are homogeneous
degree zero in η’s.
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prices, yields an estimate of εa = 5.14.24

Calibrating Adoption

For the final part of the farmers problem, we work to recover the (relative) productivity of not

using fertilizer for each village, Ti0. To begin, recall that the probability of adoption is written as:

µi =

∑
v′∈V

∑
l∈Jv′

Tlv′τ
−εa
iv′ r

−εa
lv′

Φi0Ti0

(
πi0
πi

)ε
+
∑

v′∈V
∑

l∈Jv′
Tlv′τ

−εa
iv′ r

−εa
lv′

(31)

where Φi0 = Ti0

(
πi0
πi

)ε
= Ti0p

εp
i w

εw
i εp = ε

(
α−α0
αα0

)
and εw = ε

(
β 1−α

α −
1−α0
α0

)
. Using the imputed

adoption shares for each village (as described in the preceding section), we recover Φi0s by inverting

equation (31).

Beyond calibrating the term related to non-adoption, Φi0, the elasticities of adoption with re-

spect to price and wages will depend on the values of the parameters of the Cobb-Douglas production

functions with and without fertilizer. For assessing basic input counterfactuals and quantifying the

impact of remoteness on adoption, these production function estimates are not required. However,

they will be required for mark-up calculations to calibrate the agrovet pricing equilibrium; specif-

ically, separating the substitution elasticity εa from the native distribution parameter ε. In the

appendix, we detail a simple estimator for maize production with and without fertilizer, and using

the Tanzanian LSMS, produce estimates for α (0.431) and α0 (0.570). Also using the LSMS, we

use reported wages and labor and fertilizer expenditures to calculate the share of labor in variable

factors; β (0.75). Using these estimates, it is straightforward to calculate that ε=14.96. While this

may seem high, this essentially means that there is little idiosyncratic variation in quality-adjusted

prices at each agrovet, around the Tjv’s. Practically, farmers are choosing the lowest quality ad-

justed price for each agrovet, with minimal other variation that distracts from prices, quality, and

transport costs.

Agrovet Pricing and Markups

In the farmers problem, adoption was a function of a quality-adjusted delivered price for fertilizer

at each agrovet option, as well as other terms that represent the relative incentives to abstain from

using fertilizer. When we evaluate various trade shocks, we could do so while holding agrovet prices

fixed. However, while this might be fine for local shocks, for a larger trade shock, such as a roads

program, allowing for retail prices and mark-ups to change is crucial for a realistic counterfactual.

We now derive the pricing problem for agrovets, and describe the calibration for mark-ups (which

is similar to Berry, 1994).

24The first stage F-statistic for weak instruments is 304.147, and the Wu-Hausman test statistic for endogeneity is
0.001 (p-value 0.981), suggesting this IV approach is sound.
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As is well-known, the first order condition for an oligopolist is a mark-up over marginal cost:

rjv =
εdjv

εdjv + 1
cjv

where cjv is the marginal cost for agrovet j in location v, and εdjv is the elasticity of agrovet j

demand with respect to it’s own price. Defining εvjv as the elasticity of revenue with respect to its

own price, we have:

rjv =
εvjv − 1

εvjv
cjv (32)

Defining sijv =
λijv|adoptE[Fi]∑
i′ λi′jv|adoptE[Fi′ ]

as the expenditure share on i within jv, in the technical appendix

we derive the following:

εv = −εa +
ε− 1

ε
εa
∑
i

sijvλijv

This elasticity equation provides clear intuition regarding the spatial distribution of demand,

market power and mark-ups. For each firm,
∑

i sijv = 1, and thus, variation in mark-ups depends

on the unconditional probability of a farmer from village i choosing agrovet j in village v. When

firms are “small” within the context of the market, λijv ≈ 0 for all i and the mark-up is pinned

down by the substitution across agrovets through the elasticity, εa.

Using this elasticity formula calculated for each agrovet, we can then solve for the revealed

marginal cost of selling fertilizer by using the mark-up equation. The predicted markups have a

mean of 0.2164 (median = 0.2018), which while lower is not remarkably different from the measured

mark-ups in the reduced form (mean = 13%)

6 Counterfactuals

In this section, we use the calibrated and estimated parameters to evaluate a number of counter-

factuals on input and output market access. To solve for the counterfactuals, we simply solve for a

new vector of fertilizer prices that solves the first order conditions in (32), while taking into account

equilibrium changes in the farmers problem in response to new agrovet prices and/or trade costs.

6.1 Experiments on Input Access

We begin by focusing on the effects of local access to fertilizer on adoption decisions. A general

hypothesis that we have developed in the paper is that farmers are likely disadvantaged if agrovets

are not in close proximity. While a number of villages have an agrovet at that location, many do

not, and in some cases have to travel non-trivial distances to acquire fertilizer and other inputs.

We study these issues in two ways: reduction in transport costs, and effects of agrovet entry.
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Transportation Costs

To study the role of access to inputs using a realistic counterfactual, we appeal to Casaburi, Glen-

nerster and Suri (2013) and evaluate the effects of a 50% reduction in iceberg costs through a

hypothetical roads improvement program. Such a cost reduction can also be motivated by local

speeds on trunk roads in Kilimanjaro being approximately 50% lower than US speed (according

to Google Maps). The results of this counterfactual in terms of adoption by each village are dis-

played in the top-left panel of Figure 4. The bottom left panel reports the effects on log fertilizer

expenditures within each village. For clarity, we have grouped villages into 20 equally sized bins

of standardized remoteness, and the points in the Figure represent average adoption within these

groups. For interpretation, we have also plotted lines of best fit when regressing baseline or coun-

terfactual adoption (or expenditures) on remoteness. For these regressions, we use the raw village

data rather than binned.

In the top left panel, we find a large adoption effect of 28pp, or approximately twice baseline.

This counterfactual alone accounts for 18% of the adoption-remoteness relationship at baseline.

The results for expenditures are even more pronounced, where expenditures rise approximately

1.35 log points, though it is important to keep in mind that for many villages we are moving from

an extremely low base. Nevertheless, the log-expenditure-remoteness gradient is cut in half by this

counterfactual. Thus, we conclude that holding local factors fixed, access to input markets has

a large effect on adoption levels, and contributes substantially to the reduced adoption levels in

remote areas.

Also on the input side, we evaluate how the costs for retailers to source inputs from distrib-

utors affects the adoption decision. Through our detailed agrovet surveys, as summarized in the

reduced form, we document that the costs of sourcing inputs from distributors rises significantly

with distance from Moshi. So, in the second counterfactual, we subsidize this cost by 50%. The

effects of this counterfactual are presented in the top-right panel of Figure 4. Here, adoption rises

by about 1pp, or 4.4%, and yields a 4% reduction in the remoteness-adoption gradient. Thus,

although effects on levels are modest, the effect of this subsidy on the remoteness gradient, despite

any absorption by mark-ups, is non-trivial.

Entry

An overarching question throughout the paper has been why agrovet access is worse in rural areas,

and in particular, why agrovets enter intensely in other areas. While we do not present an empirical

model of entry (for example, as in Seim, 2006), we do run a simple counterfactual to examine

profitability of entry and any corresponding effects on adoption. Specifically, we force a “median”

agrovet (as defined by Tjv and marginal cost, within a district) to enter every village in the sample

(one at a time, not simultaneously), and then measure the effects of that singular entry on adoption,

and also measure the profitability of the entrant after entry. We do this for every village in the

dataset, and then plot in the top panel of Figure 5 aggregate adoption (after entry) and entrant

profits as a function of distance to the village in which the entry took place. Very clearly, profits
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are higher when entering less remote villages, though adoption effects are also higher when entering

the more remote villages. The former relationship is particularly strong, where a one standard

deviation increase in remoteness reduces the profitability of hypothetical entry by 0.35 log points.

Thus while access to agrovets in remote areas would improve adoption more so than entering less-

remote areas, the profitability analysis supports the argument that this lack of entry in remote

areas is logical.

6.2 Experiments in Output Access

Also summarized in the reduced form, more remote villages tend to travel farther to reach their

primary market, and these travel costs can reduce the margin available to selling their maize

harvest. Further, in the reduced form, the optimally chosen “best” travel-cost adjusted selling

prices are negatively correlated with remoteness. Subject to a number of caveats described below,

we now examine both margins on the output side and their effects on adoption.

First, as in the reduced form exercises, we assume as that farmers optimally choose the best

market to sell, subject to the measured/estimated costs of transportation from village to village.

We measure the baseline best net-selling price, and then recalculate this best net-selling price after

reducing transportation costs by 50%. With the baseline and counterfactual net selling price, the

shock that is relevant to the model for each farmer is Φi0

(
pic
pi0

)εp
, where the ratio of counterfactual

prices pic to baseline output prices pi0 is interacted with the original calibrated parameter and raised

to the price-elasticity εp. The results of this counterfactual shock are presented in the bottom left

panel of Figure 5. Here, we see an adoption-remoteness gradient that is cut by a similar amount

to the input market counterfactuals, and an adoption effect that is about 0.2, or 65%. Thus, this

counterfactual has a lower effect on adoption when compared with a 50% cut in farmer-retailer

transport costs, but a similar effect on the gradient. However, care must be taken in comparing the

two. In the case of the cut in farmer-retailer transport costs, the transport cost cut is interacted

with prices and calibrated agrovet quality terms, which adds noise to the shock. That is, while

a farmer might be more likely to travel to any agrovet, the transport shock is not concentrated

on the agrovet that is closest or that the farmer will necessarily choose. In contrast, the best net

selling price is determined by a simple calculation of the maximum net price, with no probability

of choosing different option. Thus, the noise in the farmer-retailer transport shock as it relates to

distance will attenuate its effect on the gradient, though still provide a sizable effect on adoption.

Keeping in mind the same caveat for our final counterfactual, we now assume that farmers

sell at their closest market, and experience a 50% reduction in iceberg costs to that market, as

estimated by the agrovet choice problem. That is, the farmer must ship τim units of maize to the

market to effectively sell one unit. Thus the transport-adjusted selling price that we use for each

village above when calibrating adoption decisions is equal to pi = pm/τim, where pi is net selling

price to farmer i and pm is the price at the primary market for that village. To examine the impact

of output market access on adoption, we now run an experiment cutting the iceberg costs to reach

output markets by 50%. The results from this counterfactual are presented in the bottom-right
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panel of Figure 5. Here, adoption almost doubles, and the adoption-remoteness gradient falls by

about 30%.

Overall, access to output markets appears to be an important component of the input adoption

decision, and these effects deserve more detailed attention in follow-up work that more rigorously

documents the movement of maize from the plot to the market and beyond.

7 External validity

While our data collection spans a large portion of Northern Tanzania, our datais still limited to

only one region in one country. Do our results generalize? While we cannot provide a definitive

answer, we provide some suggestive evidence in this section.

7.1 Price Dispersion

To address this, we assembled five secondary datasets25 across 1,512 locations26 in 56 African

countries. We compare this to a small dataset we assembled between March and April 2016 with

251 retailers of various sorts (shops, agro-input dealers, and maize traders) in 82 markets in the

Kilimanjaro region.27 To quantify price dispersion, we first decompose variation in spatial prices

by running the following regression:

log(pmcjt) = γc + γj + γt + εmjt (33)

where pmjt (log) prices in market m for product j at time t in country c, and the γ terms are

country, product, and time fixed effects. We calculate the standard deviation of the resulting

residual. Results are reported in Web Appendix Table A5. In the secondary datasets, the standard

deviation is 0.45 for all products, 0.34 for maize, and 0.12 for fertilizer; in our Tanzania data,

the figures are 0.22, 0.14, and 0.09. The somewhat lower standard deviation in our data could be

indicative of reduced measurement error, or that prices vary less within the geographic concentrated

area of Kilimanjaro. Nevertheless, price dispersion is substantial within Kilimanjaro as well.

We also follow the literature,28 to run dyadic regressions to look at price gaps, as follows:

25We include the following datasets: (1) prices of 6 staple crops in 41 major market centers in 8 East African
countries from 1997-2015, collected by RATIN; (2) prices of 25 commodities from 276 markets in 53 countries in from
2013-2015, collected by Africafoodprices.io; (3) prices of 4 major varieties of fertilizer (Urea, DAP, CAN, and NPK
complex 17-17-17) in 129 markets in 7 East African countries collected by AMITSA; (4) prices of 5 major varieties
of fertilizer (Urea, CAN, DAP, and NPK 17 17 17) in 18 countries from 2010-16 in Africafertilizer.org; and (5) prices
of a number of commodities in 38 countries from 1992-2016 collected by the WFP.

26These are not necessarily all unique locations. Though we have cleaned these datasets, there are some misspellings,
different names for the same markets, and also differing levels of granularity in the datasets.

27To enroll participants, we visited each market and selected several types of retailers for project inclusion, including
fertilizer retailers (“agrovets”), maize sellers, and retail shops. Each respondent was called once per month and asked
about current retail and wholesale prices for each item in a pre-selected list of standardized goods (e.g., 200 ml box
of Azam juice). Respondents were compensated for participation by mobile money transfer.

28See Engel and Rogers (1996). In addition, see papers on the effect of cell phones on price dispersion, for example
Aker (2010), Aker and Fafchamps (2015), and Jensen (2007).
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log(| pmjt − pm′jt |) = θ log(cmm′) + γm + γm′ + γj + εmm′jt (34)

where pmjt− pm′jt is the price gap between markets m and m′ and cmm′ is the cost of transport

between markets.29 Results are presented in Web Appendix Table A6. For each dyad, we regress

the absolute difference in log prices on two measures of distance: (1) kilometers between locations in

Columns 1, 4, and 7, and (2) driving time between locations in Columns 2, 5, and 8 (both calculated

via Google Maps API). We cluster standard errors by both the destination and origin market. In

each of the secondary datasets, we find significant, positive coefficients, suggesting that price gaps

are larger between more distant markets. The coefficients are economically meaningful: a doubling

of travel costs would increase price gaps by about 1-3% in the secondary datasets. In Tanzania,

we find that doubling distances would increase price gaps by a similar amount. Finally, we can use

this data to provide some descriptive evidence on road upgrading. We conjecture that price gaps

should respond to the time it takes to travel from point to point, and not the geographic distance

(since the time and other costs of traveling to sell items should be what is important). To examine

this, we regress price gaps on both distance and duration in Columns 3, 6, and 9. Consistent with

priors, we find that duration is significant, whereas distance is not – which suggests that improving

road quality would reduce these gaps.

7.2 Fertilizer adoption

In Web Appendix Table A7, we assembled data from the World Bank LSMS-ISA household panel

surveys for Ethiopia, Niger, Nigeria, Malawi, Tanzania, and Uganda, to study how remoteness

affects fertilizer adoption. In the LSMS, measures of remoteness include distance to the main

market, and distance to a population center. Using both measures of remoteness, we find a negative

association between remoteness and technology adoption.

8 Conclusion

In this paper we collect detailed data on transportation costs, input and output prices, and the

intensive and extensive margins of input purchases and output sales from market actors across the

entirety of the supply chains for maize and fertilizer in all 1,183 villages in the Kilimanjaro and

Manyara regions of Northern Tanzania. This data enables us to document large heterogeneity in

market access, and study its implications for prices and for market participation. We find that

there is large variation in prices, and that the most remote villages face prices substantially higher

than the least remote (equivalent to about 40% of the mean). The rates and magnitudes of fertilizer

use and maize sales also display a large and significant distance gradient. Counterfactuals on the

input and output sides suggest an important role for lowering access barriers on the input side for

reducing this gradient, and a more qualified one for those on the output side.

29These regressions are motivated by an assumption of free entry where an arbitrageur will enter if | (pm− pm′) |≥
cmm′ . While we know that free entry is not realistic in this context, we reproduce these results for comparability.
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The results of these counterfactuals lead directly to the question of policy implications. Many

African countries have experimented with input subsidies (some intermittently, and some more

consistently), and these have had large adoption and usage effects by directly lowering the delivered

price of fertilizer even though the transport cost may have stayed unaffected. However, most

farmers fail to graduate out of the subsidy for a host of reasons, potentially including the fact that

the market access issues remain unresolved. Therefore, policies that lower fertilizer prices through

reducing transport costs can potentially have lasting effects, such as improving transportation

linkages between markets and villages, and also between urban centers and villages. Initiatives to

organize farmers into cooperative groups that enable them to defray the total costs of transportation

over a large number of buyers may also be helpful.
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A Deriving farmer profits, revenues, and input expenditures

The production function under basic technology is:

Yi = θ̃i0K
α
i L

1−α
i (35)

Here, θ̃i0 is baseline productivity without technology for farmer i, Ki is land held by farmer i (which

is assumed to be fixed), and Li is labor hired/used by farmer i. Farmers who choose the baseline

technology maximize the following profit function:

Πi0 = max
Li

{
piθ̃i0K

α
i L

1−α
i − wiLi

}
(36)

where pi is the output price and wi is the local wage. The first-order condition with respect to

labor is written as:

(1− α)piθ̃i0K
α
i L
−α
i = wi (37)

Multiplying both sides of the first order condition by Li, it is straightforward to show that expen-

ditures on labor are linked to revenues (Ri0) and profits (Πi0) by

wiLi = (1− α)piθ̃i0K
α
i L

1−α
i = (1− α)Ri0 (38)

and substituting into the profit function, we have:

Πi0 = αRi

⇒ wiLi =
1− α
α

Πi0
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Thus, labor expenditures are proportional to profits and revenues, a feature that will prove con-

venient when aggregating the model. Explicitly solving for labor in the first order condition, and

substituting into the profit function, we have:

Πi0 = α0(1− α0)
1−α0
α0 θ̃

1
α0
i0 p

1
α0
i w

− 1−α0
α0

i Ki

= θi0πi0 (39)

Here, we have defined θi0 = α0(1 − α0)
1−α0
α0 θ̃

1
α0
i0 and πi0 = p

1
α0
i w

− 1−α0
α0

i Ki. We return to these two

terms momentarily when characterizing the adoption decision.

The production function with fertilizer splits variable inputs into labor and acquired fertilizer,

Xijv, and also provides a productivity shock, θ̃ijv, which may vary by the agrovet j location v pair

at which the fertilizer is purchased. Precisely, production is written as:

Yi = θ̃ijvK
α
i L

(1−α)β
ijv X

(1−α)(1−β)
ijv (40)

The profit maximization problem when using fertilizer is written as:

Πi0 = max
Li,Xijv

piθ̃ijvK
α
i L

(1−α)β
ijv F

(1−α)(1−β)
ijv − wiLijv − rijvFijv (41)

Since technology is Cobb-Douglas, including within variable inputs, similar results from above apply

here. That is, writing expenditures on variable inputs as cijvMijv, where cijv is the unit cost of a

bundle of variable inputs Mijv, it is easily shown that

cijvMijv = (1− α)piθ̃ijvK
α
i L

(1−α)β
ijv F

(1−α)(1−β)
ijv = (1− α)Rijv (42)

and

Πijv = αRijv

⇒ cijvMijv =
1− α
α

Πijv

Further, since labor and fertilizer have β and 1−β share in variable inputs, respectively, expenditures

on each input are written as:

wiLijv = β
1− α
α

Πijv

rijvFijv = (1− β)
1− α
α

Πijv

Thus, any results related to profits will apply to input expenditures as long as factor shares do not

change.

Solving for the optimal labor and quantity of fertilizer from agrovet j and location v, profits of
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i from adopting at jv are written as:

Πi = θijvπir
−σ
ijv (43)

where σ ≡ 1−α
α (1− β), πi = p

1
α
i w
−β 1−α

α
i Ki, and θibjv = κ2θ̃

κ1
ibjv.

30 Here, the profitability of fertilizer

at this location is a function of the productivity shock, θijv, the (delivered) price of fertilizer itself,

rijv, and profits based on local observables and technology πi.

B Distributions of Fertilizer Expenditures

Above, we used the following property to generate a market clearing condition that can be taken

to the data:

E [rFi | adopt at j in v] = E [rFi|adopt] (44)

That is, that the expected fertilizer expenditures, conditional on adopting at location j, is the same

as the expected fertilizer expenditure, conditional on adopting anywhere. This is a similar result

to Eaton and Kortum (2003), where the price distribution conditional on being the lowest price

supplier is the same as the unconditional price distribution at that destination. Here, we prove the

similar result in the input adoption context.

In the model, fertilizer expenditures at a particular agrovet are a scalar function of ex-post

profits when choosing that agrovet. Thus, we focus all proofs on the distribution of profits, and

then the analogue to revenues and input expenditures follows directly. To begin, we first derive the

distribution of profits for farmer i who buys from agrovet j in location v.

Pr (Πijv > π) = Pr
(
θijvπir

−σ
ijv > π

)
(45)

= Pr

(
θijv >

π

πi
rσijv

)
(46)

= 1− exp
(
−Tjvπεi rεσijvπ−ε

)
(47)

Defining γijv ≡ πεi rεσijv

Pr (Πijv > π) = 1− exp
(
−Tjvγijvπ−ε

)
(48)

Similarly, the distribution of profits of the outside option of not purchasing fertilizer are written as:

Pr (Πi0 > π) = 1− exp
(
−Φi0π

−ε) (49)

where Φi0 = Ti0γi0 ≡ πεi
Next, defining Πmax

i as the profits available from the best agrovet option for farmer i, we write

30κ1 and κ2 are constant functions of model parameters
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the distribution of these profits as:

Pr (Πmax
i > π) = Pr (Πijv > π for any jv) (50)

= 1− Pr (Πijv < π ∀ jv) (51)

Since θ’s at each j, v pair are drawn from independent distributions, this probability is simplified

as:

Pr (Πmax
i > π) = 1− Pr (Πijv < π ∀ jv) (52)

= 1−
∏
v′∈V

∏
j∈Jv

Pr (Πijv < π) (53)

= 1−
∏
v′∈V

∏
j∈Jv

exp
(
−π−ε

)
(54)

Defining Φi =
∑
v′∈V

∑
j∈Jv

Tjvγijv, Pr (Πmax
i > π) can be simplified to:

Pr (Πmax
i > π) = 1− exp

(
−Φiπ

−ε) (55)

Thus, the CDF of max profits for village i is written as:

Gmaxi (π) = Pr (Πmax
i < π) = exp

(
−Φiπ

−ε) (56)

with pdf:

gmaxi (π) = εΦiπ
−ε−1 exp

(
−Φiπ

−ε) (57)

Similarly, adding the option of not adopting, the distribution of profits considering all options,

Πi, is written as:

Pr (Πi > π) = Pr (Πijv > π for any jv ∪Πi0 > π) (58)

= 1− Pr (Πijv < π ∀ jv ∩ Πi0 < π) (59)

Since θ’s at each j, v pair and for not adopting are drawn from independent distributions, this

probability is simplified as:

Pr (Πi > π) = 1− Pr (Πijv < π ∀ jv ∩ Πi0 < π) (60)

= 1− Pr (Πi0 < π)
∏
v′∈V

∏
j∈Jv

Pr (Πijv < π) (61)

= 1− exp
(
−Ti0γi0π−ε

) ∏
v′∈V

∏
j∈Jv

exp
(
−Tjvγijvπ−ε

)
(62)
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Using the definitions for Φi0 and Φi, this is simplified as:

Pr (Πi > π) = 1− exp
(
− (Φi0 + Φi)π

−ε) (63)

Thus, the CDF of max profits for village i is:

Gi (π) = exp
(
− (Φi0 + Φi)π

−ε) (64)

with pdf:

gi (π) = ε (Φi0 + Φi)π
−ε−1 exp

(
− (Φi0 + Φi)π

−ε) (65)

Profits conditional on adoption

Using this pdf, we now derive the CDF of agrovet profits, conditional on adoption. To do this, we

start from the conditional probability formula:

Pr
(
Πmax
i < π

∣∣adopt) =
Pr (Πmax

i < π ∩Πmax
i > Πi0)

Pr (Πmax
i > Πi0)

(66)

This can be re-written as:

Pr
(
Πmax
i < π

∣∣adopt) =
1

Pr (Πmax
i > Πi0)

∫ π

0
Pr (s > Πi0) gmaxi (s)ds

=
1

Pr (Πmax
i > Πi0)

∫ π

0
exp

(
−Φi0s

−ε) εΦis
−ε−1 exp

(
−Φis

−ε) ds
=

1

Pr (Πmax
i > Πi0)

∫ π

0
εΦis

−ε−1 exp
(
− (Φi0 + Φi) s

−ε) ds (67)

Mulitplying by Φi0+Φi
Φi0+Φi

, and then factoring out Φi
Φi0+Φi

, we have:

Pr
(
Πmax
i < π

∣∣adopt) =
1

Pr (Πmax
i > Πi0)

Φi

Φi0 + Φi

∫ π

0
ε (Φi0 + Φi) s

−ε−1 exp
(
− (Φi0 + Φi) s

−ε) ds
From standard derivations using Fréchet, Pr (Πmax

i > Πi0) = Φi
Φi0+Φi

, and thus:

Pr
(
Πmax
i < π

∣∣adopt) =

∫ π

0
ε (Φi0 + Φi) s

−ε−1 exp
(
− (Φi0 + Φi) s

−ε) ds (68)

= Pr (Πi < π) (69)

Profits conditional on adoption from j

Next, we derive the expected profits, conditional on adopting fertilizer from location j. Precisely,

we will derive:
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Pr
(
Πijv < π

∣∣adopt from j in v
)

=
Pr
(
Πijl < π ∩Πijv > Πij′l∀(j′, l) ∩Πijv > Πi0

)
Pr
(
Πijv > Πij′l∀(j′, l) ∩Πijv > Πi0

) (70)

The denominator in this equation is simply λijv, and thus, we factor it out of the probability. The

numerator is written similar to the previous derivation, where

Pr
(
Πijv < π

∣∣adopt from j in v
)

=
1

λijv

∫ π

0
Pr
(
s > Πij′l∀(j′, l) ∩ s > Πi0

)
gijv(s)ds (71)

Defining Φ̃ijv =

( ∑
v′∈V

∑
j∈Jv

Tjvγijv

)
− Tjvγijv, we can simplify Pr

(
s > Πij′l∀(j′, l) ∩ s > Πi0

)
as

Pr
(
s > Πij′l∀(j′, l) ∩ s > Πi0

)
= exp

(
−Φi0s

−ε) exp
(
−Φ̃ijvs

−ε
)

(72)

= exp
(
−
(

Φi0 + Φ̃ijv

)
s−ε
)

(73)

Thus, Pr
(
Πijv < π

∣∣adopt from j
)

is written as:

Pr
(
Πijv < π

∣∣adopt from j
)

=
1

λijv

∫ π

0
exp

(
−
(

Φi0 + Φ̃ijv

)
s−ε
)
εTjvγijvπ

−ε−1 exp
(
−Tjvγijvs−ε

)
ds

Factoring out
Tjvγijv
Φi0+Φi

, and then noting that Φi0 + Φi = Φi0 + Φ̃ijv + Tjvγijv, we have:

Pr
(
Πijv < π

∣∣adopt from j
)

=
1

λijv

Tjvγijv
Φi0 + Φi

∫ π

0
ε (Φi0 + Φi)π

−ε−1 exp
(
− (Φi0 + Φi) s

−ε) ds
Since λijv =

Tjvγijv
Φi0+Φi

, we land at the final result:

Pr
(
Πijv < π

∣∣adopt from j
)

=

∫ π

0
ε (Φi0 + Φi)π

−ε−1 exp
(
− (Φi0 + Φi) s

−ε) ds
= Pr (Πi < π)

Thus, the distribution of profits adopting from j is the same as the distribution of profits adopting

anywhere.

C Production Function Estimation with and without Fertilizer

As our dataset is not equipped for panel production function estimation, we will be using the

Tanzanian LSMS, which records output and input use by household-plot-time, and we exposit

the estimation accordingly. That is, the production functions under different technologies should

now be understood to be specific to a particular plot within a household. Simply manipulating

the Cobb-Douglas production functions for plot p of household i in time t, we get the following
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representation for output per unit of land:

log

(
Yipt
Kipt

)
= (1− α0) log

(
Lipt
Ki

)
log

(
Yipt
Kipt

)
= (1− α)β log

(
Lipt
Kipt

)
+ (1− α) (1− β) log

(
Mipt

Kipt

)

To combine these equations into one specification, we need to eliminate log
(
Mipt

Kipt

)
, which is not

defined when fertilizer is not purchased. However, exploiting the fact that relative demand for

fertilizer and labor is a constant function of local wages, delivered fertilizer prices and parameters,

we can write:

log

(
Yipt
Kipt

)
= (1− α0) log

(
Lipt
Ki

)
log

(
Yipt
Kipt

)
= (1− α)β log

(
Lipt
Kipt

)
+ dit

where dit is a dummy variable for household i, and year t (that is meant to absorb local wages

and prices when using fertilizer). This motivates the following specification to test for differences

in production parameters with and without fertilizer.

log

(
Yipt
Kipt

)
= (1− α0) log

(
Lipt
Kipt

)
+ (α0 − α) log

(
Lipt
Kipt

)
· I(Mipt > 0) +DFTipt + Plotip + uipt

Here, DFTipt is a district-time variable, with and without fertilizer use, meant to absorb differences

is local wages and prices, and other local and shocks, that may vary by time and whether fertilizer

is used. While one could argue that local wages and prices should vary at a more granular level,

this is about as far as we can push the data given the other sets of fixed effects that are utilized.

Plotipis a fixed effect to absorb plot-specific sources of productivity differences. Within these fixed

effects, we estimate α0 and α using labor per unit of land and an interaction with a dummy variable

identifying fertilizer use. Appendix Table A7 reports these estimates. In the preferred specification,

we find that α0 = 0.57 and α = 0.421.

The last production parameter to estimate is the expenditure share of labor compared relative

to total expenditures on labor and fertlizer. For this measure, we also use the Tanzanian LSMS. We

first average district-level, activity specific wages from all plots that hire labor, and then construct

an implied labor cost on each plot by summing the product of labor hours on each activity and

the average wage for that activity. Then, for those who adopt fertilizer, we divide the value of

fertilizer used on that plot by the sum of this same value and implied labor expenditure. For the

whole of Tanzania, the average of this fertilizer expenditure share is 0.25, and we use this value for

our counterfactuals by imposing that β = 0.75. Of note, the mean and median values of fertilizer

expenditure share for the subsample of regions in norther Tanzania (Arusha, Kilimanjaro, Manyara,

Tanga) is slightly higher at 0.28.
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D Mark-ups

From above, we can write the expected fertilizer revenues for agrovet j in location v as:

E [vjv] =
∑
i

µiλijv|adoptE [Fi|adopt at jv]

Since fertilizer expenditures are proportional to profits, and profits are invariant to the choice that

is made (in expectation)we have:

E [vjv] = (1− β)
1− α
α

∑
i

λijvE [Πi] (74)

Differentiating with respect to the fertilizer price, rjv, the elasticity of expected revenues with

respect to own price is:

dE [vjv]

drjv

rjv
E [vjv]

=
∑

sijv

(
dλijv
drjv

rjv
λijv

+
dE [Πi]

drjv

rjv
E [Πi]

)
(75)

where sijv =
λijv|adoptE[rmi]∑
i′ λi′jv|adoptE[rmi′ ]

. As a function of model parameters,
dλijv
drjv

rjv
λijv

is written as:

dλijv
drjv

rjv
λijv

= −εa(1− λijv)

Given the assumption of the Frechet distribution, E [Πi] can be written as:

E [Πi] = κ (Φi0 + Φi)
1
ε

where κis a function of distribution parameters. Log-differentiating, it is straightforward to show

that:

dE [Πi]

drjv

rjv
E [Πi]

= −εa
ε
λijv

Thus, the elasticity of expected revenues to price can be written as:

dE [vjv]

drjv

rjv
E [vjv]

= −εa
∑
i

sijv

(
(1− λijv) +

1

ε
λijv

)
(76)

Since
∑

i sijv = 1 for each jv, the elasticity of expected revenues to price can be simplified as:

εv ≡
dE [vjv]

drjv

rjv
E [vjv]

= −εa +
ε− 1

ε
εa
∑
i

sijvλijv (77)
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Table 1. Summary statistics on villages
(1)

Mean
Panel A. Travel costs to markets and major hub towns
Distance to nearest market center (km) - Google maps 6.52

(9.94)
Time for round-trip journey to nearest market center - surveys 40.8

(39.30)
Cost of round-trip from village to nearest market center (USD) - surveys 1.92

(2.43)
Cost of round-trip from market center to village (paid by enumerator) 2.53

(3.14)
Distance to a major hub (km) - Google maps 72.8

(56.10)
Round-trip travel time to a major hub (mins) - Google maps 171.5

(115.10)
Round-trip cost of travel to a major hub (USD) - surveys 5.72

(5.33)
Panel B. Road quality
Field Measurement of roads from market centers to villages
Percent of road that is:
   Paved 0.20
   Dirt 0.42
   Gravel 0.38

Travel speed on feeder roads and rural roads - km/hr  (GPS surveys)1 21.6
(11.80)

Google estimates
Travel speed on feeder roads and rural roads - km/hr (Google) 36.7

(15.7)
Travel speed on major roads - km/hr (Google)2 46.1

(12.7)
Notes: The average village had approximately 480 households in the 2012 census and ranged in size 
from 48 to 3241. Table includes 1,168 villages in the Kilimanjaro and Manyara regions of Tanzania. 
There are 1,183 total villages in the area but several were not visited. Standard deviations in 
parentheses.
1Feeder roads and rural roads are routes from villages to a nearest market. 
2Major roads are routes from markets to a nearest city.
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Table 2. Calibrating Travel Costs
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Cost Cost Hours Cost Cost Hours Cost Cost Hours
Panel A. Costs from Markets
Google maps: kilometers to destination 0.021***

(0.000)
Google maps: hours to destination 1.261*** 0.998***

(0.028) (0.032)
Number of markets 201 201 201
Number of observations 900 900 893

Panel B. Costs from villages
Google maps: kilometers to destination 0.117*** 0.088***

(0.011) (0.009)
Google maps: hours to destination 3.544*** 0.724*** 2.609*** 0.839***

(0.274) (0.069) (0.252) (0.076)
Number of villages 1127 1033 1036 1133 1133 1027
Number of observations 1127 1033 1036 1133 1133 1027

From village center to market center

Enumerator's Trips Transport Operator Surveys

Notes: Data is constructed from interviews with transportation operators, and from travel costs and times incurred by enumerators. There are 
226 market centers in our sample. In both regions, transportation operators were asked about the 3 most important hubs (Moshi, Arusha, and 
Dar es Salaam); in Manyara, they were also asked about 3 additional hubs (Tanga, Dodoma, and Babati). The unit of observation is the market-
hub level for Panel A, while it is the village-market pair level for Panel B. Standard errors in parentheses (clustered by market in Panel A).
*, **, and *** indicate significance at 10%, 5%, and 1% respectively.
1Cost is for one-way trip for a given route.

From market center 
to major hub town 

(Transport Operator Surveys)
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Table 3. Remoteness and farmer characteristics
(1) (2)

Mean

Panel A. Demographic and background characteristics
Age 49.76 -0.98*

(15.23) (0.52)
Female 0.45 -0.02

(0.02)
Married 0.76 0.00

(0.01)
Household size 4.95 0.26**

(2.78) (0.11)
Years of education 6.58 -0.31***

(3.56) (0.11)
Home has thatch roof 0.17 0.03

(0.02)
Has cell phone 0.89 -0.03***

(0.01)
Has bank account 0.15 -0.05***

(0.01)
Has mobile money account 0.77 -0.08***

(0.02)
Acres of land 5.46 1.37**

(13.89) (0.57)
Has market business 0.28 -0.05***

(0.01)
Annual total income from non-farming (USD) 408.9 -74.72**

(772.60) (30.25)
Panel B. Production Capacity (in kg/acre)1

FAO-GAEZ production capacity for low input level 719.1 39.83
(296.70) (28.87)

FAO-GAEZ production capacity for high input level 3039 -282.91***
(928.20) (81.80)

FAO-GAEZ production difference between high and low 2320 -322.75***
(779.50) (67.22)

Panel C. Harvest Output
Total harvest output in 2016 long rains (kg) 928.7 -16.62

(1360.00) (51.18)
Harvest output per acre 455.3 -85.11***

(384.30) (17.46)
Value of harvest output at average 201.9 -3.61
   regional post-harvest price (295.60) (11.13)

Coefficient from regression on 
standardized distance from regional 

hubs

Notes: N = 2,845 farmers in 246 villages. In Column 1, standard deviations are in parentheses. In Column 2, 
standard errors in parentheses, clustered at the village level.
*, **, and *** indicate significance at 10%, 5%, and 1%.
1Regressions for production capacity are at village level.
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Table 4. Remoteness, access to input markets and retail price heterogeneity

(1) (2)

Mean
Coefficient from regression 

on standardized distance from 
regional hubs

Panel A. Summary measures of access to input retailers
Has at least 1 agrovet within 10 km of village 0.75 -0.14***
  which sells fertilizer or seeds (0.01)
Number of agrovets within 10 km of village 7.79 -2.93***
  which sells fertilizer or seeds (8.96) (0.25)
Distance to nearest agrovet 6.79 3.17***
  which sells fertilizer or seeds (15.15) (0.47)

Panel B. Travel-cost adjusted prices faced by farmers
Minimum travel-cost adjusted price 24.19 2.33***
   for 50 kg of Urea1 (4.66) (0.12)

Decomposition of price between retail price and cost of transportation
Retail price at the location with the lowest 19.82 1.09***
   travel-cost adjusted price (USD) (2.63) (0.07)
Cost of travel to obtain minimum travel-cost 4.372 1.24***
   adjusted price (USD) (4.39) (0.13)
Notes: The unit of observation is the village. Data is from the universe of villages in Kilimanjaro and Manyara regions (N 
= 1,183). Travel costs imputed from transport surveys and Google maps. In Column 1, standard deviations are in 
parentheses. In Column 2, standard errors in parentheses.
*, **, and *** indicate significance at 10%, 5%, and 1%.
1We assume farmers buy a 50 kg bag in one trip (enough for 1 acre), and must incur the cost of a round-trip for herself, 
plus the cost of carrying the bag of fertilizer, equivalent to 0.7 trips.
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Table 5. Remoteness, access to output markets and output price heterogeneity

(1) (2)

Mean
Coefficient from regression 

on standardized distance 
from regional hubs

Panel A. Summary measures of access to output markets
Has at least 1 maize seller within 10 km of village 0.67 -0.16***

(0.01)
Number of maize sellers within 10 km of village 1.89 -1.06***

(2.48) (0.07)
Distance to the nearest output market with maize sellers (km) 8.67 5.65***

(14.17) (0.42)

Panel B. Maximum imputed travel-cost adjusted price if farmers were to sell in a local market
Market survey: maximum travel-cost adjusted price 30.30 -3.08***
   immediately after 2017 harvest (USD) (7.24) (0.20)

Decomposition of price between retail price and cost of transportation
Retail price at the location with the highest 39.34 0.80***
   travel-cost adjusted price (USD) (3.17) (0.09)
Cost of travel to obtain the highest travel-cost 9.05 3.88***
   adjusted price (USD) (7.06) (0.18)

Panel B2. Price available within village by maize-buying intermediaries immediately after last season's harvest
Farmer surveys: average "going price" in local 30.38 0.16
  village immediately after previous harvest2 (8.60) (0.62)
Farmer surveys: average village sales price 25.86 0.38
  after previous harvest2 (6.24) (0.29)
Notes: The unit of observation is the village. Data is from the universe of villages in Kilimanjaro and Manyara regions (N = 1,183). 
Travel costs imputed from transport surveys and Google maps. In Column 1, standard deviations are in parentheses. In Column 2, 
standard errors in parentheses.
*, **, and *** indicate significance at 10%, 5%, and 1%.
1We assume farmers sell a 120 kg maize bag in one trip, and must incur the cost of a round trip for herself and the cost of carrying 
the maize that is equivaent to 1.7 trips. 
2Data is only available from the farmer surveys (2,171 farmers in 137 villages).
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Table 6. Remoteness and input market access and adoption

(1) (2) (3)

No controls Controls for soil and 
farmer characteristics

Panel A: Input usage
Used chemical fertilizer in previous long rains 0.39 -0.17*** -0.09***

(0.03) (0.03)
Quantity of chemical fertilizer used (kg) 19.84 -13.06*** -6.46***

(31.63) (2.15) (1.74)
Used improved seeds in previous long rains 0.66 -0.07*** -0.05**

(0.02) (0.02)
Quantity of improved seeds used (kg) 6.29 -1.30*** -1.21***

(8.21) (0.36) (0.44)

Panel B. Maize sales
Sold maize after previous long rains 0.32 -0.09*** -0.06**

(0.02) (0.03)
Total quantity sold (kg) 388.1 -97.86*** -112.16**

(1142.00) (35.11) (48.86)
Sales to agents at home
Agent visited homestead 0.31 -0.14*** -0.09***

(0.03) (0.03)
Sold maize to an agent after previous long rains 0.17 -0.07*** -0.04**

(0.02) (0.02)
Quantity sold to agents (kg) 142 -46.39*** -39.11**

(433.70) (13.80) (18.61)
Sales at market
Sold maize at a market after previous long rains 0.06 -0.03*** -0.03***

(0.01) (0.01)
Quantity sold at market (kg) 34.42 -14.61*** -15.26**

Panel C. Maize purchases (197.10) (5.32) (7.72)
Farmer ever buys maize 0.48 0.11*** 0.08***

(0.02) (0.02)
Quantity purchased in typical year (kg) 152.3 75.67*** 65.05***

(315.50) (15.79) (17.92)
Net buying
Farmer buys maize but sells none 0.37 0.11*** 0.08***

(0.02) (0.03)
Farmer sells maize and buys none 0.24 -0.09*** -0.06***

(0.02) (0.02)
Farmer buys and sells maize 0.08 -0.00 0.00

(0.01) (0.01)
Net buyer (quantity bought > quantity sold) 0.44 0.10*** 0.07**

(0.02) (0.03)
Net seller (quantity bought < quantity sold) 0.26 -0.08*** -0.06**

(0.02) (0.03)

Mean

Notes: N = 2,845 farmers in 246 villages. See text for sampling details. Standard deviations are in 
parentheses in Column 1. Standard errors, clustered at village level, in parentheses in Columns 2-3.
*, **, and *** indicate significance at 10%, 5%, and 1%.

Coefficient from regression on standardized 
distance from regional hubs
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Table 7. Multinomial logit of agrovet choice

(1) (2)

Kilometers to agrovet -0.171***
(0.009)

Dummies for agrovet distance bin:
   between (0,5] km -1.380***

(0.372)
   between (5,10] km -2.914***

(0.379)
   between (10,15] km -4.331***

(0.380)
   between (15,20] km -5.367***

(0.400)
   between (20,30] km -5.875***
 (0.378)
   between (30,40] km -7.602***

(0.449)
   between (40,50] km -8.685***

(0.495)
   between (50,100] km -10.625***

(0.560)
   over 100 km -14.253***

(0.992)

Agrovet Chosen

Notes: N = 519  farmers, 119 observed locations. Omitted group is agrovet located in 
respondent's village. Standard errors in parentheses. *, **, and *** indicate 
significance at 10%, 5%, and 1%.
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Figure 1. Map of Survey Region and Villages

GPS Kili+Manyara
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All items
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A. CDF of Maize Price B. CDF of Fertilizer Price

Figure 2. CDF of travel-cost adjusted prices across villages

C. CDF of Ratio of Maize Price to Fertilizer Price

Notes: Each observation represents a village. Travel-cost adjusted prices are calculated through observed prices from an agrovet 
survey, a maize price survey at markets and transport cost information collected from interviews with transport operators. 
Vertical dotted lines represent a 10 percentile and a 90 percentile of the distribution.
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Figure 3. CDF of travel-cost adjusted prices (measured costs vs. estimated costs)

Notes: Each observation represents a village. Travel-cost adjusted prices are calculated through observed prices 
from an agrovet survey and transport cost information collected from interviews with transport operators. The 
CDFs are censored at a 95 percentile for a better visual comparison.
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Figure 4. Input Access Counterfactuals

Notes: See text for discussion of counterfactuals.
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Figure 5. Entry and Output Access Counterfactuals

Notes: See text for discussion of counterfactuals.
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Web Appendix Table A1. Survey Compliance Rates
(1) (2) (3)

Survey Attempts Completed Compliance Rate
Farmer surveys 2016 583 573 0.98
Farmer surveys 2017 2535 2477 0.98
Agrovet surveys 585 532 0.91
Maize sellers at markets 445 438 0.98
Notes: see text of details of surveys.
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Web Appendix Table A2. Costs of transporting fertilizer and transporting farmer, by distance

(1) (2) (3) (4)

Google maps: kilometers to destination 0.036*** 0.047***
(0.020) (0.007)

Google maps: hours to destination 1.276*** 1.831***
(0.677) (0.260)

Number of villages 73 73 119 119
Number of observations 341 341 988 988
Notes: Data is constructed from Farmer Surveys, conditional on making input purchases and/or selling output. 
Clustered standard errors (by village) are reported in parentheses. 
*, **, and *** indicate significance at 10%, 5%, and 1% respectively.

Cost of transporting 
fertilizer from agrovet in 

destination village 
(standardized to 50 kg)

Cost of farmer traveling 
himself to agrovet
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Web Appendix Table A3. Remoteness and fertilizer retailer sales, prices, and markups

(1) (2)

Mean

Panel A. Agrovet shop-level (N=507)
Sells fertilizer 0.87 -0.03

(0.34) (0.02)
Number of varieties of fertilizer 1.76 -0.15*

(1.58) (0.09)
Quantity of fertilizer sold last year (kg) 5995 -473.41

(12721) (757.30)
Sells seeds 0.72 0.04

(0.45) (0.02)
Number of varieties of seeds 1.2 0.10

(1.26) (0.07)
Quantity of seeds sold last year (kg) 2194 903.59

(8008) (557.99)
Cost of transport from wholesaler (per 50 kg) 0.64 0.30***

(0.69) (0.04)

Panel B. Prices and markups (Agrovet shop-variety level, N=938)
Retail price for 50 kilograms 25.21 0.65***

(5.21) (0.22)
Wholesale price for 50 kilograms 21.43 0.16*

(4.14) (0.09)
Markup (percentage points)1 13.42 0.86

(10.25) (0.62)

Coefficient from regression 
on standardized distance 

from regional hubs

Notes: In Column 1, standard deviations are in parentheses. In Column 2, standard errors in 
parentheses. Regressions in Panel B includes type and brand fixed effects.
*, **, and *** indicate significance at 10%, 5%, and 1%.
1Markup accounts for cost of transport to wholesaler.
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Web Appendix Table A4. Robustness of Travel-cost Adjusted Prices
(1) (2)

Mean

Coefficient from 
regression on 

standardized distance 
from regional hubs

Panel A. Robustness to Dropping Villages Within 10km of Regional Borders
A1. Input Side: Travel-cost adjusted fertilizer prices faced by farmers
Minimum travel-cost adjusted price for 50 kg of Urea1 23.98 2.70***
   (4.44) (0.14)
Decomposition of price between retail price and cost of transportation
Retail price at the location with the lowest travel-cost adjusted price (USD) 19.91 1.32***
   (2.67) (0.09)
Cost of travel to obtain minimum travel-cost  adjusted price (USD) 4.069 1.38***

(3.99) (0.14)

A2. Output Side: Travel-cost adjusted maize prices if farmers were to sell in a local market
Market survey: maximum travel-cost adjusted price 30.07 -3.71***
   immediately after 2017 harvest (USD) (7.18) (0.23)

Decomposition of price between retail price and cost of transportation
Retail price at the location with the highest travel-cost adjusted price (USD) 39.10 0.89***
   (3.20) (0.12)
Cost of travel to obtain the highest travel-cost adjusted price (USD) 9.03 4.60***
   (7.18) (0.21)

Panel B. Bounding regression coefficients by assigning prices to missing retailers1

Input Side: Travel-cost adjusted fertilizer prices faced by farmers
Minimum travel-cost adjusted price for 50 kg of Urea1 24.09 2.26***

(4.69) (0.13)
Decomposition of price between retail price and cost of transportation
Retail price at the location with the lowest travel-cost adjusted price (USD) 19.84 1.10***
   (2.58) (0.07)
Cost of travel to obtain minimum travel-cost adjusted price (USD) 4.25 1.16***
   (4.35) (0.13)

Notes: Data is from the universe of villages in Kilimanjaro and Manyara region (N = 1183). The unit of observation is the village. 
Travel costs imputed from transport surveys and Google maps. In Column 1, standard deviations are in parentheses. In Column 2, 
standard errors in parentheses.
*, **, and *** indicate significance at 10%, 5%, and 1%.
1In this calculation, we imputed prices to retailers with missing values. To do this, we estimated the distribution of prices within 
region. We then assigned high or low prices to the missing agrovet (defined as being at the 10th or 90th percentile of this price 
distribution) in a way that attenuated the regression coefficient. For example, a missing agrovet in a remote village was assigned a 
low price, causing a flattening of the regression.
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Web Appendix Table A5. Input and output market price dispersion across countries
(1) (2)

Secondary Datasets Tanzania Data2

Residual standard deviation in log prices for:3

     All products 0.45 0.15
     Maize only 0.34 0.10
     Fertilizer only 0.12 0.09
Notes: Secondary datasets include RATIN (prices of major crops across 41 major markets in 5 
countries - Kenya, Tanzania, Uganda, Burundi, and Rwanda - over the 1997-2015 time period), 
Africafoodprices.io (25 products over 276 markets in 53 countries), AMITSA (the Regional 
Agricultural Input Market Information and Transparency System for East and Southern Africa, 
which includes information on 9 fertilizer varieties in 95 markets in 8 countries), prices of 5 major 
varieties of fertilizer (Urea, CAN, DAP, and NPK 17 17 17) in 18 countries from 2010-16 in 
Africafertilizer.org; and prices of a number of commodities in 38 countries from 1992-2016 
collected by the WFP.
1Maize prices are from a survey of market sellers in 98 markets conducted in October 2017. 
Fertilizer prices are from surveys of agro-input retailers in 2017.
2Calculated from a regression of log prices on product, country, and time fixed effects. See text for 
details.
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Web Appendix Table A6. Dyadic price dispersion
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A. Secondary Datasets
Log (distance) 0.03*** 0.000 0.000 0.03*** 0.000 0.000 0.01*** 0.000 0.010

(0.002) 0.000 (0.010) (0.002) 0.000 (0.015) (0.002) 0.000 (0.014)
Log (travel time) 0.03*** 0.03*** 0.04*** 0.04** 0.01*** 0.000

(0.002) (0.011) (0.003) (0.017) (0.002) (0.016)

Products All All All Maize Maize Maize Fertilizer Fertilizer Fertilizer
Dependent variable mean 0.21 0.21 0.21 0.20 0.20 0.20 0.11 0.11 0.11
Dependent variable sd 0.20 0.20 0.20 0.17 0.17 0.17 0.13 0.13 0.13
Observations 4,752,196 4,752,196 4,752,196 675,880 675,880 675,880 38,364 38,364 38,364
Number of locations 1335 1335 1335 1335 1335 1335 1335 1335 1335
Countries 49 49 49 43 43 43 18 18 18

Panel B. Northern Tanzania
Log (distance) 0.01*** -0.030 0.03*** -0.10** 0.003* 0.007

(0.003) (0.020) (0.011) (0.050) (0.002) (0.017)
Log (travel time) 0.01*** 0.04* 0.04*** 0.16** 0.004 -0.004

(0.004) (0.025) (0.016) (0.069) (0.002) (0.019)

Products All All All Maize Maize Maize Fertilizer Fertilizer Fertilizer
Dependent variable mean 0.16 0.16 0.16 0.21 0.21 0.21 0.13 0.13 0.13
Dependent variable sd 0.14 0.14 0.14 0.18 0.18 0.18 0.10 0.10 0.10
Observations 22,386 22,376 22,376 6,873 6,873 6,873 15,064 15,056 15,056
Number of locations 82 82 82 65 65 65 60 60 60

Dependent variable: Absolute log price difference

Notes: Regressions include product, month and year fixed effects. All regressions are within country. Travel time and distances calculated from Google 
maps. See Web Appendix Table A3 and text for discussion of datasets. 
Two-way clustered standard errors in parentheses. ***, **, and * indicate significance at 1%, 5%, and 10%.
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Web Appendix Table A7. Adoption in LSMS-ISA surveys
(1) (2)

Log of distance to nearest major market (km) -0.027***
(0.005)

Log of distance to nearest population center (km) -0.019*
(0.010)

Dependent variable mean 0.32 0.32
Independent variable mean 3.23 3.21
Independent variable sd 1.27 1.02
Observations 35,938 35,938
Individuals 26,653 26,653

Dependent variable: used chemical 
fertilizer in last season

Notes: Regressions include World Bank LSMS-ISA household panel surveys in Ethiopia, 
Niger, Nigeria, Malawi, Tanzania, and Uganda. Standard errors clustered at the 
enumeration area level are in parentheses. 
***, **, and * indicate significance at 1%, 5%, and 10%. 
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Web Appendix Table A8. Production Function Estimates with and without fertilizer 
(1) (2)

log(Labor/Acres) 0.419*** 0.433*** 0.430***
(0.042) (0.042) (0.042)

log(Labor/Acres) x Used Fertilizer? 0.124* 0.124* 0.149*
(0.075) (0.074) (0.077)

Used Fertilizer? (0.33) (0.33)
(0.300) (0.298)

District-Year fixed effects X
District-Year-Fertilizer Use fixed effects X
Plot fixed effects X X X

Observations 3,395 3,395 3,395
Plots 2,554 2,554 2,554

Dependent variable: log(Harvest/Acres)

Notes: Regressions use World Bank LSMS-ISA household panel surveys from Tanzania, and Uganda. ***, **, and * indicate 
significance at 1%, 5%, and 10%. 
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Web Appendix Figure A1. Distribution of Remoteness

Notes: Remoteness at the village level. Vertical dotted lines indicate the villages with minimum and maximum 
remoteness.
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Web Appendix Figure A2. CDF of Distance Farmers Travel to Purchase Inputs

Notes: Each point represents a farmer. Purchase events include any kinds of agricultural inputs. 
Vertical dotted lines indicate distances corresponding to the the 50th and 90th percentile. 
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